
New insights into the interplay
between autophagy and cartilage
degeneration in osteoarthritis

Xiaoman Lv1†, Ting Zhao2†, Youwu Dai1†, Mingqin Shi1,
Xiaoyi Huang1, Yuanyuan Wei1, Jiayan Shen2, Xiaoyu Zhang2,
Zhaohu Xie1, Qi Wang2*, Zhaofu Li1* and Dongdong Qin1*
1School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China, 2The First
School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China

Autophagy is an intracellular degradation system that maintains the stable state

of cell energy metabolism. Some recent findings have indicated that autophagy

dysfunction is an important driving factor for the occurrence and development

of osteoarthritis (OA). The decrease of autophagy leads to the accumulation of

damaged organelles and macromolecules in chondrocytes, which affects the

survival of chondrocytes and ultimately leads to OA. An appropriate level of

autophagic activation may be a new method to prevent articular cartilage

degeneration in OA. This minireview discussed the mechanism of autophagy

and OA, key autophagy targets regulating OA progression, and evaluated

therapeutic applications of drugs targeting autophagy in preclinical and

clinical research. Some critical issues worth paying attention to were also

raised to guide future research efforts.
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Introduction

Osteoarthritis (OA), the most common musculoskeletal disorder, is complex,

multifaceted, and characterized by the degradation of articular cartilage and

alterations in other joint tissues (Miyaki & Asahara, 2012). It is a highly prevalent

disease, particularly in population over 65 years of age worldwide (Motta, Barone, Sica, &

Selmi, 2022). Age is considered the strongest risk factor, injury, lifestyle, and congenital

abnormality may further increase the risk of OA as well (Brumat et al., 2022). Cartilage

degeneration is considered as the primary pathological change at the tissue level related to

OA symptoms. The main pathogenesis of OA is the disorder of synthesis and degradation

of articular cartilage and extracellular matrix (ECM). Articular cartilage is a kind of

connective tissue composed of chondrocytes and ECM. Cartilage ECM is synthesized and

secreted by chondrocytes and mainly consists of collagens (essentially type II) and

aggregating proteoglycans (Eyre, 2002; Duan, Xie, & Liu, 2020). The abnormal

expression of a set of aggrecanases is the main reason for cartilage degradation (e.g., a

disintegrin and metalloproteinase with thrombospondin motifs ADAMTS-4 and -5) and
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collagenases (e.g., matrix metalloproteases, MMP-1, -3, -8, and

-13), which are upregulated in OA (Charlier et al., 2016).

Studies have found that the degeneration of articular

chondrocytes may be related to autophagy, which directly

or indirectly affects the occurrence and development of OA

(Takayama et al., 2014). Autophagy is an adaptive response,

protecting cells from stress (Lamark & Johansen, 2012;

Caramés, Olmer, Kiosses, & Lotz, 2015). During autophagy,

parts of the cytoplasm and intracellular organelles are

sequestered within characteristic double- or multi-

membraned autophagic vacuoles and are finally delivered to

lysosomes for bulk degradation (Almonte-Becerril et al., 2010;

Yang & Klionsky, 2010). Three types of autophagy have been

distinguished on the basis of the mechanism of cargo

sequestration, including microautophagy, chaperone-

mediated autophagy, and macroautophagy (Hansen,

Rubinsztein, & Walker, 2018). Among them,

macroautophagy, degradation of cytosolic material via

sequestration into double-membrane vesicles called

autophagosomes that subsequently fuse with lysosomes, is

the most reported regarding the pathogenesis of OA (Jeon &

Im, 2017). About 35 different conserved autophagy-related

(ATG) genes encode proteins involved in the main steps of the

macro-autophagy process (Parzych & Klionsky, 2014).

Normal human cartilage can express high levels of

autophagy regulators, including Unc-51-like kinase 1

(ULK1), beclin1, and LC3-II (Caramés, Taniguchi, Otsuki,

Blanco, & Lotz, 2010; Zhang et al., 2015). The inhibition of

autophagy caused OA-related gene expression changes in

human chondrocytes, while the induction of autophagy

prevented this (Sasaki et al., 2012). Targeted deletion of

ATG in chondrocytes can promote cell death (Vuppalapati

et al., 2015). Furthermore, the loss of proteoglycan is

associated with reduced autophagic markers in OA (Kao

et al., 2022). As essential organelles in chondrocytes,

mitochondria supply energy and play vital roles in cellular

metabolism and proliferation. Mitochondrial autophagy (also

called mitophagy) is a specific type of autophagy that

selectively removes damaged or depolarized mitochondria

to maintain mitochondrial quality control (Yamashita &

Kanki, 2017; Liu et al., 2022). Defective mitophagy leads to

the accumulation of damaged mitochondria in the cytoplasm

and cellular dysfunction (Lou et al., 2020). A study has found

that mitophagy-related genes are highly expressed in OA

patients’ cartilage (Shin et al., 2019). In addition,

promoting mitophagy can protect the cartilage of OA

patients (Jin et al., 2022). Therefore, insufficient autophagy

can be associated with mitochondrial change in the

pathogenesis of OA. Activating autophagy in degenerated

cells may be a feasible and effective method to slow

articular cartilage degeneration.

This minireview discussed the mechanism of autophagy

and OA, key autophagy targets regulating OA progression,

and evaluated therapeutic applications of drugs targeting

chondrocyte autophagy in preclinical and clinical research.

Some critical issues worth paying attention to were also raised

to guide future research efforts.

Role and potential mechanism of
chondrocyte autophagy in
osteoarthritis

Autophagy could promote either chondrocyte survival or

death depending on the age, the presence and stage of OA, and

the type of autophagy induction (Almonte-Becerril et al., 2010;

Hwang, Yang, Park, & Kim, 2015). The pathogenesis of OA is

mostly about aging (Terman, Kurz, Navratil, Arriaga, & Brunk,

2010; Bouderlique et al., 2016). The imbalance of catabolism and

anabolism in the ECM is related to aging because the more

vulnerable joint cannot afford damage from outside (Rahmati,

Nalesso, Mobasheri, & Mozafari, 2017). Further, aging has a

significant impact on autophagy-mediated chondrocyte survival.

Studies have confirmed that autophagy-related proteins, such as

Unc-51-like kinase 1 (ULK1), beclin-1, and LC3, were highly

expressed in human chondrocyte clusters, whereas a reduced

expression of these proteins was observed in the aged population

(Caramés et al., 2010). Decrease of autophagy leads to the

accumulation of intracellular damaged organelles and

macromolecules, affecting chondrocyte survival, and ultimately

leading to age-related OA (Bouderlique et al., 2016) (Figure 1).

Aging may accelerate chondrocytes’ death by inhibiting

chondrocytes’ autophagy, which promotes the development

of OA.

In the early phase of OA, chondrocytes proliferate, giving rise

to OA-typical clusters (Kim & Blanco, 2007). Autophagy is

activated as an adaptive response to sublethal conditions, with

the aim to avoid cell death (Klionsky, 2005; Levine & Yuan,

2005). Some studies have found that the ULK1, beclin-1,

LC3 protein expression is decreased in the superficial zone,

while these proteins are strongly expressed in the middle and

deep zone (Kao et al., 2022). In later stages, there is an all-layered

autophagic genetic change, including not only reduced ULK1,

LC3, and beclin-1 but also fewer ATG3, ATG5, and ATG12. In

later stage of OA, chondrocytes showed decreased autophagy and

increased apoptosis. Apoptosis occurs when autophagy causes

excessive consumption of intracellular proteins and organelles,

which makes cells unable to survive. The reduction in key

regulators of chondrocyte autophagy is a combination

between classical apoptosis and autophagy (Almonte-Becerril

et al., 2010). Autophagy is chondroprotective by regulating

apoptosis, which is thought to be in balance with apoptosis

when increased chondrocyte apoptosis occurs with lower

expression of autophagy regulators in OA (Caramés et al., 2010).

In addition, autophagy can function to promote cell survival

or cell death, depending on the type of cellular stress. Starvation
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and catabolic stress can increase autophagy in chondrocytes

(Sasaki et al., 2012). However, autophagy related proteins

(LC3-II, an autophagosomal marker in mammals) appear to

decrease in mechanically injured cartilage (Caramés et al., 2012b;

Vinatier, Domínguez, Guicheux, & Caramés, 2018).

Additionally, mitochondrial dysfunction of chondrocytes

showed an early increase in autophagy, which is a

compensatory mechanism. However, when long-term pressure

exceeds cell compensation, mitochondria in chondrocytes are

damaged, leading to a massive increase in reactive oxygen species

(ROS) and eventually OA (López de Figueroa, Lotz, Blanco, &

Caramés, 2015). Therefore, autophagy has an essential role in

protecting chondrocytes from different stressors. However, the

relationship between autophagy and chondrocyte death has not

been fully understood, and further research is needed to verify it.

Key autophagy targets regulating
osteoarthritis progression

Many molecules participate in the regulation of autophagic

activity to affect the occurrence and development of OA, such as

the mammalian target of rapamycin (mTOR), AMP-activated

protein kinase (AMPK), non-coding RNA (ncRNA), etc. Studies

have confirmed that the mTOR is the core target in regulating

autophagy, which plays a vital role in cartilage growth and

FIGURE 1
Therapeutic modulators of autophagy and associated mechanisms in osteoarthritis (OA). Autophagy is a multistep process that includes: ①
phagophore formation; ② expansion elongation of phagophores to produce autophagosome; ③ autophagosomes fuse with endosomes and
lysosomes; ④ autolysosome formation; ⑤ degradation of sequestered cargo in the autolysosome and recycling. Defective autophagy can lead to
extracellular matrix degradation, resulting in OA. The mammalian target of rapamycin (mTOR) and AMP-activated kinase (AMPK) are the main
regulators of chondrocyte autophagy in OA, with mTOR acting as an inhibitor and AMPK as an activator. The AMPK could phosphorylate and activate
the sirtuin1 (SIRT1) and forkhead box class O 3a (FOXO3a), triggering autophagic flux through unc-51 like autophagy activating kinase 1 (ULK1), then
suppressing mTOR. ULK1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. The mTOR can inhibit ULK1 and
beclin-1 complexes, causing activation of autophagy. In addition, the transition from phagophore to autophagosome depends on the activity of two
ubiquitin-like conjugation systems, the ATG5–ATG12 and LC3 system. The ubiquitin-like protein of ATG12 attaches to ATG5 with a covalent bond,
and combines with ATG16 to elongate the pre-autophagosomalmembrane. LC3-II is transformed from LC3-I through the lipidation of the ubiquitin-
like reaction and binds to autophagic vesicles. Glucosamine can promote autophagy in cartilage through activating the dephosphorylation of
FOXO3a. In contrast, glucocorticoids can stimulate FOXO3a and activate autophagy through a higher level of reactive oxygen species. Vitamin D can
alleviate OA through AMPK-mTOR pathway. The rosiglitazone, pioglitazone, rapamycin, estrogen and isoimperatorin can inhibit mTOR activity,
making them good candidates for potential therapies of OA.
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development and in altering articular cartilage homeostasis (Pal,

Endisha, Zhang, & Kapoor, 2015). Furthermore, the specific

knockdown of peroxisome proliferator activated receptor γ
(PPARγ) can accelerate OA associated with aberrant mTOR

signaling in the articular cartilage (Vasheghani et al., 2015). The

inhibition of the PI3K/AKT/mTOR signaling pathway can

significantly promote the autophagy level of OA chondrocytes

(Chen, Crawford, & Xiao, 2013; Sun et al., 2020). In addition,

tRNA-derived fragment tRF-5009A has been reported to have

critical regulatory roles in OA, which regulates autophagy and

cartilage degeneration by targeting mTOR (Deng et al., 2022).

Regulated in development and DNA damage response 1

(REDD1), an endogenous mTOR inhibitor, was found to be

decreased in OA cartilage (Charlier et al., 2016). It is highly

expressed in normal human cartilage and reduced in OA patients

(Alvarez-Garcia et al., 2016). Research has confirmed that

REDD1 can regulate autophagy and mitochondrial

biosynthesis to maintain the viability of chondrocytes

(Alvarez-Garcia et al., 2017). REDD1 deficiency exacerbates

the severity of injury-induced OA. Reduced

REDD1 expression thus represents a novel mechanism for the

defective autophagy observed in OA (Figure 1).

AMPK is a positive autophagy regulator, inhibiting mTOR

from activating autophagy. After activation of AMPK, ULK1 and

beclin1-VPS34 complex are phosphorylated and activated to

promote the induction and formation of autophagosomes (Li

& Chen, 2019). The increase of AMPKmay be related to a change

in the chondrocyte energy charge, which may promote

autophagy. Dysfunction of AMPK activity has been associated

with reduced autophagy, impaired mitochondrial function,

excessive ROS generation, and inflammation in joint tissue,

which leads to articular cartilage degeneration and synovial

inflammation (Wang J. et al., 2020). Silent information

regulator T1 (SIRT1) and forkhead box class O 3a (FOXO3a),

as the signaling molecule downstream of AMPK, have been

shown to trigger the formation of autophagosomes and

activate autophagy by regulating the expression of ATG

proteins (Hu et al., 2019; Wang J. et al., 2020).

SIRT1 regulates autophagy by interacting with autophagy-

related ATG7, which may become a more critical target in

OA treatment (Liao et al., 2021). SIRT1-conditional knockout

mice exhibit increased MMP13 and ADAMTS5 levels (Vinatier

et al., 2018). SIRT3 can maintain the normal function of

mitochondria and protect chondrocytes. The intra-articular

SIRT3 overexpression alleviated the severity of OA-induced

joint damage (Xu et al., 2021). Further, the FOXO may play a

crucial role in postnatal cartilage development, maturation, and

homeostasis and protects against OA-associated cartilage

damage (Matsuzaki et al., 2018).

In addition, the putative kinase protein 1 (PINK1) is a serine

kinase that can target mitochondria. Parkin is an E3 ubiquitin

ligase that eliminates damaged mitochondria in OA

chondrocytes (Ansari, Khan, Ahmad, & Haqqi, 2018). The

PINK1-Parkin pathway can target to clear damaged

mitochondria, reduce cell damage caused by oxidative stress,

and improve chondrocyte survival rate (Wang et al., 2019). The

transcription factor EB, a master regulator for autophagic flux,

can alleviate articular cartilage degeneration and enhance

autophagic activity (Zheng et al., 2018). Hypoxia-inducible

factor-1α (HIF-1α) mediated mitophagy has a protective role

in OA. The expression of HIF-1α was increased in human and

mouse OA cartilage (Hu et al., 2020). HIF-1 inhibits mTOR

signaling and ultimately enhances the autophagy activity of

chondrocytes under hypoxia (Bohensky, Leshinsky, Srinivas, &

Shapiro, 2010). Suppressing HIF-1α degradation can promote

mitochondrial autophagy and alleviate cartilage degeneration

(Hu et al., 2020). In contrast, HIF-2 is a potent negative

regulator of autophagy in maturing chondrocytes, which

promotes the degradation of chondrocyte ECM and is

elevated in OA cartilage (Duan et al., 2020) (Figure 1).

For note, ncRNA has been confirmed to mediate

autophagy in chondrocytes, such as microRNA, long non-

coding RNA (lncRNA), and circular RNA (circRNA). Many

microRNAs are commonly involved in the process of

autophagy in OA (44–47). MiR-155 is an inhibitor in

chondrocyte autophagy, which can alleviate key autophagy

regulators contributing to the autophagy defects of OA

(D’Adamo et al., 2016). MiR-9, MiR-34a, and miR-449

have been demonstrated to significantly reduce the

expression of SIRT1 in chondrocytes (D’Adamo et al.,

2017; Park et al., 2016; Yan et al., 2016). MiR-27a can

enhance the autophagy and apoptosis of IL-1β-treated
chondrocytes through PI3K/AKT/mTOR signaling (Cai

et al., 2019). In addition, lncRNAs have been noticed to

participate in OA through autophagy. LncRNA-GAS5

expresses highly in OA cartilage tissues, which is able to

bind to miR-144 and regulate the expression of mTOR,

inhibiting autophagy of OA chondrocytes (Ji, Qiao, Liu, &

Wang, 2021). Hox transcript antisense intergenic RNA-

induced apoptosis is mediated by sponging miR-130a-3p to

repress chondrocyte autophagy in OA (He & Jiang, 2020).

LncRNA-POU3F3 can inhibit chondrocytes, restraining

autophagy and alleviating the pathogenesis of OA by

regulating the miR-29a-3p/FOXO3 axis (Shi et al., 2022).

Mesenchymal stem cell-derived exosome-mediated lncRNA

KLF3-AS1 can repress autophagy of chondrocytes in OA

(Wen, Lin, Zou, Lin, & Liu, 2022). Sex-determining region

Y-box 4tbox4-activated lncRNA-MCM3AP antisense RNA

1 aggravated OA progression by modulating autophagy and

ECM degradation via targeting miR-149-5p/Notch1 axis (Xu

et al., 2022). Additionally, the circRNAs have also been

involved in OA microenvironment for control of autophagy

to perturb the situation of inflammation such as

hsa_circ_0005567, ciRS-7, circPan3, has_circ_0037658,

circMELK, and circRHOT1 (Zhang, Cheng, Rong, Tang, &

Gui, 2020; Zhou et al., 2020; Sui, Liu, Que, Xu, & Hu, 2021;
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Zeng et al., 2021; Man et al., 2022; Zhang et al., 2022).

Therefore, taking transcription factors, microRNA, lncRNA,

circRNA, and autophagy inhibitors as entry points can serve

as potential therapeutic targets for OA and represent a

surprising new lead in the search for drugs to treat OA.

However, more high-quality evidence is needed to confirm

the appropriate therapeutic target of OA in clinical practice.

Drugs targeting autophagy for
osteoarthritis treatment

A variety of drugs regulating autophagic activity are used to

treat OA. Rapamycin affected the mTOR signaling pathway in

mouse knee joints as indicated by the inhibition of ribosomal

protein S6 phosphorylation, a target of mTOR, and activation of

LC3 (Caramés et al., 2012a). Rapamycin can prevent cell death

and increase the expression of aggrecan and type II collagen while

decreasing MMP-13 and ADAMTS5 in OA chondrocytes

(Caramés et al., 2012a; Zhang et al., 2015). The intra-articular

injection of rapamycin in a murine model could reduce vascular

endothelial growth factor, collagen type X alpha 1, and

MMP13 expression, leading to a delay in articular cartilage

degradation (Takayama et al., 2014). However, long-term use

of rapamycin may cause adverse events, such as headache,

nausea, dizziness and epistaxis (Figure 1).

2-amino-2-deoxy-β-d-glucopyranose (glucosamine) is

widely used to improve the symptoms and to delay the

structural progression of OA (Conrozier & Lohse, 2022).

Glucosamine is an effective autophagy activator, and

autophagy enhancement mainly depends on the Akt/FOXO/

mTOR pathway (Caramés et al., 2013). It has been found that

the dual role of glucosamine in autophagy in human

chondrocytes depends on exposure time (Kang et al., 2015).

The exposure of glucosamine to chondrocytes activated

autophagy, peroxidation, and pexophagy. However, long-time

exposure of glucosamine may have the opposite effects due to the

accumulation of peroxisomal dysfunction and long-chain fatty

acids. Treatment of chondrocytes with glucosamine exerts

exposure time-dependent dual effects on autophagy

(Hochberg et al., 2012; Kang et al., 2015; Bruyère, Altman, &

Reginster, 2016).

Glucocorticosteroid drugs have been used to treat early-stage

OA, which may also lead to autophagy initiation. However,

multiple administrations of glucocorticosteroid drugs may

destroy the articular cartilage, induce human chondrocytes’

mitochondrial dysfunction, and increase ROS (Li, Chen, Li,

Zhang, & Chen, 2022). In turn, dexamethasone may

significantly attenuate the expression of MMP-13 in human

OA chondrocytes through an mitogen-activated protein kinase

phosphatase-1 and p38 mitogen-activated protein kinases-

dependent manner (Lehtola et al., 2022). A study found that

increased autophagy is an adaptive response to protect

chondrocytes from short-term glucocorticosteroid exposure,

whereas prolonged glucocorticosteroid drug treatment

decreases autophagy and increases apoptosis (Liu, Wang,

Zhao, Zhang, & Song, 2014). Thus, autophagy may be one of

the essential mechanisms of glucocorticoids in the treatment

of OA.

Many small molecule compounds and natural plant

components play protective roles in OA by activating

autophagy, such as isoimperatorin, delphinidin, celastrol,

curcumin and astragaloside IV (Liu, Meng, Jing, & Zhou,

2017; Ouyang, Jiang, Fang, Cui, & Cai, 2017; Lee et al., 2020;

Xiao et al., 2020; Dai et al., 2021). Baicalin protects chondrocytes

against the degradation of ECM through activating autophagy

via miR-766-3p/AIFM1 axis (Li, Cheng, & Liu, 2020).

Dihydroartemisinin can suppress the levels of inflammatory

factors in chondrocytes by promoting autophagy via

inhibition of nuclear factor kappa-B pathway (Jiang et al.,

2016). Trehalose can ameliorate endoplasmic reticulum stress

and oxidative stress-mediated mitochondrial dysfunction via

autophagic flux restoration and selective autophagy

stimulation (Tang et al., 2017). Resveratrol can inhibit OA

disease progression by activating SIRT1 (Deng et al., 2019).

In addition, the chemical autophagy inducer Torin 1 is an

mTOR inhibitor, inhibiting the degenerative changes of

experimental OA by activating autophagy (Cheng, Guo, &

Meng, 2016). A study has demonstrated that fenofibrate, a

PPARα agonist used for dyslipidaemias in humans, reduced

both senescence and inflammation, increased autophagic flux,

and increased autophagy in both ageing human and OA

chondrocytes (Nogueira-Recalde et al., 2019). Metformin

increased phosphorylated levels of AMPKα and upregulated

SIRT1 protein expression, leading to an increase in autophagy,

which may aid the development of novel therapeutic approaches

for OA treatment (Wang C. et al., 2020). Parathyroid hormone-

(1–34) can alleviate knee OA progression in rats via autophagy

(Chen et al., 2018). Active vitamin D could be crucial in

autophagosome aggregating and activates chondrocyte

autophagy to reduce OA via mediating the AMPK-mTOR

signaling (Kong et al., 2020). Estrogen may prevent articular

cartilage destruction by promoting chondrocyte autophagy via

the ERK-mammalian target of mTOR signaling (Ge et al., 2019).

The PPARγ agonists rosiglitazone and pioglitazone also

indirectly inhibit mTOR activity, making them good

candidates for potential therapies in OA.

Perspectives and conclusion

Autophagy dysfunction is an important driving factor for the

occurrence and development of OA. Autophagy is a relatively

balanced state under physiological conditions. When there is

external stressor, the damaged organelles and the wrong proteins

(such as drug stimulation, oxidative stress, diseases, etc.) are
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removed to improve the cell survival rate. Furthermore, when the

cells are “weak,” they have no or deficient ability to autophagy.

The cells are damaged by toxic substances, making survival

difficult. An appropriate level of autophagic activation can

effectively remove damaged organelles and macromolecules

that need to be degraded to a certain extent, preventing

chondrocyte damage and providing a good intracellular

environment to promote the survival of chondrocytes. Given

the critical role of autophagy in the pathogenesis of OA, the

targeted autophagy pathway provides a new direction for the

treatment of OA.

The relationship between chondrocyte autophagy targets

autophagic activity in OA needs to be elucidated. Nevertheless, it

means the likelihood of broadening the search for OA-related

autophagy targets, which can serve as more comprehensive

therapeutic targets or diagnostic biomarkers. Meanwhile, the

research on drug regulation of OA autophagy focuses on animal

research. Clinical studies are still dominated by single-center studies,

lacking multicenter, large sample randomized controlled studies to

evaluate drug efficacy. Therefore, further studies are needed to reduce

sample heterogeneity and evaluate the effectiveness and safety of drugs

in regulating autophagic signals. Nowadays, nanoplatforms combined

to test therapeutic potential have become more common, which may

have plenty of opportunities for the progress of autophagy-related

treatment in OA. It is worth noting that the pathogenesis of OA is

complex and is closely related to inflammation, aging, proliferation,

and apoptosis. These pathogenesis have different autophagy needs in

chondrocyte function and cell fate determination. Therefore, before

the clinical application of autophagic active drugs to target the

treatment of OA, it is necessary to conduct a comprehensive study

on the relationship between crosstalk effects and multitargeting

relationships.
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