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The healthy GI tract is physiologically hypoxic, but this may be perturbed by

certain acute and chronic stressors that reduce oxygen availability systemically.

Short-chain fatty acids have been shown to have beneficial effects on intestinal

barrier function and inflammation. Therefore, our objective was to see whether

short-chain fatty acids (SCFA) would improve GI barrier function, reduce

production of pro-inflammatory cytokines, and increase the expression of

genes regulating GI barrier function in enteroids exposed to hypoxia. Human

duodenal enteroid monolayers were placed under hypoxia (1.0% O2) for 72 h

with either 24, or 48 h pre-treatment with a high acetate ratio of SCFA’s or high

butyrate ratio or placed under hypoxia concurrently. Transepithelial electrical

resistance (TEER) increased with SCFA pre-treatment, especially 48 h of pre-

treatment and this was maintained through the first 48 h of hypoxia while cells

saw barrier function dramatically decrease by 72 h of hypoxia exposure.

Inflammatory protein secretion largely decreased with exposure to hypoxia,

regardless of SCFA pre-treatment. Gene expression of several genes related to

barrier function were decreased with exposure to hypoxia, and with concurrent

and 24 h SCFA pre-treatment. However, 48 h SCFA pre-treatment with a high

butyrate ratio increased expression of several metabolic and differentiation

related genes. Overall, pre-treatment or concurrent treatment with SCFA

mixtures were not able to overcome the negative impacts of hypoxia on

intestinal function and cells ultimately still cannot be sustained under

hypoxia for 72 h. However, 48 h pre-treatment maintains TEER for up to

48 h of hypoxia while upregulating several metabolic genes.
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Introduction

The gastrointestinal (GI) tract is lined with an epithelial barrier that functions to

selectively allow passage of small molecules into circulation while impeding the

translocation of luminal gut microbiota and other antigens into the host circulatory

system. Along this barrier, villi in the small intestine as well as crypts in both the small and

large intestine maintain several epithelial cell subtypes with functions including nutrient
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absorption, along with hormone, anti-microbial peptide, and

mucus secretion (Panwar et al., 2021). Junctional complexes

positioned between adjacent epithelial cells contain tight

junctions, adherens junctions, gap junctions and desmosomes

(Brooke et al., 2012). These complexes along with the tight

junction proteins regulate passage of molecules through

paracellular pathways (France and Turner, 2017) and

complement the functions of transporters and other

mechanisms regulating transcellular transport of compounds

from the intestinal lumen.

A healthy GI tract exists under a state of “physiologic

hypoxia” characterized by a steep oxygen gradient from the

submucosa to the lumen, with luminal oxygen concentrations

far below the atmospheric oxygen concentration of ~21% O2.

(Zheng et al., 2015). This physiologic hypoxia activates

transcription factors, known as hypoxia-inducible factors,

which regulate pathways involved in maintaining GI epithelial

barrier function by modulating tight junction function,

inflammatory tone, secretion of mucin and anti-microbial

compounds, and activity of epithelial nutrient transporters

(Pral et al., 2021). Physiologic hypoxia at the level of the GI

tract may be perturbed by acute and chronic stressors that reduce

oxygen availability systemically such as high terrestrial altitude

(Karl et al., 2018), intense exercise (Hill et al., 2020), and heat

stress (Pearce et al., 2013) among others. Inflammation, oxidative

stress, metabolic dysfunction, apoptosis and GI barrier damage

can result, thereby, initiating a cycle in which translocation of

antigens from the gut lumen induce immune and inflammatory

responses that exacerbate GI barrier damage. This cycle is

thought to contribute to decrements in physical and cognitive

performance during acute hypoxic exposures (Ando et al., 2020),

and development of disease under conditions of chronic

intermittent hypoxia (Behrendt et al., 2022). As such, there is

interest in identifying strategies that promote GI barrier

resilience to the damaging effects of hypoxia.

Increasing short-chain fatty acid (SCFA) production by the

gut microbiota may be one feasible strategy. SCFA are derived

from fermentation of undigested carbohydrate by the gut

microbiota. Acetate, propionate, and butyrate are the

predominant SCFA within the lumen and are commonly

found at relative proportions approximating 60:20:20 (acetate/

propionate/butyrate) in concentrations that range from

10–40 mM in the small intestine to 50–150 mM in the colon

(Schmitt et al., 1977; Cummings et al., 1987). Butyrate, and

acetate to a lesser extent, provide an energy source for

enterocytes. This promotes epithelial O2 consumption thereby

stabilizing HIF-1α and promoting GI barrier integrity (Pral et al.,

2021). Through this and other pathways, SCFA’s regulate

intestinal immune function, cellular differentiation, barrier

integrity, apoptosis, hormone secretion and cell metabolism

(Pearce et al., 2020; Pral et al., 2021).

Favorable effects of SCFA on GI barrier function likely vary

according to both the size and composition of the SCFA pool. In

support, moderate SCFA concentrations of 40–80 mM ratio have

shown positive effects on intestinal barrier function as measured

by transepithelial electrical resistance (TEER) in vitro, relative to

lower (20 mM) or higher (100–200 mM) concentrations (Chen

et al., 2017). In addition, when multiple ratios of acetate,

propionate, and butyrate at 40 mM were examined, the largest

increase in TEER was found with high butyrate concentrations

reaching 50% of the SCFA pool (Chen et al., 2017). That

observation may be attributable to butyrate being the

preferred energetic substrate for enterocytes. Indeed, butyrate

has been shown to enhance epithelial barrier function in several

models (Chen et al., 2017; Pearce et al., 2020; Huang et al., 2022)

as well as favorably modulate inflammatory pathways within the

intestinal epithelium (Yang et al., 2020).

Although SCFA favorably modulate GI barrier function

under normal physiologic conditions, whether the same is

true when physiologic hypoxia is disrupted by environmental

and physiologic stressors that reduce systemic oxygen availability

is unclear. Therefore, the objective of this study was to examine

the effects of SCFA on changes in GI barrier function, cytokine

production and gene expression during hypoxic stress. Two

different compositions of SCFA, one reflecting the normal in

vivo proportions with a higher ratio of acetate, propionate, and

butyrate and the other reflecting a high butyrate ratio were

studied. As studying human GI barrier function in vivo is

limited by the inaccessibility of the human GI tract, we

utilized an intestinal enteroid model that provides a species-

specific and physiologically relevant approach to studying

mechanisms influencing GI barrier function under controlled

environmental conditions and interventions (Taelman et al.,

2022). While enteroid models have increasingly been utilized

to study the effects of SCFA’s and in vitro fermentation-derived

microbial metabolites on the intestinal barrier (Schilderink et al.,

2016; Pearce et al., 2020; Pace et al., 2021; Pearce et al., 2022), to

our knowledge, these models have not been used to determine the

effects of SCFA on intestinal barrier responses to hypoxic stress.

We hypothesized that SCFA would improve GI barrier function,

reduce the production of pro-inflammatory cytokines, and

increase the expression of genes regulating GI barrier function

in enteroids exposed to hypoxia and that increasing the

proportion of butyrate in the SCFA pool would enhance these

benefits.

Methods

Enteroids

De-identified endoscopic tissue biopsies were collected from

grossly unaffected (macroscopically normal) areas of the

duodenum in 10–14 year old patients undergoing endoscopy

for gastrointestinal complaints. Informed consent and

developmentally appropriate assent were obtained at Boston
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Children’s Hospital from the donors’ guardian and the donor,

respectively. All methods were carried out in accordance with the

Institutional Review Board of Boston Children’s Hospital

(Protocol number IRB-P00000529) approval. Tissue was

digested in 2 mg ml−1 collagenase I for 40 min at 37°C

followed by mechanical dissociation, and isolated crypts were

resuspended in growth factor-reduced Matrigel and obtained as

frozen enteroids at low passage number (Kasendra et al., 2018;

Zeve et al., 2022).

3D cultures

Frozen enteroids were thawed and immediately

transferred to a 15 ml conical tube with 5 ml of complete

media without growth factors (CMGF-) containing

Advanced DMEM/F12, 0.2 mM Glutamax, and 10 mM

HEPES. Cells were then gently spun down at 300 × g for

10 min and supernatant removed. Enteroid pellets were

resuspended in growth-factor reduced Matrigel (#356231,

Corning, Corning, NY). Aliquots (40 μl) containing

~100 enteroids were plated in individual wells of a 24-well

tissue culture treated plate and incubated at 37°C for 10 min

before adding 0.5 ml of media (Human Intesticult™ Stem Cell

Technologies, Cambridge, MA). Media was replaced every

2 days, and enteroids were passaged every 5–7 days by

incubation in Gentle Cell Dissociation Reagent (Stem Cell

Technologies, Cambridge, MA) at 4°C with shaking for

40 min. Well contents were scraped and triturated with a

P200 pipette tip 30–50 times to break apart enteroids,

collected in a 15 ml conical tube with 1:1 addition of

media and centrifuged at 300 × g for 10 min. Cell pellets

were resuspended in Matrigel to achieve a similar density

each time. Experiments were conducted on enteroids

between passages 10–15.

2D monolayer cultures

Monolayer protocols were adapted from previous

publications [13]. Enteroids were initially cultured in matrigel

for two to three passages prior to plating on Transwell inserts™.

To form monolayers, Transwell™ inserts (24-well inserts, 0.

33 cm2 surface area, 0.4 μm pore polyester membrane;

Corning, Corning, NY) were coated with human collagen IV

solution (final concentration of 10 μg/cm2) and incubated

overnight at 4°C. Human collagen IV (Millipore Sigma,

Burlington, MA) was purchased as a liquid in 0.5 M acetic

acid, then diluted using sterile water. Prior to plating, any

remaining collagen was removed from wells and

washed ×2 with Advanced DMEM/F12. Fragments for

monolayer plating were obtained using the passaging protocol

above. Approximately 50 enteroid fragments were obtained per

100 μl Intesticult™ media, then added to the filter and allowed to

settle at 37°C. 600 μl Intesticult™ media was also added to the

basolateral side. Media was changed every 2 days and monolayer

development was tracked using transepithelial electrical

resistance (TEER) measured by the EVOM2 epithelial

voltohmmeter with STX2 “chopstick” electrodes with a ± µA

nominal at 12.5 Hz (World Precision Instruments, Sarasota, FL).

Short-chain fatty acid treatment

Short-chain fatty acids acetate, propionate and butyrate

(Sigma Aldrich, St. Louis, MO) in salt form diluted in purified

water were used to treat enteroids at physiologically relevant

small intestinal concentrations (40 mM) for human at

physiologic proportions (aceate:propionate:butryrate; 60:20:

20 ratio; ACET), or high butyrate (37.5:12.5:50 ratio; BUT).

High BUT ratio was chosen based off previous research

showing optimal concentrations and ratios for epithelial

barrier function in vitro (Chen et al., 2017). Enteroids were

either treated with ACET or BUT while concurrently

undergoing 72 h of hypoxia (Experiment 1) or were pre-

treated for 24 h (Experiment 2) or 48 h (Experiment 3) prior

to being put under HYP for 72 h. SCFAs were removed after

either 24 or 48 h prior to undergoing hypoxia in both pre-

treatment groups (Experiments 2 and 3). Three to six

technical replicates were generated for each experimental

condition.

Hypoxia treatment

Cells were treated using a hypoxia in vitro glove box (Coy

Laboratories, Grass Lake, MI) at 1% oxygen for 72 h. The oxygen

concentration 1% for hypoxia was chosen based on previous

standardized in vitro hypoxia models as well as information on

physiologic hypoxia (Zheng et al., 2015; Pavlacky and Polak,

2020). Controls were kept at atmospheric oxygen

concentrations (~21%).

RNA extraction and gene analysis

Total RNA was extracted from intestinal enteroids using a

commercially available kit (RNeasy Micro, Qiagen). Purified

RNA was then run on a QuantiGene Plex Gene Expression

Array (ThermoFisher Scientific, Waltham, MA) and analyzed

on a Luminex MAGPIX Instrument (Luminex, Northbrook, IL).

Targets were designed by ThermoFisher and genes analyzed

include Rab17, member RAS oncogene family (RAB17),

Claudin-4 (CLDN4), Chromogranin A (CHGA), Doublecortin-

like kinase 1 (DCLK1), Interleukin-22 (IL-22), Alkaline

phosphatase, intestinal (ALPI), Peptide YY (PYY), Interleukin-
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8 (IL8), Claudin-3 (CLDN3), Monocarboxylate transporter

1(SLC16A1), Monocarboxylate transporter 4 (SLC16A3),

Trefoil factor 3 (TFF3), Transforming growth factor beta-1

(TGFB1), Cadherin-1 (CDH1), Lysozyme (LYZ), Fas cell

surface death receptor (FAS), Heat shock protein family A

member 1A (HSPA1A), Heat shock factor 1 (HSF1), Acyl-

CoA dehydrogenase medium chain (ACADM), Occludin

(OCLN), Sodium-coupled monocarboxylate transporter 1

(SLC5A8), Tight junction protein 1 (TJP1), Free fatty acid

receptor 2 (FFAR2), Myosin VIIB (MYO7B), Fatty acid

binding protein 2 (FABP2),

Secreted protein analyses

Basolateral media taken after of hypoxic exposure from

organoids cultured in 2D was analyzed for secreted proteins

using a custom ProcartaPlex Immunoassay Kit with antibody-

based magnetic beads (ThermoFisher Scientific, Waltham MA)

for the following targets: Ghrelin, Glucagon-like peptide 1 (GLP-

1), Peptide YY (PYY), Interleukin 1β (IL-1β), Interleukin-4 (IL-

4), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-10 (IL-

10), Interleukin-12p70 (IL-12p70), Interleukin 17 (IL-17),

Interleukin-18 (IL-18), Interferon gamma (IFN-γ), Monocyte

chemoattractant protein-1 (MCP-1), FAS-ligand (FAS-L),

Galectin-3, and Lactate dehydrogenase B (LDH-B). Samples

were read and fluorescent intensity were analyzed on a

Luminex MAGPIX multiplexing system (Luminex,

Northbrook, IL).

Statistical analysis

For each outcome, separate analyses were conducted for

Experiments 1, 2 and 3. TEER values were log10-transformed

and analyzed using general linear models with correlated errors

that included experimental condition, time and their interaction

included as fixed factors. Following significant main effects or

interactions, within and between condition comparisons were

conducted using paired and independent samples t-tests,

respectively, and p-values were adjusted using a Bonferroni

correction. Protein concentrations were analyzed as a

standardized difference from the mean of the control

condition [(treatment concentration—control mean)/control

SD], and gene expression data as relative expression to the

mean of the control condition [gene expression during

treatment/mean gene expression during control]. Both

standardized protein concentrations and relative gene

expression were analyzed using one-way ANOVA with

FIGURE 1
Effects of butyrate (BUT) and acetate (ACET) on transepithelial
electrical resistance (TEER) during 72-hr hypoxia (HYP) exposure. (A)
Cells treated with butyrate or acetate throughout the 72 h incubation.
(B) Cells pre-treated with butyrate or acetate for 24 h. (C) Cells
pre-treated with butyrate or acetate for 48 h. (B,C) Butyrate and
acetate removed at 0 h. (A–C) General linear model with correlated
errors and Bonferroni corrections (n = 3–4 per condition). Within a
time point, conditions not sharing a superscript letter are significantly
different (p < 0.05). *Within-condition difference from 0 h (p < 0.05).
CON, control condition.
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Bonferroni corrections. Data analyses were completed in SPSS v.

26.0 and p < 0.05 was considered statistically significant.

Results

Barrier function

For all experiments, significant condition-by-time

interactions were seen for changes in TEER (p < 0.001,

Figures 1A–C). When cells were not treated with SCFA, TEER

remained constant throughout the 72 h experimental period in

the control condition (CON) but was decreased after 72 h of

hypoxia exposure (HYP; Figures 1A–C).

In Experiment 1 (SCFA treatment concurrent to hypoxia

exposure), SCFA treatment increased TEER relative to CON

(CON + ACET and CON + BUT; Figure 1A). Concurrent

treatment with ACET (HYP + ACET), but not BUT (HYP +

BUT), attenuated the decrease in TEER seen in untreated cells

following 72 h exposure to hypoxia (Figure 1A).

In Experiment 2 (24 h pre-treatment with SCFA), 24 h pre-

treatment with BUT increased TEER during the initial 48 h of

hypoxia exposure, but not after 72 h of exposure [HYP + BUT

(24 h)]; Figure 1B. In contrast, 24 h pre-treatment with ACET

[HYP + ACET (24 h)] resulted in a reduction in TEER after 48 h

of exposure to hypoxia which was not different from HYP after

72 h of exposure (Figure 1B).

In Experiment 3 (48 h pre-treatment with SCFA), 48 h pre-

treatment with both BUT [HYP + BUT (48 h)] and ACET

[(ACET + BUT (48 h)] resulted in higher TEER at 0 h and

after 24 and 48 h of exposure to hypoxia relative to both CON

and HYP (Figure 1C). However, neither treatment attenuated the

hypoxia-induced reduction in TEER observed after 72 h

exposure.

Protein secretion

Hypoxia without SCFA treatment reduced concentrations of

several proteins relative to CON including PYY, IL-1β, IL-8, IL-
10, IL-17, and MCP-1 (Figure 2A).

In Experiment 1, concurrent ACET (CON + ACET) and

BUT (CON + BUT) treatment without hypoxia increased IL-8

concentrations and decreased IL-10 and MCP-1 concentrations

relative to CON (Figure 2A). The effect of ACET and BUT

treatment on IL-8 was also seen during hypoxia treatment

(HYP + ACET, HYP + BUT; Figure 2A). BUT treatment

concurrent to hypoxia (HYP + BUT) also increased IL-18 and

galectin-3 compared to all other groups (Figure 2A).

In Experiment 2, 24 h pre-treatment with both ACET [HYP +

ACET (24 h)] and BUT [HYP + BUT (24 h)] prevented hypoxia-

induced decreases in IL-8 and IL-17 concentrations and decreased

GLP-1 concentrations relative to both HYP and CON (Figure 2B).

IFNγ, IL-12p70, and IL-4 were all significantly decreased, and

FIGURE 2
Effects of butyrate (BUT) and acetate (ACET) on protein concentrations during 72-h hypoxia (HYP) exposure. (A) Cells treated with butyrate or
acetate thrhoughout the 72 h incubation. (B) Cells pre-treated with butyrate or acetate for 24 h. (C) Cells pre-treated with butyrate or acetate for
48 h. (B,C) Butyrate and acetate removed at 0 h. (A–C) Heatmap represents mean standardized difference from control condition (CON). One-way
ANOVA with Bonferroni corrections (n = 6 per condition). *p < 0.05; **p < 0.01; ***p < 0.001. For each outcome, conditions not sharing a
superscript letter are significantly different (p < 0.05).
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galectin-3 was increased, in HYP + ACET (24 h) but not HYP +

BUT (24 h) compared to CON (Figure 2B).

In Experiment 3, 48 h of pre-treatmentwith bothACET [HYP+

ACET (48 h)] and BUT [HYP +BUT (48 h)] significantly decreased

concentrations of several proteins compared to both CON andHYP

groups including IL-4, IL-18, and IFN-γ (Figure 2C). In addition, IL-
1β, IL-8, IL-10, IL-17, MCP-1, and LDH-B were all significantly

decreased in both groups compared to CON but were not different

from HYP (Figure 2C).

Measured protein concentrations are provided in

Supplementary Table S1.

Gene expression

Hypoxia without SCFA treatment reduced expression of FAS,

ACADM, FABP2, SLC16A1, andTFF3 compared toCON (Figure 3A).

In Experiment 1, concurrent treatment of CON with both

ACET (CON + ACET) and BUT (CON + BUT), decreased

expression of CLDN4, TFF3, TGFB1, FAS, OCLN, and FABP2

and increased expression of HSPA1A relative to CON

(Figure 3A). These effects were largely unaffected by hypoxia

exposure (HYP +ACET andHYP + BUT). However, hypoxia did

influence the effects of ACET on expression of RAB17 and

SLC16A3 and the effects of BUT on HSPA1A (Figure 3A).

In Experiment 2, 24 h pre-treatment with ACET [HYP +

ACET (24 h)] reduced expression of TFF2, TGFB1, LYZ, FAS,

ACADM, OCLN, CLDN4 and CLDN3, and increased

expression of IL-8 relative to hypoxia alone (Figure 3B).

24 h pre-treatment with BUT [HYP + BUT (24 h)] reduced

expression of CLDN4, TFF, CDH1 and OCLN relative to

hypoxia alone (Figure 3B).

In Experiment 3, 48 h pre-treatment with BUT for 48 h

[HYP + BUT (48 h)] increased CHGA, DCLK1, IL-22, ALPI,

PYY, SLC5A8, HSF1, FFAR2, and MYO7B relative expression

compared to CON and HYP (Figure 3C). The same effects were

not seen for 48 h pre-treatment with ACET [HYP + ACET

(48 h)] with the exception of SLC5A8 (Figure 3C).

Tables with full relative expression values are provided in

Supplementary Table S2.

FIGURE 3
Effects of butyrate (BUT) and acetate (ACET) on gene expression during 72-h hypoxia (HYP) exposure. (A) Cells treated with butyrate or acetate
throughout the 72 h incubation. (B) Cells pre-treated with butyrate or acetate for 24 h. (C) Cells pre-treated with butyrate or acetate for 48 h. (B,C)
Butyrate and acetate removed at 0 h. (A–C) Heatmap represents mean expression relative to control condition (CON). One-way ANOVA with
Bonferroni corrections (n= 3–4 per condition). *p < 0.05; **p < 0.01; ***p < 0.001. For each outcome, conditions not sharing a superscript letter
are significantly different (p < 0.05).
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Discussion

SCFA’s favorably modulate GI barrier function under normal

physiologic conditions, but whether the same is true when

challenged by environmental and physiologic stressors that

reduce systemic oxygen availability is unclear. Therefore, this

study examined whether SCFA’s could provide protection

against environmental hypoxia-induced epithelial damage in

an in vitro model. One caveat of this study is that duodenal

enteroids were used. Though these cells are more sensitive to

oxygen changes and have significantly less exposure to SCFA

than colonocytes, enterocytes within the ileum are also exposed

to microbiota derived SCFA (Parada Venegas et al., 2019a). An

additional caveat is that we used standard oxygen concentrations

for controls and hypoxia treatments. We recognize that as

research continues to advance, studies are moving towards

more physiologically relevant conditions (Skovdahl et al.,

2021) and models (Kasendra et al., 2018). Herein, we

demonstrate that hypoxia exposure decreased enteroid

epithelial barrier integrity, after 48 h. Notably, treatment with

a high butyrate but not high acetate SCFA mixture concurrent to

hypoxic-stress and for 24 h prior to hypoxic-stress attenuated,

but did not prevent, hypoxia-induced epithelial barrier

dysfunction. Additionally, pre-treatment with SCFA mixtures

proportionally high in either butyrate or acetate for 48 h prior to

hypoxic-stress transiently enhanced epithelial barrier integrity

during hypoxic stress before the benefit was subsequently lost.

Collectively observations: 1) confirm that SCFA enhance

epithelial barrier integrity in vitro, 2) demonstrate that

hypoxia can damage epithelial barrier integrity in vitro, 3)

suggest that increasing SCFA production prior to hypoxic

stress could transiently strengthen epithelial barrier

integrity during hypoxic-stress, and 4) indicate that

SCFA-derived benefits on epithelial barrier function

during hypoxia might be improved by increasing the

proportion of butyrate within the SCFA pool. Whether

maintaining SCFA treatments prior to and throughout

hypoxic exposures can extend protection epithelial

barrier protection beyond the initial 48 h of hypoxic

stress should be addressed in future research.

SCFA concentrations (Parada Venegas et al., 2019b) are

lower in the small intestine than the large intestine, and the

small intestine may be more sensitive to changes in oxygen

due to higher basal oxygen concentrations (Konjar et al.,

2021). The SCFA butyrate is a primary energy source of

intestinal epithelial cells and is utilized via β-oxidation
which accounts for ~75% of oxygen consumption in

colonocytes (Roediger, 1980). This process also helps

maintain an anaerobic oxygen gradient of <1% in the

lumen. After transport into the cells, butyrate enhances

oxidative phosphorylation, which consumes oxygen (Kelly

et al., 2015). Butyrate has been shown to enhance epithelial

barrier function in several models (Chen et al., 2017; Pearce

et al., 2020; Huang et al., 2022) as well as modulate

inflammatory pathways (Yang et al., 2020).

Results confirmed that SCFA enhance intestinal barrier

function in vitro under normoxic conditions, and this is

similar to previous research in our laboratory using single

SCFA (Pearce et al., 2020). Further, pre-treatment of enteroids

with SCFA for 48 h increased TEER dramatically and enabled

cells to maintain a high TEER until 72 h of hypoxia treatment,

potentially providing some level of protection during

hypoxic exposure. However, SCFA, whether provided at

physiologic ratios or an enhanced butyrate ratio, and

whether provided concurrent to or as a pre-treatment, did

not prevent hypoxia-mediated decreases in GI barrier

function after 72 h of exposure. It is, however, worth

noting that barrier function was maintained up through

48 h of hypoxic exposure, which was especially apparent

in the 48 h pre-treatment groups. In contrast, concurrent

treatment with SCFA’s during hypoxia does not appear to be

long enough to prime an epithelial barrier response as TEER

remains stable and then eventually decreases, as opposed to

increasing initially.

Protein concentrations and gene expression were measured

to identify mechanisms through which SCFA may affect

epithelial barrier function during hypoxic stress.

Unfortunately, these measurements were taken after 72 h

exposure to hypoxia, a time point at which TEER

demonstrated few, if any, differences amongst the hypoxia

conditions. It is therefore unsurprising that major differences

in protein and gene expression were not observed.

One exception was IL-8. Notably, using the same

enteroid model, our group has also previously

demonstrated an increase in IL-8 due to single SCFA

exposure (Pearce et al., 2020) and due to a milleu of fecal

metabolites including SCFA (Pearce et al., 2022). In the

current study, a significant increase in IL-8 was also

observed at the protein level, in addition to a large

numeric difference at the gene level with both high

butyrate and high acetate treatments. Increased IL-8 has

been associated with decreased TEER in previous studies

(Ko et al., 2007) as it is an epithelial-produced chemokine

which recruits immune cells to the subepithelial area and

plays a role in bacterial translocation across the epithelium

(Sansonetti et al., 1999). In the current study, we show that

IL-8 protein is increased only in treatment groups with the

high butyrate ratio under concurrent and 24-h pretreatment.

However, with 48 h pre-treatment this trend reverses and IL-

8 is increased due to SCFA-treatment alone, regardless of

hypoxia. Thus, the current mechanism is unclear. That gene

expression patterns differed from protein concentrations

may be an effect of timing of sample collection.

Hypoxia and SCFAmixtures also strongly inhibited secretion

of the anti-inflammatory cytokine IL-10. This may provide

insight into the lack of protection against barrier dysfunction
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in the hypoxic models. IL-10 plays an important role as a positive

regulator of the NFκB pathway and intestinal homeostasis

(Papoutsopoulou et al., 2021). In addition, loss of the IL-10

receptor disrupts intestinal cell fate and differentiation (Jenkins

et al., 2021).

Hypoxia alone appeared to generally reduce cytokine

secretion. SCFA did not appear to affect that reduction

except for IL-8 and IL-17, which tended to increase with

SCFA treatment and hypoxia in the concurrent and 24 h

treatments. SCFA are known to act on immune cells

including production of multiple cytokines including TNF-

α, IL-6, and IL-10 as well as certain chemokines (Vinolo et al.,

2011). In this study BUT appears to be initiating a more pro-

inflammatory phenotype without decreasing TEER which

could be due to a compensatory response. Research in

endothelial cells has shown that hypoxia induces TNF-α
which can then in turn upregulate the HIF pathway which

may also be a survival mechanism (Jin et al., 2019).

Gene expression results show general downregulated

expression patterns for most genes under hypoxic

conditions alone, as well as under concurrent treatment

and 24 h pre-treatment. Interestingly, several genes were

upregulated with 48 h SCFA pre-treatment, especially in the

higher butyrate ratio treatment. Upregulated genes were

largely related to metabolism. For example, a transporter

(SLC5A8) which is known to transport butyrate (Dang

et al., 2021) was upregulated in the 48 h BUT pre-

treatment groups. SCFA responsive free fatty acid receptor

FFAR2 (Pan et al., 2018) was also increased in the same group

along with enteroendocrine cell markers CHGA and PYY, and

enterocyte enzyme alkaline phosphatase which have all been

previously shown to be responsive to butyrate (Pearce et al.,

2020). These are likely upregulated due to the 48 h pre-

treatment with the high butyrate ratio. It is possible that

because only one time point at 72 h was measured that the

upregulation of additional genes at earlier time points may

have been missed.

Collectively, these observations suggest that a high

butyrate ratio may be more effective than a high acetate

ratio for attenuating hypoxia induced intestinal barrier

dysfunction, but that any benefits are short-lived. Overall,

pre-treatment or concurrent treatment with SCFA mixtures

were not able to overcome the negative impacts of hypoxia on

intestinal function and cells ultimately could not be

sustained under hypoxia for 72 h. Possibly, hypoxia may

interfere with beneficial effects of SCFA on intestinal

barrier function. As mentioned previously this study has

several limitations including the type of enteroids used

(duodenal vs. colonic) as well as time points collected.

Additional studies are needed to elucidate mechanisms

and determine whether SCFA may attenuate hypoxia-

induced intestinal barrier dysfunction in in vivo models.
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