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Persistent allergies affect the quality of life of patients and increase economic
burdens. Many clinical observations indicate the presence of IgE+ long-lived
plasma cells (LLPCs), which account for the persistent secretion of specific
IgE; however, the characteristics of the IgE+ LLPCs have yet to be identified
clearly. In this review, we summarized the generation of IgE+ PCs, discussed
the prosurvival factors in the microenvironment, and reviewed the unique
IgE-BCR signaling, which may bring insights into understanding the survival
mechanisms of IgE+ LLPCs.
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Introduction

Allergic diseases are a global health problem and a significant burden to society and

patients. Over the past two decades, the prevalence of various allergic diseases has

increased (1, 2). Allergic sensitization during childhood is a dynamic process. Some

allergies can outgrow naturally, especially food allergies, such as cow milk allergy, egg

allergy, and wheat allergy (3). According to a study by Bernard and colleagues, the

remission rate of aeroallergen allergy within 2 years was 60% (4). However, some

allergies (e.g., tree nuts, peanuts, fish, shellfish) are lifelong (3). People with persistent

sensitization have an increased risk of developing allergic diseases, such as asthma and

allergic rhinitis, thus impairing patient quality of life and incurring substantial economic

costs (5, 6). Up to date, allergen immunotherapy (AIT) is the only way to cure allergies.

AIT for dust-mite, pollen, milk, egg and peanut allergies has been used widely. However,

the shortcomings, such as the long duration of therapy, potential adverse reactions,

unclear long-term effects, and limited applications, make it challenging to meet clinical

requirements (7). Thus, it is essential to understand the mechanism of persistent allergy

and develop rational therapies to shorten the duration of allergy.

Long-lived plasma cells (LLPCs) are critical for maintaining adaptive humoral

immunity after recovery from infection or vaccination. However, LLPCs also generate

pathogenic antibodies, thus causing a variety of diseases or problems, such as systemic

lupus erythematosus, allograft rejection, and persistent allergy (8, 9). IgE is the critical

factor of type I hypersensitivity and mediates the degranulation of mast cells and

basophils, leading to the rapid manifestation of symptoms after allergen exposure. The
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half-life of serum IgE is short [2–3 days in humans (10) and

12 h in mice (11)]. In contrast, allergen-specific IgE could

maintain for an extended period with the absence or

significantly attenuated exposure of allergen both in mice (12)

and humans (13, 14), which suggests that IgE+ LLPCs may

account for persistent IgE secretion (15). To clarify the

potential role of IgE+ LLPCs in allergic conditions, we

summarized the generation of IgE+ plasma cells (PCs),

discussed the prosurvival factors in the microenvironment,

and reviewed the IgE-BCR downstream pathways which

uniquely regulate IgE+ PCs longevity.
Evidence of IgE+ LLPCs in mice and
humans

Much evidence has been raised that IgE+ LLPCs were

inducible in allergic mouse models. Mice injected

intraperitoneally with a single dose of OVA with or without

aluminum hydroxide (HA) had a persistent titer of OVA-

specific IgE in serum and long-lived IgE-secreting cells in the

bone marrow (BM) and spleen. Moreover, administration

with X-irradiation, a lethal dose of x-rays sufficient to deplete

B memory cells rather than LLPCs, only partially affected IgE

levels and IgE+ secreting cell counts (12). Another study

induced systemic sensitization in mice by intraperitoneal

injection with OVA-HA on days 1, 14, and 21 and

subsequently treated them with cyclophosphamide for 4 days

(16). Researchers found that OVA-specific IgE-secreting cells

survived in the BM and lesser in the spleen at day 100.

Unlike short-lived plasma cells (SLPCs), LLPCs are refractory

to cyclophosphamide, and these IgE-secreting cells were

thought to be IgE+ LLPCs (16). However, intraperitoneal

injection with allergens is not a natural route to allergen

exposure. Asrat et al. (17) developed an allergic model by

intranasal exposure to house dust mite (HDM) extract. In

mice that were chronically exposed to HDM and left

unmanipulated for additional periods, the serum IgE

decreased initially but maintained constant after 14 weeks.

Parallelly, IgE+ BMPCs were present in BM for at least 32

weeks and were not significantly affected by anti-CD20

antibodies administration. Because the lifespan of IgE and

IgE+ SLPCs is short and the absence of allergen exposure and

anti-CD20 antibodies administration block the de novo IgE+

PCs generation, the IgE+ PCs persistent in BM were LLPCs

and contributed to long-term positive IgE (17). In addition to

the aeroallergen allergy, the food allergy mouse model

induced by peanut butter with cholera toxin intragastrically

also demonstrated that cyclophosphamide-resistant IgE+ PCs

could be induced and maintained in BM by intestinal allergic

sensitization (18). Despite the differences between allergens,

routes of allergen exposure, and the genetic background of

mice, IgE+ LLPCs could be induced and mainly reside in BM.
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In humans, many clinical observations indicate the presence

of IgE+ LLPCs; however, direct evidence is lacking. For instance,

with the mugwort pollen dropped, the allergen-specific T cells

in patients with mugwort pollen allergy almost disappeared,

but allergen-specific IgE persisted for several years (13). In

cat-sensitization individuals, the level of specific IgE to cat did

not significantly change after avoiding cat allergen for 20

months (14). More recently, Pitlick and Pongdee conducted a

study in which patients received combining biologics targeting

IgE+ IL-5/IL5R, IgE+ IL4/IL13, IgE+ IL-15+ IL4/IL13, and IL-

15+ IL4/IL13 respectively. During the treatment, IgE levels in

some patients cannot decrease to the normal range (19). IgE+

BMPCs could be found in allergic patients but not in

nonallergic participants, and these IgE+ BMPCs

secret allergen-specific IgE which could stimulate allergic

reactions (17). However, it is difficult to identify the longevity

of IgE+ BMPCs in atopic individuals. According to Zhang’s

study, IgE+ PCs were found in human nasal polyps and could

secrete IgE constantly for 1-month ex vivo without

stimulation (20). Moreover, a proportion of PCs (BCL2+

CD138+ PCs) could survive ex vivo for at least 32 days, a

lifespan of LLPCs in the human intestine, indicating the

existence of LLPCs in nasal polyps (20). Nevertheless, this

study did not raise direct evidence that IgE+ PCs were LLPCs.

LLPCs have several features which could distinguish them

from SLPCs and B cells. LLPCs are long-lived,

cyclophosphamide-resistant (16), and radioresistant (12). At

the molecular level, LLPCs express anti-apoptosis proteins

(such as MCL1 and BCL2), CD28, and the BCMA receptor

(21, 22). These features could help to identify the long-lived

population of IgE+ PCs in humans.
Generation of IgE+ PCs

The germinal center (GC)-dependent
pathway

Typically, B cells migrate to the GC, a primary place for

class switch recombination (CSR) and affinity maturation,

after interacting with antigen-dependent T cells. GC B cells

further differentiate into PCs under the interaction with

follicular dendritic cells and T follicular (Tfh) cells (23, 24).

Tfh cells are essential for affinity maturation and class

switching of GC B cells. Different profiles of cytokines derived

from Tfh cells induce B cells to switch into different isoforms

of immunoglobulin (Ig) (24). For IgE-inducing in mice, Tfh

cells that secret IL-4 are sufficient for IgE production,

typically low-affinity IgE (25, 26). Tfh-derived IL-21 plays a

negative role in IgE CSR, which could be attenuated by CD40

signaling (27). A recently identified IL-4+ IL-13+ Tfh13

population in mice and humans, a subtype of Tfh induced by

various allergens, might play a crucial role in high-affinity IgE
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generation (26). IgE+ cells experiencing indirect isotype

switching mainly from IgG1 (IgM→ IgG1→ IgE) are more

likely to produce high-affinity IgE. In contrast, low-affinity

IgE derives from IgE+ cells undergoing direct class switching

(IgM→ IgE) (28–30). In humans, IgE can also switch from

other Ig isotypes (28, 31).

He et al. analyzed Sγ1 remnants in switch regions of IgE+

GC B cells and IgE+ PCs in mice immunized with OVA +

PEP1 or infected with N. brasiliensis. They found that Sγ1

remnants presented in a proportion of IgE+ PCs but not in

IgE+ GC B cells, indicating that IgG1+ cells could be the

precursors of IgE+ PCs besides IgE+ GC B cells (32). IgE+ GC

B cells are transient in GC and are predisposed to

differentiate into SLPCs (33). Therefore, IgE+ GC B cells are

more likely to experience direct class switching and are the

precursors of low-affinity IgE+ SLPCs. IgG1+ PCs are

terminally differentiated, so they cannot further differentiate

into IgE+ PCs (32). IgG1+ memory cells and IgG1+ GC cells

may be the primary IgG1+ cells to switch to IgE+ PCs, which

has been demonstrated by Talay (34, 35) and He (32). IgE+

SLPCs also could arise from IgE+ memory B cells in mice

after the second challenge with N. brasiliensis (34, 35). These

results are consistent with research based on humans. IgE+

memory B cells fitted with the GC-dependent and GC-

independent pathways were detected in human peripheral

blood samples by analyzing the replication history and SHM

levels. In vitro, the two types of memory B cells could

differentiate into IgE+ PCs cultured with anti-CD40 and

IL-21 (36).

A small proportion of PCs migrate to BM and survive as

LLPCs (37). IgE+ BMPCs are detectable in mice with N.

brasiliensis infection, and most of them experience sequential

class switching from IgG1 (32). Compared with irradiated

mice receiving IgE− PCs, mice receiving IgE+ PCs purified

from mice immunized with OVA +HA/Alum had higher

levels of long-lasting serum IgE as well as increased

expression of IgE transcripts in BM and spleen (32). This

finding indicates that a proportion of IgE+ PCs could migrate

to BM and might be the LLPCs. However, direct evidence is

lacking (Figure 1).
The GC-independent pathway

Recently, increasing evidence has shown that IgE+ PCs can

be derived by the extrafollicular pathway (Figure 1). Kwon1 and

colleagues showed that thymic B cells differentiated into IgE+

PCs in the thymus and produced natural IgE in mice (38).

Another study showed that IgD+ B cells could differentiate

into IgE+ PCs directly (IgD→ IgE) or sequentially (IgD→
IgA/IgG→ IgE) in the nasal mucosa (39). The GC is critical

for persistent humoral IgE responses because abnormal GC

formation leads to a faster decrease in specific IgE in the
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peanut allergy mouse model (18). Thus, extrafollicular-derived

IgE+ PCs are more likely to be SLPCs. GC is the primary

place for CSR and affinity maturation. From this viewpoint,

impaired GC formation may lead to the generation of low-

affinity IgE, which competes with high-affinity IgE and

prevents anaphylaxis (29, 40). However, a study by Jiménez-

Saiz found that IgE in Bcl-6B cell knock-out mice with

impaired GC formation could trigger anaphylaxis (18).

Researchers did not further analyze the switch region in DNA

fragments of IgE+ PCs and did not test the affinity of IgE

derived from Bcl-6B cell knock-out mice.
Mechanisms for IgE+ PCs survival

IgE+ B cells and IgE+ PCs are poorly characterized because

of their scarcity and low expression of membrane IgE. We

reviewed the microenvironment of IgE+ LLPCs and the

unique mechanisms mediated by IgE-BCR, which may bring

insights to understand the survival mechanisms of IgE+ PCs.
The microenvironment for IgE+ PCs
survival

LLPCs expressing the chemokine receptor CXCR4 will

migrate to the BM, where these cells receive various survival

signals. In contrast, SLPCs mostly die within 1 week in

secondary lymphoid organs (17, 41). In mice induced

chronically by HDM, IgE+ BMPCs express CXCR4 at a

similar level with IgG1+ BMPCs (17). Moreover, IgE+ LLPCs

induced in mice mainly reside in BM, suggesting that, like

other LLPCs, BM is also the primary harbor of IgE+ LLPCs

(12, 16–18). Additional reservoirs of IgE+ LLPCs besides BM

were also reported, such as lungs and nasal polyps, implying

that prosurvival factors in these mucosal sites contribute to

the longevity of PCs (17, 20). The BM microenvironment is

essential for PC survival and has been well-reviewed (23).

Briefly, the adhesion molecules VAL-4 and LFA-1 are

responsible for LLPC retention by interacting with ligands

expressed by stromal cells, such as ICAM-1, ACAM-1, and

fibronectin (42, 43). In the BM niche, stromal cells and

hematopoietic cells (e.g., monocytes, eosinophils, basophils,

BM dendritic cells, and megakaryocytes) could offer survival

signals through cell-to-cell contact and cytokines, such as a

proliferation-inducing ligand (APRIL), B-cell activating factor

of the TNF family (BAFF), and interleukin-6 (IL-6) (37).

Identifying the prosurvival factors in the microenvironment

other than BM is interesting. Many studies explored the

cytology and cytokine profiles in nasal polyps and lungs. A

higher level of eosinophils and IL-6 in eosinophilic nasal

polyps and bronchoalveolar lavage fluid (BALF) of asthmatic

patients was detected (44, 45). These two factors could
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FIGURE 1

The generation of IgE+ LLPCs. With the help of FDC and Tfh cells in the germinal center, most naïve B cells experience somatic hypermutation and
class switch recombination, including direct class switching (IgM/IgD→ IgE) and indirect class switching (IgM/IgD→ IgG1→ IgE). B cells experiencing
direct class switching are more likely to differentiate into low-affinity IgE+ PCs. High-affinity IgE+ PCs may derive from B cells undergoing indirect
class switching. IgE+ GC B cells, IgE+ memory B cells, and IgG1+ memory B cells are precursors of IgE+ PCs. A small proportion of IgE+ PCs migrate
into the bone marrow and become LLPCs. SLPCs reside in secondary lymphoid organs. IgE+ PCs can also be generated in the extrafollicular foci and
are more likely the SLPCs. FDC, follicular dendritic cell; Tfh, follicular helper T cell; PCs, plasma cells; LLPCs, long-lived plasma cells; SLPCs, short-
lived plasma cells.

Xiong et al. 10.3389/fped.2022.979012
promote the survival of LLPCs in the BM (43). Increased

expression of other cytokines, such as IL-4, IL-13, IL-5, IL-8,

et al., was also reported (45–47). IL-4 and IL-13 contribute to

the class switching of IgE and promote memory B cells to

differentiate into IgE+ PCs; however, they may not contribute to

survival (48). IL-5 play a role in supporting the survival of

BMPC (49). The expression of IL-5R was upregulated in PCs in

nasal polyps from subjects with aspirin-exacerbated respiratory

disease, and stimulation with IL-5 in vitro led to high expression

of transcripts related to cell proliferation (50). Multiple myeloma

(MM) cells are malignant PCs that share some common

characteristics with LLPCs. IL-8 could protect MM cells from

cell death induced by serum starvation (51). Collectively, some

cytokines and cells that could support PC survival are also

present in nasal polyps and lungs. However, the prosurvival role

was identified in the BM or in vitro; whether these factors play

the same effect in nasal polyps and lungs remains to be clarified.
The IgE-BCR signaling in IgE+ PCs

The serum level of IgE (50–200 ng/ml) is the lowest of all

the Ig subclasses in non-atopic persons (52). In addition, IgE+

cells are rare, and IgE+ B cells are likely to differentiate into

SLPCs and undergo apoptosis (53). Thus, the IgE production
Frontiers in Pediatrics 04
and IgE-secreting cells’ lifespan are strictly regulated, or

uncontrolled IgE response could cause allergic reactions.

Unlike other PCs, IgE+ PCs have several unique features.

Firstly, IgE+ PCs are scarce and short-lived in healthy

conditions (33). Besides, IgE-BCR is paradoxically upregulated

in IgE+ PCs (54). Moreover, IgE-BCR could activate

autonomously without antigen engagement (55). Thus, IgE-

BCR signaling may play an essential role in IgE+ PC

regulation, and identifying the specific molecular mechanism

helps discover the potential pathogenesis of the allergic disease.

IgE-BCR in humans and mice
Membrane IgE (mIgE) has two isoforms sharing the same

mRNA precursor but alternative splicing sites. The long form

of mIgE (mIgEL) has an additional extra-membrane proximal

domain (EMPD) region between Cϵ4 and the transmembrane

M1 domain. EMPD contains 52 amino acid residues and

exists in some primate species, including humans (56). Other

mammal animals, including mice, only express short mIgE

(mIgES). In the human B cell line, the amount of mIgEL was

much lower than mIgES on the cell surface due to EMPD.

EMPD could act as an autonomous endoplasmic reticulum

(ER) retention domain and might restrict the transport of

mIgEL from ER to the cellular membrane (56). Moreover,

modulation of the two isoforms exists. In human tonsil B cells
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cultured with anti-CD40 and IL-4, mIgEL was downregulated in

IgE+ PCs along the differentiation pathway and compensated by

mIgES (54). Humans have the propensity to develop allergic

diseases but apparently not in mice, indicating a unique role of

mIgEL isoform in allergy development.

Compared to wild-type mice, mice with IgE-BCR mutation

show a reduction of IgE+ PC population after infection with N.

brasiliensis, indicating a crucial role of IgE-BCR for PC

accumulation (57). In vitro, spleen B cells isolated from naïve

mice with IgE-BCR (mIgES) mutation and cultured with IL-4

and anti-CD40 antibodies show an impaired formation of

IgE+ PCs (57). Another study developed murine spleen B cells

that only expressed one isotype of BCRs and culture them

with IL-4 on feeder cells expressing CD40l and BAFF. Among

these isotypes (IgM/IgD/IgA/IgG/IgE-BCR), only IgE-BCR

could induce B cells to differentiate into PCs and apoptosis

(55). Thus, IgE-BCR could facilitate IgE+ PC differentiation

and apoptosis in an antigen-independent way. In a human B

cell line, stimulating mIgES of DG75 B cells with anti-IgE

antibodies also leads to apoptosis (56). Studies on mIgEL are

controversial. Haniuda et al. found that mIgEL could stimulate

activation-induced cell apoptosis in vitro but is less efficient

than mIgES (56). In contrast, one study developed transfected

murine B cells that express immunoreceptors with or without

EMPD. A higher proportion of B cells lacking EMPD

underwent apoptosis, suggesting a role of EMPD in

controlling apoptosis (58). However, the degree to which these

findings in vitro apply to IgE+ PC cells in vivo is unclear.

The signaling pathways of IgE-BCR
Like other BCRs, IgE-BCR is non-covalently associated with

CD79a and CD79b signaling devices. However, IgE-BCR could

activate the downstream signaling autonomously (59). CD79a

and CD79b contain an immunoreceptor tyrosine-based

activation motif (ITAM). Phosphorylated ITAM recruits and

activates Syk, which phosphorylates BLNK after activation. In

addition, CD79a could recruit and activate BLNK by a non-

ITAM tyrosine residue. BLNK controls calcium signaling

pathways via activating PLC-γ2 (60). In contrast to IgM and

IgD-BCR, IgE-BCR and IgG-BCR have a cytoplasmic Ig tail

tyrosine (ITT) motif, enhancing ITAM-induced calcium

signaling as well as Erk MAP kinase pathways (60–62). The

IgG-BCR ITT motif could incorporate Grb2/Btk signaling

module and amplify downstream signaling. However, the IgE-

BCR ITT motif recruits Grb2 and Grb2-related adaptor

proteins to enhance BCR signaling (62) (Figure 2).

Haniuda et al. (55) transduced GC-like B cells with mIgE or

mIgG1 and examined the activation of the BCR signaling

cascades without BCR stimulation. Compared to mIgG1,

mIgE showed spontaneous activation of BCR signaling

(BLNK-Jnk/p38) and CD19 downstream signaling (CD19-

PI3K-Akt-IRF4). In vitro, the CD19 pathway was proven to

play a crucial role in IgE+ SLPCs differentiation but not
Frontiers in Pediatrics 05
apoptosis. Further, researchers immunized mice with the TD

Ag NP-CGG in alum to clarify the function of CD19 in vivo.

CD19+/− mice had attenuated IgE+ PC differentiation but a

long-lasting serum IgE titer. BLNK-Jnk/p38 rather than Erk

pathway donated to IgE+ SLPCs differentiation and apoptosis.

Immunized BLNK−/− mice also had a long-lasting serum IgE

titer and generation of IgE+ LLPCs (55). Therefore, IgE-BCR

triggers SLPCs generation and apoptosis via activating BLNK-

Jnk/p38 and CD19-PI3K-Akt-IRF4 pathways (Figure 2). The

PI3K-mTOR-IRF4 pathway also drives the differentiation of

IgE+ and IgG1+ PCs. This result is consistent with studies that

rapamycin could cause a reduction in serum IgE and IgG1 in

mice induced by allergens (63–65). The calcium signaling

pathway is another downstream of BCR. The basal

intracellular calcium concentration in IgE+ PCs and IgE+ GC-

like B cells elevates due to the autonomous activation of Syk/

BLNK (55, 65). Enhancing the calcium signaling in IgE+ PCs

caused mitochondrial apoptosis mediated by BIM (65).

Calcineurin-NFAT is downstream of calcium signaling and

may contribute to IgE+ PCs differentiation rather than

apoptosis (65) (Figure 2).

Both ectodomain and cytoplastic tail contribute to IgE-BCR

signaling. Chimeric BCR containing transmembrane cytoplastic

tail of IgG1 and ectodomains of IgE could induce PC

differentiation and apoptosis; however, the ectodomains of

IgG1 and transmembrane cytoplastic tail of IgE could not,

implying that the ectodomains of IgE-BCR contributed to

downstream signaling spontaneous activation (55). Moreover,

EMPD of IgE-BCR could interact and activate CD19, thus

promoting PC differentiation. As mIgES isoform lacking

EMPD could also activate downstream signaling of BCR

without stimulation, there should be other alternative regions

for spontaneous activation. The domains CH1-CH4 of IgE are

sufficient to active Syk and BLNK in chimeric BCR without

EMPD (55). More recently, the ITT motif of IgE-BCR has

been demonstrated to promote IgE surface expression,

accumulation of IgE+ PCs, and memory IgE responses in mice

(60). As mentioned, the ITT motif could enhance calcium

signaling and Erk MAP kinase pathways. Several studies found

that Erk MAP kinase pathways did not play a significant role

in IgE+ PCs differentiation and apoptosis (55, 65). ITT motif

may contribute to IgE+ PCs maintenance through calcium

signaling pathways. In addition, ITT promotes IgE surface

expression, which may facilitate the activation of IgE-BCR (60).

The molecular mechanisms based on mouse models or

mouse cell lines are associated with mIgES. To clarify the

distinct functions of mIgEL and mIgES, Vanshylla et al. (56)

generated mIgEL and mIgES expressing cells. They found that

mIgEL-expressing cells had much weaker signaling of PI3K/

Akt, MAPK, and calcium signaling pathways. Moreover,

compared with full-length IgE-BCR, IgE-BCR with EMPD

deletion significantly promotes murine B cell apoptosis (58).

As discussed above, autonomous activation of mIgES signaling
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FIGURE 2

The signaling pathways of IgE-BCR. IgE-BCR is non-covalently associated with CD79a and CD79b, both of which have an ITAM motif in their
cytoplasmic tail. Phosphorylated ITAM recruits and activates Syk, which phosphorylates BLNK after activation. In addition, CD79a could recruit
and activate BLNK by a non-ITAM tyrosine residue. BLNK controls calcium signaling pathways via activating PLC-γ2. The downstream signaling
calcineurin/NFAT promotes IgE+ PC differentiation. Sustained elevation of calcium contributes to BIM-dependent apoptosis. BLNK also facilitates
IgE+ PC differentiation and apoptosis via Jnk/p38. In addition, the ITT motif recruits Grb2 and Grb2-related adaptor proteins to enhance BCR
downstream signaling. The long isoform of IgE-BCR has an additional EMPD region that could interact and activate CD19. Activated CD19
triggers IgE+ PC differentiation and apoptosis via the PI3K-Akt-mTOR-IRF4 pathway. ITAM, immunoreceptor tyrosine-based activation motif;
EMPD, extra-membrane proximal domain; ITT, immunoglobulin tail tyrosine; GRAP, Grb2-related adaptor protein.

Xiong et al. 10.3389/fped.2022.979012
promotes SLPCs differentiation and apoptosis; impaired mIgES
function contributes to LLPC generation and long-lasting

serum IgE titer (55). Whether weaker signaling mediated by

mIgEL could compete and attenuate the mIgES pro-apoptosis

effect remained to be elucidated. If that is the case, the ratio

mIgEL/mIgES on PCs surface may be implicated in the

survival of PCs.
Discussion

Clinical observations indicate the responsibility of IgE+

LLPCs for persistent allergies, but the characteristics of IgE+
Frontiers in Pediatrics 06
LLPCs are poorly studied, especially in humans. IgE+ LLPCs

could be induced in the allergic mouse model, but only

indirect evidence supports the presence of IgE+ LLPCs in

allergic patients. IgE+ LLPCs mainly reside in BM and are

lesser in the spleen and mucous. The prosurvival factors in

the BM have been extensively studied, but a few focus on the

mucosal microenvironment where IgE+ LLPCs exist. In non-

atopy conditions, IgE+ B cells showed the propensity to

differentiate into SLPCs due to the autonomous activation of

IgE-BCR signaling. It is interesting to investigate the change

of these signaling pathways in subjects with persistent

allergies. In addition, mIgEL and mIgES deliver altered

signaling, which may play distinct roles in IgE+ PCs survival.
frontiersin.org

https://doi.org/10.3389/fped.2022.979012
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Xiong et al. 10.3389/fped.2022.979012
Applying mutant mice expressing mIgEL isoform helps to

explore the unique role of mIgEL in allergic conditions.
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