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Natural killer (NK) cells are cytotoxic and cytokine-producing lymphocytes that

play an important role in the first line of defense against malignant or virus-

infected cells. A better understanding of the transcriptional regulation of

human NK cell differentiation is crucial to improve the efficacy of NK cell-

mediated immunotherapy for cancer treatment. Here, we studied the role of

the transcription factor interferon regulatory factor (IRF) 2 in human NK cell

differentiation by stable knockdown or overexpression in cord blood

hematopoietic stem cells and investigated its effect on development and

function of the NK cell progeny. IRF2 overexpression had limited effects in

these processes, indicating that endogenous IRF2 expression levels are

sufficient. However, IRF2 knockdown greatly reduced the cell numbers of all

early differentiation stages, resulting in decimated NK cell numbers. This was

not caused by increased apoptosis, but by decreased proliferation. Expression

of IRF2 is also required for functional maturation of NK cells, as the remaining

NK cells after silencing of IRF2 had a less mature phenotype and showed

decreased cytotoxic potential, as well as a greatly reduced cytokine secretion.

Thus, IRF2 plays an important role during development and functional

maturation of human NK cells.
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Introduction
Natural killer (NK) cells are innate lymphoid cells that were

first defined as cytotoxic effector cells that can kill target cells

without prior sensitization. NK cells are also potent producers of

inflammatory cytokines, such as interferon (IFN)-g and tumor

necrosis factor (TNF)-a (1). Like all lymphocytes, NK cells

originate from hematopoietic stem cells (HSC) in the bone

marrow, but terminal NK cell differentiation occurs in

secondary lymphoid tissues (2, 3). Genetic regulation by an

array of cell-intrinsic transcription factors and signaling events

from cell-extrinsic factors, such as cytokines, direct the HSC

development into NK cells. The commonly used model for

human NK cell development is based on differential

expression of the cell surface markers CD34, CD45RA,

CD117, CD94 and CD16 to distinguish five successive NK cell

developmental stages (4). CD34+ HSC that reside in the bone

marrow develop into stage 1 cells once they acquire CD45RA,

while retaining CD34 expression. Acquisition of CD117 marks

stage 2 cells, which transition into stage 3 progenitor cells by

downregulating CD34. Expression of CD122, the interleukin

(IL)-2 receptor b chain, by stage 3 cells makes them responsive

to IL-15 signaling and marks commitment to the NK cell lineage

(5, 6). Acquisition of CD94 marks mature NK cells. Expression

levels of CD56 and CD16 on mature NK cells divides them in

CD56brightCD16-, i.e. stage 4 cells, which are potent cytokine

producers, and CD56dimCD16+, i.e. stage 5 cells, which display

mainly cytotoxic activity. Most peripheral blood NK cells are

CD56dim, while the CD56bright NK cells reside primarily in

secondary lymphoid tissues (7). NK cell functional maturation

is accompanied by the expression of NK cell receptors, like killer

immunoglobulin-like receptors (KIR), NKG2A/C, NKp46,

NKG2D and CD226 (DNAM-1) (7). Integration of signals

received by the activating and inhibitory receptors expressed

on the NK cell surface determines the outcome of NK

cell activation.

The interferon regulatory factor (IRF) family contains nine

transcriptional factors, from IRF1 to IRF9, in humans and mice.

Members of the IRF family are involved in a variety of biological

processes and also play diverse roles in immune cell

development, differentiation and apoptosis (8). Several

members of the IRF family are implicated in various aspects of

NK cell biology, including differentiation and expansion. IRF8 is

required for human NK cell development and functional

maturation, as well as proliferative expansion after viral

infection (9, 10). Two other members of the IRF family, IRF1

and IRF2, are known to be required for the development of

murine NK cells. IRF1 regulates IL-15 expression in bone

marrow stromal cells, which is essential for the development

of NK cells. As a consequence, Irf1-knockout mice have strongly

reduced NK cell numbers (11). IRF2 also affects murine NK cell

development as Irf2-deficient mice show significantly decreased
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NK cell numbers, which arrest at the immature CD27+CD11b–

stage in the bone marrow (12–14). IRF2, in contrast to IRF1, acts

in a cell-intrinsic manner as demonstrated by the fact that

transplantation of Irf2-deficient bone marrow cells into

irradiated wild-type recipient mice also results in decreased

NK cell numbers as compared to transfer of control cells (12,

14). The selective loss of mature peripheral NK cells in Irf2-

deficient mice is attributed at least partly to accelerated

apoptosis, indicating a role for IRF2 in regulating NK cell

survival, as well as maturation (14, 15).

To date, there are no reports on the role of IRF2 in

human NK cell differentiation. Because of important

interspecies differences, findings from mouse research cannot

simply be extrapolated to the human situation and thus

translational research is required. Here, using in vitro NK cell

differentiation cultures starting from HSC that were transduced

with IRF2 knockdown or IRF2 overexpression vectors, we show

that the transcription factor IRF2 plays a critical role in human

NK cell development. We uncovered that NK cell numbers are

greatly reduced upon IRF2 knockdown and that this is due to a

lower proliferation rate of the early developmental stages,

whereas apoptosis is not affected. In addition, we show that

the generated NK cells from the IRF2 knockdown cultures do

not reach full NK cell functionality as they display impaired

cytotoxicity against tumor target cells and reduced cytokine

secretion upon cytokine stimulation. Overexpression of

IRF2 has limited effects on NK cell maturation, indicating

that endogenous IRF2 expression levels are sufficient in

these processes.
Material and methods

Viral constructs

To knockdown the expression of the transcription factor, an

IRF2-specific shRNA (5’-GCAATCCGGTGCCTTACAACA-3’)

vector with a pLKO.1 backbone (Mission shRNA; Sigma

Aldrich, St. Louis, MO, USA) was used. This lentiviral vector

contained a puromycin resistance gene that was replaced by the

enhanced green fluorescent protein (eGFP) reporter gene. After

validation of the construct, viral supernatant was collected 48 h

and 72 h after transfecting the lentiviral shRNA vectors together

with pCMV-VSV-G envelope and p8.91 packaging vectors in

HEK293T cells using JetPEI (Polyplus transfection, Illkirch,

France). A non-targeting shRNA sequence was used as control.

To overexpress the transcription factor, IRF2 cDNA was

cloned in the pCR-blunt vector using the Zero Blunt PCR

Cloning kit (Thermo Fisher Scientific, Waltham, MA, USA),

followed by subcloning into the LZRS-IRES-eGFP vector (16).

After validation of the construct by sequencing, viral

supernatant was collected 2, 6 and 14 days after transfecting

the retroviral vectors in Phoenix A cells using calcium phosphate
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transfection. The empty LZRS-IRES-eGFP vector was used

as control.
Isolation of HSC

CD34+ cells were isolated from human umbilical cord blood

(Cord Blood Bank, University Hospital Ghent, Ghent, Belgium).

Cord blood was obtained with informed consent in accordance

with the Declaration of Helsinki and usage was approved by the

Ethics Committee of the Faculty of Medicine and Health

Sciences (Ghent University, Ghent, Belgium). After isolation of

mononuclear cells by Lymphoprep (Stem Cell Technologies,

Grenoble, France) density gradient centrifugation, CD34+ cells

were purified using Magnetic Activated Cell Sorting (MACS;

Miltenyi Biotec, Leiden, The Netherlands). Isolated CD34+ cells

were cultured in Iscove’s Modified Dulbecco’s Medium (IMDM;

Thermo Fisher Scientific) containing fetal calf serum (FCS;

Biowest, Nuaillé, France) (10%), penicillin (100 U/mL),

streptomycin (100 μg/mL) and glutamine (2 mM) (all from

Life Technologies, Grand Island, NY, USA), supplemented with

thrombopoietin (TPO) (20 ng/mL), stem cell factor (SCF;

Peprotech, London, UK) (100 ng/mL) and FMS-like tyrosine

kinase 3 ligand (Ftl3L; R&D Systems, Minneapolis, MN, USA)

(100 ng/mL). After 48 h of preculture, cells were transduced

using RetroNectin (2 μg/cm²) (Takara Bio, Saint-Germain-en-

Laye, France) coated plates. The addition of viral supernatant

was followed by spinoculation at 950 g during 90 min at 32°C. In

case of lentiviral transduction, polybrene (Sigma Aldrich) (8 μg/

mL) was added during the transduction and 24 h after lentiviral

transduction, the medium was refreshed to remove polybrene.

eGFP+ HSCs, defined as CD34+lineage-(CD3/CD14/CD19/

CD56)CD45RA- cells, were sorted to high purity 48 h after

transduction using a FACS ARIA II cell sorter (BD Biosciences,

San Jose, CA, USA).
Coculture model

The murine embryonic liver cell line EL08-1D2, kindly

provided by E. Dzierzak (Erasmus University MC, Rotterdam,

The Netherlands), was maintained on 0.1% gelatin-coated plates

at 32°C in Myelocult M5300 medium (50%) (Stem Cell

Technologies), a-MEM (35%), heat-inactivated FCS (15%),

supplemented with penicillin (100 U/mL), streptomycin (100

μg/mL), glutamine (2 mM) and b-mercaptoethanol (10 mM).

Cell proliferation was blocked by addition of mitomycin C (10

mg/mL) to the culture medium for 2-3 h, followed by thoroughly

rinsing of the cells before harvesting using trypsin-EDTA

(Lonza, Bazel, Switzerland). Cells were plated at a density of

50,000 cells per well of a 0.1% gelatin-coated tissue culture-

treated 24-well plate at least 24 h before adding HSCs or

differentiating NK cells.
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Following FACS sorting, eGFP+ HSCs were plated on the

mitomycin C-inactivated EL08-1D2. Cells were co-cultured in

NK cell coculture medium containing Dulbecco’s Modified

Eagle Medium (DMEM) and Ham’s F-12 nutrient mixture

(2:1 ratio) (all from Thermo Fisher Scientific), supplemented

with penicillin (100 U/mL), streptomycin (100 μg/mL),

glutamine (2 mM), sodium pyruvate (10 mM) (Thermo Fisher

Scientific), heat-inactivated human AB serum (20%) (Biowest),

b-mercaptoethanol (24 μM), ascorbic acid (20 μg/mL),

ethanolamine (50 μM) and sodium selenite (50 ng/mL) (all

from Sigma Aldrich). The cytokines IL-3 (R&D systems) (5 ng/

mL), IL-7 (20 ng/mL), IL-15 (10 ng/mL), SCF (20 ng/mL) and

Ftl3L (10 ng/mL) were added to the culture medium. On day 7 of

culture, the medium was refreshed by addition of equal volumes

of fresh medium supplemented with cytokines (except IL-3). On

day 14 of culture, the cells were split and transferred to new

inactivated EL08-1D2 stromal cells. Cultures were maintained in

a humidified atmosphere of 5% CO2 at 37°C.
Flow cytometry analysis and sorting

Cells were harvested by forceful pipetting at indicated

timepoints and immunostained for phenotypical analysis. In

vitro NK developmental subsets were identified and analyzed

using the following gating strategy on eGFP+ cells: HSC

(CD34+CD45RA-), stage 1 (CD34+CD45RA+CD117-), stage 2

(CD34+CD45RA+CD117+), stage 3 (CD34-CD94-CD117+HLA-

DR-NKp44-), stage 4 (CD45+CD56+CD94+CD16-) and stage 5

(CD45+CD56+CD94+CD16+) (Supplemental Figure 1).

To stain intracellular and intranuclear proteins, the BD

Cytofix/Cytoperm (BD Bioscience) and Foxp3/Transcription

Factor Staining Buffer Set (Thermo Fisher Scientific) were

used, respectively.

Before staining, the cells were blocked with anti-mouse

FcRgII/III (clone 2.4.G2) and human IgG (Miltenyi Biotec). To

discriminate living and dead cells in cell membrane and

intracellular or -nuclear staining, propidium iodide and

Fixable Viability Dye eFluor™ 566 (Invitrogen) were

used, respectively.

For apoptosis assays, cells were washed in annexin binding

buffer and stained with annexin V-APC (Thermo Fisher

Scientific) and propidium iodide.

Cells were analyzed on an LSRII (BD Biosciences); for

sorting a FACSARIA was used. FlowJo_v10.8.1 (Ashland, OR,

USA) was used for analysis. Utilized antibodies are listed in

Supplementary Table 1.
Cell proliferation assays

Ce l l p ro l i f e r a t i on was de t e rm ined u s ing the

CellTrace™Violet Cell Proliferation kit (Thermo Fisher
frontiersin.org
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Scientific) following the manufacturer’s protocol and analyzed

by flow cytometry at the indicated time point.

As a second method, the EdU assay was used. Coculture cells

were labeled with 10 μM EdU (Click-iT EdU Alexa Fluor 594

Imaging Kit, Thermo Fisher Scientific) at 37°C, 5% CO2. After

30 min, the cells were harvested and stained extracellularly. Cells

were then fixed in 3% paraformaldehyde for 20 min at room

temperature. The cells were washed with PBS supplemented

with 1% FCS and permeabilized for 10 min with ice-cold 0.2%

Triton X-100 in PBS. Next, the cells were incubated 30 min at

room temperature in the dark with 100 μL Click-iT reaction

cocktail, prepared as instructed by the manufacturer. After

washing with PBS, DNA was stained with DAPI (1 μg/mL)

and cells were analysed by flow cytometry.
Cytokine production and secretion

For flow cytometric analysis of cytokine production,

coculture cells of day 21 were stimulated in bulk during 6 h

with phorbol myristate acetate (PMA; 5 ng/mL) and ionomycin

(1 μg/mL) or with K562 cells at an effector to target ratio (E:T) of

1:1, or during 24 h with IL-12 plus IL-18 (both 10 ng/mL) or IL-

12, IL-18 and IL-15 (4 ng/mL). The last 4 h of incubation,

brefeldin A (BD Golgiplug, BD Biosciences) was added. After

harvesting, cells were stained for NK surface markers and

subsequently fixed and permeabilized for intracellular staining

of IFN-g and TNF-a. For analysis of cytokine secretion, sorted
mature eGFP+ NK cells (CD45+CD56+CD94+) from day 21

cultures were stimulated with IL-12 plus IL-18 or IL-12, IL-18

and IL-15 (same concentrations as indicated above). After 24 h,

supernatant was collected and analyzed for cytokine secretion

with IFN-g ELISA assay (PeliKine-Tool Set, Sanquin,

Amsterdam, The Netherlands) and TNF-a ELISA assay kits

(TMB ELISA Development Kit, Peprotech).
Cytotoxicity assay

K562 target cells (106) were labeled with 100 μCi of Na512
CrO4 (Perkin Elmer, Waltham, MA, USA) for 1 h at 37°C, 5%

CO2. Labeled cells were washed three times in medium and

resuspended in NK cell coculture medium. Cells were co-

incubated with sorted eGFP+ NK cells at E:T ratios of 3, 1, 0.3,

0.1 and 0.03. Spontaneous release was measured by incubating

target cells with medium alone, while maximum release was

measured by incubating target cells in 1% Triton X-100. After 4

h, supernatant was harvested and mixed with scintillation fluid

(Perkin Elmer). Radioactivity was measured with a 1450

LSC&Luminescence Counter (Wallac Microbeta Trilux, Perkin

Elmer). The mean percentage of cytotoxic activity of triplicates

was calculated.
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Western blot

Cells were lysed in RIPA buffer and protein concentration

was determined using the DC protein assay (Bio-RAD, Hercules,

CA, USA). Denatured protein was loaded on a Bolt 4-12% Bis-

Tris Plus gel (Thermo Fisher Scientific) and transferred to a

PVDF membrane (Invitrogen). After blocking, the membrane

was incubated with the primary antibody at 4°C overnight,

followed by incubation with the secondary antibody for 1 h.

For visualization, anti-rabbit (#7074S, Cell Signaling

Technologies) or anti-mouse (#NA931, Sigma Aldrich)

conjugated horseradish peroxidase secondary antibody was

used. Protein level quantification was performed using ImageJ

software (National Institutes of Health). The primary antibodies

used were: anti-IRF2 (#700226, Thermo Fisher; dilution 1:100)

and anti-VINCULIN (#V9131, Sigma Aldrich; dilution 1:10000)
qPCR analysis

Total RNA was extracted from sorted cells using the RNeasy

Micro kit (Qiagen, Hilden, Germany) and converted into cDNA

using the iScript™ Advanced cDNA synthesis Kit (Bio-RAD).

Quantitative PCR was performed using the LightCycler 480

SYBR Green I Master mix (Roche, Bazel, Switzerland) on a

LightCycler 480 real-time PCR system (Roche). The

housekeeping genes GAPDH and either TBP or YHWAZ were

used as normalization genes to calculate gene expression levels.

Utilized primers are listed in Supplementary Table 2.
Library preparation, RNA sequencing
and analysis

For transcriptome analysis, day 3 HSC (eGFP+CD34+lineage-

CD45RA-) and day 7 stage 3 cells (eGFP+CD45+CD34-

CD117+CD94-NKp44-HLA-DR-) were sorted and RNA was

isolated using the RNeasy Micro kit (Qiagen). The

concentration and quality of the extracted RNA was checked

using the ‘Quant-it ribogreen RNA assay’ (Life Technologies) and

the RNA 6000 nano chip (Agilent Technologies, Santa Clara, CA,

USA), respectively. The RNA sequencing libraries of 5 biological

replicates of the HSC and stage 3 cells were prepared using the

QuantSeq 3’ mRNA-Seq Library Prep Kit (Lexogen, Vienna,

Austria) using 25 ng and 20.5 ng of input RNA, respectively.

Libraries were quantified by qPCR, according to Illumina’s

protocol ‘Sequencing Library qPCR Quantification protocol

guide,’ version February 2011. A High Sensitivity DNA chip

(Agilent Technologies) was used to control the library’s size

distribution and quality. Sequencing was performed on a high

throughput Illumina NextSeq 500 flow cell generating 75 bp single

reads. Per sample, on average 3.8 x106 ± 0.8 x 106 and 4.4 x106 ±
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1.1 x106 reads were generated for the HSC and stage 3 population,

respectively. Quality control of these reads was performed with

FastQC (17). Fastq files were aligned to human reference genome

GRCh38 using STARv2.42 and gencode v35 as guide gtf. Counts

were generated on the fly by STAR. Differential expression

analysis was performed using Deseq2 with Wald test for p-value

calculation (18). Genes with a padj < 0.05 were considered

significantly differential. GSEA was performed using the GSEA

software tool v4.2.1 of the Broad Institute (19, 20). The

‘GSEAPreranked’ module was run using standard parameters

and 1000 permutations.

To test whether the differentially expressed genes (DEG) that

are implicated in the gene ontology pathways of positive and

negative regulation of the mitotic cell cycle contain an IRF2-

binding motif, we used iRegulon. iRegulon is a computational

method designed to reverse-engineer the transcriptional

regulatory network underlying a co-expressed gene set using

cis-regulatory sequence analysis. iRegulon implements a

genome-wide ranking-and-recovery approach to detect

enriched transcription factor motifs and their optimal sets of

direct targets (21).
Statistical analysis and software

Data were plotted and statistical analyses were performed

using GraphPad Prism v8.3.1 software (GraphPad Software, San

Diego, CA, USA). All error bars represent the standard error of

the mean (SEM). Results were considered statistically significant

when p < 0.05.
Results

IRF2 regulates the generation of human
NK cells

We first established the pattern of endogenous IRF2

expression during human NK cell development by performing

RT-qPCR on cord blood-derived HSC and in vitro

differentiation stages 1 to 5 (Figure 1A). IRF2 was clearly

expressed in human HSC and stage 1 and 2 cells, and there

was a gradual increase in IRF2 expression in the subsequent NK

cell developmental subpopulations, i.e. stage 3 to stage 5.

To investigate the role of IRF2 in human NK cell

development, we manipulated HSC, isolated from umbilical

cord blood, to either knockdown or overexpress IRF2 by

transducing them with a lentiviral vector containing an IRF2-

specific shRNA or a retroviral vector containing IRF2 cDNA,

respectively. As controls, a non-targeting shRNA or an empty

IRES-eGFP control vector were used. HSC were sorted 2 days

after transduction and put in NK cell differentiation culture on
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the EL08 stromal cell line. RT-qPCR analysis of subpopulations

that were sorted at different timepoints of the IRF2 shRNA

culture showed that HSC and stage 3 cells had significantly

reduced IRF2 mRNA levels compared to control cells. However,

the knockdown did not persist in the NK cell population.

Retroviral transduction of IRF2 cDNA caused stable

overexpression of IRF2 mRNA in HSC, stage 3 cells and NK

cells (Figure 1B). Western blot analysis mirrored the mRNA

levels, with a decrease in IRF2 protein expression in HSC, but

not in NK cells upon IRF2 knockdown, whereas NK cells from

overexpression cultures expressed significantly more IRF2

protein than control cell populations (Figure 1C).

To determine whether IRF2 plays a role in human NK cell

development, cell numbers of the different NK cell

differentiation stages were determined at weekly timepoints in

IRF2 shRNA and IRF2 overexpression cultures by flow

cytometric analysis (Figure 1D). On day 7, knockdown of

IRF2 significantly reduced stage 2 and stage 3 cell numbers,

while the numbers of HSC and stage 1 cells were unaffected. On

day 14, however, also the numbers of HSC and stage 1 cells were

significantly reduced compared to the control, and this was also

the case for the emerging NK cells. This pattern continued on

day 21, with strongly decreased stage 4 and stage 5 NK cell

numbers. Conversely, overexpression of IRF2 resulted in

increased stage 3 cell numbers on day 7 and day 14. This did

not lead to more NK cells on day 14, but on day 21, an increase

in stage 4 cell numbers was observed, whereas stage 5 NK cell

numbers were decreased.

Taken together, endogenous IRF2 expression is upregulated

during human NK cell maturation and IRF2 knockdown in HSC

greatly reduces their differentiation into NK cells.
IRF2 influences the transcriptome of HSC
and stage 3 cells

The decreased cell numbers of the early NK cell

differentiation stages indicated towards an early effect of IRF2

on NK cell development. To investigate how IRF2 knockdown

might influence NK cell development, we performed

transcriptome analysis on day 3 HSC and day 7 stage 3 cells

sorted from the knockdown and control cultures. Consistent

with the reported ability of IRF2 to act as both a transcriptional

activator and repressor (22), 295 transcripts were upregulated

and 404 transcripts were downregulated in the HSC population,

while in the stage 3 cells 477 transcripts were upregulated and

911 transcripts were downregulated in the IRF2 knockdown

compared to the control condition (Figure 2A, B). Comparative

analysis of the DEG of the HSC and stage 3 populations showed

22 and 110 genes that were up- and downregulated, respectively,

in both populations, whereas 40 genes in total showed opposing

differential expression in the two populations (Figure 2C).
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IRF2 affects proliferation of early
differentiation stages

We performed Gene Set Enrichment Analysis (GSEA) of the

RNA-seq datasets and this showed that leukocyte differentiation

and leukocyte proliferation were among the suppressed

biological processes in the HSC and stage 3 cells from the

IRF2 knockdown cultures, respectively (Figure 3A). Further
Frontiers in Immunology 06
analysis of the DEGs revealed that several genes involved in

negative regulation of mitotic cell cycle, such as BTG3 in the

HSC population and ZWILCH and CLSPN in stage 3, were

upregulated in IRF2 knockdown cells. BTG3 is a member of the

antiproliferative BTG gene family, and its downregulation has

been observed in human cancers (23). ZWILCH, an essential

component of the mitotic checkpoint, prevents cells from

prematurely exiting mitosis and is involved in the negative
A B

D

C

FIGURE 1

IRF2 regulates human NK cell differentiation. (A) RT-qPCR analysis of the IRF2 expression pattern in the indicated NK cell developmental stages
sorted from HSC-based in vitro NK cell differentiation cultures: HSC (Lin-CD34+CD45RA-) sorted on day (d)0, stage (ST) 1
(CD34+CD45RA+CD117-) and ST2 (CD34+CD45RA+CD117+) on d7, ST3 (CD34-CD117+CD94-HLA-DR-NKp44-) on d15, and ST4
(CD56+CD94+CD16-) and ST5 (CD56+CD94+CD16+) on d21 (mean ± SEM; n=2-3). (B) Cord blood-derived HSC were transduced with IRF2
shRNA (left) or IRF2 overexpression vectors (right) and sorted eGFP+ HSC were cultured in vitro in NK cell specific culture conditions. Relative
IRF2 expression was determined using RT-qPCR in sorted HSC at d3, in ST3 cells at d7 and in NK cells (CD45+CD56+CD94+) at d21. IRF2
expression is reported as mean percentage relative to the control condition (set at 100%) (mean ± SEM; n=3-5). (C) IRF2 Western blot analysis
of sorted d3 HSC and d21 NK cells from knockdown (left) and d21 NK cells from overexpression (right) cultures. Bar graphs (right) show
quantification of the IRF2 protein levels normalized to vinculin and reported relative to the control condition (set at 100%) (mean ± SEM; n=2-4).
(D) Two days after transduction with IRF2 shRNA (top), IRF2 overexpression vector (bottom) or their appropriate controls, eGFP+ HSC were
sorted and in vitro cultured in NK cell specific culture conditions. Absolute cell numbers of the successive NK cell developmental stages were
determined at the indicated timepoints of the culture period (mean ± SEM; n=7-13). *, **, *** and **** represent statistical significance
compared to control transduced cultures with p < 0.05, p < 0.01, p < 0.001 and p < 0.0001, respectively.
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regulation of mitotic cell cycle (24). Claspin (encoded by the

CLSPN gene) is a nuclear protein recognized to regulate cell

cycle S-phase checkpoint (25). RT-qPCR analysis of sorted cell

populations from IRF2 knockdown cultures revealed higher

expression of BTG3 in HSC and of ZWILCH and CLSPN in

stage 3 cells compared to control cultures (Figure 3B),

confirming the RNA-seq results. There were, however, both

up- and downregulated DEGs among the gene ontology pathway

of the positive regulation, as well as the negative regulation of the

mitotic cell cycle. We used iRegulon to identify the DEGs

implicated in the gene ontology pathway of positive or

negative regulation of the mitotic cell cycle that contain an
Frontiers in Immunology 07
IRF2-binding motif (Table S3, with genes containing an IRF2

binding motif in bold). Therefore, we analyzed the proliferation

rate in the knockdown culture using two different experimental

approaches. In the first approach, sorted eGFP+ HSC were

labeled on day 0 with CellTrace Violet and were put in NK

cell differentiation culture. CellTrace labels the cells fluorescently

and upon cell division the daughter cells receive approximately

half of the fluorescent label of the parent cells. On day 5, the

CellTrace signal was analyzed in the gated early NK cell stages.

The results show that all differentiation stages, i.e. HSC and

stages 1 to 3, from IRF2 knockdown cultures had a significantly

decreased percentage of CellTracelow cells (Figure 3C). In the

second approach, we labeled cells from day 5 cultures with 5-

ethynyl-2’-deoxyuridine (EdU). EdU is a modified thymidine

analogue that is efficiently incorporated into newly synthesized

DNA. Afterwards, it is labeled with a bright fluorescent dye in a

highly-specific click reaction. All differentiation stages from the

IRF2 knockdown cultures had a significant decreased uptake of

EdU and thus contain less cells entering the S-phase of the cell

cycle (Figure 3D). This confirms and strengthens the results of

the CellTrace experiments and shows that proliferation of the

early differentiation stages is strongly decreased upon

IRF2 knockdown.

As also apoptosis affects NK cell numbers, we stained the cells

from the IRF2 knockdown and control cultures with annexin V and

propidium iodide on day 5. This showed that there was no

significant difference in the frequency of apoptotic cells (Figure 3E).

Thus, IRF2 knockdown strongly decreases proliferation of the

early developmental stages, whereas it does not affect apoptosis.
IRF2 is required for human NK cell
cytotoxicity and cytokine secretion

NK cells are important cytotoxic players of the innate immune

system. GSEA of the RNA-seq data also revealed immune effector

process among the pathways that were significantly decreased in

stage 3 cells of the IRF2 knockdown condition (Figure 4A). This

compelled us to analyze the effector functions of the mature NK

cells generated upon altered IRF2 expression. First, we assessed if

IRF2 expression is necessary for NK cell cytotoxic function. We

performed chromium release assays using the NK-sensitive K562

cancer cell line as target cells. Knockdown of IRF2 significantly

impaired tumor killing of sorted NK cells at all examined effector to

target ratios, while cells of overexpression cultures had a similar

cytotoxic capacity as control NK cells (Figure 4B). Perforin and

granzyme B are key effector molecules of NK cell cytotoxicity. Using

intracellular staining, we found a limited but significant decrease in

perforin expression in NK cells upon knockdown of IRF2, while

granzyme B expression showed a non-significant trend of decreased

expression. Overexpression of IRF2 had no influence on perforin or

granzyme B expression levels (Figure 4C).
A

B C

FIGURE 2

IRF2 knockdown affects the transcriptome of HSC and stage 3
cells. RNA-sequencing was performed on 5 biological replicates
of HSC and ST3 cells sorted from IRF2 knockdown cultures on
d3 and d7, respectively. (A) MA plots showing up- (red) and
downregulated (blue) genres in HSC and ST3 cells. (B) Bar
graphs showing the number of differentially expressed genes
(DEG) in HSC and ST3 that were up- (red) or downregulated
(blue). (C) Venn diagram showing the overlap between the DEGs
in the HSC and ST3 populations.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1038821
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Persyn et al. 10.3389/fimmu.2022.1038821
A

B

D

E

C

FIGURE 3

IRF2 influences proliferation of early NK cell developmental stages. (A) Gene Set Enrichment Analysis plot of the Gene Ontology – Biological
Process (GO-BP) leukocyte differentiation and leukocyte proliferation pathway upon IRF2 knockdown in HSC and ST3 cells, respectively. NES:
normalized enrichment score. (B) Relative expression of BTG3 in HSC and CLSPN and ZWILCH in ST3 cells as analyzed by RT-qPCR (mean ±
SEM; n=4). (C-E) HSC were transduced with IRF2 knockdown or control vectors. (C) eGFP+ HSC, sorted after transduction (d0), were labeled
with CellTrace Violet and cultured in NK cell specific conditions. On d5, the CellTrace Violet signal was assessed in gated HSC and ST1 to ST3
cells with flow cytometry. The frequency of CellTracelow cells is indicated (mean ± SEM; n=5). Overlaid CellTrace Violet histograms of
representative samples are shown. (D) eGFP+ HSC were cultured for 5 days. Thereafter, cells were incubated with 5-ethynyl-2’-deoxyuridine
(EdU) during 30 min, followed by a Click-iT reaction with an Alexa Fluor 594 fluorophore and flow cytometric quantification. The percentages of
EdU-incorporating cells in the indicated stages are shown (mean ± SEM; n=3). (E) Apoptosis was assessed on d5 of culture by flow cytometry in
the indicated developmental stages by staining with propidium iodide (PI) and Annexin V. The percentage of early (Annexin V+PI-) and late
apoptotic cells (Annexin V+PI+) is shown (mean ± SEM; n=5). * and ** represent statistical significance compared to control transduced
conditions with p < 0.05 and p < 0.01, respectively.
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Mature NK cells are also characterized by their ability to

produce and secrete pro-inflammatory cytokines, such as IFN-g
and TNF-a. Cells of knockdown and overexpression cultures

were stimulated for 6 h with PMA/ionomycin or with K562

target cells, or for 24 h with IL-12 plus IL-18, with or without IL-

15. Flow cytometric analysis of the frequency of NK cells

producing IFN-g or TNF-a showed no difference in
Frontiers in Immunology 09
knockdown or overexpression cultures compared to their

respective control (Figure 4D). In sharp contrast to cytokine

production, cytokine secretion was strongly affected by IRF2

knockdown. This was assessed with IFN-g and TNF-a ELISA

after 24 h stimulation with either PMA/ionomycin or the

cytokines mentioned earlier. Knockdown of IRF2 strongly

decreased secretion of both IFN-g and TNF-a . IRF2
A B

D E

C

FIGURE 4

Decreased cytotoxicity and cytokine secretion upon IRF2 knockdown. (A) Gene Set Enrichment Analysis plot of the GO-BP immune effector
process upon IRF2 knockdown in ST3 cells. NES: normalized enrichment score. (B-E) Functionality of NK cells of IRF2 knockdown and
overexpression conditions was examined on d21 of culture. (B) NK cell cytotoxicity was assessed using a 51-chromium release assay. NK cells
(eGFP+CD45+CD56+CD94+) were sorted and incubated for 4 h with K562 target cells at the indicated effector to target (E:T) ratio. The
percentage of specific target cell lysis is shown (mean ± SEM; n=3-7). (C) Expression (MFI) of the cytotoxic mediators perforin (PERF) and
granzyme B (GZMB) in gated NK cells (mean ± SEM; n=8-10). (D) IFN-g and TNF-a production was analyzed with flow cytometry in gated NK
cells after stimulation of bulk cells with PMA/Ionomycin or by coculture with K562 target cells for 6 h, or after 24 h stimulation with either IL-12
plus IL-18 or IL-12, IL-15 and IL-18. Brefeldin A was added during the last 4 h of stimulation (mean ± SEM; n=6-10). (E) NK cells were sorted and
stimulated with IL-12 plus IL-18 or IL-12, IL-15 and IL-18. After 24 h, the supernatant was harvested and IFN-g and TNF-a secretion was
analyzed by ELISA. Cytokine secretion is reported as mean percentage relative to the control condition (set at 100%) (mean ± SEM; n=4-6). ND:
not detectable. *, **, *** and **** represent statistical significance compared to control transduced cultures with p < 0.05, p < 0.01, p < 0.001
and p < 0.0001, respectively.
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overexpression only had limited influence, with an increase in

secreted TNF-a upon PMA/ionomycin stimulation (Figure 4E).

These results show that differentiating human NK cells

require IRF2 to acquire full tumor cytotoxicity and cytokine

secretion capacities.
IRF2 is required for full phenotypic
maturation of human NK cells

Recognition of target cells by NK cells is mediated by an array

of activating and inhibitory receptors expressed on their cell surface.

Evaluation of multiple NK cell receptors on NK cells from day 21 of

IRF2 knockdown and overexpression cultures showed that

expression of both activating and inhibitory receptors was affected

(Figure 5A). The Fc gamma receptor CD16, which marks stage 5

cells, was upregulated in NK cells of IRF2 knockdown and

downregulated in overexpression cultures. Like CD16, the

activating receptor NKp46 and inhibitory receptor NKG2A were

upregulated upon IRF2 knockdown, and downregulated when IRF2

was overexpressed. KIR receptors, stained with a mix of KIR

antibodies (KIR2DL1/KIR2DS1, KIR2DL2/KIR2DL3, KIR3DL1/

KIR3DS1) labeling both activating and inhibitory KIRs, showed

decreased expression frequency in both knockdown and

overexpression cultures. Additionally, NKp30, NKp44 and

NKG2D were downregulated in IRF2 overexpression cultures, but

unaltered in the knockdown cultures. Expression of the co-

receptors CD226 (DNAM-1) and SLAMF6 was downregulated in

IRF2 knockdown cultures, with CD226 also upregulated in

overexpression cultures. NK cells also express adhesion molecules

on their cell surface besides the activating and inhibitory receptors.

Strong adhesion to target cells is a requirement for efficient killing

by NK cells. CD11a, the alpha chain of the integrin LFA-1, showed

decreased expression levels in NK cells from knockdown cultures,

while expression levels were not altered in overexpression cultures.

Notably, the RNA-seq analysis revealed that expression of CD226,

SLAMF6 and ITGAL (encodes CD11a) were already downregulated

in stage 3 cells of the IRF2 knockdown cultures, contributing to the

downregulation of the immune effector pathway in this population.

TBET and EOMES are two crucial transcription factors in

murine and human NK cell differentiation and activation.

During NK cell maturation, TBET is upregulated, while

EOMES is downregulated (26, 27). NK cells thus evolve from

an immature TBETlowEOMEShi to a mature TBEThiEOMESlow

phenotype. Comparison of the TBET and EOMES expression

profile in the NK cell population of IRF2 knockdown versus

control cultures revealed a shift to the immature phenotype,

whereas overexpression cultures showed the opposing

expression pattern (Figure 5B).

We also assessed the expression of a large panel of

transcription factors important in NK cell development or
Frontiers in Immunology 10
function upon altered IRF2 expression. There was increased

expression of HELIOS, RUNX2, CBFb and ID2 and decreased

expression of HOBIT in NK cells from IRF2 knockdown

cultures. Overexpression of IRF2 did not alter the expression

of any of the examined transcription factors (Figure 5C).

Thus, NK cells from IRF2 knockdown cultures do not

express a full mature phenotype of cell membrane receptors

and transcription factors.
Discussion

In the past decade, NK cell based therapies have rapidly

emerged in the field of cellular therapy as a promising approach

to treat cancer. Although transfusion of NK cells has

demonstrated safety, both in autologous and allogeneic

settings, challenges still remain to achieve sufficient clinical

efficacy (28, 29). Strategies for the development of NK cell

based therapies currently focus on the source from which NK

cells are derived and on enhancing NK cell potency and

persistence (30). Several sources of NK cells are being

investigated, including peripheral blood NK cells, NK cell lines

and stem cell-derived NK cells (31). Stem cell-derived NK cells

offer a promising resource as they provide the ability to

manipulate the differentiation process and generate a

standardized off-the-shelf therapy (31). In order to achieve the

required numbers of NK cells with optimal immunoregulatory

and cytotoxic functions, a more complete understanding of

human NK cell differentiation and maturation is needed. In

recent years, extensive research on NK cell development led to

the identification of different developmental stages and several

transcription factors essential in the process (6). However, most

of our knowledge is derived from genetically modified mice

models and the knowledge on human NK cells remains limited.

We examined the endogenous expression of IRF2 in successive

NK cell developmental stages and found that IRF2 expression levels

in stage 1 and stage 2 cells were similar as in the HSC population,

and expression was upregulated during NK cell differentiation from

stage 3 cells onwards with the highest expression level in stage 5 NK

cells. This expression pattern suggests that IRF2 plays a role in

human NK cell development. Irf2-deficient mice display greatly

reduced numbers of NK cells, with amarked decrease ofmature NK

cells in the periphery, while NK cell numbers in the bone marrow

are less affected (12, 14). We investigated how IRF2 regulates

human NK cell differentiation and function by creating in vitro

NK cell differentiation cultures starting with cord blood-derived

HSC that were transduced with IRF2 knockdown or IRF2

overexpression vectors. We showed that altered expression of

IRF2 greatly influences the absolute cell numbers of not only NK

cells but also of their early progenitor stages. Most notably, stage 3

cell numbers were decreased in IRF2 knockdown and increased in
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IRF2 overexpression cultures, ultimately leading to a subsequent

decrease and increase of stage 4 NK cells, respectively.

Transcriptome analysis of HSC and stage 3 cells of IRF2

knockdown cultures revealed that leukocyte differentiation and

leukocyte proliferation pathways were downregulated in the HSC

and stage 3 knockdown cells, respectively. Together with the

compromised cell numbers that we observed from day 7 in IRF2

knockdown cultures, this prompted us to asses proliferation and
Frontiers in Immunology 11
apoptosis in the early NK cell differentiation stages upon IRF2

knockdown in HSC. In contrast to the mouse context, where the

reduced NK cell number in Irf2-deficient mice, especially in the

periphery, could at least partly be attributed to an increased

apoptotic rate (14, 15), the decreased cell numbers in human

IRF2 knockdown cultures were not due to increased apoptosis. In

contrast, CellTrace and EdU-labeling experiments showed that all

early differentiation stages, including HSC and stage 1 to stage 3
A

B

C

FIGURE 5

IRF2 is required for NK cell functional maturation. (A) On d21 of culture, NK cells (eGFP+CD45+CD56+CD94+) of IRF2 knockdown (top) or
overexpression (bottom) conditions were analyzed for expression of the indicated cell membrane NK cell markers by flow cytometry (mean ± SEM;
n=8-14). (B) Percentage of NK cells with a TBEThiEOMESlow or TBETlowEOMEShi phenotype on d21 of IRF2 knockdown (left) and overexpression (right)
cultures (mean ± SEM; n=9-10). Representative dot plots are shown. (C) The expression (MFI) of the indicated transcription factors was determined by
flow cytometry on d21 in NK cells of IRF2 knockdown (top) and overexpression (bottom) cultures (mean ± SEM; n=4-12). *, ** and *** represent
statistical significance compared to control transduced cultures with p < 0.05, p < 0.01 and p < 0.001, respectively.
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cells, had a much lower proliferation rate upon IRF2 knockdown.

These results are in agreement with published papers describing a

positive regulation of the cell cycle by IRF2. In embryonic

fibroblasts, IRF2 stimulates proliferation by regulating the

transcription of histone H4 (32) and knockdown of IRF2 also

inhibits cell proliferation in many leukemic cell lines (33–35).

However, an opposing role for IRF2 has also been described as

the knockout of IRF2 in human primary keratinocytes increases

self-renewal (36) and mice deficient in IRF2 show increased

basophil expansion (37).

Knockdown of IRF2 in HSC did not persist until day 21 of

culture, with similar expression levels of IRF2 in NK cells as in

the control culture. It was therefore unexpected that NK cells

generated from progenitors with decreased IRF2 expression did

display impaired functional maturation. Indeed, NK cells from

IRF2 knockdown cultures demonstrated impaired cytokine

secretion and defective cytotoxicity towards NK-sensitive K562

target cells. This indicates a role for IRF2 in the acquisition of

effector activity, whereas it is not required for its maintenance. A

similar phenomenon has been observed with other transcription

factors, e.g. NFIL3 and ETS1. Indeed, human HSC transduced

with a dominant-negative isoform of ETS1 generate NK cells

that show defective cytotoxicity and higher IFN-g secretion,

while transduction of mature NK cells with this dominant-

negative variant does not affect NK cell functionality (38).

Nfil3-deficient mice have severely reduced NK cell numbers,

and the few NK cells that do develop are poorly cytotoxic and

produce less IFN-g (39). However, conditional deletion of Nfil3

during the immature NK cell stage has no effect on NK cell

development or cytokine production (40).

In contrast to NK cells from Irf2-deficient mice that exhibit

similar cytotoxic killing as those from control mice (12), human

NK cells from the IRF2 knockdown cultures showed reduced

cytotoxicity. NK cell cytotoxicity is a complex process, in which

several sequential steps ultimately result in degranulation and

the release of cytotoxic effector molecules that kill the target cell.

These include NK cell adhesion to potential target cells,

formation of an immunological synapse, NK cell activation,

and translocation of cytotoxic granules to the immunological

synapse (41). A defect in any of these steps reduces NK cell

cytotoxicity. NK cells from IRF2 knockdown cultures showed

decreased expression of CD11a, together with decreased CD226

and SLAMF6 expression. Expression of CD11a (the a-chain of

LFA-1) is crucial in adhesion of NK cells to potential target cells.

Upon recognition of a target cell, an immunological synapse is

formed between the NK cell and the target cell, in which LFA-1

plays an essential role (42). NK cells from LFA-1-deficient mice

are unable to kill target cells (43), and antibody blocking of LFA-

1 impairs human NK cell cytotoxicity due to impaired conjugate

formation (44). Binding of CD226 to its ligands CD112 and

CD155, which are abundantly expressed by K562 cells, is known
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to promote NK cell cytotoxicity and IFN-g production (45, 46).

Interestingly, CD226-mediated NK cell activation is dependent

on its association with LFA-1, as demonstrated by the impaired

CD226-mediated cytotoxicity of NK cells from patients with

leukocyte adhesion deficiency syndrome, who have a deficiency

of the LFA-1 beta subunit (47). Additionally, SLAMF6 triggering

is sufficient to induce activation of LFA-1 (42). Homophilic

interaction of SLAMF6 promotes the cytolytic activity of NK

cells and influences IFN-g production (48). Furthermore,

perforin expression is decreased in the NK cells from IRF2

knockdown culture, which also contributes to the defective

cytotoxicity of IRF2 knockdown NK cells. In this regard, our

finding that TBET expression is lower in NK cells from IRF2

knockdown cultures is important, as the role of TBET in

regulating NK cell cytotoxicity through expression of perforin

and granzyme B is well established (49).

Alongside their direct cytotoxicity, activated NK cells also

release pro-inflammatory cytokines. While Irf2-deficient mice

displayed less IFN-g-producing NK cells, mainly in the

CD11blow fraction (12), the frequencies of IFN-g- or TNF-a-
producing NK cells were not altered in IRF2 knockdown

cultures, whereas the NK cells did release significantly less

cytokines. While NK cells produce IFN-g in greater abundance

than TNF-a, both cytokines are trafficked and released

simultaneously (50). As the release of both IFN-g and TNF-a
are similarly affected, this suggests a defect in cytokine secretion.

Opposed to the release of cytotoxic granules, little is known

about how cytokines are secreted by NK cells (50). We

hypothesize that knockdown of IRF2 affects expression of a

protein that directly regulates this secretion process.

Interestingly, NK cells from IRF2 knockdown cultures showed

increased expression of RUNX2, in addition to elevated CBFb
expression. All RUNX transcription factors dimerize with CBFb,
which enhances their DNA binding affinity (51). Recently, the

role of RUNX2 in human NK cell biology was uncovered, and

this revealed that RUNX2 negatively impacts the production and

secretion of IFN-g (52). However, the exact mechanism how

cytokine secretion is affected in NK cells from IRF2 knockdown

cultures remains elusive at this time.

Besides RUNX2 and CBFb, NK cells from the knockdown

cultures also exhibited upregulated expression of other

transcription factors important in NK cell development and/or

function, including ID2 and HELIOS. Upregulated ID2 does not

correspond to decreased NK cell numbers in IRF2 knockdown

cultures as, at least in mouse, ID2 deficiency arrests NK cell

maturation at the immature CD27+CD11b- stage (53, 54).

However, the upregulated HELIOS expression is consistent

with the fact that NK cells from IRF2 knockdown cultures do

not achieve a full mature phenotype, as it has been shown that

HELIOS is predominantly expressed in the earliest stages of NK

cell maturation, and downregulated in the mature NK cell
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population (55). Maturation of NK cells is also accompanied by

upregulation of TBET and downregulation of EOMES (27), and

we showed that the TBET and EOMES expression profile in

IRF2 knockdown cultures shifts toward a more immature

phenotype. Finally, HOBIT, that is downregulated in IRF2

knockdown cultures, has been shown to be important in

human NK cell development as knockdown of HOBIT in cord

blood cells results in decreased generation of NK progenitors

and CD56+ NK cells (56).

In conclusion, our results show that IRF2 regulates the

generation of human NK cells and that its expression is

required during functional maturation of NK cells so that they

acquire their full cytotoxic and cytokine secretion potential.
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