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While anti-PD-1 and anti-PD-L1 [anti-PD-(L)1] monotherapies are effective

treatments for many types of cancer, high variability in patient responses is

observed in clinical trials. Understanding the sources of response variability can

help prospectively identify potential responsive patient populations. Preclinical

data may offer insights to this point and, in combination with modeling, may be

predictive of sources of variability and their impact on efficacy. Herein, a

quantitative systems pharmacology (QSP) model of anti-PD-(L)1 was

developed to account for the known pharmacokinetic properties of anti-

PD-(L)1 antibodies, their impact on CD8+ T cell activation and influx into the

tumor microenvironment, and subsequent anti-tumor effects in CT26 tumor

syngeneic mouse model. The QSP model was sufficient to describe the

variability inherent in the anti-tumor responses post anti-PD-(L)1 treatments.

Local sensitivity analysis identified tumor cell proliferation rate, PD-1 expression

onCD8+ T cells, PD-L1 expression on tumor cells, and the binding affinity of PD-

1:PD-L1 as strong influencers of tumor growth. It also suggested that

treatment-mediated tumor growth inhibition is sensitive to T cell properties

including the CD8+ T cell proliferation half-life, CD8+ T cell half-life, cytotoxic

T-lymphocyte (CTL)-mediated tumor cell killing rate, and maximum rate of

CD8+ T cell influx into the tumor microenvironment. Each of these parameters

alone could not predict anti-PD-(L)1 treatment response but they could shift an

individual mouse’s treatment response when perturbed. The presented

preclinical QSP modeling framework provides a path to incorporate

potential sources of response variability in human translation modeling of

anti-PD-(L)1.
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Introduction

Immune checkpoint inhibitors have revolutionized cancer

therapy (Robert, 2020). The first monoclonal antibody targeting

cytotoxic T-lymphocyte associated protein-4 (CTLA-4) was

approved in 2011, followed by the approval of monoclonal

antibodies targeting programmed cell death protein 1 (PD-1)

and its ligand, PD-L1 (Sun et al., 2018; Stankovic et al., 2019).

PD-1 and PD-L1 are two of the most well-studied

immunotherapy targets (Dammeijer et al., 2017; Stankovic

et al., 2019). PD-1 is expressed on the surface of antigen-

stimulated T cells, including both helper, regulatory, and

cytotoxic T cells; while PD-L1 is expressed on tumor cells in a

wide variety of cancers, including lung cancer, breast cancer, and

melanoma (Sun et al., 2018; Zheng et al., 2019). The ligation of

PD-1 by PD-L1 inhibits T cell effector functions, such as

proliferation, survival, and cytokine production (Sun et al.,

2018), in turn, promoting tumor cells to escape immune

surveillance. Anti-PD-1 and anti-PD-L1 [hereafter referred to

jointly as anti-PD-(L)1] antibodies competitively bind with PD-1

and PD-L1, respectively. Antibody binding to the targets reduces

endogenous PD-1 and PD-L1 interaction and allows T cells to

resume normal function. Anti-PD-L1 antibodies with an effector

function also induce antibody-dependent cellular cytotoxicity

(ADCC) of tumor cells (Boyerinas et al., 2015; Kurino et al.,

2020). Anti-PD-(L)1 monotherapies have been proven to be

effective treatments for many types of cancer, but response

rates remain low, with only 18–45% of patients showing

complete or partial tumor regression in clinical trials (Sun

et al., 2018). Understanding the sources of response variability

in the clinic can aid in the prospective identification of patient

populations who are more likely to respond to anti-PD-(L)

1 treatments, and therefore reduce the number of patients

experiencing potentially severe adverse events while receiving

no benefit from the treatments (Darvin et al., 2018; Doroshow

et al., 2021; Kumar et al., 2021; Wang et al., 2021).

High clinical variability in responses can make data

interpretation challenging, especially in Phase 1 trials, where

multiple dose levels are investigated using a relatively small

number of patients. This hinders the ability to make informed

decisions for subsequent trial designs. Rational design, such as

patient inclusion and exclusion criteria and dosing regimen/dose

selection, is necessary to effectively evaluate PK, safety, and efficacy

of therapeutics under investigation. Preclinical data can help predict

clinical values, such as PK and efficacious dose levels (Lieu et al.,

2013). The data-based predictions are useful in dose selection in

clinical trials to achieve full exploration of the expected ranges.

Accurate predictions lead to efficient trial design, limiting the cost of

clinical trials and providing maximum benefit to trial participants

while gathering sufficient information for final dose selection.

In immuno-oncology, preclinical studies frequently use

syngeneic mouse models to evaluate therapeutic efficacy due to

their intact immune systems, easy preparation, and stable in vivo

tumor growth (Saito et al., 2020). These models approximate clinical

disease as they represent an immune response to acute exposure

rather than a tumor that develops over an extended period without

necessarily triggering the immune system. Accordingly, translation

methods should take these differences in immune response into

account when predicting doses for the clinic. Translation methods

can vary between simple allometric scaling of PK and doses to more

sophisticated methods, such as quantitative systems pharmacology

(QSP) modeling (Zhang et al., 2022).

QSP can leverage a greater breadth of preclinical datasets to

generate human predictions, which can then be used in designing

clinical trials. For example, preclinical QSPmodels can be used to

understand the dynamics of the underlying biological system and

TABLE 1 Details of tumor growth inhibition studies with CT26 syngeneic mouse tumor model. Q5D = every 5 days. Q4D = every 4 days. Q3D = every
3 days. QD = every day. IV = intravenously. IP = intraperitoneally. MC = methylcellulose.

Study Study
site ID

Number
of mice
per group

Control Anti-PD-1
(RMP1-14)

Anti-PD-L1
(10F.9G2)

Number
of tumor
cells
implanted

Treatment
start
(days
after
tumor
implantation)

Duration
of study
(days
after
tumor
implantation)

1 1 10 PBS IV Q5Dx2 10 mg/kg IV Q5Dx2 N/A 2 × 106 8 148

2 1 10 PBS IV Q4Dx4 5 mg/kg IV Q4Dx4 N/A 2 × 106 10 56

3 1 10 PBS IV Q3Dx3 10 mg/kg IV Q3Dx3 10 mg/kg IV Q3Dx3 2 × 106 7 242

4 2 12 0.5% MC oral QD N/A 10 mg/kg IP Q3Dx3 2 × 105 11 52

5 2 21 Water oral QD N/A 10 mg/kg IP Q3Dx3 2 × 105 8 40
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response to immune-oncology treatments, and therefore to help

identify mechanistic hypotheses for the inter-individual

variability observed in tumor volume profiles in syngeneic

mouse models following the immuno-oncology treatments.

Understanding the variability and uncertainty inherent in

preclinical data can streamline translation to first-in-patient

studies by allowing the incorporation of variability into

clinical model predictions.

We sought to build a methodology for preclinical to clinical

translation in situations with high inter-individual variability using

anti-PD-(L)1 therapies as an example. Previous models of anti-PD-

(L)1 focused on using clinical data to identify potential biomarkers

for pembrolizumab and ipilimumab in melanoma (Kumar et al.,

2021) and for atezolizumab in breast cancer (Wang et al., 2021). In

comparison, a preclinical model leveraged a simpler QSP model to

identify potential biomarkers through sensitivity analysis

FIGURE 1
Model structure captures intra-tumoral T cell dynamics from in vivo data. (A) The QSPmodel consists of three compartments that describe the
pharmacokinetics of anti-PD-(L)1, molecular interactions of the antibodies with their targets, cellular kinetics and interactions of CD8+ T cells and
tumor cells. The life cycle of the CD8+ T cells is depicted in the QSP model. (B) CD8+ T cell concentrations from flow cytometry data of four mice
plotted with the model simulated steady state concentrations using the population fit parameter set. Simulated steady state values of T cell
concentrations are depicted by green dots. (C,D) Percent changes in CTL concentrations (C) and tumor volumes (D) from the control simulation
10 days after treatment start for the model with constant CD8+ T cell influx vs. the model with PD-1:PD-L1 binding dependent CD8+ T cell influx.
Treatment of either anti-PD-1 Q3Dx3 or anti-PD-L1 Q3Dx3 is initiated 7 days after tumor implantation.
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(Valentinuzzi et al., 2019). Herein, we developed a mouse QSP

model of anti-PD-(L)1 to investigate potential sources of inter-

individual variability. The model leveraged intra-tumoral T cell

profiling data to characterize T cell kinetics parameters. It

captured variability in the growth of CT26 syngenetic tumors

post anti-PD-(L)1 treatments. Further, local sensitivity analysis

led to hypotheses of potential biomarkers in mice that can be

predictive of response to the treatments. This work lays a

foundation for leveraging QSP models for preclinical to clinical

translation in situations with high inter-individual variability.

Methods

Mouse datasets

All mouse studies were approved by the Pfizer Institutional

Animal Care and Use Committee according to established

guidelines.

To obtain intra-tumoral T cell profiling data, four

immunocompetent Balb/c mice were inoculated with

CT26 tumor cells. The tumors were harvested 7 days after

inoculation. Frequencies of CD8+ inactive T cells [CD8+CD4-

TCF7+ (Kurtulus et al., 2019)], CD8+ active T cells [CD8+CD4-

PD1+CD44+ (Baaten et al., 2010)], CD8+ proliferating T cells

[CD8+CD4-Ki67+ (Scholzen and Gerdes, 2000)], CD8+ cytotoxic

T-lymphocytes [CTLs, CD8+CD4-Granzyme B+ (Pardo et al.,

2009)] and CD8+ exhausted CTLs [CD8+CD4-

PD1+Tim3+Lag3+ (Maruhashi et al., 2020; Yang et al., 2020)]

out of CD45+ T cells were quantified by cell surface markers using

flow cytometry.

Tumor growth inhibition data are from five studies of

immunocompetent Balb/c mice inoculated with CT26 tumor

cells. The mice were treated with phosphate buffer saline (PBS,

control), 0.5% methylcellulose (control), water (control), anti-

mouse-PD-1 antibody (CD279, RMP1-14, BioXCell®), or anti-
mouse PD-L1 antibody (B7-H1, 10F.9G2, BioXCell®). Tumor

sizes were measured using calipers. Tumor volumes were

calculated as (width x width x length)/2. Every study had a

control group and 1-2 anti-PD-(L)1 treatment groups. Details of

the five studies are shown in Table 1.

Anti-PD-(L)1 QSP model

A QSP model was originally designed to investigate sources

of variability in response to anti-CTLA4 (Qiao, 2022) and the

model was updated to incorporate the mechanism of action of

anti-PD-(L)1. The QSP model consists of three compartments,

including the plasma and peripheral compartments to capture

the pharmacokinetics of anti-PD-(L)1 antibodies, and the tumor

compartment to describe the pharmacodynamics within the

tumor microenvironment.

In the tumor compartment the concentrations of tumor cells,

PD-1+CD8+ T cells, and other PD-1+ T cells were modeled.

Tumor cells are damaged through interactions with CTLs or

through anti-PD-L1 ADCC. Damaged tumor cells undergo

apoptosis at a constant rate. Other PD-1+ T cells serve as an

alternate binding site for PD-L1 on tumor cells. PD-1+CD8+

T cells include CD8+ T cells in the inactive, active, proliferating,

CTL, and exhausted CTL stages depicted in Figure 1A. PD-

1+CD8+ T cells are synthesized as inactive cells (EI). The cells go

through eight proliferation stages (EA, and EPi for i � 1..7) before

becoming CTLs (EDi for i � 1...10) (Qiao, 2022). A total of eight

proliferation stages was chosen to match the magnitude of T cell

was chosen to match the magnitude of T cell expansion observed

in (Yoon et al., 2010). Each CTL can damage ten tumor cells

before becoming exhausted (ED0 ) (Halle et al., 2016). All CTLs

are assumed to be reactive towards the tumor. All PD-1+CD8+

T cells express the same number of PD-1 receptors per cell.

Inactive, active, and proliferating CD8+ T cells degrade at a rate of

kd,CD8 while CTLs degrade at a rate of kd,CTL.

The binding of PD-L1 expressed on tumor cells to PD-1

expressed on inactive PD-1+CD8+ T cells (PI: LV) controls T cell

behavior. This binding inhibits the influx (finflux) of inactive
PD-1+CD8+ T cells into the tumor microenvironment, and the

activation (factivate) of PD-1+CD8+ T cells in the tumor

compartment (Eqs 1–3). In the absence of antibody

treatments, PD-1:PD-L1 per inactive CD8+ T cell is at its

steady state concentration (approximately 6.6 PD-1:PD-L1 per

inactive CD8+ T cell) causing inactive PD-1+CD8+ T cells

to enter the tumor compartment at the rate of ks,IVt (Eq. 2).

The influx rate ensures that the CD8+ T cells reach a

steady state concentration during control simulations. The

maximum influx and activation rates are denoted E influx
max and

E activate
max , respectively. Both functions reach half maximal values

at EC50.

dEI

dt
�finflux

PI:LV

EI
( )−kd,CD8E

I−factivate
PI:LV

EI
( )EI+kA2IbasalEA

(1)

finflux
PI: LV

EI
( ) � max 0,

E influx
max

1 + EC50
6.6

− E influx
max

1 + EC50
PI : LV

EI

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ + ks,IVt (2)

factivate
PI: LV

EI
( ) � E activate

max − E activate
max

1 + EC50
PI : LV

EI

(3)

Equations describing the subsequent T cell stages follow the

set up in (Qiao, 2022) and can be found with the full model

equations in Supplementary Material.

Model fitting

Parameters describing receptor expression, antibody half-

lives, binding constants, and plasma concentrations were
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sourced from relevant literature (Supplementary Table S1).

The unknown model parameters were estimated in three

stages. First, pharmacokinetic parameters of RMP1-14

(anti-PD-1) and 10F.9G2 (anti-PD-L1) were fit from the

published single dose data (Zalba et al., 2020) using two-

compartment models with linear elimination (Supplementary

Figure S1).

Second, T cell kinetic parameters including maximum CD8+

T cell activation rate, T cell proliferation half-life, CD8+ T cell

half-life, CTL half-life, CTL-mediated tumor cell killing rate, and

baseline influx rate of inactive CD8+ T cells were constrained

using average concentrations of CD8+ T cells from untreated

CT26 tumors in Balb/c mice that were derived from flow

cytometry data. Full details can be found in Supplementary

Material.

Third, the full QSP model was fit to tumor volume profiles

from five in vivo mouse studies. Non-linear mixed effects

(NLME) model fitting and local sensitivity analysis were

performed iteratively to identify the key parameters to

capture inter-individual variability. Local sensitivity

analysis was centered on the population parameter

estimates. In each iteration, sensitive parameters were

included as random effects in the NLME model. Based on

the results of fitting the inter-individual variability, study site

ID of the five in vivo mouse studies was identified as a

significant covariate. An exponential covariate model was

included to capture study site level effects. Goodness of fit

was evaluated using Akaike information criteria, Bayesian

information criteria and visual inspection of individual fits.

The control and treatment groups of all the studies were fit

simultaneously.

Model fitting was performed in Monolix 2020R1 (Lixoft SAS,

a Simulations Plus company). Local sensitivity analysis was

performed in MATLAB version R2020b (MathWorks

software). Plots were generated in R version 4.0.3.

Local sensitivity analysis

Local sensitivity analysis was performed using either the

population fit or a chosen fitted animal as the starting

parameter set. Parameters were perturbed ± 30% one at a

time. The percent change in the area under the tumor volume

curve (AUC) was calculated for control, anti-PD-1, and anti-PD-

L1 treatment simulations. Three doses of 10 mg/kg given every

3 days (Q3D) were simulated with the first dose administered on

day 7. The AUC was chosen to summarize the changes to tumor

volume over the entire 30 days.

Local sensitivity analysis was performed in MATLAB version

R2020b (MathWorks software). Plots were generated in R

version 4.0.3.

Results

T cell influx as a function of PD-1 to PD-L1
binding is necessary to model antibody-
induced anti-tumor response while
capturing intra-tumoral T cell dynamics

The QSP model describes the pharmacokinetics of anti-PD-

(L)1, interactions between the antibodies and their molecular

targets, tumor cell dynamics, intra-tumoral T cell dynamics, and

CTL-mediated tumor cell killing (Figure 1A). Five stages of T cell

development were tracked in the tumor compartment, described

as inactive, active, proliferating, cytotoxic, and exhausted T cells.

The concentration of each of these T cell populations depends on

the T cell kinetic parameters including baseline CD8+ T cell

influx rate, CD8+ T cell half-life, CTL half-life, maximum CD8+

T cell activation rate, CD8+ T cell proliferation half-life, and CTL-

mediated tumor cell killing rate. These parameters were

constrained using the average concentrations of CD8+ T cells

from untreated CT26 tumors in Balb/c mice (Figure 1B,

Supplementary Table S1) that were derived from flow

cytometry data where the five CD8+ T cell populations were

defined by cell surface markers (Supplementary Material).

The maximum CD8+ T cell activation rate limits the

maximum amount of change in the CTL concentration post

antibody treatments. Specifically, simulations indicate that anti-

PD-1 treatments administered Q3Dx3 induced a maximum

increase of 2.8% in CTL concentration and 0.017% reduction

in tumor volume 10 days after treatment initiation compared to

control simulations, whereas anti-PD-L1 treatment administered

Q3Dx3 induced a maximum increase of 56% in CTL

concentration and 52% reduction in tumor volume (Figures

1C,D). Differences in response to anti-PD-1 and anti-PD-

L1 treatments is due to differences in receptor occupancy and

the ADCC effect of anti-PD-L1. These simulations indicated that

activation and expansion of resident CD8+ T cells in the tumor

microenvironment alone are insufficient for modeling the anti-

tumor responses of anti-PD-(L)1 treatments.

When a PD-1:PD-L1 interaction dependent CD8+ T cell

influx was incorporated, the increase in CTL concentration

due to anti-PD-(L)1 treatments significantly increased (from

2.8% to 65000% for anti-PD-1, and from 56% to 208000% for

anti-PD-L1), as did the reduction in tumor volume (from 0.017%

to 35% for anti-PD-1, and from 52% to 75% for anti-PD-L1)

(Figures 1C,D).

In summary, intratumor T cell profiling data were used to

characterize kinetic parameters of CD8+ T cells in CT26 + tumor

microenvironment. Model simulations indicate that dependence

of the influx of CD8+ T cells to the tumor microenvironment on

the amount of PD-1:PD-L1 interactions between T cells and tumor

cells is necessary for anti-PD-(L)1-mediated anti-tumor responses.
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Tumor volume profiles reveal inter-
individual and inter-study variabilities in
addition to dose-dependent responses to
anti-PD-1 treatment

Significant variability in tumor volume profiles and responses

to anti-PD-(L)1 treatments was observed in the in vivo studies

with the CT26 syngeneic mouse tumor model. The dataset

consisted of 136 mice with CT26 tumors treated with PBS,

0.5% MC or water (control group), anti-PD-1 antibody

(RMP1-14) or anti-PD-L1 antibody (10F.9G2) (treatment

details in Table 1). Representative data are shown in

Figure 2A and the full dataset is shown in Supplementary

Figure S4.

FIGURE 2
CT26 tumor growth inhibition data exhibit dose dependent response to anti-PD-1. (A) Representative individual tumor volume profiles of the
control group, and the individual tumor volume profiles after treatment with anti-PD-1 administered at 10 mg/kgQ3Dx3 or anti-PD-L1 administered
at 10 mg/kg Q3Dx3. (B) Violin plots showing observed rates of tumor volume changes between day 7 and day 13 post treatments with PBS (control)
or anti-PD-1 in studies 1–3. Dashed line indicates the threshold (25 mm3/day) for classifying slow- and fast-growing tumors. (C) Violin plots
showing observed rate of tumor volume changes during between day 7 and day 13 post treatments with PBS (control) or anti-PD-L1 in studies 3–5.
(D) Percent of control and anti-PD-1 treated mice with slow-growing tumors between day 7 and day 13 after treatment start in studies 1–3 sorted
according to simulated average plasma anti-PD-1 concentration (Cave). (E) Percent of control and anti-PD-L1 treated mice with slow-growing
tumors between day 7 and day 13 after treatment start in studies 3–5.
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To quantify the differences in individual tumor volume

profiles, the observed rates of tumor volume change between

day 7 and day 13 after treatment start were calculated for each

mouse. The observed rates of tumor volume change varied

significantly between studies, as identified through a Kruskal-

Wallis rank sum test (p = 0.0054).

The average observed rates of tumor volume change between

the treatment group and the control group within each study

were tested for significance using a Wilcoxon rank sum test. As

shown in Figures 2B,C, anti-PD-1 treatment caused a statistically

significant decrease in the observed rates of tumor volume

change only at the highest dose (study 3, 10 mg/kg Q3Dx3).

Anti-PD-L1 treatment caused statistically significant decreases in

the observed rates of tumor volume change in studies 3 and 4, but

not in study 5 (p-values are unadjusted, significance threshold is

0.01/6 = 0.0016 with Bonferroni correction) despite the same

dosing regimen being used in the studies and similar tumor sizes

at treatment start in studies 3 and 5 (Supplementary Figure S2,

Supplementary Table S2).

Tumors with observed rates of change below 25 mm3 per

day were classified as having a slow rate of change, while the

others were classified as having a fast rate of change. The

threshold of 25 mm3 per day was chosen as it identifies all

mice that experience tumor regression after treatment, or a

period of regression followed by progression

(Supplementary Figure S3). While mice with fast tumor

growth are present in all the dose groups, the number of

tumors with a slow observed rate of tumor volume change

increased as the anti-PD-1 dose increased (Figure 2D),

indicating dose response.

In summary, substantial inter-study and inter-individual

variability is present in the tumor volume profiles. Anti-PD-

1 led to dose response in tumor growth inhibition, whereas

dose ranging data were not available for anti-PD-L1

(Figure 2E).

The QSP model explains sources of
variability in baseline growth and
treatment response observed in tumor
volume profiles post anti-PD-(L)1
treatments

Next, we parameterized the QSP model to understand the

variabilities observed in the tumor volume profiles post anti-PD-

(L)1 treatments. PK parameters for RMP1-14 and

10F.9G2 were estimated based on literature data (Zalba

et al., 2020) (Supplementary Figure S1). The tumor

volume-time profiles were used to fit the CD8+ T cell

proliferation half-life, maximum rate of ADCC, tumor cell

apoptosis rate, maximum rate of CD8+ T cell influx, CTL-

mediated tumor cell killing rate, tumor cell proliferation

rate, and tumor carrying capacity (Supplementary Table S1).

Model fitting was approached iteratively, alternating

between local sensitivity analysis and NLME modeling to

identify a minimum number of parameters to describe the

inter-study and inter-individual variabilities in the tumor

volume profiles. The final model included random effects for

CD8+ T cell proliferation half-life, tumor cell proliferation

rate and tumor carrying capacity, and included study site ID

TABLE 2 Fitted model parameters. Parameter symbols used in the equations are shown in parentheses.

Parameter Description Unit Value R.S.E. (%) Shrinkage (%)

Fixed effect

ThalfCD8pfr_pop CD8+ T cell proliferation half-life Days 0.418 44.9 −

ADCC_Emax_pop (E ADCC
max ) Max ADCC rate 1/day 0.146 5.63 −

Kapop_TC_M_pop (kapop) Damaged tumor cell apoptosis rate 1/day 0.191 11.2 −

Kpfr_TC_pop (kpfr,T ) Population tumor cell proliferation rate 1/day 0.199 2.68 −

Beta_kpfr_TC_STUDY_2 Effect of study site ID on tumor cell proliferation rate 0.444 8.54 −

Klimit_TC_pop (klimit,T) Population tumor carrying capacity mm3 8,370 14.5 −

Beta_klimit_TC_STUDY_2 Effect of study site ID on tumor carrying capacity −1.47 11.5 −

Influx_Emax_pop (E influx
max ) Maximum influx of CD8+ inactive T cells Cells/

day
8.43×107 1.75 −

Random effect

Omega_ThalfCD8pfr Standard deviation of the random effect on the CD8+ T cell proliferation half-
life

Days 3.75 34.7 88.1

Omega_kpfr_TC Standard deviation of the random effect on the tumor cell proliferation rate 1/day 0.21 6.51 6.97

Omega_klimit_TC Standard deviation of the random effect on the tumor carrying capacity mm3 3.67×103 11.0 49.6

Error model (combined 2)

a Constant term 53.0 3.56

b Proportional term 0.142 4.41
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as a covariate for population tumor cell proliferation rate

and tumor carrying capacity (Table 2). The model was

sufficient to replicate the variation in the tumor volume

profiles (Figure 3A, Supplementary Figure S4, and

Table 2). Removing the random effects for any of the

three parameters diminished the goodness of fit (results

not shown).

The individual predictions recapitulate the observations,

except for very small tumor sizes (Figure 3B). The distribution

of CD8+ T cell proliferation half-life is clustered around the

average value, indicating difficulty estimating the distribution

given the available data (Figure 3C). The distributions of

individual tumor cell proliferation rates and tumor carrying

capacities show a bimodal distribution (Figures 3D,E). The

FIGURE 3
Model fitting recapitulates inter-individual variability. (A) Representative comparison (study 3) between observed tumor volume profiles
(colored dots) and individual simulations (colored lines) for study 3. (B)Observations verses predictions. (C)Distribution ofmodel estimated individual
PD-1+CD8+ T cell proliferation half-lives. (D) Distribution of model estimated individual tumor cell proliferation rates. (E) Distribution of model
estimated individual tumor carrying capacities. (F) Individual tumor cell proliferation rates and tumor carrying capacities show study dependent
distributions.
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FIGURE 4
Perturbations in key parameters change individual mice’s responses. (A) Comparisons of CD8+ T cell proliferation half-lives, tumor cell
proliferation rates, and tumor carrying capacities between responders (R) and non-responders (NR) for each study. p-values were calculated using
theWilcoxon rank sum test. (B) Local sensitivity analysis centered on parameters sets fit to a responder and a non-responder from Study 5 for control
(B1), anti-PD-1 (B2) and anti-PD-L1 (B3) simulations. Model output is summarized as the percent changes in the area under the tumor volume
curve (AUC) over 30 days. The parameters are listed in the order of decreasing sensitivity across all simulations.
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tumors in studies 1-3 tend to have lower tumor cell proliferation

rates and higher carrying capacities, while the tumors in studies

4 and 5 have higher tumor cell proliferation rates and lower

carrying capacities (Figure 3F).

In summary, the model replicates the variability in

CT26 tumor volume-time profiles by incorporating inter-

individual variations in three parameters, namely, CD8+ T cell

proliferation half-life, tumor cell proliferation rate, and tumor

carrying capacity.

Additional parameters change treatment
response when perturbed

We utilized the individual parameter estimates to identify the

sources of variability in anti-tumor responses. Anti-tumor

responses to anti-PD-(L)1 treatments were still categorized

based on the observed rates of tumor volume change between

day 7 and day 13 after treatment initiation. Mice with an

observed rate of tumor volume change below 25 mm3/day

were considered responders, while all others were considered

non-responders.

Estimated values for individual parameters including CD8+

T cell proliferation half-life, tumor cell proliferation rate, and

tumor carrying capacity were compared between responders and

non-responders (Figure 4A). The CD8+ T cell proliferation half-

lives and tumor carrying capacities do not significantly differ

between responders and non-responders across studies (p-values

are unadjusted, significance threshold is 0.05/3 = 0.016 with

Bonferroni correction), potentially due to the high shrinkage

values (Table 2). The average tumor cell proliferation rates

significantly differ between responders and non-responders in

study 5, and the tumor cell proliferation rate correlates with the

observed rate of tumor volume change between day 7 and day

13 after treatment start for most studies and treatments

(Supplementary Figure S5). The study-specific findings remain

exploratory due to small sample sizes.

Furthermore, we sought to identify additional parameters

that affect treatment response through local sensitivity analysis

centered on parameter sets fitted to two mice with different

responses to anti-PD-L1 treatment. The two mice were selected

from the same study to have similar tumor cell proliferation rates

and tumor carrying capacities and to respond to anti-PD-L1

10 mg/kg Q3Dx3 treatment differently. In simulations, the

responder shows complete tumor regression in response to

both 10 mg/kg Q3Dx3 anti-PD-1 and 10 mg/kg Q3Dx3 anti-

PD-L1, while the non-responder shows continued tumor growth

when treated with either anti-PD-1 or anti-PD-L1 (data not

FIGURE 5
Optimal PD-1 or PD-L1 expression level for treatment response differs between individuals. Percent changes in tumor volume 12 days after
treatment start for each fitted mouse with varying PD-1 or PD-L1 expression levels. Mice are arranged on the x-axis according to their estimated
tumor cell proliferation rates. PD-1 and PD-L1 expression levels used in QSP model fitting is marked by black arrows. (A) Change in tumor size from
treatment start to 12 days after treatment start for fitted mice with varying PD-1 per CD8+ T cell for (A1) control, (A2) 10 mg/kg anti-PD-1 Q3D
x3, and (A3) 10 mg/kg anti-PD-L1 Q3D x3 simulations. (B) Change in tumor size from treatment start to 12 days after treatment start for QSP model
fitted mice with varying PD-L1 per tumor cell for (B1) control, (B2) 10 mg/kg anti-PD-1 Q3D x3, and (B3) 10 mg/kg anti-PD-L1 Q3D x3 simulations.

Frontiers in Pharmacology frontiersin.org10

Leete et al. 10.3389/fphar.2022.1056365

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1056365


shown). For the local sensitivity analysis, each parameter was

perturbed by 30% in both directions from the nominal parameter

value one at a time. The new parameter set was used to simulate

tumor volume-time profiles under the same conditions. The

simulated AUCs were compared to the simulated AUCs with

the nominal parameter values (Figure 4B).

In the control simulations, increasing the PD-1:PD-

L1 dissociation constant (KD) or the fraction of tumor

volume not occupied by cells (tumor void fraction) caused the

tumor to completely regress. Decreasing the tumor cell

proliferation rate, PD-L1 per tumor cell, or PD-1 per CD8+

T cell also caused the tumor to regress. The results suggest

these intrinsic tumor properties determine the growth of the

tumor in the absence of treatments (Figure 4B1).

The intrinsic tumor cell proliferation rate is also an

important determinant of treatment response. A 30% decrease

in the tumor cell proliferation rate caused the non-responder to

experience complete tumor regression in both anti-PD-1 and

anti-PD-L1 treatment simulations. Similarly, a 30% increase in

the tumor cell proliferation rate caused the responder to

experience a large increase in tumor volume (Figures 4B2,B3).

This is consistent with the difference in average tumor cell

proliferation rate between responders and non-responders

identified in Figure 4A.

Increasing PD-L1 expression has a minimal impact on

treatment response due to high receptor engagement during

either treatment. At the nominal PD-L1 expression level,

during anti-PD-1 simulations, receptor engagement can drop

from approximately 85% to as low as 53% between doses.

Consequently, increasing PD-L1 expression induced a 0.9%

and 6.1% increase in tumor volume AUC for the non-

responder and responder, respectively (Figure 4B2). In anti-

PD-L1 simulations, increasing PD-L1 had minimal impact on

AUC (Figure 4B3) due to PD-L1 receptor occupancy being

maintained at >97% during treatment. For both treatments,

10 mg/kg Q3Dx3 is near the top of the dose response curve

(Figures 1C,D), and a small increase in receptor expression is

insufficient for anti-PD-(L)1 treatments to lose efficacy.

Properties of the immune system such as CD8 half-life,

CD8 proliferation half-life, max CD8+ T cell influx rate, and

the CTL-mediated tumor cell killing rate influenced response to

anti-PD-(L)1 treatments (Figures 4B2,B3) but had no impact on

tumor growth during control simulations (Figure 4B1).

Decreasing the CD8+ T cell proliferation half-life causes the

non-responder AUC to decrease 89% and 79% during anti-

PD-1 and anti-PD-L1 treatments respectively while the

opposite change causes the responder to experience a 24%

and 405% increase in AUC, respectively. Similarly, in the

non-responder, increasing the CD8+ T cell half-life causes a

54% and 75% decrease in AUC during anti-PD-1 and anti-

PD-L1 treatments respectively while for the responder,

decreasing the CD8+ T cell half-life causes a 26% and 460%

increase in AUC. Smaller percent changes are seen in the

responses to perturbations in the max CD8+ T cell influx rate

and the CTL-mediated tumor cell killing rate.

In summary, while random effects on tumor carrying

capacity, tumor cell proliferation rate, and CD8+ T cell

proliferation half-life explain the variability in the profiles of

CT26 tumors post anti-PD-(L)1 treatments, baseline tumor

growth and treatment response are sensitive to both intrinsic

tumor properties and immune system properties. Variability

beyond the three parameters fit to individuals in this analysis

should be considered to improve the prediction intervals in

future analyses.

Treatment response is dependent on PD-1
and PD-L1 expression levels but not
independent of the tumor cell
proliferation rate

PD-1 and PD-L1 expression levels are potential sources of

variability in clinical populations. In analysis of clinical trial

results, patients are often stratified by PD-L1 expression

(Doroshow et al., 2021). The preclinical model used here

assumes all mice had the same PD-(L)1 expression levels.

However, the preclinical QSP model can be used to examine

how the modeled tumor volume for each mouse changes in

response to different PD-1 and PD-L1 expression levels. For each

fitted animal parameter set, the PD-1 or PD-L1 expression level

was varied over a range of values and the model was used to

predict tumor growth under the control, anti-PD-1, or anti-PD-

L1 treatment. Figure 5 shows the percent changes in tumor

volume from treatment start to 12 days after treatment start.

Mice are ordered along the x-axis by estimated tumor cell

proliferation rates. Day 12 was chosen as it is late enough to

see differences between responders and non-responders, yet early

enough to show differences in the strength of response.

Experimentally quantified expression levels are marked by

black arrows. Results stratified by study can be found in

Supplementary Figures S6, S7.

The model simulations indicate that low PD-(L)1 expression

was associated with spontaneous tumor regression in mice with

low estimated tumor cell proliferation rates (Figures 5A,B).

Tumor volume increases as PD-(L)1 expression levels or

estimated tumor cell proliferation rates increase. Anti-PD-(L)

1 treatments suppress tumor growth for higher expression levels

compared to the control group. Mice with high estimated tumor

cell proliferation rates show treatment resistance at all PD-(L)

1 expression levels. Mice with a tumor cell proliferation rate

below 0.33 per day show an inverted bell shape response curve as

receptor expression increases, shown in the transition from light

blue to dark blue and returning to light blue as receptor

expression increases in each column. This indicates that each

tumor cell proliferation rate has a different range of receptor

expression levels where the treatment has the highest effect
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suggesting that dosing levels could be adjusted to each individual

for the maximum effect.

In summary, PD-1 and PD-L1 expression levels determine

treatment response, but not independent of the tumor cell

proliferation rate. Mice with higher receptor expression levels

or faster growing tumors may benefit from higher dose levels to

saturate the receptors.

Discussion

Quantitative systems pharmacology models can be used to

inform preclinical to clinical translation and dose selection for

first-in-patient studies. Often the models are characterized based

on pooled preclinical data and translated to generate predictions

for an average human patient. Immune checkpoint inhibitors are

promising treatments for many forms of cancers; however,

patients’ responses are highly variable. When either preclinical

or clinical treatment responses are heterogenous, models built on

aggregated data fail to represent the full spectrum of responses

observed in clinical studies. Herein, we developed a QSPmodel of

anti-PD-(L)1 treatments in Balb/c mice bearing CT26 syngeneic

tumors to identify sources of variability in preclinical anti-tumor

response, and generated hypotheses for potential sources of

variability for pre-clinical to clinical translation.

The QSP model incorporates knowledge from literature

including the mechanism of action of anti-PD-(L)1 antibodies,

the biology of their molecular and cellular targets, and their effect

on T cell activation. The model summarizes the progression of

PD-1+CD8+ T cells in five stages, namely inactive, active,

proliferating, cytotoxic, and exhausted. Intra-tumoral T cell

concentration data were used to characterize the rate of

progression through these stages at baseline, which determines

the magnitude of increase in the CTL concentration upon anti-

PD-(L)1 treatments. The inhibitory effect of PD-1:PD-

L1 binding between CD8+ T cells and tumor cells on the

influx of inactive CD8+ T cells into the tumor

microenvironment is a novel mechanism in the presented

model. The association between PD1:PD-L1 binding and

infiltration of inactive CD8+ T cells is necessary for predicting

anti-PD-(L)1 treatment responses while maintaining the

observed baseline CD8+ T cell distribution across the five

stages. The influx mechanism represents activation of naïve

T cells within the lymph nodes which then travel to the

tumor microenvironment and is supported by recent

publications (Dangaj et al., 2019; Yost et al., 2019; Dammeijer

et al., 2020; Wu et al., 2020; Dolina et al., 2021). Blocking PD-1 or

PD-L1 receptors on inactive CD8+ T cells or tumor cells,

respectively, increases the influx and activation of CD8+

T cells in the tumor microenvironment that ultimately

differentiate into the CTL population for tumor cell killing.

The use of intra-tumoral T cell concentration data was necessary

to understand the baseline tumor microenvironment, increase

confidence in baseline model behavior, reduce parameter

uncertainty, and justify the new model mechanism of PD-1:PD-

L1 dependent T cell influx. Ideally, longitudinal data showing intra-

tumoral T cell concentrations before and after treatments would

support fitting this model mechanism; however, generating

longitudinal data of this nature is expensive and time expensive

and time consuming. Nevertheless, this type of data is necessary for

building mechanistic building mechanistic understanding of the

biology and pharmacology and deriving meaningful results and

well-supported hypotheses from QSP modeling. Further, QSP

modeling allows incorporation and translation of preclinical data

to inform and augment clinical modeling efforts.

In the clinic, treatments and tumormeasurements are continued

until disease progression or censoring. Treatment response is

categorized using Response Evaluation Criteria in Solid Tumor

(RECIST) criteria (Eisenhauer et al., 2009) and the most

comparable model output is tumor diameter at each time point.

However, in the preclinical in vivo studies, mice were given a defined

number of doses and tumor volumes were collected after treatment

cessation until study termination. As a result, disease progression

due to treatment cessation or acquired resistance is indistinguishable

in the preclinical in vivo data. Grouping treatment response by the

rate of tumor volume change between day 7 and day 13 after

treatment start allows for identification of mice whose tumor

progression is slowed as well as reversed.

Variability in the tumor volume profiles were explained with

three random effects, namely, CD8+ T cell proliferation half-life,

tumor cell proliferation rate, and tumor carrying capacity. Parameter

estimates were similar to the previous anti-CTLA4 model

(Valentinuzzi et al., 2019). Random effects on the tumor cell

proliferation rate and tumor carrying capacity were both

necessary to replicate the inter-individual and inter-study

variability in the control groups. There was difficulty fitting

individual estimates of CD8+ T cell proliferation half-life

(Table 2), but inclusion of the random effect was necessary to

replicate the variability in treatment response. Future datasets

defining intra-tumoral T cell concentrations post treatments

would increase confidence in these parameter estimates and help

to characterize qualities of responders and non-responders.

Currently the model does not take inter-individual variability due

to PK into account, due to the lack of data and greater sensitivity to

other parameters. Incorporating individual PK datasets or published

population PK models could increase confidence in model fits by

reducing the unexplained variability in response.

The three random effects have been identified as quantities

of interest in determining response to various therapies. The

tumor cell proliferation rate can be quantified through tumor

doubling time which is a prognostic for survival and disease

progression in various cancers (Tubiana and Courdi, 1989;

Kay et al., 2019). The tumor carrying capacity represents

various factors of the tumor microenvironment, such as

tissue vascularization and presence of metabolic waste

products (Aherne et al., 2020). Other publications have
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investigated matching tumor growth curves using time variant

carrying capacity (Hahnfeldt et al., 1999), or modeling the

effect of radiation therapy as a decrease in the carrying

capacity (Zahid et al., 2021). Lastly, individuals with

metastatic melanoma with a shorter tumor infiltrating

lymphocyte doubling time had a higher response frequency

to treatment with autologous tumor-infiltrating lymphocytes

and interleukin 2 (Aebersold et al., 1991; Rosenberg et al.,

1994). The PD-L1 expression level per tumor cell was taken

from in vitro data of INF-γ treated tumor cells. INF-γ
upregulates PD-L1 expression suggesting the value used in

the presented model may represent the high end of the

realistic range (Abiko et al., 2015; Mimura et al., 2018;

Qian et al., 2018). While an imperfect biomarker, PD-L1

expression is the only approved biomarker for selection of

PD-L1 positive non-small cell lung cancer patients for anti-

PD-(L)1 therapies (Gridelli et al., 2017). Model results suggest

that too high of PD-L1 expression inhibits treatment response,

but this can be countered with higher dose levels.

The density of tumor infiltrating lymphocytes have been

explored as a biomarker for anti-PD-(L)1 treatment response

(Yang et al., 2018; Sato et al., 2021). However, the baseline total

CD8+ T cell concentrationwas not identified as a sensitive parameter

during the local sensitivity analysis. Instead, themodel of anti-tumor

response is more sensitive to parameters that influence the CTL

concentration after anti-PD-(L)1 treatments, such as the CD8+ T cell

proliferation half-life or maximum CD8+ T cell influx rate.

Variability in T cell influx after treatments may be caused by

variability in macrophage subtypes (Qu et al., 2020).

Influx of T cells into the tumor comes from the peripheral blood

or the lymph nodes. Other published models of anti-PD-(L)1 have

included the lymph nodes (Kosinsky et al., 2018; Wang et al., 2019).

While reaction and diffusion rates were supported by literature,

T cell quantities within the lymph nodes remain unvalidated. T cell

profiling data of the lymph nodes would provide support for

quantitative modeling efforts and increase their predictive power.

Herein, the lymph nodes were not explicitly modeled and instead

implicitly included in the tumor compartment. This simplification is

acceptable for the scope of this modeling effort to allow for

investigation into the main sources of variability without

including unverifiable quantities.

The presented model structure enables investigation into

potential sources of preclinical variability in anti-tumor

response as well as potential sources of variability in clinical

responses. Varying the tumor cell proliferation rate, tumor

carrying capacity, and CD8+ T cell proliferation half-life

together was enough to capture the inter-study and inter-

individual variability in the preclinical in vivo data. The tumor

cell proliferation rate strongly correlates with the observed rate of

tumor volume change after treatments, but the tumor cell

proliferation rate alone is unable to determine whether a

tumor will respond to anti-PD-(L)1 treatments. Other

parameters, such as the CD8+ T cell half-life and maximum

CD8+ T cell influx rate may be additional sources of variability in

response to anti-PD-(L)1 treatments as they impact the increase

in CD8+ T cells after treatments. Here, these parameters were

quantified using baseline intra-tumoral T cell concentration data

stratified by cell surface markers. New methods supporting high

throughput quantification of T cells result in an accumulation of

data describing T cells within the tumor microenvironment

(Gentles et al., 2015) or in the blood (Kagamu et al., 2020;

Zhao et al., 2020; Lucca et al., 2021; Suh et al., 2021). The

data can be used to predict the increase in CTLs after

treatments either through machine learning methods or by

incorporation into human QSP modeling of anti-PD-(L)1.

The identified parameters that contribute to inter-individual

variability are for mice and it remains to be confirmed that the same

parameters are relevant or most sensitive in humans. The local

sensitivity analysis fell short of being able to investigate the

combined impact of multiple parameters on treatment response.

More sophisticatedmethods, such as virtual populations ormachine

learning methods, will be needed to investigate the predictive power

of a subset of parameters. Fitting virtual populations to preclinical

data may allow for incorporatingmore sources of variability into the

parameter space while avoiding overfitting. Leveraging machine

learning for parameter estimation or dimension reduction could

help identify subsets of parameters or variables that determine

treatment response (Zhang et al., 2022). Repeating parameter

fitting for another cell line can support identified sources of

variability or identify new inherent variability. The presented

QSP framework can also be adjusted to describe other T cell

populations of interest, such as regulatory or helper T cells or to

model other drug treatments that target T cell activation,

proliferation, and/or influx into the tumor microenvironment

facilitating investigation of combination therapies.

In summary, the presented anti-PD-(L)1 QSP mouse model

captures the variability inherent in the longitudinal tumor volume

profiles through individual variability in the tumor cell

proliferation rate, tumor carrying capacity, and CD8+ T cell

proliferation half-life. We leveraged the model to investigate

potential sources of variability in anti-PD-(L)1 mediated anti-

tumor response and identified PD-(L)1 receptor expression, CD8+

T cell half-life, CTL-mediated tumor cell killing rate, and

maximum rate of CD8+ T cell influx into the tumor

microenvironment as having substantial impact on anti-tumor

response. This model can be further translated to simulate clinical

populations through reparameterization using published human

PK and tumor properties. Inter-individual variability can be

incorporated into first-in-human dose predictions through

virtual population methods (Rieger et al., 2018; Rao et al., 2021).
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SUPPLEMENTARY FIGURE S1
PK fitting of literature data. Observed plasma concentrations (Zalba et al.,
2020) after a single dose of 200 mg RMP1-14 and 100 mg 10F.9G2
(points) plotted with model simulations (lines).

SUPPLEMENTARY FIGURE S2
Tumor sizes at treatment start for each study.

SUPPLEMENTARY FIGURE S3
Longitudinal tumor volume profiles colored by observed rate of
tumor volume change. The slow/responder category has an
observed rate of tumor volume change between day 7 and day
13 after treatment start below 25 mm3 per day. All others are in the
fast/non-responder category. The 25 mm3 per day threshold
identifies individuals who experience complete tumor regression or
a period of regression or stable growth.

SUPPLEMENTARY FIGURE S4
Longitudinal tumor volume profiles and model fittings for all studies.
Observed tumor volumes for individual mice (colored dots) plotted with
simulated individual profiles (colored lines) and the simulated
population profile (black lines). Dosing times are shown by blue dashed
lines. Details for the experimental setups are found in Table 1.

SUPPLEMENTARY FIGURE S5
Correlations between estimated individual parameters and observed
rates of tumor volume change, stratified by study and treatment.
Included is the Spearman rank correlation coefficient and p-value.(A)
CD8+ T cell proliferation half-life, (B) tumor cell proliferation rate, and (C)
tumor carrying capacity.

SUPPLEMENTARY FIGURE S6
Effect of PD-1 expression level on treatment response stratified by study.
Percent change in tumor volume 12 days after treatment start for each
fitted mouse with varying PD-1 or PD-L1 expression. Mice are arranged
on the x-axis according to their estimated tumor cell proliferation rates.
Treatment details are found in Table 1.

SUPPLEMENTARY FIGURE S7
Effect of PD-L1 expression level on treatment response stratified by study.
Percent change in tumor volume 12 days after treatment start for each
fitted mouse with varying PD-1 or PD-L1 expression. Mice are arranged
on the x-axis according to their estimated tumor cell proliferation rates.
Treatment details are found in Table 1.
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