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The etiologies and pathogenesis of dilated cardiomyopathy (DCM) with heart

failure (HF) remain to be defined. Thus, exploring specific diagnosis biomarkers

andmechanisms is urgently needed to improve this situation. In this study, three

gene expression profiling datasets (GSE29819, GSE21610, GSE17800) and one

single-cell RNA sequencing dataset (GSE95140) were obtained from the Gene

Expression Omnibus (GEO) database. GSE29819 andGSE21610were combined

into the training group, while GSE17800 was the test group. We used the

weighted gene co-expression network analysis (WGCNA) and identified fifteen

driver genes highly associated with DCM with HF in the module. We performed

the least absolute shrinkage and selection operator (LASSO) on the driver genes

and then constructed five machine learning classifiers (random forest, gradient

boosting machine, neural network, eXtreme gradient boosting, and support

vector machine). Random forest was the best-performing classifier established

on five Lasso-selected genes, which was utilized to select out NPPA, OMD, and

PRELP for diagnosing DCM with HF. Moreover, we observed the up-regulation

mRNA levels and robust diagnostic accuracies of NPPA, OMD, and PRELP in the

training group and test group. Single-cell RNA-seq analysis further

demonstrated their stable up-regulation expression patterns in various

cardiomyocytes of DCM patients. Besides, through gene set enrichment

analysis (GSEA), we found TGF-β signaling pathway, correlated with NPPA,

OMD, and PRELP, was the underlying mechanism of DCM with HF. Overall, our

study revealed NPPA, OMD, and PRELP serving as diagnostic biomarkers for

DCM with HF, deepening the understanding of its pathogenesis.
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Introduction

As the most common primary cardiomyopathy, dilated

cardiomyopathy (DCM), is characterized by left ventricular

dilation along with systolic dysfunction (Weintraub et al.,

2017). The clinical manifestation of DCM ranges from none

to overt symptoms of heart failure (HF) (McNally and Mestroni,

2017). Accordingly, there is no specific clinical manifestation for

the diagnosis of DCM. Most patients with DCM usually have a

progressively worsening condition, leading to advanced HF and

ultimate death (Mahmaljy et al., 2022; Zheng et al., 2022). DCM

is an essential cause of HF, and advanced HF in DCM is a leading

indication for heart transplantation (Seferović et al., 2019). The

estimated prevalence of DCM is 1 case per 250 individuals

(Seferović et al., 2019). Notably, the reported incidence of

DCM in patients with HF varied greatly (8%–47%) due to the

precise diagnosis lacking (Seferović et al., 2019). There are many

etiologies of DCM, most of which are idiopathic (McNally and

Mestroni, 2017; Mahmaljy et al., 2022; McDonagh et al., 2022).

Etiologies of HF in DCM mainly include inherited (pathogenic

gene mutations) and various acquired causes (infectious or toxic

agents, auto-immunity, endocrine or metabolic abnormalities)

(Seferović et al., 2019; McDonagh et al., 2022). To date,

mutations in genes coding for cytoskeletal, contractile

proteins, nuclear membrane, ion channels, and intercellular

junction molecules has been proven to be associated with

DCM (Japp et al., 2016; Seferović et al., 2019). Among these

genetic variants in DCM, inherited mutations of TTN, LMNA,

MYH7, MYH6, TNNT2, and ACTC1 are the leading causes

(Fatkin et al., 1999; Seidman and Seidman, 2001; Gerull et al.,

2002; Carniel et al., 2005; Mazzarotto et al., 2020). During recent

decades, continuously improving diagnosis and treatment

strategies (including early diagnosis development, advanced

pharmacological treatments, and device therapies) have greatly

improved the prognosis and survival of DCM patients (Merlo

et al., 2014). However, the etiologies and pathogenesis of DCM

with HF have not been fully understood, resulting in non-specific

treatment. Heart transplantation remains the only viable

approach for treating DCM with advanced HF (Iwata et al.,

2020). Therefore, novel mechanisms needed to be elucidated to

improve this situation. Besides, developing a precise diagnosis

approach for DCM with HF is equally significant.

In this study, we conducted a series of bioinformatics

analyses and machine learning classifiers to identify the

underlying genes as diagnostic biomarkers for DCM with HF

patients, which might provide insight into diagnosis and

treatment for DCM with HF. The overall study design was

shown in Supplementary Figure S1. First, three gene

expression profiling datasets of DCM with HF (GSE29819,

GSE21610, GSE17800) were downloaded from the GEO

database. GSE29819 and GSE21610 were merged into the

training group, while GSE17800 was the test group for

validation. Second, we performed Principal Component

Analysis (PCA) on the training group to evaluate data

dispersion and then screened out the differential expression

genes (DEGs) between the control and DCM with HF

patients. Third, we explored the potential biological functions,

signaling pathways, and correlated diseases of the up-regulated

DEGs. Fourth, the gene co-expression network was constructed,

and driver genes of identified module closely associated with

DCM with HF were extracted. Next, we identified the

intersection of the driver genes and up-regulated genes as the

feature genes for DCM with HF. Fifth, within the training and

test groups, Back Propagation Neural Network (BPNN)

established on these feature genes was utilized to classify the

normal and DCM with HF patients (Ruan et al., 2021). We

assessed the classified accuracy of BPNN with the Area Under

Curve (AUC) score of the Receiver Operating Characteristic

(ROC) curve. Sixth, the least absolute shrinkage and selection

operator (Lasso) was first conducted to narrow down the feature

gene sets and five well-established classifiers (Random Forest,

Gradient Boosting Machine, Neural Network, eXtreme Gradient

Boosting, Support Vector Machine) (Han et al., 2014; Sheridan

et al., 2016; Olson et al., 2018; Yang et al., 2020; Ruan et al., 2021)

on the Lasso-selected features were applied. In the training group

and test group, the classifier performed with the minimum

residual and maximum AUC score was considered the most

robust for selecting the critical features (key genes) as biomarkers

for diagnosing DCM with HF (Pan et al., 2021). Seventh, we

analyzed the mRNA expression levels and diagnosis abilities of

key genes in the training group and test group. Moreover, we

carried out single-cell RNA-sequencing analysis on GSE95140,

thus demonstrating the expression distributions and dynamic

changes of key genes in damaged cardiomyocytes of DCM

patients. We then investigated and inferred the potential

pathways of key genes by integrating the Gene Set

Enrichment Analysis (GSEA) with Pearson’s correlation

analysis. Overall, our research identified promising diagnostic

biomarkers from integratingWGCNA andmachine learning and

might be a fresh perspective to understand the development of

DCM with HF.

Materials and methods

Data collection and processing

Three gene expression profiles of DCM with HF (GSE29819,

GSE21610, GSE17800) and one single-cell RNA-sequencing

dataset of DCM (GSE95140) were downloaded from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/). First,

GSE29819 and GSE21610 were merged into the training

group for major analysis, containing 20 normal myocardial

tissues and 35 myocardial tissues derived from DCM patients

with HF (Schwientek et al., 2010; Gaertner et al., 2012).

GSE17800 was the test group for validation, including nine
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normal myocardial tissues and 40 myocardial tissues from DCM

patients with HF (Ameling et al., 2013). GSE29819, GSE21610,

and GSE17800 were based on the GPL570 sequencing platform.

And a total of 21,628 genes and 21,654 genes were obtained in the

training group and test group, respectively. The probes were

annotated to official gene symbols using the Perl programming.

Next, we performed log2 transformation and then normalized

the raw count expression data using the function

“normalizeBetweenArrays” of the R package “limma”. For the

training group, the function “ComBat” of the R package “sva”

was then utilized to remove the batch effect of GSE29819 and

GSE21610. Moreover, heart specimens from normal individuals

and 10 DCM patients were obtained from GSE95140 for further

verification and single-cell RNA-seq analysis (Nomura et al.,

2018). The sequencing platform of GSE95140 was GPL16791.

Principal component analysis and
identification of DEGs

To assess the dispersion between the control group and DCM

with HF group, PCA was performed and two components were

extracted. Then, the R package “limma” was utilized to screen the

DEGs between control and DCM with HF samples. The cutoff

criteria of DEGs was |log2Fold Change (log2FC) | > 1 and

adjusted p < 0.05 (Chen et al., 2018). The Volcano plot of all

DEGs and the clustering heatmap of the top 50 up-regulated

genes and top 50 down-regulated genes were plotted by the R

packages “ggplot2” and “pheatmap”, respectively.

Gene functional, pathway, and, disease
enrichment analysis of up-regulated DEGs

To investigate the potential biological function, pathways,

and related diseases of up-regulated DEGs, the R packages

“clusterProfiler” and “DOSE” were used for Gene Ontology

(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),

and Disease Ontology (DO) enrichment analyses. The

enrichment GO terms, KEGG pathways, and DO terms with

q < 0.05 were considered significant. Furthermore, we used the R

package “CBNplot” to infer the Bayesian network (BN) on the

gene expression profiles and KEGG enrichment analysis,

showing the relationships between genes in the enriched

pathways (Sato et al., 2022).

Construction of gene Co-expression
network and identification of the modules

The R package “WGCNA”was used to construct the gene co-

expression network and identify the modules correlated to DCM

with HF (Langfelder and Horvath, 2008). First, a total of

9,379 genes with standard deviation (SD) of expression larger

than 0 in the training group were selected for analysis. Second,

the function “hclust” was used to cluster the samples to exclude

the outliers. Third, a similarity matrix was obtained by

calculating each pairwise gene correlation. It was then

converted to an adjacency matrix using the soft adjacency

function Aij � |Sij|β, where i and j were any two of

9,379 genes, β is the soft threshold power, Sij is the similarity

matrix, and Aij is the adjacency matrix. The function

“pickSoftThreshold” selected the optimal soft threshold power

(β = 1–20) to establish the scale-free topology. The optimal soft

threshold power was also graphically validated by the high scale-

free topology R2 between log10(k) and log10 (p(k)), where k is the

connectivity between genes and p(k) means the probability of

connectivity. Fourth, the adjacency matrix was turned into a

Topological Overlap Matrix (TOM). The functions

“pickSoftThreshold” and “plotDendroAndColors” were

conducted to identify the modules and then plot the

clustering dendrogram of genes together with dissimilarity on

the topological overlap and various module colors. Herein, the

parameters “minModuleSize” and “MEDissThres” were set to

60 and 0.3, respectively. Fifth, module-trait correlation analysis

was performed to reveal the ME blue module as the most

important one related to DCM with HF. Subsequently, the

Gene significance (GS) and Module Membership (MM) were

calculated by intramodular analysis. Genes with GS > 0.5 and

MM > 0.8 were identified as driver genes in the ME blue module

for further study (Ai et al., 2020).

Construction and validation of BPNN on
feature genes

The intersection of up-regulated DEGs and driver genes in

the ME blue module was identified as feature genes for DCM

with HF. Next, the clustering heatmap of the feature gene

expression was plotted using the R package “pheatmap”.

BPNN, typically composed of processing elements arranged in

at least three layers (input, hidden, and output layers), is a

multilayer feedforward network trained on an error-back

propagation algorithm (Kaundal et al., 2006). Here, BPNN

was constructed in the training group based on feature genes

and then validated in the test group using the R package

“neuralnet”. For BPNN, the input and output layer neurons

are equal to the feature gene number and the classification

number (control or DCM with HF), respectively. According

to common rule-of-thumb methods, the hidden layer neurons

were determined and adjusted by 1/3–2/3 of the input layer

neurons (Karsoliya, 2012). Accordingly, the neuron numbers of

the input layer, hidden layer, and output layer were set as 13, 5,

and 2, respectively. The classification accuracies of BNPP in the

training and test groups were evaluated by the AUC score of the

ROC curve by the R package “pROC”. Additionally, we visualized
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Pearson’s correlation among the 13 feature genes by the R

package “corrplot”.

Construction and evaluation of RF, GBM,
NN, XGBoost, and SVM

To narrow down the numbers of feature genes, Lasso was first

performed to carry out feature selection. Five machine learning

classifiers (RF, GBM, NN, XGBoost, and SVM) were then

constructed for further feature selection on the Lasso-selected

genes (Han et al., 2014). These models were all constructed

through 10-fold cross-validation. The setting paraments of RF,

NN, and SVMwere 400 decision trees, five neurons in the hidden

layer, and radial kernel. And paraments set by default for GBM

and XGBoost. By using the R package “glmnet”, Lasso was first

applied to reduce gene numbers for screening the feature genes.

Then, five machine learning classifiers were established in the

training and test groups based on the Lasso-selected feature genes

using the R package “caret”. The classification performances of

five models in the training and test groups were assessed by AUC

scores using the package “pROC”. The residual and feature

importance of classifiers were analyzed by the R package

“DALEX”. Net Benefit (NB) calculated by Decision Curve

Analysis (DCA) and Brier score were also utilized to measure

the clinical value and calibration of classifiers, respectively

(Fitzgerald et al., 2015; Alba et al., 2017). In general, the

classifier with the lowest residual, minimum Brier score,

highest AUC, and maximum NB was considered the best

predictive classifier for further feature selection. Herein, RF

was selected as the best-performing classifier for accurately

distinguishing between normal and DCM with HF groups.

Using the LASSO-selected genes, the R packages “caret” and

“randomForest”were used to build an RF classifier in the training

and test groups. The feature importance of RF was investigated

by using the Gini gain approach. Feature genes with a mean

decrease Gini larger than two were selected as key genes for

diagnosing DCM with HF (Tian et al., 2020).

Differentially expression, diagnostic
accuracy, and target therapeutic drug
prediction analyses of key genes

Then, within the training and test groups, we analyzed the

expression distribution and diagnostic accuracy of key genes

selected by RF. By using the R package “ggpubr”, the boxplots

were plotted and demonstrated the differential expression

distributions of key genes between control and DCM with HF

groups. The diagnostic accuracies of key genes for DCM with HF

were evaluated by the AUC score of the ROC curve using the R

packages “pROC”. Furthermore, we established a logistic

regression model for evaluating the diagnostic accuracy of the

key genes’ combination using the R package “glmnet”.

Furthermore, the nomogram was used to illustrate and

visualize the logistic regression model by the R package “rms”.

The calibration curve and NB calculated by DCA were utilized to

evaluate the prediction effect of the nomogram. The gene with an

AUC score ranging from 0.85 to 1.0 was considered to have

excellent specificity and sensitivity to distinguish between the

control group and DCM with HF group. The Human Protein

Atlas (HPA) database (https://www.proteinatlas.org/) was used

to explore the extracellular locations and tissue-specific

expression levels of the key genes. Moreover, Drug Signatures

Database (DSigDB) (https://maayanlab.cloud/Enrichr/)

(Kuleshov et al., 2016) was applied to predict potential

therapeutic drugs target for three key genes, with adjusted p <
0.05 as the filtering threshold.

Assessment of key genes expression on
single-cell RNA-seq data

To further confirm the differential expression of key genes in

DCM with HF, we performed single-cell RNA-seq analysis on

GSE95140, mainly including cell type identification and

Pseudotime-ordered analysis. First, we performed quality

control and data cleaning using the R package “dplyr”. The

screening criteria were set: the number of genes in each cell

ranges from 200 to 7,500, and the percentage of mitochondrial

genes in each cell is lower than 20%. Second, the function

“NormalizeData” of the R package “seruat” was used to

perform log2 transformation on the raw count data. Next, the

top 2000 hypervariable genes were selected by the function

“FindVariableFeatures”. Z-score standardization was

conducted using the function “ScaleData”. Third, PCA was

carried out on the hypervariable genes in the control and

DCM groups. Next, two PCs (control group, all p < 0.01) and

four PCs (DCM group, all p < 0.01) were selected. Then, two

clusters (control group) and four clusters (DCM group) were

obtained and projected onto UMAP plots, respectively. Fourth,

the marker genes of cardiomyocyte (NNT2, MYH7), fibroblast

(DCN, COL1A1), and endothelial cell (CDH5, VWF) obtained

from CellMarker 2.0 database (http://yikedaxue.slwshop.cn/)

(Zhang et al., 2019) were used to identify cardiomyocytes in

different states. We then explored the expression distribution of

key genes and NPPB in the control and DCM groups. NPPB, an

important paralog of NPPA with up-regulation in DCM with HF

(Barth et al., 2006), was selected as an indicator to reveal whether

the key genes showed co-expression and dynamic expression

patterns of NPPB. Fifth, the R package “monocle” was used to

conduct Pseudotime-ordered analysis using the “DDRTree”

method on the DCM group. Using the function “plot_cell_

trajectory”, the differentiation trajectory of cardiomyocytes

was visualized in the tree diagram. Additionally, we analyzed

and visualized the dynamic expression patterns of key genes and
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NPPB during the cardiomyocyte transitions across the

Pseudotime using the function “plot_genes_in_pseudotime”.

Inference of pathways regulated by key
genes in DCM with HF

Considering the limitation of performing KEGG on small

gene sets, GSEA was utilized to explore the potential pathways of

key genes.We conducted GSEA on the training group using the R

package “clusterProfiler”. The KEGG gene sets annotated for

GSEA (c2.cp.kegg.v7.5.1.symbols) were downloaded from the

MSigDB database (http://www.gsea-msigdb.org/gsea/msigdb/

index.jsp). First, the samples were divided into low- and high-

expression groups according to the median expression of NPPA,

OMD, and PRELP, respectively. Then, we ranked 21,628 genes in

descending order by calculating the log2FC for each gene. Second,

the GSEA was performed on these ranked genes using the KEGG

gene sets. The enrichment KEGG pathways with p < 0.05 and |

Normalized Enrichment Score (NES)| > 1 were considered

significant (Zheng et al., 2022). NES was the primary statistic

to examine the enrichment results, the value indicates the

relationships between enrichment pathways and key genes.

Herein, the intersection of enrichment KEGG pathways of

each key gene was determined as the potential pathway in

DCM with HF. Subsequently, we carried out Pearson’s

correlation analysis between each key gene and the potential

pathway-related genes. |R| > 0.3 and p < 0.05 was the cutoff

criteria. The intersection of pathway genes significantly

correlated with each key gene was considered important and

used for further analysis. Next, the Pathview online tool (https://

pathview.uncc.edu/home) (Luo et al., 2017) was used to perform

Z-score normalization on the expressions of these intersection

genes between control and DCM with HF groups and projected

their relative expression values onto the KEGG pathway.

Statistical analysis

Statistical analysis was conducted using R programming

language (version 4.2.1). Wilcoxon test was performed to

analyze the differential expression of key genes in DCM with

HF group versus control group. The diagnostic ability of each key

gene was evaluated by the AUC score. P < 0.05 was considered

statistically significant.

Results

Identification of DEGs in DCM with HF

The gene expression matrices of the training group were

obtained after data cleaning, normalization, batch effect removal,

and merging, including 20 normal myocardial samples (control

group) and 35 myocardial samples derived from DCM patients

with HF (DCM with HF group). The PCA score plot showed the

relatively consistent clustering of two groups from two

components (Figure 1A), which can be used in subsequent

analysis due to between-group differences. A total of

218 DEGs (135 up-regulated genes and 83 down-regulated

genes) were screened under the threshold (|log2FC| > 1 and

adjusted p < 0.05). The Volcano plot of DEGs was then plotted

using the log2FC and -log10 (adjusted p) (Figure 1B). The top

50 up-regulated genes and the top 50 down-regulated genes were

shown in the heatmap (Figure 1C).

Inference of biological functions,
pathways, and diseases for up-regulated
DEGs

The GO, KEGG, and DO enrichment analyses were

conducted to annotate the potential functions, pathways,

and diseases of 135 up-regulated DEGs, respectively. As

shown in Figure 2A, the enrichment GO terms of biological

process (BP) included muscle cell migration, striated muscle

adaptation, and skeletal muscle adaptation; the enrichment

GO terms of cellular component (CC) included

collagen−containing extracellular matrix, myofilament, and

striated muscle thin filament; the enrichment GO terms of

molecular function (MF) included integrin binding, cytokine

activity, and extracellular matrix structural constituent. DO

enrichment analysis showed that the DEGs were associated

with many heart diseases, such as arteriosclerotic

cardiovascular disease, coronary artery disease, and

myocardial infarction (Figure 2B). Additionally, the

enriched KEGG pathways mainly contained muscle

contraction, post-translational protein phosphorylation, and

regulation of Insulin-like Growth Factor (IGF) transport and

uptake by Insulin-like Growth Factor Binding Proteins

(IGFBPs) (Figure 2C).The BN plot further demonstrated

the enriched gene interactions in muscle contraction

(Figure 2D). Furthermore, NPPA acted as the core gene

with higher expression and more edges, indicating its

crucial role in muscle contraction.

Weighted gene co-expression network
construction

WGCNA was utilized to construct the gene co-expression

network and identify the trait-correlated modules in the training

group. First, the similarity matrix was calculated and then

transformed into the adjacent matrix via the optimal soft

threshold power (β = 2) (Figures 3A,B). Besides, the inverse

relationship of p(k) and k was observed (Figure 3C), and the
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scale-free topology R2 of log10(k) and log10 (p(k)) was 0.87 when

β = 2 (Figure 3D), which illustrated β = 2 was suitable for

constructing a scale-free topology. Second, the TOM was

converted from the adjacent matrix and turned into the

dissTOM (dissTOM = 1-TOM) for hierarchical clustering.

Dynamic tree shearing clustered the similarity genes based on

the topological overlap and then divided them into various

modules (Figure 4A). Third, we related the modules to clinical

trait and further obtained the driver genes in the strongest

positive correlation module. As shown in Figure 4B, we

ultimately identified the ME blue module strongly positively

related to DCM with HF (R = 0.77, p < 0.001), containing

2,411 genes. Fourth, the significant GS distribution across the

seven modules was observed (Figure 4C). Additionally, the

intramodular analysis demonstrated the close relationship

between MM and GS of the ME blue module (R = 0.81, p <

0.001; Figure 4D), thus relieving the module genes highly

associated with DCM with HF. Finally, a total of 15 genes

with GS > 0.5 and MM > 0.8 (C14orf132, CFH, COL8A1,

CTGF, ETNPPL, FIBIN, FRZB, ITGBL1, LTBP2, MFAP4,

NPPA, NRK, OMD, PRELP, SFRP4) were identified as driver

genes in the ME blue module.

Construction and validation of BPNN on
13 feature genes

We selected the intersection of 135 up-regulated DEGs

and 15 driver genes in the ME blue module as the feature

genes of DCM with HF, with a total of 13 genes (OMD,

PRELP, NPPA, LTBP2, C14orf132, FIBIN, SFRP4, FRZB,

MFAP4, COL8A1, CFH, CTGF, ITGBL1) (Figure 5A).

FIGURE 1
Data processing and identification of DEGs. (A) PCA score plot of the training group dataset after batch removal showing the difference
between control and DCM with HF groups. (B) Volcano plot of DEGs. Red dots represent up-regulated genes and blue dots represent down-
regulated genes. (C) Heatmap displaying a differential expression of the top 50 up-regulated genes and top 50 down-regulated genes.
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These 13 genes were previously proved to participate in

muscle contraction, striated muscle adaptation, and

extracellular matrix structural constituent (Figures 2A,B),

indicating their potential crucial roles in DCM with HF.

Figure 5B showed the differential expressions of feature

genes between control and DCM with HF groups.

Subsequently, a BPNN with 13 neurons in the input layer

(13 feature genes), five neurons in the hidden layer, and two

neurons in the output layer (classification numbers: control

or DCM with HF) was constructed in the training group and

then validated in the test group (Figure 5C). The BPNN

showed prediction accuracy with a high AUC score of

0.988 in the training group (Figure 5D). However, the

predictive power of BNPP decreased significantly in the

test group compared to the training group, merely

achieving an AUC score of 0.745 (Figure 5E). These

results suggested that the collinearity between the

screened 13 feature genes resulted in the

constructed BPNN over-fitting for general prediction

(Supplementary Figure S2). Thus, feature selection was

crucial for further obtaining the key genes for the

diagnosis of DCM with HF.

NPPA, OMD, and PRELP were the key
genes for DCM with HF

To narrow down the range of feature genes, Lasso within the

training group was first performed. As shown in Figure 6A, Lasso

retained five genes from 13 feature genes under the optimal

log(λ) as 0.0156. Through the 10-fold cross-validation, the

minimum binomial deviation with optimal log(λ) was

observed, indicating the five genes were optimally selected by

Lasso (Figure 6B). Second, five machine learning models (RF,

FIGURE 2
Potential biological function, pathways, and associated diseases of up-regulated DEGs. (A) GO enrichment analysis of up-regulated DEGs. (B)
DO enrichment analysis of up-regulated DEGs. (C) KEGG enrichment analysis of up-regulated DEGs. (D) Bayesian network plot showing the
regulatory relationships of genes in muscle contraction.
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GBM, NN, XGBoost, and SVM) were established on the five

LASSO-selected genes and validated their classification

performances based on a series of indexes (residual, Brier

score, AUC score, NB) in the training and test groups.

Strikingly, the RF model showed robust classification ability,

with the lowest residual (Figure 6C) and Brier score

(Supplementary Table S1), highest AUC achieving 1

(Supplementary Figures S3A,C), and NB under threshold

probability (Supplementary Figures S3B,D) in the training and

test groups. Thus, the RF classifier was considered the most

suitable performance classifier for further feature selection.

Moreover, the importance of feature genes selected from five

classifiers was illustrated by Root Mean Square Error (RMSE)

loss (Figure 6D). Third, we constructed the RF model with

400 decision trees (Figure 6E), and three features with mean

decrease Gini coefficients larger than 2 (OMD, PRELP, NPPA)

were selected as key genes for diagnosing DCM with HF

(Figure 6F).

NPPA, OMD, and PRELP were up-
regulated with diagnostic abilities in DCM
with HF

To test whether NPPA, OMD, and PRELP could serve as the

diagnostic biomarkers of DCM with HF, their mRNA

expression levels and diagnostic abilities were then analyzed.

As shown in Figures 7A,B, the over-expression levels of NPPA,

OMD, and PRELP were observed in DCM with HF in the

training group and test group. Furthermore, the AUC scores of

NPPA (AUC = 0.967), OMD (AUC = 0.984), PRELP (AUC =

0.974), and their combination (AUC = 0.986) for diagnosing

FIGURE 3
Determination of optimal soft threshold power for scale-free topology. (A) The scale-free topology fit index (R2) for soft threshold power (β)
from 1 to 20. (B) The mean connectivity (k) for β from 1 to 20. (C) Histogram of connectivity frequency. (D) The scale-free topology R2 between
log10(k) and log10 (p(k)) when β = 2.
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DCM with HF were all larger than 0.9 in the training group

(Figure 7C). The AUC scores of NPPA (AUC = 0.863), OMD

(AUC = 0.722), and PRELP (AUC = 0.816) decreased in the test

group (Figure 7D). However, the AUC score of the combination

of NPPA, OMD, and PRELP markedly achieved 0.922 within

the test group. These results suggested NPPA, OMD, and

PRELP be promising diagnostic biomarkers for DCM with

HF. To measure the combined diagnostic accuracies of

NPPA, OMD, and PRELP, a logistic regression model was

constructed and displayed in the nomogram (Supplementary

Figure S4). Interestingly, the combination of NPPA, OMD, and

PRELP improved the diagnostic effect within the training and

test groups. We also observed the heart muscle-specific

expressions of NPPA, OMD, and PRELP, and their

extracellular locations were all predicted to be secreted in the

HPA database (Supplementary Figure S5), which provided

strong evidence that NPPA, OMD, and PRELP served

promising biomarkers of DCM with HF.

Target therapeutic drug prediction for
NPPA

Herein, we used DSigDB to predict the potential therapeutic

drugs associated with NPPA, OMD, and PRELP. A total of 17 target

drugs related to NPPA were finally predicted, but not associated

with OMD and PRELP. And the specific information on the top

10 predicted drugs was shown in Supplementary Table S2. Among

these drugs, the antihypertensive efficacy of alprostadil, labetalol,

felodipine, and irbesartan has been reported (Johnson and Fugman,

1983; MacCarthy and Bloomfield, 1983; Cattaneo et al., 2003).

Additionally, previous studies have shown that irbesartan,

furosemide, and Bonuten can treat HF (Johnson and Fugman,

1983; Swedberg et al., 1987; Thompson et al., 1999). Several

pieces of evidence have supported that these predictive drugs

targeting NPPA could cure some cardiovascular disorders such

as hypertension and HF, thus indicating their value in the

treatment of DCM with HF.

FIGURE 4
Identification of driver genes in module related to DCM with HF. (A) Dendrogram of all genes with dissimilarity clustered on topological
overlap. (B) Correlation of seven modules and two traits (control and DCMwith HF). The blue module was significantly correlated with DCMwith HF
(R=0.77, p < 0.001). (C) Boxplot of Gene Significance (GS) distribution across sevenmodules. (D) Scatterplot of ModuleMembership (MM) in the blue
module versus GS for DCM with HF.
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Single-cell RNA-seq analysis revealed the
over-expression patterns of NPPA, OMD,
and PRELP were stable in DCM patients

To investigate the expression patterns of NPPA, OMD, and

PRELP in DCM patients, we conducted single-cell RNA-seq

analysis on GSE95140. The quality control, data cleaning, and

PC selection were shown in Supplementary Figure S6. The entire

cell profiles of the control group and DCM group were classified

into 2 clusters (Figure 8A) and 3 clusters (Figure 8C) and

projected onto UMAP plots, respectively. We identified the

cell type using specific gene markers (NNT2 and MYH7 for

cardiomyocyte; DCN and COL1A1 for fibroblast; CDH5 and

VWF for endothelial cell) in the control and DCM groups

(Supplementary Figure S7). We annotated one cardiomyocyte

type and three distinct cardiomyocyte types in the control group

and DCM group, respectively (Figures 8A,C). Then, we analyzed

the expression of NPPA, OMD, PRELP, and NPPB in

FIGURE 5
Construction and validation of BPNNon 13 feature genes. (A) The intersection of 135 up-regulated genes and 15 driver genes in the bluemodule
as feature genes. (B) Expression heatmap of 13 feature genes in control and DCMwith HF groups. (C) BPNN constructed with 13 neurons in the input
layer, five neurons in the hidden layer, and two neurons in the output layer. ROC curve for evaluating classification accuracy in the training group (D)
and test group (E). I, input layer; H, hidden layer; O, output layer; B, bias.
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FIGURE 6
Obtaining the key genes for the diagnosis of DCMwith HF. (A) The coefficients of 13 feature genes shown by log(λ). (B) The relationship between
binomial deviation and log(λ) by 10-fold cross-validation (CV). (C) Residual diagram of Random Forest (RF), Gradient BoostingMachine (GBM), Neural
Network (NN), eXtreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM) classification. (D) Root Mean Square Error (RMSE) loss after
feature removal frommodels. (E) The effect of decision tree number onCV error of RF classifier. Green, red, and black curves represent the error
of control, DCMwith HF, and total groups, respectively. (F) Themean decrease Gini coefficients of genes in the RF classifier. OMD, PRELP, and NPPA
were the key genes with mean decrease Gini larger than 2.
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cardiomyocytes of control and DCM groups. As shown in

Figures 9B,D, higher expression levels of NPPA, OMD,

PRELP, and NPPB were observed in most cardiomyocytes in

DCM compared to the control group. Interestingly, we noticed

that type 2 of the DCM group showed high expression of NPPA

and NPPB, suggesting that cardiomyocytes with higher degrees

of HF in these types. We also performed Pseudotime-ordered

analysis on the DCM group to explore the expression changes of

NPPA, OMD, PRELP, and NPPB during the cardiomyocyte

transitions along the Pseudotime. Figure 9E showed the

differentiation trajectory path of cardiomyocytes ordered by

different types. Figure 9F further displayed the stable

expression patterns of NPPA, OMD, PRELP, and NPPB in

diverse cardiomyocytes by Pseudotime. Notably, the dynamic

expression changes of NPPA and NPPB were similar, indicating

an expression linkage between NPPA and NPPB in DCM.

Overall, these results showed NPPA, OMD, and PRELP were

enriched in cardiomyocytes of DCM and displayed stable

FIGURE 7
Differential expression and diagnostic accuracy of key genes in the training and test groups. The mRNA expression levels of NPPA, OMD, and
PRELP between normal hearts and damaged hearts of DCMwith HF in the training group (A) and test group (B). ROC curves for evaluating diagnostic
accuracy of NPPA, OMD, and PRELP in the training group (C) and test group (D).
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FIGURE 8
Verification of key genes expression pattern on single-cell RNA-seq analysis. (A) UMAP projection of distinct normal cardiomyocytes in
GSE95140. (B) Distribution of NPPB, NPPA, OMD, and PRELP in distinct normal cardiomyocytes. (C) UMAP projection showing three types of
cardiomyocytes of DCMpatients in GSE95140. (D)Distribution of NPPB, NPPA,OMD, and PRELP in distinct cardiomyocytes of DCM. (E) Pseudotime-
ordered analysis of cardiomyocytes of DCM. (F) Dynamic expression of NPPB, NPPA, OMD, and PRELP by the Pseudotime.
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expression patterns, which fluctuated slightly with differential

cell states.

NPPA, OMD, and PRELP may participate in
TGF-β signaling pathway in DCM with HF

To gain insight into the potential pathways of NPPA,

OMD, and PRELP, GSEA was performed for each gene. As

shown in Figure 9A, the top three positively significant KEGG

pathways for NPPA were “citrate cycle (TCA cycle)”, “basal

cell carcinoma”, and “TGF-β signaling pathway”. The top two

positively significant KEGG pathways for OMD were enriched

(Figure 9B), including “basal cell carcinoma” and “TGF-β
signaling pathway”. The top three positively significant KEGG

pathways for PRELP shown in Figure 9C were “citrate cycle

(TCA cycle)”, “basal cell carcinoma”, and “TGF-β signaling

pathway”. Interestingly, the terms “basal cell carcinoma” and

“TGF-β signaling pathway” were enriched in the KEGG

pathways of NPPA, OMD, and PRELP, and acted as the

positive pathways. The TGF-β signaling pathway was

considered the most likely mechanism involved by NPPA,

OMD, and PRELP. We then analyzed Pearson’s correlation of

NPPA, OMD, and PRELP and the TGF-β signaling pathway

gene sets (Supplementary Table S3), respectively. And

16 NPPA-correlated, 20 OMD-correlated, and 26 PRELP-

correlated genes were obtained (Supplementary Table S4).

The intersections of these genes were INHBA, ID4, TGFB3,

SMAD7, and SMAD9 (Figure 9D). Then, the expression levels

of INHBA, ID4, TGFB3, SMAD7, and SMAD9 between

control and DCM with HF groups were normalized and

visualized in the TGF-β signaling pathway (Figure 9E).

Additionally, we observed that ID4, SMAD7, and

SMAD9 were up-regulated in the TGF-β signaling pathway.

While INHBA and TGFB3 were down-regulated. Accordingly,

we inferred that the TGF-β signaling pathway positively

associated with NPPA, OMD, and PRELP might play a

crucial role in the process of DCM with HF.

FIGURE 9
The potential pathway regulated by key genes in the development of DCM with HF. GSEA on low- and high-expression groups of NPPA (A),
OMD (B), and PRELP (C). (D) Intersection of TGF-β pathway genes significantly correlated with NPPA, OMD, and PRELP. (E) The relative expression of
INHBA, ID4, TGFB3, SMAD7, and SMAD9 in TGF-β signaling pathway.
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Discussion

The pathogenesis of DCM with HF has remained unclear,

mostly because of the heterogeneous etiology and clinical

presentation (Schultheiss et al., 2019). Considering that the

progressive condition of DCM leads to impaired contractility,

preventing or treating HF is currently the first-line therapy for

DCM patients (Schultheiss et al., 2019; Mahmaljy et al., 2022).

For DCM patients with end-stage HF, the sole feasible treatment

is heart transplantation (Iwata et al., 2020). Accordingly,

identifying underlying genes and mechanisms of DCM with

HF may help improve the early diagnosis and novel

treatment. In this study, we conducted a systemic

bioinformatics analysis on mRNA-seq and scRNA-seq data

from DCM patients with HF. The promising diagnosis

biomarkers were screened through WGCNA and machine

learning, and the regulated potential pathway in the

development of DCM with HF were further identified.

To our knowledge, this is the first attempt to combine

WGCNA with machine learning to explore specific

biomarkers to distinguish DCM patients with HF from the

control group. The newly developed bioinformatics method,

CBNplot, was utilized for exploring the pathway and gene

interaction on Bayesian network inference (Sato et al., 2022).

In our research, we first screened 218 DEGs (135 up-regulated

genes and 83 down-regulated genes) between control and DCM

with HF groups. Then, we performed GO, KEGG, and DO

enrichment analyses on 135 up-regulated DEGs. The results

showed that the enriched GO terms and KEGG pathways

were related to muscle cell functions or activities, such as

muscle cell migration, myofilament, and muscle contraction.

And many heart diseases such as arteriosclerotic

cardiovascular disease, coronary artery disease, and

myocardial infarction were enriched. Previous studies have

shown dysfunctional myocardium in DCM patients with HF

(Schwinger et al., 1992). Thus, 135 up-regulated DGEs might

involve in the pathological process of DCM with HF, were

obtained for further selection. In addition, WGCNA was

conducted to identify the gene module (ME blue module) that

is highly positively related to DCM with HF (R = 0.77, p < 0.001)

based on gene co-expression pattern. We then obtained 15 driver

genes with higher GS and MM (C14orf132, CFH, COL8A1,

CTGF, ETNPPL, FIBIN, FRZB, ITGBL1, LTBP2, MFAP4,

NPPA, NRK, OMD, PRELP, SFRP4) from the ME blue

module. The intersection of 15 diver genes and 135 up-

regulated genes, OMD, PRELP, NPPA, LTBP2, C14orf132,

FIBIN, SFRP4, FRZB, MFAP4, COL8A1, CFH, CTGF, and

ITGBL1, were then selected as 13 features to construct a

BNPP classifier in the training and test groups. The BPNN

established with 13 neurons in the input layer, five neurons in

the hidden layer, and two neurons in the output layer showed

excellent classification performance in the training group

(AUC = 0.988), but the performance in the test group was

poor (AUC = 0.745). The results suggested that the BNPP on

13 feature genes was not suitable as an over-fitting model to

distinguish DCM patients with HF from normal. Col-linearity

between these 13 feature genes may be the reason why the over-

fitting model was constructed (Supplementary Figure 2).

Accordingly, further feature selection was needed to identify

the key genes of DCM with HF.

Herein, we first performed LASSO selection to narrow the

range of feature genes and identified five genes with non-zero

coefficients (OMD, PRELP, NPPA, LTBP2, and CTGF). Next,

five well-established machine learning algorithms, including RF,

GBM, NN, XGBoost, and SVM, were applied as classifiers based

on the LASSO-selected genes. We then assessed their

classification performances within the training and test groups

by residual, AUC score, Brier score, and NB. And RF performed

with the lowest residual and Brier score, along with the highest

AUC and NB was considered the best-performing classifier.

Thus, three significant explanatory features (OMD, PRELP,

and NPPA) in RF were selected as key genes for DCM with

HF. To test whether OMD, PRELP, and NPPA could serve as

diagnostic biomarkers, we analyzed their expression levels and

diagnostic values in DCM with HF. Boxplots demonstrated the

up-regulation of OMD, PRELP, and NPPA in the DCM with HF

group. Within the training and test groups, OMD, PRELP, and

NPPA had certain diagnostic values (all AUC >0.7), of which
PRELP and NPPA may have significant diagnostic abilities (all

AUC >0.8). We also found that the combination of OMD,

PRELP, and NPPA could efficiently distinguish DCM patients

with HF from normal, with AUC = 0.986 in the training group

and AUC = 0.922 in the test group. These results suggested that

OMD, PRELP, and NPPA may be promising diagnostic

biomarkers, along with high expression levels in DCM with

HF. Additionally, the heart muscle-specific and secreted

expressions observed in the HPA database also demonstrated

the potential application of OMD, PRELP, and NPPA as

diagnostic biomarkers. Additionally, DSigDB was used to

predict the therapeutic drugs targeting NPPA for finding the

potential effective drug therapy of DCM with HF. Several

identified drugs, including alprostadil, labetalol, felodipine,

irbesartan, furosemide, and Bonuten, have been proven to

cure cardiovascular diseases such as hypertension and HF.

These results indicated their potential application in treating

DCM with HF. However, the specific role of the predicted drugs

in DCM with HF still needed further experimental validations in

vivo and in vitro.

To further investigate the expression distributions and

changes of OMD, PRELP, and NPPA, single-cell RNA-seq

analysis was conducted to evaluate their expressions in

cardiomyocytes derived from DCM patients. We first

delineated the cardiomyocyte distributions in the control and

DCM groups using UMAP plots, respectively. Leveraging gene

markers (cardiomyocyte, fibroblast, and endothelial cell) from

CellMarker2.0 database, distinct cardiomyocyte types were then
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annotated and identified. Subsequently, the high expression

patterns of NPPA, OMD, and PRELP were observed in

cardiomyocytes of DCM. We also explored the dynamic

expression patterns of NPPA, OMD, and PRELP during the

cardiomyocyte transitions across the Pseudotime. It was shown

that the expression fluctuations of NPPA, OMD, and PRELP

demonstrated stable expression patterns in cardiomyocyte

differentiation ordered by the Pseudotime. Moreover, we

found that NPPA expression pattern in DCM was similar to

NPPB, a classical biomarker of HF. In summary, these results

showed that the over-expression patterns of NPPA, OMD, and

PRELPwere relatively stable regardless of cardiomyocyte types or

states, which suggests the large potential for serving diagnostic

biomarkers.

Among the identified three genes of DCM with HF, NPPA

has already been known to involved in cardiomyopathies, while

reports on OMD and PRELP are limited. Atrial Natriuretic

Peptide (ANP) encoded by NPPA belongs to the natriuretic

peptide family and has been developed to be diagnostic

biomarkers of HF (Goetze et al., 2020), which also

demonstrated NPPA can be a positive biomarker control to

validate our analysis accuracy. OMD encoded a leucine-rich

keratin sulfate proteoglycan located in the extracellular matrix

(ECM), which participated in cell adhesion and tissue

mineralization (Skenteris et al., 2022). A recent study

unraveled that OMD may be an early plasma biomarker of

cardiovascular calcification (Skenteris et al., 2022).

Furthermore, the association between OMD and

cardiovascular risk factors was observed in a large aptamer-

based proteomic profiling research (Ngo et al., 2021).

Interestingly, a bioinformatics study identified OMD as the

promising biomarker and therapeutic target of hypertrophic

cardiomyopathy (Guo et al., 2021). PRELP belongs to the

leucine-rich repeat (LRR) family, and encodes a leucine-rich

repeat protein, which exists in ECM of connective tissues

(Bengtsson et al., 1995). The role of PRELP in cardiac

extracellular matrix remodeling has been demonstrated in

proteomics research on the ischemia/reperfusion injury model

(Barallobre-Barreiro et al., 2012). Zhang et al. recently reported

that PRELP led to myocardial fibrosis and ventricular remodeling

following acute myocardial infarction, which highlights the role

of PRELP in cardiovascular disease (Zhang et al., 2022). Overall,

previous studies have elucidated the pathological roles or

diagnostic values of NPPA, OMD, and PRELP in different

cardiovascular diseases, but have not yet involved DCMwith HF.

To explore the common underlying mechanism of NPPA,

OMD, and PRELP in DCM with HF, we performed GSEA based

on KEGG gene sets. The GSEA results indicated that the KEGG

pathways of NPPA, OMD, and PRELP were all enriched in the

TGF-β signaling pathway. Thus, TGF-β signaling pathway might

serve as a crucial mechanism in DCMwith HF. Next, we analyzed

the correlation between each key gene (NPPA, OMD, PRELP)

and the TGF-β signaling pathway-related genes. INHBA, ID4,

TGFB3, SMAD7, and SMAD9, the intersection of the NPPA-

correlated, OMD-correlated, and PRELP-correlated genes, were

considered the most likely affected genes in the TGF-β signaling

pathway. And the up-regulation of ID4, SMAD7, and

SMAD9 and down-regulation of INHBA, TGFB3 were

observed in DCM with HF group. Evolving studies

demonstrate that TGF-β signaling pathway is critically

participated in HF and cardiac remodeling (Dobaczewski

et al., 2011). Increased systemic and myocardial TGF-β levels

were found in patients with DCM, suggesting the activation of

TGF-β signaling pathway, which was consistent with our result

(Dobaczewski et al., 2011). Thus, combining with the previous

experimental evidence and our GSEA result, we speculated that

the mediators of TGF-β signaling pathway may exert crucial

actions through interacting with NPPA, OMD, and PRELP on

the pathogenesis of DCM with HF.

However, there exists some shortcomings in our study. First,

the five machine learning classifiers were established on small

training data sets because of the limited databases of DCM with

HF. Nevertheless, the best-performing classifier was

comprehensively validated and then confirmed by a series of

indexes. Accordingly, the selected features (key genes) were

considered the most significant. Second, the up-regulation

pattern of key genes (NPPA, OMD, and PRELP) needed

further experimental verification, such as quantitative

polymerase chain reaction or immunohistochemistry. Herein,

to ensure the credibility of our analysis, external gene expression

profiling and single-cell RNA seq data were used for validation.

Third, combined GSEA and correlation analysis, we speculated

that the TGF-β signaling pathway linking with NPPA, OMD, and

PRELP might play a crucial role in DCM with HF. However,

further functional studies are still needed to elucidate the specific

roles and pathways of NPPA, OMD, and PRELP in DCM

with HF.

In conclusion, we conducted a comprehensive bioinformatics

study based on gene expression profiles and single-cell RNA

sequencing datasets derived from DCM with HF patients. First,

the combined analysis of WGCNA and RF classifier identified

three key genes for the diagnosis of DCM with HF, out of which

were NPPA, OMD, and PRELP. In addition, NPPA, OMD, and

PRELP were increased in DCM with HF and showed excellent

diagnostic abilities. And the up-regulated expression patterns of

NPPA, OMD, and PRELP were stable, with minor fluctuation

affected by differential cell states. Besides, the TGF-β signaling

pathway, interacting with NPPA, OMD, and PRELP, may serve

as a critical mechanism involvement in DCM with HF.
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