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Non-alcoholic fatty liver disease (NAFLD) and Hepatitis B virus infection (HBV)

constitute common chronic liver diseases with worldwide distribution. NAFLD

burden is expected to grow in the coming decade, especially in western

countries, considering the increased incidence of diabetes and obesity.

Despite the organized HBV vaccinations and use of anti-viral therapies

globally, HBV infection remains endemic and challenging public health issue.

As both NAFLD and HBV have been associated with the development of

progressive fibrosis, cirrhosis and hepatocellular carcinoma (HCC), the

co-occurrence of both diseases has gained great research and clinical

interest. The causative relationship between NAFLD and HBV infection has

not been elucidated so far. Dysregulated fatty acid metabolism and lipotoxicity

in NAFLD disease seems to initiate activation of signaling pathways that

enhance pro-inflammatory responses and disrupt hepatocyte cell

homeostasis, promoting progression of NAFLD disease to NASH, fibrosis and

HCC and can affect HBV replication and immune encountering of HBV virus,

which may further have impact on liver disease progression. Chronic HBV

infection is suggested to have an influence on metabolic changes, which could

lead to NAFLD development and the HBV-induced inflammatory responses

and molecular pathways may constitute an aggravating factor in hepatic

steatosis development. The observed altered immune homeostasis in both

HBV infection and NAFLD could be associated with progression to HCC

development. Elucidation of the possible mechanisms beyond HBV chronic

infection and NAFLD diseases, which could lead to advanced liver disease or

increase the risk for severe complications, in the case of HBV-NAFLD

co-existence is of high clinical significance in the context of designing

effective therapeutic targets.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) constitutes the

most common chronic liver disease, affecting approximately

25% of adults globally (1). The increased incidence of diabetes

and obesity in western countries, seems to contribute to

the growth of NAFLD burden in the coming decade

(2) considering that NAFLD has been associated with

metabolic syndrome and insulin resistance (3). A spectrum

of liver disease stages and complications have been

attributed to NAFLD, including simple steatosis, non-

alcoholic steatohepatitis (NASH), progressive fibrosis, and

hepatocellular carcinoma (HCC) (4). Hepatitis B virus

infection (HBV) plays also a major causative role in the

development of liver pathologies, such as cirrhosis and

hepatocellular carcinoma and leads to increased liver-related

mortality and morbidity (5, 6). Although the worldwide uptake

of HBV vaccinations may have restrained HBV transmission,

HBV remains endemic and challenging public health issue,

especially in low- and middle-income countries. According to

World Health Organization 296 million people worldwide

were estimated to live with chronic HBV infection and

820000 HBV-related deaths, mainly from cirrhosis and HCC,

were reported in 2019, with 1.5 million new infections being

reported each year (7). The co-occurrence of NAFLD and HBV

infection has gained great research and clinical interest,

regarding the chronic liver injury progression to severe

complications under the effect of both diseases. Biopsy-

proven NAFLD has been estimated in Chronic hepatitis B

(CHB) patients to range from 14% to 30% (8, 9). Investigation

of the relationship between CHB and NAFLD disease is still

ongoing. Hepatic steatosis may have a favorable effect on CHB

progression, by accelerating HBsAg serum clearance (10). In

contrast, the co-occurrence of chronic HBV infection and

NAFLD has been associated with increased risk for advanced

liver disease and HCC (11). NAFLD has been remarked as

causative agent of elevated ALT enzyme with a rate of 25%, in

CHB patients (12). HBV has been shown to increase the risk

for hepatic steatosis in vivo and specifically HBx protein has

been proved to upregulate the liver fatty-acid binding proteins,

promoting hepatic lipid accumulation (13). However,

clinical studies have reported that only metabolic factors

are independently associated with NAFLD (14). The

management of patients with CHB and NAFLD post a new

challenge in clinical practice, considering that little is known

about the possible interaction of two liver pathologies and the

pathologic outcomes of their interaction. Thus, in this review

we aim to describe the possible mechanisms beyond HBV

chronic infection and NAFLD diseases, which could lead to

advanced liver disease or increase the risk for severe

complications, in the case of HBV-NAFLD co-existence.
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Possible effects of NAFLD on liver
disease progression during
HBV infection

The causative relationship between NAFLD and HBV

infection has not been elucidated so far. Metabolic

components and immune alterations which are related to

NAFLD progression have been suggested to directly inhibit

HBV replication or induce indirectly anti-viral immune

responses. A significant increase in Th17 cell related gene

expression, including cytokine IL-21, has been remarked in

NASH patients (15), which may contribute to HBV clearance.

IL21 levels have been found elevated and positively associated

with HBV DNA and HBeAg in immune clearance phase of

chronic HBV infection, compared to immune tolerance phase

(16). Increased serum levels of IL-21 in HBV-related liver failure

may contribute to activation of T and B cells, which will produce

inflammatory cytokines and eliminate virus proliferation and

subsequent liver injury. Thus, persistence of HBV infection

could be probably attributed to low levels of IL-21 (17, 18).

Elevated expression of Toll-like receptors (TLRs) has been

remarked in NASH stage (19, 20), which is accompanied by

increased infiltration and activation of adaptive immune cells,

such as CD8+ T cells and NKT cells (21). TLRs play a major role

in activation and modulation of immune responses and their

activity has been highlighted in the pathogenesis and

progression of chronic liver diseases, including HBV and HCV

infection, alcoholic liver disease, hepatic fibrosis, NAFLD/

NASH, cirrhosis and hepatocellular carcinoma (22–24). TLRs

are highly distributed in liver cells [hepatocytes, kupffer cells

(KCs), hepatic stellate cells (HSCs), sinusoidal endothelial cells,

hepatic dendritic cells (DCs)] and many other liver cell

populations can respond to TLRs. TLR signaling contributes to

chronic liver disease progression, by mediating inflammatory

processes and liver pathologies (e.g. hepatocellular injury and

regeneration, fibrosis and cirrhosis) (25). Stimulation of TLRs in

HSCs, upon activation of pro-inflammatory IKK/NF-kb
signaling, c-Jun N-terminal kinase (JNK) activity and secretion

of pro-inflammatory cytokines and chemokines, leads to hepatic

stellate cell activation and differentiation, promoting fibrosis

(26–29). TLR5 has been shown to have an impact on the

progression of fibrosis, by activating NF-kB and MAPK

signaling pathways (30). Activation of the NF-kB and JNK

pathways have been associated with production of cytokines

related to TLR-induced liver damage and HCC progression (24).

Although the activation of adaptive immune cells in NASH (21)

may enhance further the anti-viral immune responses in HBV-

infection and prevent the HBV-related severe liver disease

progression, the increased expression and activity of TLRs in

NASH stage of NAFLD may aggravate liver disease progression

to fibrosis and HCC.
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TLRs are activated in recruited hepatic DCs in liver

sinusoids during inflammation and induce production of

pro-inflammatory cytokines (TNF-a, IL-6, IL-12) (31, 32).

Saturated fatty acids, have been shown to induce TLR4

activation and activate immune responses through myeloid

differentiation factor 88 (MyD88)-mediated pathways in obese

individuals (33, 34). TLR4/MyD8 signaling results in the

production of TNF-a and IL-6 cytokines which are associated

with development and progression of NAFLD to NASH and

HCC (35, 36). TLR4 stimulation in KCs induces the production

of pro-inflammatory cytokines (TNF-a, IL-1, IL-6 and IL-8,

chemokines) and profibrogenic factors (TGF-b), which will

promote fibrosis by activating HSCs (26, 28). Activated

Lipopolysaccharide (LPS)/TLR4 signaling in HSCs, stimulates

production of chemokines, which further recruit KCs. A vicious

cycle of unrestricted activation of HSCs by KCs-derived

profibrogenic cytokine TGF-b is established, which leads to

development of liver fibrosis (37–39). Thus, activation of TLR4

in HSCs has been suggested to be the main mediator of fibrosis

and cirrhosis, by initiating collagen production (26, 40). KCs

induce fibrogenesis by secreting proinflammatory and

profibrogenic cytokines, whereas HSCs mainly produce

extracellular matrix in the fibrotic liver (40, 41). LPS/TLR4

and TLR2 signaling has been suggested to be involved in

hepatic inflammation-fibrosis-carcinoma (IFC) sequence,

which is linked to viral hepatitis. LPS/TLR4 signaling induces

anti-viral responses, inflammation, steatosis, fibrosis, and

hepatocarcinoma, as well as hepatic fibrosis-mediated portal

hypertension, which leads to bacterial overgrowth and

intestinal permeability (42).

Zhang et al. investigated the role of TLR4-mediated innate

immunity in pathogenesis of CHB in NAFLD subjects and the

effect of TLR4 signaling on HBV replication. The TLR4/MyD88

signaling pathway was demonstrated to be activated in the HBV-

transgenic mice with NAFLD and HepG2.2.15 cells with SA-

induced steatosis and contributed to inhibition of HBV

replication (34). It was suggested that increased LPS and free

fatty acids (FFAs) in HBV transgenic mice with NAFLD, were

sensed by TLR4, stimulating its signaling pathway which results

in production of anti-viral cytokine IFN-b and HBV DNA

reduction. IL-6 and TNF-a cytokines, which are also induced

by TLR4 signaling, have been shown to inhibit HBV replication.

Thus, the increased TLR activity in NAFLD, under the effect of

fatty acids, seems to have a positive impact on the HBV infection

course, by possibly controlling HBV replication (34). Hu et al.

developed an HBV- immunocompetent model to investigate the

interplay between HBV infection and fatty liver. They showed

that hepatic steatosis can be associated with significantly

decreased serum levels of HBeAg, hepatic HBcAg and HBsAg,

HBV DNA, and pgRNA, indicating a possible positive effect of
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fatty liver on HBV infection course, related to inhibition of HBV

replication and proliferation (43) (Table 1).

Although HBV has been shown to downregulate TLRs,

chronic infection and loss of HBeAg may lead to upregulation

of TLR signaling pathways which trigger hepatic inflammation

and disease progression (40). The NAFLD-associated metabolic

stress, could have a positive impact on CHB, as it can activate the

HBV-suppressed innate and adaptive immunity [restoration of

antiviral substances, such as endogenous interferons and tumor

necrosis factor-a (TNF-a)] which will eliminate HBV virus and

prevent severe disease progression. Metabolic alterations in

NAFLD could have an effect on HBV replication. In

particular, peroxisome proliferator-activated receptor-gamma

coactivator 1 alpha (PGC-1a), a key transcription factor in

gluconeogenesis, is increased in fasting status and stimulates in

vivo the HBVDNA replication (44). PGC-1a has been decreased

in NAFLD and it has been negatively correlated with NAFLD

severity (45). Thus, PGC-1a in NAFLDmay lead to inhibition of

HBV replication. Accelerated apoptosis of HBV-infected cells

has also been attributed to NAFLD effects. Inhibition of

autophagy and increased Fas-mediated apoptosis have been

remarked in liver samples from NASH patients, indicating that

NAFLD could prevent disease progression in CHB patients by

eliminating HBV replication and increasing apoptosis of HBV-

infected cells, resulting in HBsAg and HBV-DNA clearance (46–

48). Another possible effect of NAFLD disease on HBV infection

course could be associated with immune abnormalities, which

have been observed in NAFLD animal models. Miyake et al. (49)

used two well-characterized antigens of HBV virus (HBsAg and

HBcAg) to induce adaptive immunity in NAFLD mice. They

showed that the saturated fatty acid, palmitic acid, can induce

impaired function of DCs, causing down-regulation of HBsAg

processing and presentation of DCs. It was also suggested that

impaired DC function in NAFLD mice may be attributed to the

non-antigen-specific maturation of DCs in these mice, which

could be linked with their inability to activate antigen-specific

immunocytes (50, 51). This observation along with the

fact that NAFLD mice had impaired glucose tolerance could

contribute to abnormal or insufficient immune responses,

increasing the possibility of a more severe disease course by

impeding the HBV clearance in case of a NAFLD-HBV infection

co-occurrence (52) (Figure 1A) (Table 1). It could be suggested

that some NAFLD-associated metabolic and immune

components may have a positive impact on HBV replication

and HBV clearance and thus contribute to prevention of severe

HBV-related liver disease progression. However the presence of

aggravating factors such as metabolic imbalance and immune

dysregulation in NAFLD disease renders the NAFLD-HBV

interplay quite complicated, as these factors could enhance the

progression to severe liver disease.
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Possible effects of HBV infection on
NAFLD disease progression

The pathophysiological mechanisms beyond the association

between HBV infection and NAFLD development and disease

progression remains unclear. HBV-related metabolic changes,

which could lead to NAFLD development have been observed in

animal model studies. NAFLD pathogenesis and hepatic

steatosis relies on excessive fatty acid uptake and synthesis,

which cannot be balanced by oxidation (94). HBV infection

could probably promote NAFLD progression to severe hepatic
Frontiers in Immunology 04
steatosis by affecting lipid biosynthesis. A significant

upregulation of lipid biosynthesis gene expression in the liver

of HBV transgenic mice, including sterol regulatory element-

binding protein (SREBP) 2, ATP citrate lyase (ACLY), retinol-

binding protein 1 (RBP1) and fatty acid synthase has been

revealed by cDNA microarray analysis (95). Significant

changes in long-chain fatty acid and polyunsaturated fat

subpathways following HBV infection, along with a significant

increase in glycolytic intermediates and glycogen metabolism

have also been found. These alterations implied an increased

pool of free fatty acid and upregulated glycolysis respectively
TABLE 1 Mechanistic role of NAFLD-HBV interplay in chronic liver disease progression.

Mechanistic role/pathways Effects on HBV infection Chronic liver disease

progression

References

NAFLD ↑TLR4/MyD88 pathway leads to ↑TNF-a, IL-1, IL-6,
IL-8, TGF-b! ↑HSCs activation

inhibition of HBV replication progression to liver fibrosis, NASH
and HCC

(24, 26, 28,
30, 33–42)

↑TLR5!NF-kb, MAPK

↑TLRs in NASH stage leads to ↑CD8+ T cells and NKT
cells

↑anti-viral immune responses, HBV
clearance

↓chronic liver injury (15–21)

↑Th17, IL-21

↑LPS/TLR4 and TLR2 signaling ↑immune responses, inflammation inflammation-fibrosis-carcinoma
(IFC) sequence in viral hepatitis,
steatosis, fibrosis-mediated portal

hypertension

(42)

metabolic stress, ↓PGC-1a ↑HBV suppressed immunity ↓HBV-related liver disease
progression

(44–48)

inhibition of HBV replication

palmitic acid! impaired DCs function ↓HBV specific immunocytes ↑severe HBV-related disease
progression

(49–52)

abnormal/insufficient immune responses

Metabolic components ALT, FBS, TGL BMI and waist
circumference

↑positive correlation with fibrosis/
cirrhosis and hepatic steatosis in

CHB patients

(53)

CHRONIC
HBV
INFECTION

Mechanistic role/pathways Effects on NAFLD Chronic liver disease progression References

HBV DNA transcription, TFs (FXR, RXR,C/EBP,
CREB), interaction between TFs of activated immune

cells

hepatic metabolism of glucose, lipids, bile
acid, and xenobiotics

promotion of hepatic regeneration,
inflammation, fibrosis, and
neoplastic transformation

(54–62)

IL-13 leads to ↑TGF-b1, activation/proliferation of
myofibroblasts, ↑JAK/STAT pathway!CCL11

production!eosinophil recruitment

Hepatic steatosis and Fibrosis (63–80)

G-CSF expression ↓hepatic lipogenic genes, ↑b-oxidative
genes, ↓SREBP-1c

IL-4 activates macrophage, M2 ! breakdown of ECM,
↑MMP-12

↑IL-6 by KCs ↑HSCs proliferation and survival

[HBx-HNF3b-C/EBPa-PPARa] activates FAB1 ↑fatty acid uptake Hepatic Steatosis (13, 81–93)

HBx activates PPARs, PI3K/AKT pathway and LXR/
SREBP pathway!activation of FAS, ACC, SREBP-1c,

CYP7A1

inhibition of apolipoprotein B secretion,
↑hepatic lipogenesis, oxidative corvension
of cholesterol to bile acids, hepatic lipid

homeostasis

Hbx interacts with TNFR!activation of NF-kb
pathway

HBV pre-S1 binds to NCTP-impede bile acid uptake,↑
expression of cholesterol synthesis genes [3-hydroxy-3-
methylglutaryl-coenzyme A (HMG-CoA) reductase and

LDL receptor]

altered hepatic cholesterol metabolism
fr
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(96). Rat primary hepatocytes transfected with the HBV genome

or HBx have shown major alterations in long-chain fatty acid

and polyunsaturated fat subpathways and increased glycolytic

intermediates and glycogen metabolism. Thus, HBV infection

could have an effect on NAFLD development by promoting

significant metabolic changes, associated with NAFLD (97).

However, Hu et al. have shown no specific effect of HBV

infection in lipid metabolism and insulin resistance in an

HBV-immunocompetent and NAFLD-induced mouse model.

In particular, there were no increase in plasma and hepatic lipids

or cholesterol and changes in plasma glucose and insulin levels

in HBV-NAFLD co-occurrence compared with NAFLD group

(43). Positive Hepatitis B core antibody (HBc) has been

associated with high incidence of cirrhosis, cirrhosis

complications and HCC in NAFLD patients (98).

Long noncoding RNAs (lncRNA) could constitute another

factor in the interplay between HBV and NAFLD in liver disease

progression. LncRNA may have a role in liver inflammation,

considering its implication in the regulation of gene expression

and various physiological and pathological processes (99, 100).

Increased expression levels of lncRNAs have been observed in

CHB patients (101). Higher expression levels of lncRNA EXOC7
Frontiers in Immunology 05
have been found in liver tissues and serum of NASH patients

compared to patients without steatohepatitis, and they were

positively correlated with the aggravation of liver steatosis and

inflammation (102). Li et al. (103) analyzed expression profiles of

lncRNAs and mRNAs in treatment-naive patients with chronic

HBV infection and NAFLD. Expression level of long-chain

noncoding RNA-metastasis associated in lung adenocarcinoma

transcript 1 (MALAT1) was significantly higher in CHB group

than NASH group, suggesting that MALAT1 plays an important

role in the HBV-infection-related inflammatory response of

patients with chronic HBV infection and NAFLD. An mRNA

encoding thioredoxin interacting protein (TXNIP), whose

expression was significantly upregulated in CHB group and was

associated with MALAT1, through competing endogenous RNA,

was identified, proposing a potent new regulatory pathway of

MALAT1 and TXNIP, called MALAT1- micRNA-20b-5p-TXNIP

(103). TXNIP is a protein complex composed of thioredoxin (TRX),

reduced coenzyme II (NADPH) and thioredoxin reductase (TRX-

R), which has a major impact on regulation of oxidative stress in

cells. It may be associated with initiation of inflammatory responses,

as it has been found to bind to the nucleotide oligomerization

domain-like receptor family and pyrin domain containing 3
B

A

FIGURE 1

The NAFLD-HBV interplay in chronic liver disease progression. (A) NAFLD effects on chronic HBV infection and chronic liver disease progression.
Activation of TLR4/Myd88 pathway in NAFLD inhibits HBV replication and induction of TLRs contributes to HSCs activation, leading to
inflammation-fibrosis-carcinoma (IFC) and progression to liver fibrosis, NASH and HCC. Production of saturated fatty acid palmitic acid suppresses
HBV specific immunocytes, resulting in insufficient immune responses, which could be associated with a more severe HBV-related disease
progression. Metabolic components have been implicated in liver disease progression and NAFLD development in CHB patients, as they were
correlated with fibrosis/cirrhosis and hepatic steatosis. NAFLD-associated metabolic stress restores HBV-suppressed immunity, preventing from
severe HBV-related liver disease progression. (B) Chronic HBV infection effects on NAFLD and chronic liver disease progression. Transcription of
HBV DNA is related to hepatic metabolism of glucose, lipids, bile acid, and xenobiotics and may play a role in the inhibition or promotion of hepatic
regeneration, inflammation, fibrosis, and neoplastic transformation. A differential expression of IL-13, G-CSF, CCL11, IL-6 and IL-4 may be implicated
in development of hepatic steatosis and fibrosis in HBV patients, through affecting hepatic lipogenesis and HSCs proliferation and survival. HBx
protein can induce PPARs and signaling pathways (PI3K/AKT, LXR/SREBP, NF-kb), having an impact on hepatic lipogenesis, oxidative conversion of
cholesterol to bile acids, hepatic lipid homeostasis and therefore hepatic steatosis. HBV pre-S1 binds to NCTP, leading probably to altered hepatic
cholesterol metabolism and hepatic steatosis.
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(NLRP3) inflammasomes, inducing its activation (104). Activated

NLRP3 stimulates NF-kb signaling pathway, resulting in

upregulation of pro-inflammatory cytokines pro-IL-1b, pro-IL-18
(105). Thus, activation of NLRP3 inflammasome by MALAT1-

micRNA-20b-5p-TXNIP regulatory pathway may lead to chronic

HBV infection-related inflammatory responses, contributing to

liver injury process. Liver immune cells, hepatic parenchymal

cells, bile duct epithelial cells, and hepatic stellate cells express

and activate inflammatory components under the effect of related

signals. Activation of NLRP3 inflammatory components is

implicated in NASH-mediated inflammatory injury and it may be

related with high-mobility group box protein (HMGB), but the

mechanism beyond this relationship remains unknown. As an

increased ROS production has been found in HepG2 expressing

full-length HBx protein, Li et al. (103) suggested that HBx protein-

induced ROS in HBV-infected hepatocytes activate NLRP3, by

interacting with TRX protein. Activation of NLRP3 leads to high

production of IL-1b by KCs of liver tissue. IL-1b mediates the

expression of immune-related genes and lymphocyte recruitment to

the infection site, initiating inflammation responses which result in

liver damage and increased ALT (106). The increased levels of

lncRNAs in both CHB and NAFLD diseases could aggravate the

tissue liver damage by enhancing inflammatory responses which

lead to liver injury.

Effect of HBV viral load and
specific plasma markers on
NAFLD progression

An inverse correlation between HBV viral load and liver

steatosis and an inverse correlation between HBsAg and fibrosis

score have been remarked in some studies (46, 107, 108). We

must also consider that transcription of HBV DNA in

hepatocytes, is conducted under the effect of various host

transcription factors (TFs) and coactivators, including

CCAAT/enhancer binding protein (C/EBP), cyclic AMP

response element-binding protein (CREB) (54, 55), the hepatic

nuclear factor 3 (HNF3)/FoxA and HNF4 (56, 57), farnesoid X

receptor (FXR), retinoid X receptor (RXR) (58, 59), peroxisome

proliferator-activated receptor (PPAR) a and peroxisome

proliferator-activated receptor gamma coactivator-1 (PGC-1)

(59, 60). Some of these TFs are implicated in hepatic

metabolism of glucose, lipids, bile acid, and xenobiotics and

they may play a role in the inhibition or promotion of

hepatic regeneration, inflammation, fibrosis, and neoplastic

transformation, by interacting with other pro-inflammatory

TFs, induced by activated immune cells, such as the nuclear

factor kappa-light-chain-enhancer of activated B cells (NF-kB)
(61, 62) (Table 1).

HBV viral load has not been associated with controlled

attenuation parameter (CAP) liver stiffness measurement
Frontiers in Immunology 06
(LSM) scores in chronic HBV patients. The implication of

metabolic components in liver disease progression and

NAFLD development has also been shown in CHB patients, as

they had a significant positive correlation with fibrosis/cirrhosis

and hepatic steatosis (53). Specific plasma markers of CHB, such

as CCL11, IL-6, IL-4, IL-13 and G-CSF have been shown to have

a significant influence on the CAP and LSM scores independent

of metabolic components. A differential expression of IL-13,

G-CSF, CCL11, IL-6 and IL-4 among patients at different stages

of hepatic steatosis, highlighted a possible role of an

inflammatory response in the development of hepatic steatosis

and fibrosis in CHB patients. IL-13 has been shown as an

independent predictor of the liver steatosis severity (53). IL-13

has been referred to play a role in liver fibrosis, as a component

of a T-helper type 2 inflammatory response (63) and activates

transforming growth factor 1 (TGF-b1) (64, 65). Stimulation of

TGF-b1 gene expression mediates the fibrogenic effects of IL-13,

which result in activation and proliferation of myofibroblasts,

excessive production of extracellular matrix (ECM) and

inhibition of ECM degradation (65–67). IL-13 signaling

activates JAK-STAT-6 pathway (68), which results in CCL11

production in smooth muscle cells, an eosinophil chemotactic

protein, which recruits eosinophils (69). Hepatic infiltration and

activation of eosinophils has been associated with steatosis and

fibrosis (70, 71). IL-13 has been suggested to contribute

indirectly to HBV-related liver fibrogenesis by upregulating

CCL11, which has a significant association with liver fibrosis

(72). IL-13Ra2 receptor has been found to be overexpressed in

hepatic stellate cells in sinusoidal lesions of the liver of NASH

patients (65). Granulocyte colony-stimulating factor (G-CSF)

has been inversely correlated with hepatic steatosis (53), as it has

been related to the down-regulation of hepatic lipogenic genes

and up-regulation of b-oxidative genes (73). G-CSF could

ameliorate and improve hepatic steatosis by reducing the

expression of SREBP-1c (74), a transcription factor, inductor

of hepatic lipogenesis and mobilizing bone marrow cells, which

contributes to liver regeneration (75). IL-4 and IL-6 have shown

a potent protective effect on liver fibrosis (53). IL-4 has shown

an anti-fibrotic effect, by activating alternatively activated

macrophage, M2, which breakdown extracellular matrix

(ECM), leading to resolution of liver fibrosis, by secreting

matrix metalloproteinase-12 (MMP-12) (76, 77). IL-6 acts as

pro-inflammatory cytokine and is implicated in liver

regeneration and metabolic function (78). IL-6 receptors are

expressed on all liver cell types and IL-6 signaling can affect each

liver cell type separately. Hepatic KCs produce IL-6, which has

been shown to promote proliferation and survival of HSCs (79).

However data regarding the role of IL-6 in liver fibrosis are

contradictory, depending probably on homeostasis between

inhibitory and stimulatory signals during the different stages

of liver fibrosis and under the effect of different etiologies of liver

fibrosis (80) (Figure 1B) (Table 1).
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Relationship between hepatic
steatosis and HBV infection

The mechanisms beyond the increased fibrosis/cirrhosis in

chronic HBV patients under the effect of severe steatosis remain

to be elucidated. The interaction between viral factors and

metabolic components of inflammation, underlying the

NAFLD disease progression has to be investigated. There are

contradictory data regarding the relationship between hepatic

steatosis and HBV. In HBV infection, Hepatitis B protein X

(HBx) is implicated in cellular signal transduction pathways and

gene transcription related with cell growth and apoptosis. HBx

has been suggested to lead to increased lipid accumulation in the

liver, by affecting mitochondrial reactive oxygen species levels

and oxidative stress, as it can directly interact with the

mitochondrial respiratory chain complex subunit (13). Lipid

accumulation is also induced in hepatocytes by HBx/fatty acid–

binding protein 1/hepatocyte nuclear factor 3-b (HNF3b),

CCAAT/enhancer-binding protein a (C/EBPa), and

peroxisome proliferator-activated receptor a axis (PPARa),

which activates FAB1 gene transcription. Over-expression of

FABP1 increases the rate of fatty acid uptake (13). Elevated

serum levels of FABP1 have been remarked in HBV-infected

patients and HBx-transgenic mice (13). HBx protein also

interacts with the liver X receptor a (LXRa) or tumor necrosis

factor (TNF) receptor 1, leading to NF-kb activation and TNF

production, inhibition of apolipoprotein B secretion, and

stimulation of PPARg and sterol-regulatory element-binding

protein (SREBP)-1c. LXR/SREBP pathway plays a major role

in hepatic steatosis, as LXRs contribute to activation of

transcription of enzymes related to the synthesis of fatty acids,

including the fatty acid synthase (FAS), acetyl coenzyme A acid

enzymes (ACC), and SREBP-1c, and upregulation of the

expression of CYP7A1, which participates in oxidative

conversion of cholesterol to bile acids (81). SREBPs contribute

to hepatic lipid homeostasis (82). HBx interacts with LXRa,

enhancing its binding to the promoter LXREs of SREBP-1c and

FAS, inducing hepatic lipogenesis (83, 84) (Figure 1B).

Induction of PPARs is another endpoint of HBx protein

activity. PPARs constitute nuclear receptor proteins, playing a

major role in energy metabolism and lipid oxidation, as they

modulate the expression of downstream genes related to fatty

acid-binding (apolipoproteins A1 and A2) and maintain lipid

metabolism homeostasis, including fatty acid uptake, binding,

and lipid transport (84). HBx can also upregulate PI3K/AKT

signaling pathway, which is implicated in regulation of cell

growth, proliferation, and differentiation (85) and can activate

SREBP (86). HBx could take part in promoting hepatic steatosis

via activating pro-inflammatory NF-kb signaling pathway, as

HBx interacts with tumor necrosis factor receptor (TNFR) 1

(87). The role of NF-kb has been highlighted in promotion of

hepatic steatosis and insulin resistance (88, 89). Thus, HBx
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protein modulates the molecular environment for initiation of

inflammation and de novo lipogenesis (90).

HBV infection has also been associated with the induction of

expression of cholesterol synthesis genes, which predispose to

liver steatosis [e.g. 3-hydroxy-3-methylglutaryl-coenzyme A

(HMG-CoA) reductase and LDL receptor]. An inverse

correlation between HBV and NAFLD has also been found. In

particular, hepatitis B surface antigen (HBsAg)-positive patients

have shown significantly decreased cholesterol levels, whereas

increased cholesterol levels were observed in the HBsAg-

negative patients (91). HBV infection can lead to an altered

hepatic cholesterol metabolism. An increased expression of low-

density lipoprotein receptor and 3-hydroxy-3-methylglutharyl-

coenzyme A reductase (HMGCR) has been shown in HBV-

transfected cells (92). Genes, related to hepatic cholesterol

production and uptake, including those encoding SREBP-2,

HMGCR and LDL receptor have been highly expressed in

HBV-infected humanized mice. This observation could be

attributed to pre-S1 domain of the HBV envelope, which by

binding to Na+-taurocholate cotransporting polypeptide

(NTCP) could impede NTCP-mediated bile acid (BA) uptake

and lead to compensatory production and uptake of cholesterol

(93). Non-alcoholic hepatic steatosis has been shown to inhibit

HBV replication in a HBV-immunocompetent mouse model, as

indicated by the reduction of HBV DNA and HBV-related

antigens, whereas HBV replication has not been related with

altered lipid metabolism in mice (43) (Table 1).
The adipose tissue: A possible linker
between HBV, hepatic steatosis
and liver injury

Crosstalk between adipose tissue and liver has a major effect

on fatty liver disease development. Excessive fat accumulation

on adipose tissue, due to obesity or alcohol consumption leads to

alterations in adipose tissue endocrine functions. The function of

triglyceride storage in adipocytes is disrupted, resulting in

lipotoxicity and increased transfer of fatty acids in liver. This

could favor the development of hepatic steatosis. Adipose tissue

secretes a variety of pro- and anti-inflammatory cytokines

termed adipokines, including tumor necrosis factor (TNF)-a,
IL-6, resistin, leptin, and adiponectin (109). Adiponectin exerts

anti-inflammatory action by inhibiting the synthesis and release

of TNF-a from macrophages in adipose tissue (110). The

production of adipokines by adipocytes is affected by

nutritional status and plays a crucial role in biological

functions and some adipokines are also produced by

hepatocytes (111). Adipokines could constitute another link

between HBV, hepatic steatosis and risk for liver fibrosis and

HCC development. It has been speculated that the increased

serum levels of TNF-a, resistin, and leptin in obese patients, as
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well as adiponectinemia may enhance steatosis, inflammation,

fibrogenesis, or hepatocarcinogenesis in the liver (112). However

the exact mechanisms beyond this association remain to

be elucidated.

Adipokines can mediate the progression of liver injury.

Leptin has been shown to enhance fibrotic responses to injury

(113). The amelioration of adipose inflammation in NAFLD,

induced by weight loss or use of thiazolidinediones (TZDs), has

been shown to improve liver injury (114). TNF-a and

adiponectin have been implicated in NAFLD (115, 116). The

adipose tissue dysfunction, characterized by a dysregulated

response of adiponectin to fat metabolism and ingestion has

been shown to modulate liver injury and cardiometabolic risk in

NAFLD (117). Adiponectin is decreased in NAFLD patients

compared to healthy controls and physiologically suppresses

fatty acid synthesis and promotes mitochondrial b -oxidation.

Hepatocyte death and pro-inflammatory responses, that

enhance liver injury and progression to fibrosis are also

induced by TNF-a activity (114). Reduction of adiponectin

levels in liver tissue of NAFLD patients has been suggested to

modulate a pro-inflammatory microenvironment, resulting in

increased lipotoxicity and promotion of simple steatosis to

NASH and fibrosis (118). Adiponectin has been shown to

limit pro-inflammatory responses in obesity by limiting IFN-g
and IL-17 producing CD4+ T cells in obesity (119). Roberts et al.

have proposed a possible molecular crosstalk between liver and

white adipose tissue that could lead to enhanced liver disease

progression. In particular, a feed-forward loop between hepatic

unconventional prefoldin RPB5 interactor (URI) and cytokine

interleukin-17A (IL-17A) has been remarked to promote DNA

damage and systemic inflammation leading to NASH and HCC.

URI and IL-17A contribute to cross-talk between liver and white

adipose tissue, where lipolysis, neutrophil infiltration and insulin

resistance occur, resulting in hepatosteatosis and liver injury

(120). HBV DNA has been positively correlated with serum

adiponectin, which has been shown to decrease in patients with

insulin resistance and hepatic steatosis (121). Serum TNF- a and

IL-6 cytokines have been increased in HBV patients with

significant necroinflammation (122). Wong et al. suggested

that the increased production of TNF- a and/or IL-6 could

mediate ongoing liver injury. TNF-a enhances survival of HSCs,

immune activation and hepatocyte death, promoting liver

fibrosis (123), whereas the high production of IL-6 in

experimental- induced liver failure has shown to trigger

immune suppression and disrupt liver repair, increasing

mortality risk (122).

Viral load, HBeAg status and genotypes have not shown any

association with insulin resistance and hepatic steatosis.

Considering that viral factors are not associated with insulin

resistance or pro-inflammatory adipokines, there is probably a

separate, independent contribution of adipokines and HBV virus

to liver injury (121). Serum leptin levels may be related with

fibrosis progression, as they have been positively correlated with
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hepatic necroinflammation and are higher in cirrhosis stage in

CHB patients (121, 124, 125). The potent pro-fibrogenic role of

leptin could be attributed to its activity in innate and adaptive

immunity, considering that leptin receptors are expressed by

DCs, monocytes, neutrophils, macrophages, natural killer (NK)

cells, T cells and B cells. Leptin signaling can activate a variety of

signaling pathways which regulate cell activation, cell growth,

cytokine production and function of immune cells (126).

Adipose tissue may also have a potent major effect on HCC

development in chronic HBV infection. Non-cirrhotic patients

with HBV-related HCC have shown a higher visceral adipose

tissue index (VATI), highlighting the VATI as an independent

risk factor for HCC (127).
Possible mechanisms of HBV-NAFLD
interplay leading to hepatocellular
carcinoma development

Both HBV and NAFLD diseases have been associated with

development of liver cancer (128, 129). Considering that

hepatocellular carcinoma (HCC) accounts for 93.3% of

primary liver cancers (130) and constitutes the fourth, most

deadly type of cancer, investigation of early prognostic markers

could be of high clinical significance, especially in cases of

different liver diseases co-occurrence. A retrospective cohort

study by Chan et al. showed that NAFLD is independent risk

factor for HBV-associated HCC development and the presence

of APOC3 gene polymorphism (related with triglycerides

metabolism) increases further the risk for HCC development

in CHB patients (131). The mechanisms beyond the interaction

between HBV and NAFLD, which contribute to development of

HCC are still not elucidated. Each liver disease has its own

separate effect on progression to HCC and the possible

mechanistic interplay between NAFLD and HBV could

probably be illustrated by the co-occurrence of NAFLD and

HBV separate activities.
HBV and NAFLD-mediated signaling
pathways related to HCC

The HBV-induced chronic inflammation can lead to

mutations in HBV gene and host genome, which can promote

the malignant transformation of liver cells, by altering the viral

biological behavior and pathogenicity, as well as the homeostasis

of cell processes (132, 133). Mutated HBx has been found in

HCC cases (134) and the role of HBx in progression of liver

carcinogenesis is possibly attributed to its effect on abrogation of

cell-cycle arrest and inhibition of apoptosis (135, 136). Hbx has

been suggested to lead to increased risk of HCC, by interacting

with a variety of proteins and mRNAs, related with signaling
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pathways and cel l processes that regulate prote in

posttranslational modification, cell-cycle progression and

apoptosis. In particular, HBx mutant protein can interact with

Bcl-2, a major regulator of apoptosis and farnesoid X receptor

(FXR), a major regulator of bile acid synthesis, lipid and glucose

metabolism, to promote HCC development (137, 138). HBx can

also lead to stabilization of transcriptional oncoproteins Myc

and PAX8, by blocking their ubiquitination process (139, 140).

The integration of HBV viral DNA into the host genome has

been shown to have significant effect on HCC development in

patients with occult HBV infection, as it has been associated with

changes in tumor suppressor genes, mutations in the p53

ongogene, and genomic instability (141, 142). Thus, HBV can

target a variety of ongogenes (143) and regulate the expression of

different miRNAs, interfering with multiple signaling pathways,

including Wnt, MAPK, STAT, P53, Akt and Notch to promote

HCC development (144–146). For instance HBx can promote

the proliferation and migration of HCC cells, by regulating

expression of miR-1269b in an NF-kB-dependent manner

(147). HBx can directly interact with MyH9 protein to activate

Wnt/b-catenin/c-Jun signaling pathway, promoting metastasis,

proliferation and malignant cell transformation (148, 149). HBx

can also aggravate HBV-related carcinogenesis, by activating

PI3K/Akt signaling pathway, regulating liver cell proliferation

and malignant transformation (150, 151). HBx could enhance

tumorigenesis and HCC growth, by inducing the expression of

pro-ongogenic MAPK14 and Notch signaling (152, 153).

Increased ROS production by HBx, HBs, and HBc HBV

proteins (154) constitutes another indirect risk for HCC

development. Accumulation of mutated HBs proteins in

hepatocytes has been shown to induce endoplasmic reticulum

(ER) stress and favor cell growth, by initiating multiple signaling

pathways (155, 156). Mutated HBc protein increases production

of ROS by stimulating ER stress and activates the NF-kB
signaling pathway by promoting the malignant transformation

of infected hepatocytes. HBc activity can mediate proliferation,

glycolysis, amino acid metabolism and suppression of apoptosis

and regulate the Src/PI3K/Akt pathway and blocks the TRAIL/

Fas pathway or expression of p53 oncogene (157–160).

The presence of NAFLD in chronic HBV infection could be

an aggravating factor in HCC development, as increased hepatic

lipid storage leads to lipotoxicity, endoplasmic reticulum stress

and reactive oxygen species-mediated DNA damage, which

could enhance oncogenesis (161). Abnormal metabolism,

dysbiosis of gut microbiota and dysregulation of immune

responses have been implicated in NAFLD-mediated HCC

development (162). It has been speculated that abnormal

alterations in intrahepatic lipid metabolism which may

establish insulin resistance and changes in signaling pathways

and oncogenes, could lead to inflammation, fibrogenesis and

hepatocarcinogenesis (163). Chronic lipotoxicity leads to

oxidative and ER stress, which could have a causative role in
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NAFLD-HCC. Oxidized LDL uptake by macrophages has been

shown to stimulate carcinogenetic signaling, by inducing

expression of proteins, related to promotion of lipophagy and

enhanced lysophosphatidic acid-enhanced Yes-associated

protein (YAP) oncogenic activity (163). Similar to HBV virus,

NAFLD disease components can interfere with signaling

pathways, including signal transducer and activator of

transcription (STAT) signaling pathways, which have been

associated with HCC development (164, 165). Oxidative

hepatic environment in obesity models of NAFLD has been

associated with increased STAT-1 and STAT-3 signaling and

inactivated STAT-1 and STAT-3 phosphatase T cell protein

tyrosine phosphate (TCPTP), promoting hepatic T cell

recruitment, NASH, fibrosis and HCC. STAT-1 signaling has

been associated with NASH and fibrosis, whereas STAT-3

signaling has been correlated with HCC development (166).

The cell cycle-related kinase (CCRK), an androgen receptor-

driven oncogene can contribute to hepatocarcinogenesis via a

signaling pathway dependent on b-catenin and T cell factor

(TCF). CCRK has been associated with NAFLD-mediated HCC,

by inducing STAT-3 and the mTORC1/4E-BP1/S6K/SREBP1

pathway (167).

The observed microbiome dysbiosis in NAFLD has been also

correlated with NAFLD-mediated HCC. Liver inflammation and

fibrosis in NAFLD could be attributed to altered bile acid signaling

and a persistent immune activation, mediated by increased gut

permeability and translocation of lipopolysaccharides (161).

NAFLD-HCC patients have shown increased Bacteroides and

Ruminococcaceae populations in their gut microbiome compared

to patients with NALFD cirrhosis and no HCC. This microbiota

profile has been associated with higher levels of cytokines and

chemokines (IL- 8, IL-13, CCL3, CCL4 and CCL5) and activated

monocytes in blood, indicating that microbiome changes could

possibly aggravate the development of HCC, by exacerbating

inflammation (168) (Table 2).
HBV and NAFLD-related immune
responses and HCC

An altered immune microenvironment is present in both

HBV and NAFLD. The tolerogenic status of liver turns into

persistent active inflammation, which results in cellular injury

and fibrosis, affecting progression to HCC (211). Various

immune cells and immune-related markers have been reported

in tumor microenvironment, as significant predictors of clinical

outcome in cancer patients (211) and dysregulation of hepatic

immune cells may have a major effect on hepatocarcinogenesis.

Liver is composed of innate and adaptive immune cells,

including macrophages, dendritic cells, myeloid-derived

suppressor cells (MDSCs), natural killer (NK) cells, CD4+ T,
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CD8+ T and B cells (212). The observed inhibitory effect of HBV

on innate and adaptive immunity may enhance tumorigenesis.

Under the effect of a suppressed immune system, the chronic

HBV-induced inflammation could evolve in a persistent liver

injury and promote the malignant transformation of liver cells.

The tumor microenvironment in HBV-associated HCC has been

characterized by a more severe immunosuppression compared

to the non-HBV associated HCC (213). However, the

mechanisms related to this status of HBV-HCC remains to be

elucidated. HBsAg has been shown to significantly inhibit the

activation and function of NK cells, by inhibiting the expression

and activation of STAT3 transcription factor (169). Impaired
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activity of NK cells has been associated with enhanced

progression of hepatitis to HCC (170, 171). HBsAg-mediated

increase of monocytes induces expression of higher levels of

suppressive cell surface molecules and cytokines (e.g. Tim-3,

PD-1 and IL-10) in NK cells of CHB patients (172, 173).

Regarding the role of macrophages in chronic HBV infection,

inflammatory stimuli and viral proteins can lead to transition of

macrophages into M2-like tumor macrophages, promoting HCC

progression (174, 175). HBeAg has been shown to induce up-

regulation of checkpoint molecular programmed death-ligand 1

(PD-L1) on macrophage, resulting in polarization to M2

protumor subtype, which impairs responses of CD8+ T cell to
TABLE 2 Effects of chronic HBV infection and NAFLD on HCC development.

Mechanistic role/pathways Effect on HCC development References

CHRONIC HBV
INFECTION

HBsAg!impaired activity of NK cells enhanced progression to HCC (169–173)

inflammatory stimuli and viral proteins!M2-like tumor macrophages promotion of HCC progression (174–176)

HbeAg!upregulation of PD-L1!polarization to M2 protumor subtype

HBV-mediated macrophage release of matrix metalloproteinase 9 (MMP9) and
IL-23 ! blockade of IFNa to IFNAR1

tumor progression and angiogenesis (177–182)

HbeAg!MDSCs expansion!dampen T cell function via IDO pathway

HbsAg!activation of ERK/IL-6/STAT3 signaling axis!differentiation of
MDSCs

CCRK!virus-host signaling

↓CXCR5+CD4+ Tfh!↓ICOS, IL-10, IL-21!↓Plasmablasts insufficient anti-tumoral immunity, enhance
evasion of tumor cells

(183–187)

CD8+ T cell, Treg exhaustion, ↑CTLA-4, PD-1 and TIM-3, ↓antibody
production

↑NLR, Foxp3+ Treg cells tumor immune escape and metastasis (188–190)

↑TGF-b activity! ↓microRNA-34a! ↑CCL22!Treg cells

↑PD-1 in peripheral blood CD4+ and CD8+ T cells (191–195)

↑PD-1, FcRL4 and FcRL5 in HBsAg-specific B cells! defective antibody
production

HBsAg suppresses CREB! ↓TLR9 on B cells! ↓proliferation of B cells and
pro-inflammatory cytokine release

↑immunosuppressive type of B cells! ↓cytotoxic activity of T cells

NAFLD ↑neutrophils! ↑matrix metalloproteinase-9 angiogenesis (196)

↑PD-L1+ monocytes ! ↓tumor specific T cell immunity insufficient anti-tumoral immunity, poor
survival

(197)

Tregs and MDSCs!immunosuppression of CD8+ T cells and NK cells tumor immune escape (161, 198,
199)NK dysregulation by IL-15, NK!less cytotoxic ILC1-like phenotype!↓kill

cancer cells

CCRK-AR signaling! ↑mTORC1/4E-BP1/S6K/SREBP1 !MDSCs!metabolic
reprogramming and immunosuppression

enhance progression to HCC, impaired anti-
tumor immune surveillance

(167)

lipid accumulation ! MDSCs! ↑ROS production, loss of intrahepatic CD4+ T
cells

(200, 201)

Platelet glycoprotein Iba-mediated aggregation and activation of platelets - KCs hepatic inflammation and progression to HCC (202)

↑linoleic acid! ↑ROS production in CD4+ T cells!cell apoptosis impaired anti-tumor immune surveillance (203, 204)

exhausted hepatic PD1+CD8+ T cell, ↑CXCR6

Th17 cells! induction of VEGF/E2/PGE2, activation of ongogenic IL-6/Stat3
signalling

tumor growth and angiogenesis (205–207)

IgA+ plasma cells !PD-L1 mediated suppression of CD8+ T cells, ↓IL-10 inhibition of anti-tumor immunity (208–210)

B regulatory cells, producing IL-10/CD40/CD154 signaling pathway
fr
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HBV (176). HBV-mediated macrophage release of matrix

metalloproteinase 9 (MMP9) and IL-23 induces the blockade

of binding of IFN-a to IFNAR1, which could contribute to

tumor progression and angiogenesis (177, 178). MDSCs might

affect tumor progression, by favoring immunosuppression, as

they have been shown to inhibit T cell proliferation and function

and induce Treg cells and tumor-associated macrophages.

MDSCs expansion, induced by HBeAg, has been reported in

CHB patients, and it has been associated with impaired T cell

function, including T cell proliferation and IFN-g production, as
it interferes with indoleamine-2,3-dioxygenase (IDO) pathway

(179). HBsAg also activates the ERK/IL-6/STAT3 signaling axis

to promote differentiation of MDSCs (180). Cell cycle-related

kinase (CCRK) as a regulator of androgen-receptor oncogene,

has been implicated in virus-host signaling to promote tumor

progression and induce polymorphonuclear MDSCs in HCC

(181, 182).

T lymphocytes represent the major regulators of immune

responses, which may play a crucial role in tumor development.

CD4+ T cells constitute key players in anti-viral and anti-tumor

immunity, as they produce cytokines and interact with other

immune cells to activate CD8+ T cells and B cells. A decreased

number and activity of cytotoxic T cells has been observed in

advance stages of HCC and it has been linked with recurrence

and poor survival in HCC patients (214). A decreased frequency

and activity of specific CD4+ T follicular helper cells (CXCR5

+CD4+ Tfh) in HBV-related HCC patients, along with

decreased expression of their co-stimulatory molecules (ICOS)

and cytokines (IL-10/IL-21), could result in impairment of naïve

B cell differentiation into plasmablasts (183). An exhaustion of

CD8+ T cell responses, characterized by decreased proliferation

and function has been shown in HBV infection, which could

further enhance disease progression to HCC, by establishing

insufficient anti-tumoral immunity. CD8+ T cells have shown

higher expression of inhibitory molecules (CTLA-4, PD-1 and

TIM-3) in HBV and HBV-HCC and high expression of

programmed cell death protein 1 (PD-1) on HBV-specific T

and B cells has led to exhaustion of T cells and decreased

production of antibodies (184–186). Exhausted CD8+ T cells

and Tregs have been reported in HCC patients, which could

further restrict antitumor immune responses (187). HBV-

associated progression to HCC has been correlated with

increased peripheral blood neutrophil/lymphocyte ratio (NLR)

and increased number of Foxp3+ Treg cells (188, 189). In HBV

infection, the increased TGF-b activity has been shown to

suppress the expression of microRNA-34a, resulting in

enhanced production of chemokine CCL22. Increased CCL22

recruits regulatory T (Treg) cells, promoting tumor immune

escape and metastasis (190). An imbalance in Th17/Treg ratio

has been proposed as indicator of liver cirrhosis process and it

has been associated with increased risk for HCC in HBV patients
Frontiers in Immunology 11
(215). The expression of PD-1 was significantly decreased in

peripheral blood CD4+ and CD8+ T cells of patients with HBV-

related HCC and it has been associated with accelerated disease

progression, compared to patients with HBV or cirrhosis (191).

B cells play a crucial role in alleviation of immune responses and

disease course in HBV infection (192). HBsAg-specific B cells

have shown high expression of inhibitory molecules (PD-1,

FcRL4 and FcRL5) and defective antibody production in HBV

patients (186, 193). HBsAg can inhibit TLR9 expression on B

cells via suppressing CREB protein, resulting in decreased

proliferation of B cells and pro-inflammatory cytokine release

(194). A high frequency of IL-10 producing, immunosuppressive

type of B cells, has been remarked in HCC patients, which have

been negatively correlated with the expression of granzyme A/B

and perforin in CD4+ T cells, leading to suppressed cytotoxic

activity of T cells (195).

The NAFLD progress to HCC is accompanied by

recruitment and trafficking of innate and adaptive immune

cells in liver during inflammation and fibrosis. Accumulated

neutrophils in inflamed liver of NASH patients could induce

angiogenesis, by promoting the secretion of matrix

metalloproteinase-9 (196). Specific PD-L1+ monocytes, which

suppress tumor-specific T cell immunity, leading to poor

survival have been found in HCC patients (197). Tregs and

MDSCs could favor tumor immune escape in NAFLD, as they

have been shown to exert immunosuppressive effects on CD8+ T

cells and NK cells in NASH (161). Dysregulation of NK cells,

probably mediated by IL-15 activity, has been involved in

NAFLD progression (198). The observed transformation of

NK cells into less cytotoxic ILC1-like phenotype in NAFLD,

has been linked with their impaired activity in killing cancer cells

(199). The impaired activity of NK cells to control HSCs activity

in advanced fibrosis in NAFLD, could further lead to

deterioration of liver tissue in NAFLD-HCC patients (216).

CCRK-AR signaling has been proved to establish a

pro-tumorigenic environment in mice with obesity-associated

HCC. Activated CCRK led to induction of mTORC1/4E-BP1/

S6K/SREBP1 signaling pathways, resulting in recruitment of

MDSCs , which enhance progres s ion to HCC, by

initiating metabolic reprogramming and modulating an

immunosuppressive microenvironment (167). Lipid

accumulation in liver has also been shown to promote

recruitment of MDSCs and lead to increased ROS production

in NASH mice model (200, 201). The interaction between liver

KCs and highly activated platelets, along with platelet

glycoprotein Iba-mediated aggregation in NASH, has been

shown to promote immune cell recruitment, which could

enhance hepatic inflammation and HCC development (202).

In the context of adaptive immunity, the dysregulation of

lipid metabolism in NAFLD has been associated with a selective

loss of intrahepatic CD4+ T cells which further could lead to
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progression to HCC, highlighting a possible link between

abnormal lipid metabolism and impaired anti-tumor immune

surveillance. Progression of NAFLD to HCC has been shown to

be delayed by the in vivo induction of hepatic CD4+ T cell

population, mediated by ROS blockade (217). Brown et al.

proposed a mechanistic role of dysregulated lipid metabolism

in HCC development in NAFLD, indicating a major effect of

accumulated linoleic acid on CD4+ T cells. Increased lipotoxicity

and hepatocyte death induce linoleic acid release, which has

been associated with increased production of ROS and CD4+

cell apoptosis (203). The presence of an exhausted, hepatic PD1

+CD8+ T cell population, characterized by increased expression

of C-X-C motif chemokine receptor 6 (CXCR6) and TNF-a in

NASH mice, has been related with increased NASH progression

to HCC, by possibly impairing immune surveillance (204). Th17

cells constitute another cell population, which have been

positively associated with human fatty liver-associated HCC

(205). Infiltration of Th17 in tumor microenvironment has

been shown to promote tumor growth and angiogenesis,

through induction of angiogenic factors (vascular endothelial

growth factor/VEGF and prostaglandin E2/PGE2) and

activation of oncogenic IL-6/Stat3 signaling (206, 207). An

increased and highly active CD20+ B cell population has been

observed in NAFLD patients (218). The number of tumor‐

infiltrating B cells has been associated with tumor progression

in HCC (208). Accumulated IgA+ plasma cells in NASH-related

fibrosis have been shown to suppress CD8+ T cells via

programmed cell death ligand 1 (PD-L1) and IL-10

expression, contributing to development of HCC in NAFLD

(209). IL-10 producing, B regulatory cells have been shown to

promote HCC growth, through direct interaction with tumor

cel ls , mediated by CD40/CD154 signaling pathway

(210) (Table 2).
Discussion

As both chronic HBV infection and NAFLD diseases can lead

to chronic liver injury, and result in severe hepatic complications,

HBV and NAFLD co-occurrence raises high concerns regarding

the clinical management of patients. Dysregulated fatty acid

metabolism and lipotoxicity in NAFLD disease may initiate

activation of signaling pathways that enhance pro-inflammatory

responses and disrupt hepatocyte cell homeostasis, which could

either promote liver injury and progression of NAFLD disease to

NASH, fibrosis and HCC or affect HBV replication and immune

encountering of HBV virus during CHB. The metabolic

dysregulation has been associated with increased cell stress and

lipotoxicity in NAFLD, leading to trigger of inflammation,

recruitment of immune cells in liver and hepatocyte death.
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Specific nuclear receptors, expressed by immune and liver

parenchymal cells, are activated by inflammatory and stress

stimuli and initiate signaling pathways related to fibrogenesis

and hepatic steatosis (219). Fatty liver has also been linked to

HBV replication, as patients with HBV-NAFLD co-occurrence

have shown decreased viral replication (107). Chronic HBV

infection is suggested to have an influence on metabolic

changes, which could lead to NAFLD development and the

HBV-induced inflammatory responses and molecular pathways

may constitute an aggravating factor in hepatic steatosis

development. However the role of HBV-NAFLD interplay in

hepatic steatosis development might be more complicated as

Xin et al. have proposed two opposite effects of HBV infection

on steatosis. Specifically, CHB could be correlated with decreased

risk of hyperlipidemia and lower prevalence of steatosis, probably

due to an elevated serum adiponectin level and increased hepatic

lipid accumulation could be induced by HBx overexpression and

the observed genetic susceptibility to fatty liver in CHB patients

(220). We must also consider the significance of the immune

homeostasis imbalance which characterizes both HBV infection

and NAFLD and its implication in liver disease progression to

HCC. The disruption of immune cell function, which can be

either induced by the dysregulated lipid metabolism in NAFLD, or

the HBV-mediated immunosuppressed microenvironment, could

impair the anti-tumor immunity and result in liver cancer

progression. The presence of fatty liver has been associated with

increased risk for HCC development in CHB patients (11).

Further experimental studies are required to elucidate the exact

mechanisms beyond the possible interaction between the

inflammatory components and signaling pathways of both HBV

and NAFLD and their impact on liver pathophysiology. Some

studies have focused interest on clinical impact of targeting

specific molecules, which are implicated in molecular signaling

and immune responses on liver disease progression and response

to treatment. Liu et al. have shown that serum IL-21 levels were

increased at 12 week of HBV treatment, predicting early anti-viral

response in patients with CHB and NAFLD (221). A phase I

clinical study has investigated the therapeutic effect of OPB-

111077, a novel STAT3 inhibitor, in patients with advanced

hepatocellular carcinoma, which was proved to be well-tolerated

(222). Restoration of miRNAs in HCC has shown to suppress

tumor progression and improve chemosensitivity (223, 224).

Zhong et al. suggested that blockade of T cell co-inhibitory

receptor TIGIT combined with HBsAg vaccination in a mouse

model of HBV-related HCC is able to recover immune

homeostasis by reversing hepatic CD8+ T cell tolerance to

HBsAg (225). Thus, investigation of the molecular background

beyond the HBV and NAFLD co-occurrence is of high clinical

significance in the context of designing effective therapeutic

targets which will prevent or ameliorate the hepatic complications.
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