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Background:Glioma is themost commonprimarymalignant brain tumorwith high

mortality and poor prognosis. Hepcidin is a fascinating iron metabolism regulator.

However, the prognostic value of hepcidin HAMP in gliomas and its correlation with

immune cell infiltration remain unclear. Here, we comprehensively elucidate the

prognostic value and potential role of hepcidin in gliomas.

Methods: Hepcidin gene expression and clinical characteristics in glioma were

analyzed using the CGGA, TCGA, Rembrandt and Gravendeel glioma databases. A

survival analysis was conducted using Kaplan–Meier and Cox regression analyses.

A gene set enrichment analysis (GSEA) was conducted to select the pathways

significantly enriched for hepcidin associations. The correlations between hepcidin

and immune cell infiltration and immunotherapy were analyzed using network

platforms such as CIBERSORT and TIMER.

Results: In glioma tissues, the expression of hepcidin was significantly increased.

High hepcidin expression is related to grade, age, PRS type, IDH mutation,

chemotherapy status and 1p19q codeletion status, which significantly indicates

the poor prognosis of glioma patients. Hepcidin can be used as an independent

prognostic factor for glioma through themultivariate COX regression analysis. The

results of Gene Ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG)

and gene set enrichment analysis (GSEA) indicated that hepcidin was involved in

the immune response. In addition, hepcidin expression was positively correlated

with the degree of immune cell infiltration, the expression of various immune cell

markers and the efficacy of immunotherapy.

Conclusion: Our results indicate that hepcidin can be used as a candidate

biomarker to judge the prognosis and immune cell invasion of gliomas.
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Introduction

Glioma is a common primary malignant brain tumor and

arises throughout the central nervous system. According to the

World Health Organization (WHO) classification of central

nervous system tumors in 2021, gliomas of grades I and II are

classified as low-grade gliomas (LGGs) (1). LGGs have a

tendency to relapse and transform into high-grade gliomas

(WHO grades III and IV). The annual incidence of high-grade

gliomas (HGGs) has recently increased, and these gliomas have

high disability and mortality rates (2, 3). At present, many

studies have shown that oxidative stress can drive mutations

and accelerate the progression of gliomas when physiological

iron metabolism is disturbed (4). Therefore, clarifying the

relationship between iron-related genes and gliomas and

identifying effective biomarkers and new treatment targets are

helpful for individualized treatment and prognosis prediction.

Iron is involved in cell proliferation and differentiation in

eukaryotic metabolism (5). Defective iron homeostasis is

significantly involved in the development of human cancers, and

the expression of iron homeostasis-related genes is dysregulated in

tumors (6). Serum ferritin levels are elevated in patients with many

types of cancer. Ferritin is expressed at high levels in prostate cancer

cells and regulates cell proliferation, migration and apoptosis by

increasing the intracellular iron content (7). High plasma ferritin

levels block the circulation of iron from intestinal epithelial cells and

macrophages (which contribute to anemia in patients with cancer)

andmay lead to the accumulation of iron in tumor cells through the

degradation of ferroportin (FPN1), resulting in the activation of

signaling pathways, such as Wnt (8) and NF-kB (9), which

contribute to tumor progression. In addition to the ferritin

synthesized by the liver, cancer cells also synthesize ferritin.

Upregulated expression of TFRC was markedly correlated with a

poor prognosis for patients with breast cancer, indicating that TFRC

may be an independent prognostic marker for breast cancer (10).

Moreover, TFRC is involved in the immune response and immune

cell infiltration (10). In contrast, ceruloplasmin (CP) expression is

downregulated in breast cancer (11). Higher CP expression is

related to shorter overall survival (OS) of patients with breast

cancer (11). Additionally, the expression of the only known

mammalian iron exporter, FPN1, is decreased in lung cancer and

low FPN1 expression corresponds to a worse prognosis for patients

with lung cancer (12). Interestingly, FPN1 was identified as a

suppressor of ferroptosis and its expression is closely correlated

with the prognosis of patients with glioblastoma (GBM) and is

associated with immunosuppression (13).

In glioma, iron metabolism has recently become a

therapeutic target and potential prognostic marker (14, 15).

An increasing number of studies has revealed the close

relationship between high-grade gliomas and iron metabolism.

Iron accumulation promotes the proliferation of glioma cells.

Patients with high-grade gliomas have higher levels of serum
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ferritin (16). Hypoxia-induced ferritin light chain expression is

also involved in the epithelial–mesenchymal transition (EMT)

and chemotherapy resistance in high-grade gliomas (17).

Numerous studies have shown that hepcidin-FPN signaling

plays a key role in regulating iron metastasis and tumor

growth (18). During iron overload, the expression of hepcidin

(HAMP) increases, which interacts with FPN1 to promote its

internalization and degradation in lysosomes (19). Hepcidin, an

antimicrobial peptide rich in cysteine, consists of 20, 22 and 25

amino acid peptides (20). Hepcidin expression is elevated in

patients with lung cancer. Increased hepcidin expression is

associated with various clinical parameters and predicts a

worse prognosis for patients with lung cancer (21).

Meanwhile, hepcidin expression is also upregulated in kidney,

testicular and gastric cancers (22, 23). Increased expression of

hepcidin also represents a risk factor for these tumors. However,

hepcidin expression is significantly decreased in liver cancer (24,

25). Downregulated expression of hepcidin is closely correlated

with liver cancer aggressiveness, immune cell infiltration and

worse survival outcomes of patients with liver cancer (25). A

recent study indicated that hepcidin was also produced in colon

tumor epithelium and correlated with shorter patient survival

(26). Loss of hepcidin in the colonic epithelium significantly

reduces the tumor number and size compared with littermate

controls (26). Together, hepcidin may play a dual role in

different types of tumors. The disorder of iron metabolism

caused by the abnormal expression of hepcidin may be an

important factor contributing to tumor invasion and metastasis.

Despite the close relationship between iron homeostasis and

tumorigenesis, there is no study on the role and clinical

significance of hepcidin in the pathogenesis and prognosis of

gliomas. Thus, the purpose of this study was to combine a variety

of bioinformatics methods to investigate whether hepcidin is

involved in glioma, tumor metastasis and immune invasion and

to explore its molecular mechanism. We found that the

expression of hepcidin in glioma tissues was significantly

upregulated compared with that in nontumor tissues. In

addition, the expression of hepcidin increased with tumor

grade. High hepcidin expression was negatively correlated with

the prognosis of patients with glioma. In addition, the expression

of hepcidin in gliomas was closely related to the infiltration of B

cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils and

dendritic cells. Single-cell RNA sequencing analysis revealed that

hepcidin was expressed at high levels in macrophages.

Importantly, hepcidin expression was significantly correlated

wi th the tumor muta t ion burden (TMB) , tumor

microenvironment (TME), immunosuppressant targets and

tumor immune dysfunction and exclusion (TIDE) scores.

These observations emphasize the important role of hepcidin

in tumorigenesis and suggest that hepcidin may play an

important role in regulating immune cell infiltration and the

response to immunotherapy of gliomas.
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Materials and methods

Raw data collection

We obtained the RNA sequencing data of diffuse glioma

patients from two independent datasets in the Chinese Glioma

Genome Atlas (CGGA) database (http://www.cgga.org.cn): the

CGGA Dataset 1 (n=325) and the CGGA Dataset 2 (n=693) (27).

A dataset containing the gene expression profiles and clinical

information of glioma patients (n=698) was downloaded from the

publicly available The Cancer Genome Atlas (TCGA) database

(28). The hepcidin expression information (FPKM normalized)

and clinical data were extracted. The collected clinicopathological

data, including gender, age, grade, survival status and survival

duration (in days), were integrated, and the default value samples

were deleted according to the statistical needs for the follow-

up research.
Analysis of the relationship between
hepcidin expression and glioma grade

Through the Hiplot open-source network platform

UCSCXenaShiny module (https://hiplot.com.cn/advance/ucscxena),

we analyzed the expression data of hepcidin in 33 cancer types from

the TCGA and grouped them according to normal or tumor tissues.

hepcidin gene expression and clinical characteristics of glioma

samples from the CGGA, TCGA, Rembrandt and Gravendeel

glioma databases were obtained through the GlioVis network

platform (http://gliovis.Bioinfo.cnio.es/).
Tissue samples

One case for each WHO grade of human astrocyte-derived

tumors resected by the Neurosurgery Department at the Second

Hospital of Hebei Medical University from January 2019 to January

2020 was collected. All specimens were collected immediately after

surgical tissue resection, stored directly in liquid nitrogen and then

confirmed by pathology. Patients who received preoperative

radiotherapy or chemotherapy were excluded from this study.

The Ethics Committee of the Second Hospital of Hebei Medical

University approved this study (Approval #: 2017-P035). The

requirement for written informed consent to participate was

waived by the Ethics Committee.
Analysis of the relationship between
hepcidin and the survival of
glioma patients

To study the effect of hepcidin on the survival of glioma patients,

we divided the samples from various glioma databases into a high-
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expression group and a low-expression group according to the

median hepcidin expression level. Kaplan–Meier survival curves

were plotted, and log-rank and Wilcoxon tests were performed

based on the survival data of glioma patients from the CGGA,

TCGA, Rembrandt and Gravendeel databases. Events of the high-

and low-expression groups in each database were summarized, and

then the relative survival risk ratio of each group in each database

was calculated by using the meta-analysis of the Binary Data tool on

the Hiplot network platform, and forest maps of the survival risk

factors for patients were drawn for each database.
The relationship between the hepcidin
expression level and clinical traits
in glioma

First, we analyzed the relationships between hepcidin

expression and age, sex, isocitrate dehydrogenase (IDH)

mutation, glioma subtype, 1p19q codeletion status and other

clinical features of CGGA and TCGA data and drew a heatmap

using the R package “ComplexHeatmap”. Then, based on the

CGGA dataset, we analyzed the differences in each clinical feature

in the high and low hepcidin expression groups. Univariate and

multivariate independent prognostic analyses of the CGGA and

TCGA datasets using R were performed to further observe the

relationship between hepcidin expression and the prognosis. Next,

we constructed a nomogram model and calibrated it with R

language. The nomogram model had a better performance in

predicting prognosis than the traditional staging system.

Furthermore, the 1-year, 3-year and 5-year ROC curves of CGGA

and TCGA datasets were drawn using the R language to determine

the accuracy of hepcidin expression in predicting patient survival.
Analysis of hepcidin-interacting genes
and proteins

The GeneMANIA database (http://www.genemania.org)

was used to construct the hepcidin interaction network. The

STRING online database (https://string-db.org/) was used to

construct a protein–protein interaction (PPI) network of

hepcidin. The correlations between hepcidin and iron

metabolism-related genes were investigated based on the

TCGA-LGG and TCGA-GBM databases.
Functional analysis of differentially
expressed genes between the high and
low hepcidin expression groups in the
CGGA and TCGA datasets

The genes coexpressed with hepcidin in the CGGA and TCGA

databases were identified by performing a coexpression analysis.
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The R packages “corrplot” and “circlize” were used to draw circle

graphs of representative genes that were significantly related to

hepcidin. CGGA and TCGA samples were divided into two groups

according to the expression of the hepcidin gene. The differentially

expressed genes (DEGs) between the two groups were screened by

the “limma” package of R language, and a heatmap was drawn by

the “pheatmap” package. Furthermore, to clarify the biological

functions and pathways hepcidin is involved in, R language was

used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) analyses of the DEGs in the CGGA

database. The c5.go.v7.4.symbols and c2.cp.kegg.v7.4.symbols

datasets were used for gene set enrichment analysis (GSEA) of

hepcidin. For each analysis, 1000 repetitions of gene set

permutations were performed. The phenotype label was the

expression level of hepcidin. Additionally, the nominal (NOM) P

value and normalized enrichment score (NES) were calculated to

sort the enriched pathways in each phenotype. Gene sets with NOM

P value and false discovery rate (FDR) q value ≤ 0.05 were

considered significantly enriched gene sets.
Analysis of the relative abundance of
tumor-infiltrating immune cells

CIBERSORT (http://cibersort.stanford.edu/), a deconvolution

algorithm based on gene expression, has been widely used to

analyze the correlation between gene expression in tumors and

TIICs. According to the gene expression profile of complex tissues,

this analysis can be used to characterize the heterogeneity of cells.

CIBERSORT can recognize immune cell types sensitively and

accurately, so they can be further analyzed. Based on the

deconvolution algorithm, we downloaded the gene annotation

matrix of 22 immune cell subtypes provided by the CIBERSORT

network platform and calculated the P value for each sample in the

CGGA and TCGA datasets. At the same time, the correlation

between immune cells in each dataset was visually presented by R

language. CIBERSORT was used to output the composition of

infiltrating immune cells in each sample. Therefore, the relative

proportions of various immune cells in each group were compared

effectively and were visualized as a box diagram. According to the

correlation between immune cells and hepcidin, we drew a lollipop

map of immune cell correlations. The correlation of hepcidin and

immune cell infiltration in LGG and GBMwas analyzed in TIMER.

The “Gene” module can investigate the relationship between

hepcidin expression and immune cell infiltration levels (B cells,

CD8+ T cells, CD4+ T cells, neutrophils, macrophages, and

dendritic cells) using the TCGA database. TIMER was also

applied to investigate the relationship between hepcidin

expression and different gene marker sets of immune cells by

using the “Correlation” module. The correlations of hepcidin

expression with immune infiltration were evaluated by purity-

correlated partial Spearman’s correlation and statistical significance.
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Analysis of the correlation between
hepcidin expression and immunity

According to the median expression level of hepcidin, the

samples were divided into high- and low-expression groups.

Using the R language tool, we analyzed the expression of

hepcidin in relation to the TME and TMB of the two groups.

The TME scores were compared between the two groups in the

CGGA database and visualized by a violin map. TMB refers to

the number of genes with mutations per 1 million bases. We

downloaded and sorted the mutation data of glioma through the

TCGA, calculated and compared the difference in TMB between

the two groups in the TCGA glioma dataset by R language, and

analyzed the correlation between hepcidin expression and TMB.

TIMER (https://cistrome.shinyapps.io/timer/), an interactive

web portal, can perform a comprehensive analysis of the

infiltration levels of different immune cells. In the present

study, hepcidin expression in multiple types of cancer was

evaluated through the “Diff Exp” module. Drugs targeting the

immune checkpoint inhibitors of PD-1, PD-L1 and CTLA-4 are

increasingly being shown to benefit cancer patients.

Additionally, the relationships between hepcidin and PD-1,

PD-L1 and CTLA-4 levels were determined by calculating

Spearman’s correlation coefficients using the “correlation

analysis” module of the GEPIA web portal (http://gepia.

cancer-pku.cn/index.html).
Single-cell RNA sequencing analysis

Single-cell RNA sequencing analyses were conducted using

the Tumor Immune Single-cell Hub (TISCH) and scTIME

Portal databases. TISCH (http://tisch.comp-genomics.org/

home/) is a comprehensive web resource which provides

interactive gene expression visualization and characterization

of the TME at the single-cell level. GSE84465, GSE89567,

GSE131928, GSE148842 and GSE138794 datasets were

analyzed using the TISCH database. The scTIME Portal

(http://sctime.sklehabc.com/unicellular/home) is an online

single-cell RNA sequencing analysis database for single-cell

transcriptomes of the tumor immune microenvironment.

GSE138794 and GSE131928 datasets were analyzed using the

scTIME Portal database.
Immunohistochemical staining

The paraffin-embedded tissue was heated for 90 min in an

oven at 60°C. The slides were then hydrated in ethanol and

xylene at different concentrations (100%, 95% and 75%). Then,

3% H2O2 was added and incubated at room temperature for

10 min after washing with PBS for three times. Then, the slides
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were completely immersed in 95°C antigen repair solution for

10 min and cooled naturally. After washing with Triton-PBS

(100x), the cells were sealed with 1% bovine serum albumin for

30 min. Then, the primary antibody was added and incubated

overnight at 4°C. On the second day, the slides were washed with

PBS (3×10 min/wash) and then incubated with a secondary

antibody for 1 hour. DAB was added to the slides, and the color

reaction was stopped with tap water. Hematoxylin was

repeatedly stained for 1 min and separated with 1%

hydrochloric acid ethanol solution. Finally, the slides were

covered with a neutral essence, and images were taken with an

Olympus microscope (Tokyo, Japan).
Statistical analysis

The data are expressed as the mean ± standard deviation

(SD). Significant differences between the means ± the standard

deviations of two different groups were examined using

Student’s t test; one-way ANOVA was used for more than two

groups. Spearman correlation analysis was used for correlation

analysis. The patients were divided into high- and low-

expression groups according to the 50% cutoff point of gene

expression. Differences in survival between groups were

evaluated via Kaplan–Meier survival analysis with a log-rank

significance test. Cox regression models were applied to identify

prognostic factors. GraphPad Prism 8.0 software (GraphPad

Inc., San Diego, CA, USA) was used to generate the graphs. A p

value less than 0.05 was considered statistically significant.
Results

The expression of hepcidin increased
with increasing tumor grade

Pan-cancer analysis showed that there were significant

differences in hepcidin expression between multiple tumor

tissues and adjacent tissues according to the TCGA and GTEx

databases. The expression of hepcidin in GBM, LGG, lung

adenocarcinoma (LUAD), breast invasive carcinoma (BRCA)

and many other tumor tissues was higher than that in normal

tissues (Figure 1A). To explore the expression level of hepcidin

in different grades of glioma, we analyzed the relationship

between the expression level of hepcidin and glioma WHO

grade in the CGGA, TCGA, Rembrandt and Gravendeel

glioma databases. These results showed that the expression of

hepcidin was significantly upregulated with increasing glioma

grade (Figure 1B). The histochemical staining images of glioma

showed that the protein expression of hepcidin in high-grade

gliomas was higher than that in LGGs (Figure 1C).
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Analysis of the relationship between
hepcidin and the survival of
glioma patients

In the four glioma databases (CGGA, TCGA, Rembrandt

and Gravendeel), the samples were divided into low- and high-

expression groups according to the median hepcidin expression.

Kaplan–Meier curve analyses and statistical tests showed that in

the four glioma datasets, the overall survival (OS) rate of patients

with high hepcidin expression was significantly lower than that

of patients with low hepcidin expression in glioma (p < 0.001)

(Figure 2B). In view of the large sample size gap among the four

cohorts, to improve the reliability of the results, the fixed effect

model was used to estimate the risk ratio (RR) of the four glioma

datasets for meta-analysis. The results showed that the OS time

of patients with low hepcidin expression was longer than that of

patients with high hepcidin expression (fixed effect model: RR:

1.40, 95% CI 1.31/1.49) (Figure 2B).
Analysis of the relationship between
hepcidin and clinical features in glioma

Significant correlations were observed between hepcidin

expression and the glioma grade, age, PRS type, IDH mutation,

chemotherapy status, and 1p19q codeletion status in the CGGA

dataset (p < 0.001) (Figures 3A, B). Significant correlations were

observed between hepcidin expression and glioma grades and age in

TCGA dataset (p < 0.001) (Supplementary Figures S1A, B).

Univariate and multivariate Cox analyses showed that hepcidin,

an individual variable, may be an independent prognostic factor in

CGGA (Figures 4A, B) and TCGA datasets (Supplementary Figures

S2A, B). The nomogram model constructed based on hepcidin

expression had good performance in predicting the prognosis of

patients included in CGGA (Figures 4C, D) and TCGA datasets

(Supplementary Figures S2C, D). The areas under the ROC curves

(AUCs) at 1 year, 3 years and 5 years in CGGA (Figure 4E) and

TCGA (Supplementary Figure S2E) glioma datasets were all greater

than 0.6.
Identification of hepcidin-interacting
genes and proteins

A gene–gene interaction network for hepcidin was constructed

by using GeneMANIA. The 20 most frequently altered genes, such

as SLC40A1, were closely correlated with hepcidin (Figure 5A). By

using the STRING database, a PPI network of hepcidin was

generated. There were 48 edges and 11 nodes, including

SLC40A1, TFR2 and HFE (Figure 5B). Furthermore, the

correlations between hepcidin and iron metabolism-related genes

were investigated based on the TCGA database. Hepcidin was

positively and significantly correlated with CP, FTH1 and FTL and

negatively correlated with, ACO1 and IREB2 in LGG and GBM
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(Figures 5C, D). The first 11 genes that have a coexpression

relationship with hepcidin in the CGGA database are shown by a

circle diagram. The expression of hepcidin was positively correlated

with the expression of SP11, C3, PTPN6, SERPINA1, CORO1A,

and ARHGAP9 and was negatively correlated with the expression

of TUB, AKT3, ZNF292, OPHN1 and ZNF609 (Figure 5E).
Functional analysis of DEGs between the
high and low hepcidin expression groups
in the CGGA datasets

The heatmap showed the DEGs between the high and low

hepcidin expression groups in the CGGA (Figure 6A) and TCGA
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datasets (Supplementary Figure S3A). KEGG and GO enrichment

analyses were used to explore hepcidin-related pathways and

biological functions. The top 10 significant terms identified in

biological process (BP), molecular function (MF) and cellular

component (CC) enrichment analyses in CGGA (Figure 6B) and

TCGA (Supplementary Figure S3B) datasets are presented. Notably,

in terms of BPs, hepcidin was enriched in immune response-related

processes, such as T cell activation and lymphocyte-, leukocyte- and

B cell-mediated immunity. In addition, the meaningful KEGG

pathways of the DEGs in CGGA (Figure 6C) and TCGA

(Supplementary Figure S3C) datasets are shown. Among these

pathways, many immune-related pathways were highly associated

with hepcidin, including cytokine–cytokine receptor interaction,

chemokine signaling pathway, T cell receptor signaling pathway,
B

C

A

FIGURE 1

Analysis of the relationship between hepcidin expression and glioma grade. (A) Pan-cancer analysis of hepcidin expression in the TCGA database.
(B) Relationship between the expression level of hepcidin and grade of glioma. (C) IHC staining of tissues with different glioma grades. ***p < 0.001,
ns, not significant..
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Th17 cell differentiation and so on. Furthermore, GSEA results of

the CGGA (Figures 6D, E) and TCGA (Supplementary Figures

S3D, E) datasets showed that the biological functions of the DEGs

were related to the activation of T and B cells or immune-related

pathways, such as antigen processing and presentation, Toll-like

receptor or Rig I-like receptor signaling and glioma pathways.
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Correlation analysis between hepcidin
expression and infiltrating immune cells

Using the established computational resource CIBERSORT,

the abundance ratios of 22 immune cells in glioma samples from

the CGGA (Figure 7A) and TCGA datasets (Supplementary
B

A

FIGURE 2

Analysis of the relationship between hepcidin and survival in glioma. (A) Kaplan–Meier plots of hepcidin in a variety of glioma datasets. The 95%
confidence interval (CI) is shown. The patients were divided into high- and low-expression groups by the median expression level. (B) Forest
plot of the risk ratio for patients with high hepcidin expression levels compared with patients with low hepcidin expression levels. ***p < 0.001.
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Figure S4A) were explored, and the relationship between the

abundance ratios of the immune cells are presented. The changes

in the proportions of 22 subtypes of immune cells in the high

and low hepcidin expression groups in tumor samples showed

that immune cells, such as eosinophils, Tregs, CD8+ T cells,

plasma cells, M1 macrophages and monocytes, were significantly

positively correlated with hepcidin expression, and CD4+ naïve

T cells and M2 macrophages were significantly negatively

correlated with hepcidin expression in CGGA dataset (p <

0.05) (Figures 7B, C). TCGA results were basically similar to

the CGGA results (Supplementary Figure S4C). In addition, we

analyzed the correlation between hepcidin expression and six

types of infiltrating immune cells, including B cells, CD4+ T

cells, neutrophils, macrophages, and dendritic cells, using the

TIMER database. The results showed that hepcidin expression
Frontiers in Oncology 08
levels had a significant positive correlation with the infiltration

of B cells, CD4+ T cells, macrophages, neutrophils, and dendritic

cells and negative correlations with CD8+ T cells in GBM. In

LGG, these six types of cells all had positive correlations with

hepcidin (Figure 8A).

We also investigated hepcidin expression in glioma samples

from two single-cell RNA-seq datasets using the scTIME portal

database to further confirm immune cell infiltration. Hepcidin

was also expressed at high levels in macrophages according to

the GSE138794 and GSE131928 datasets (Figures 9A, B).

Additionally, hepcidin expression was also observed

macrophages in the GSE84465, GSE89567, GSE131928,

GSE148842 and GSE138794 datasets using the TISCH

database (Supplementary Figure S5) . Moreover, the

correlations between hepcidin expression and several markers
B

A

FIGURE 3

Analysis of the relationship between hepcidin expression and the clinical features of patients included in the CGGA glioma dataset. (A) The
relationship between hepcidin expression and clinical features of patients in the CGGA dataset. (B) Each clinical feature was analyzed for
differences of hepcidin expression in different groups. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 4

Cox regression analysis and establishment of a prognostic model using the CGGA dataset. (A) Univariate analysis of hepcidin expression in the CGGA
dataset. (B) Multivariate analysis of hepcidin expression in the CGGA dataset. (C) The nomogram was constructed based on four factors for predicting 1-
year, 3-year or 5-year survival of patients with glioma in the CGGA database. (D) The calibration plots of internal validation in CGGA dataset showed
good consistency in predicting 1-year, 3-year or 5-year survival. (E) The 1-year, 3-year and 5-year ROC curves for the CGGA dataset. *p < 0.05 and
***p < 0.001.
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FIGURE 5

Analysis of hepcidin-interacting genes and proteins. (A) The gene–gene interaction network of hepcidin was constructed using GeneMANIA.
(B) The PPI network of hepcidin was generated using STRING. (C, D) A heatmap shows the correlations between hepcidin and iron metabolism-
related genes in LGG (C) and GBM (D). (E) The gene circle map of hepcidin from the co-expression analysis. Red lines represent positive
correlations with hepcidin, and green lines represent negative correlations with hepcidin. *p < 0.05 and **p < 0.01.
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FIGURE 6

Functional analysis of DEGs between the high and low hepcidin expression groups in the CGGA dataset. (A) Heatmaps of the differentially
expressed genes between the high and low hepcidin expression groups. (B, C) GO and KEGG analyses of DEGs. (D, E) GSEA-GO (D) and GSEA-
KEGG (E) enrichment analyses of the high and low hepcidin expression groups in the CGGA dataset.
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of macrophages were investigated. We observed that hepcidin

expression was positively and significantly correlated with

CD163, CD68, MARCO, MRC1, MSR1 and FCGR3A

expression in LGG and GBM (Supplementary Figures S6A, B).
Correlation between hepcidin expression
and various immune characteristics

To deepen our understanding of hepcidin crosstalk with the

immune response, we validated the correlations between

hepcidin expression and diverse immune signatures in both

LGG and GBM using the TIMER database. The genes listed in

Table 1 were used to characterize immune cells. Tumor purity is

an important aspect affecting the analysis of immune infiltration

in clinical cancer biopsies. After adjusting for tumor purity,

hepcidin expression was significantly associated with most

immune markers in diverse types of immune cells in LGG and

GBM (Table 1).

We also examined the correlation between hepcidin

expression and various functional T cells, including Th1 cells,

Th1-like cells, Th2 cells, Tregs, resting Tregs, effector Tregs,

effector T cells, naïve T cells, effector memory T cells, resistant

memory T cells, and exhausted T cells (Table 2). By using the

TIMER database, we found that the hepcidin expression level

was significantly correlated with 34 of 38 T cell markers in LGG

and with 23 of 38 T cell markers in GBM after adjusting for

tumor purity (Table 2).

To evaluate the proportions of immune and stromal

components in the TME, the immune and stromal scores of

each glioma sample from the CGGA were calculated using the

“limma” and “estimate” packages in R language. A violin plot of

the TME score showed that the low hepcidin expression group

had lower TME scores than the high hepcidin expression group

(Figure 8B). In the TCGA glioma database, the TMB of the high

hepcidin expression group was significantly higher than

that of the low hepcidin expression group, and there was

a significant positive correlation between hepcidin expression

and TMB (Figures 8C, D). We further investigated the

interrelationship between hepcidin expression and well-known

T cell checkpoints, such as PD-1, PD-L1 and CTLA-4, in the

GEPIA database. The expression of hepcidin was significantly

correlated with the expression of PD-1, PD-L1 and CTLA-4 in

LGG and GBM (Figure 8E). Furthermore, patients with LGG

and/or GBM were divided into hepcidin high-expression

and low-expression groups. As shown in Figure 8F, the

expression of most immune checkpoint genes, including PD-1,

PD-L1, PDCD1LG2, CTLA4, HAVCR2, LAG3, TIGHT and

SIGLEC15, was obviously higher in the hepcidin high-

expression group than in the hepcidin low-expression group of

patients with LGG and GBM. In addition, the effect of hepcidin

expression on predicting the immunotherapy response was

further evaluated in TCGA cohort. The hepcidin high-
Frontiers in Oncology 12
expression group had a higher TIDE score (Figure 8G).

Patients with high TIDE scores tended to respond poorly to

immunotherapy, suggesting that immunotherapy is unlikely to

benefit patients with high hepcidin expression. Together, these

findings suggest that hepcidin expression is significantly related

to immune cell infiltration and that hepcidin plays an important

role in immune escape in the brain cancer microenvironment.
Discussion

The treatment of brain tumor faces unique and severe

challenges due to the existence of the blood-brain barrier

(BBB) (29, 30). The BBB is a highly selective semipermeable

barrier that separates the blood from the brain, but also

impediments drug penetration. The initial treatment for brain

tumors is surgery (if feasible and safe), and maximal resection is

strongly correlated with longer OS (31). Patients usually receive

radiation and chemotherapy as an adjunct. Radiotherapy with a

total dose of 60 Gy, as primary or postoperative treatment,

improved OS and progression-free survival (PFS) (32).

Concomitant administration of the oral alkylating agent

temozolomide significantly increased OS in newly diagnosed

GBM patients (33). However, although radiotherapy and

temozolomide improve survival, tumor progression and

recurrence usually occur due to the development of

temozolomide resistance. In recent years, new therapies such

as molecular targeted therapy (34), alternating electric field

therapy (35), ultrasound focusing (36) and nanotherapy (37)

have achieved great progress, but the prognosis of patients with

glioma has not improved substantially. This lack of

improvement may be due to the fact that the complex

pathological process of glioma has not been fully elucidated

and effective biomarkers for an accurate diagnosis and molecular

targeted therapy are lacking. However, with the development of

new immunotherapy aimed at reviving the anti-tumor immune

response, the prognosis of patients with various advanced

hematological diseases and solid malignant tumors has

significantly improved (38–40). Immune checkpoint inhibitors,

such as anti-PD-1 and anti-CTLA4 therapy, enhance T cell

activity and inhibit immunosuppression in the TME (41). The

presence of some biomarkers, such as mutant IDH, O6-

methylguanine DNA methyltransferase (MGMT) promoter

methylation, epidermal growth factor receptor amplification

and p53 mutation, have predictive and diagnostic potential in

gliomas (42). Therefore, we need to find more effective

treatments to improve the survival rate of these patients. Some

genes and transcription factors have been shown to play a key

role in the occurrence, development and evolution of gliomas.

Improving the understanding of the pathogenesis of glioma and

the recognition of key molecular markers will help to improve

the diagnostic accuracy of glioma and identify new therapeutic

targets to achieve better clinical results (43, 44).
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At present, there is no study on the expression of hepcidin in

gliomas. In the present study, we showed higher expression of

hepcidin in glioma than in normal brain tissues, and hepcidin

expression was significantly upregulated with increasing glioma

grade in the CGGA, TCGA, Rembrandt and Gravendeel glioma
Frontiers in Oncology 13
databases (Figure 1). Subsequently, the Kaplan–Meier curve and

statistical tests revealed a significantly lower OS rate for patients

with glioma presenting high hepcidin expression than that of

patients with low hepcidin expression in the four glioma datasets

(Figure 2). In addition, the clinical prognostic significance of
B

C

A

FIGURE 7

Immune cell infiltration with the CIBERSORT algorithm (A) The abundance ratios of immune cells in the CGGA samples. The 22 specific immune
cells corresponding to one sample by different colors, as shown in the bar plot. (B) The varied proportions of 22 subtypes of immune cells in the
high and low hepcidin groups in tumor samples. Horizontal and vertical axes represent TIICs and relative percentages, respectively. Blue and red
colors represent the low and high hepcidin expression groups, respectively. (C) The correlation between immune infiltrating cells and hepcidin
expression. The ordinate represents the name of the immune cell, and the abscissa represents the correlation coefficient. *p < 0.05, **p < 0.01,
and ***p < 0.001.
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hepcidin in glioma patients was investigated. High hepcidin

expression was significantly correlated with the tumor grade,

age, PRS type, IDH mutation, chemotherapy status, and 1p19q

codeletion status in patients with glioma from CGGA datasets

(Figure 3). Through the univariate and multivariate independent

prognostic analyses of CGGA and TCGA datasets, we found that

hepcidin is useful as an independent prognostic factor for

glioma. At the same time, we constructed a prognostic model

based on the parameters of the multivariate model, and found
Frontiers in Oncology 14
that the model was stable in predicting the prognosis (Figure 4

and Supplementary Figure S2). Additionally, we found that

hepcidin expression was negatively correlated with

temozolomide sensitivity, indicating that the higher the

expression of hepdicin, the lower the IC50 value of

temozolomide in brain tumors based on the GDSC database

using the R package pRRophetic (Supplementary Figures S7A,

B). These results suggested that hepdicin may affected the

sensitivity of patients with GBM and LGG to temozolomide
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FIGURE 8

Analysis of the correlations between hepcidin expression and immune cell infiltration and immunotherapy. (A) hepcidin is significantly associated
with tumor purity and is positively correlated with the infiltration of different immune cells using the TIMER database. (B) The TME scores
between the high and low hepcidin expression groups in the CGGA database. (C) Comparison of the TMB between the high and low hepcidin
expression groups in the CGGA database. (D) The correlation between hepcidin expression and the TMB. (E) Scatterplots of the correlations
between hepcidin expression and PD-1, PD-L1 and CTLA-4 expression in LGG and GBM. (F) The effect of hepcidin on the expression of immune
checkpoint genes. The expression of various immune checkpoint genes between hepcidin high-expression group and hepcidin low-expression
group of patients with LGG or/and GBM was examined. (G) Comparison of TIDE scores between the hepcidin high-expression group and low-
expression group based on TCGA database. *p < 0.05, **p < 0.01, and ***p < 0.001.
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treatment (Supplementary Figures S7A, B). Together, hepcidin

may be an independent prognostic biomarker in glioma and may

facilitate the development of targeted precision oncology.

By using the GeneMANIA and STRING databases,

hepcidin-interacting genes and proteins were identified. The

results suggested that iron metabolism-related genes were

closely correlated with hepcidin expression. The function of
Frontiers in Oncology 15
hepcidin in glioma remains unclear, but one hypothesis is that it

is associated with local iron homeostasis. Furthermore, the

correlations between hepcidin and iron metabolism-related

genes were investigated based on the TCGA database.

Hepcidin was negatively and significantly correlated with CP,

FTH1 and FTL and negatively correlated with ACO1 and IREB2

in LGG and GBM (Figure 5). Human hepcidin is highly
BA

FIGURE 9

Expression of hepcidin at the single-cell level using the scTIME portal database. (A) UMAP plot of all cells from the original article using the
GSE138794 dataset (upper panel). UMAP plot of the hepcidin gene based on scRNA-seq data (middle panel). The expression of hepcidin in
different cells (lower panel). (B) UMAP plot of all cells from the original article using the GSE131928 dataset (upper panel). UMAP plot of the
hepcidin gene based on scRNA-seq data (middle panel). The expression of hepcidin in different cells (lower panel).
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expressed in hepatocytes. In the central nervous system, iron

enters the brain mainly through Tf receptor 1 (TFRC) and iron

transporters across the BBB (45, 46). First, the circulating iron-

Tf complex binds to TfR1 expressed on the endothelial surface of

the BBB to form a Fe3+-Tf-TfR1 complex. Then, after

internalization and acidification, iron is released in the form of

Fe2+, and Fe2+ is transported to the lysosomal membrane by

divalent metal ion transporter 1 (DMT1). If the iron in the cell

cannot be used immediately, it is usually stored in the form of
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ferritin in the form of Fe3+, which the body releases from ferritin

or during lysosome degradation as needed. In addition, iron can

enter the mitochondrial matrix through mitochondrial ferritin.

Only a small portion of iron can be used as a variable iron pool

in the ongoing biochemical process (45). The distribution of iron

in the brain is mainly concentrated in the pars compacta of the

substantia nigra, periventricular organs, globus pallidus and

oligodendrocytes, and its distribution is uneven in different

parts and different brain cells. Glial cells have the highest iron
TABLE 1 Correlation analysis between hepcidin and gene markers of immune cells in LGG and GBM in TIMER.

Description Gene markers LGG GBM

None Purity None Purity

Cor p Cor p Cor p Cor p

B cell CD19 0.345 *** 0.313 *** 0.225 ** 0.18 *

CD79A 0.28 *** 0.311 *** 0.278 *** 0.289 ***

T cell (general) CD3D 0.48 *** 0.46 *** 0.414 *** 0.218 *

CD3E 0.487 *** 0.474 *** 0.321 *** 0.143 0.0948

CD2 0.507 *** 0.492 *** 0.383 *** 0.188 *

CD8+ T cell CD8A 0.372 *** 0.31 *** 0.13 0.109 -0.003 0.976

CD8B 0.221 *** 0.182 *** 0.248 ** 0.129 0.134

Monocyte CD86 0.62 *** 0.597 *** 0.537 *** 0.335 ***

CSF1R 0.544 *** 0.51 *** 0.553 *** 0.376 ***

TAM CCL2 0.545 *** 0.295 *** 0.667 *** 0.56 ***

CD68 0.545 *** 0.405 *** 0.56 *** 0.374 ***

IL10 0.561 *** 0.392 *** 0.685 *** 0.548 ***

M1 IRF5 0.578 *** 0.557 ** 0.453 *** 0.253 **

PTGS2 0.214 *** 0.161 *** 0.475 *** 0.384 ***

NOS2 -0.099 * -0.113 * -0.144 0.0749 -0.103 0.233

M2 CD163 0.331 *** 0.32 *** 0.587 *** 0.448 ***

VSIG4 0.448 *** 0.405 *** 0.66 *** 0.52 ***

MS4A4A 0.375 *** 0.374 *** 0.657 *** 0.527 ***

Neutrophil CEACAM8 -0.063 0.156 -0.064 0.164 -0.096 0.239 -0.167 0.05132

ITGAM 0.61 *** 0.584 *** 0.536 *** 0.37 ***

CCR7 0.296 *** 0.291 *** 0.38 *** 0.261 **

Natural killer cell KIR2DL1 0.05 0.256 0.073 0.113 0.236 ** 0.195 *

KIR2DL3 0.174 *** 0.187 *** 0.035 0.669 -0.029 0.739

KIR2DL4 0.409 *** 0.418 *** 0.262 ** 0.19 *

KIR3DL1 0.012 0.782 0.017 0.704 0.041 0.618 -0.024 0.779

KIR3DL2 0.185 *** 0.18 *** 0.12 0.14 0.1 0.247

KIR3DL3 -0.021 0.632 -0.017 0.704 0.034 0.675 0.077 0.368

KIR2DS4 0.149 *** 0.144 *** 0.191 * 0.096 0.265

Dendritic cell HLA-DPB1 0.687 *** 0.676 *** 0.494 *** 0.331 ***

HLAD-QB1 0.549 *** 0.532 *** 0.328 *** 0.197 *

HLA-DRA 0.715 *** 0.7 *** 0.574 *** 0.402 ***

HLA-DPA1 0.675 *** 0.663 *** 0.432 *** 0.3 ***

CD1C 0.278 *** 0.274 *** 0.302 *** 0.111 0.197

NRP1 0.208 *** 0.234 *** 0.353 *** 0.294 ***

ITGAX 0.469 *** 0.43 *** 0.26 ** 0.107 0.211
frontie
*p < 0.05, **p < 0.01, and ***p <0.001.
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content, in which almost all Tf and different types of iron

metabolism-related proteins are expressed in the brain (46).

Therefore, glial cells are indispensable for maintaining iron

homeostasis and normal physiological function in the brain.

An increasing number of studies have shown that an increase in

serum hepcidin is associated with a variety of cancers (47). In
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addition, recent studies have shown that cancer cells produce

hepcidin. In breast cancer (48), prostate cancer (7, 47),

pancreatic cancer (49), lung cancer (21) and thyroid cancer

(50), hepcidin expression is significantly increased. More

importantly, the downregulation of tumor hepcidin expression

can also strongly inhibit tumor growth (51). In addition, some
TABLE 2 Correlation analysis between hepcidin and gene markers of different types of T cells in LGG and GBM in TIMER.

Description Gene markers LGG GBM

None Purity None Purity

Cor p Cor p Cor p Cor p

Th1 TBX21 0.227 *** 0.283 *** 0.016 0.847 0.08 0.351

STAT4 0.054 0.217 0.009 0.839 0.212 ** 0.002 0.981

STAT1 0.442 *** 0.434 *** -0.068 0.402 -0.017 0.846

TNF 0.251 *** 0.205 *** 0.384 *** 0.243 **

IFNG 0.238 *** 0.219 *** 0.075 0.358 0.037 0.665

Th1-like HAVCR2 0.657 *** 0.637 *** 0.6 *** 0.416 ***

IFNG 0.238 *** 0.219 *** 0.075 0.358 0.037 0.665

CXCR3 0.498 *** 0.48 *** 0.328 *** 0.193 *

BHLHE40 0.285 *** 0.214 *** 0.333 *** 0.281 ***

CD4 0.573 *** 0.557 *** 0.595 *** 0.421 ***

Th2 STAT6 0.492 *** 0.447 *** 0.358 *** 0.185 *

STAT5A 0.558 *** 0.518 *** 0.226 ** 0.118 0.168

Treg FOXP3 -0.167 *** -0.149 ** 0.098 0.226 0.03 0.727

CCR8 0.123 ** 0.135 ** 0.299 *** 0.2 *

TGFB1 0.515 *** 0.483 *** 0.405 *** 0.27 **

Resting Treg FOXP3 -0.167 *** -0.149 ** 0.098 0.226 0.03 0.727

IL2RA 0.236 *** 0.255 *** 0.568 *** 0.465 ***

Effector Treg FOXP3 -0.167 *** -0.149 ** 0.098 0.226 0.03 0.727

CCR8 0.123 ** 0.135 ** 0299 *** 0.2 *

TNFRSF9 0.134 ** 0.127 ** 0.431 *** 0.341 ***

Effector T cell CX3CR1 0.521 *** 0.486 *** 0.354 *** 0.271 **

FGFBP2 0.365 *** 0.329 ** 0.103 0.204 0.007 0.938

FCGR3A 0.731 *** 0.714 *** 0.709 *** 0.585 ***

Naïve T cell CCR7 0.296 *** 0.291 *** 0.38 *** 0.261 **

SELL -0.142 ** -0.169 *** 0.423 *** 0.289 ***

Effector memory T cell DUSP4 -0.107 * -0.087 0.0563 -0.025 0.755 0.01 0.91

GZMK 0.484 *** 0.476 *** 0.321 *** 0.155 0.0699

GZMA 0.482 *** 0.475 *** 0.414 *** 0.271 **

Resident memory T cell CD69 0.666 *** 0.639 *** 0.434 *** 0.277 **

CXCR6 0.454 *** 0.427 *** 0.362 *** 0.174 *

MYADM 0.243 ** 0.155 *** 0.25 ** 0.208 *

General
memory T cell

CCR7 0.296 *** 0.291 *** 0.38 *** 0.261 **

SELL -0.142 ** -0.169 *** 0.423 *** 0.289 ***

IL7R 0.339 *** 0.293 0.0181 0.404 *** 0.252 **

Exhausted T cell HAVCR2 0.657 *** 0.637 *** 0.6 *** 0.416 ***

LAG3 0.176 *** 0.211 *** -0.13 0.109 -0.087 0.314

CXCL13 -0.115 ** -0.07 0.125 0.305 *** 0.247 **

LAYN -0.12 ** -0.124 ** 0.341 *** 0.16 0.0611
frontiers
*p < 0.05, **p < 0.01, and ***p < 0.001.
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studies have shown that the increased expression of hepcidin

may increase the chemotherapy resistance of tumors (48). It is

speculated that this mechanism may be related to IL-6 (52, 53).

Hepcidin has been considered a particularly attractive target,

and agents that inhibit hepcidin are under active investigation as

potential therapies for cancer treatment. However, it should be

noted that too little hepcidin will cause iron deposition, which

can also lead to the formation and occurrence of tumors.

Therefore, the ways and methods of reducing hepcidin

expression still need to be further explored.

To further clarify the mechanism of hepcidin in the occurrence

and development of gliomas, KEGG and GO enrichment analyses

were used to explore the hepcidin-related pathways and biological

functions. Hepcidin was closely correlated with immunity

(Figure 6 and Supplementary Figure S3). Based on accumulating

evidence, TME plays an important role in the growth and invasion

of gliomas (42, 54, 55). The TME is a complex dynamic

evolutionary environment that mainly includes a variety of

immune cells, stromal cells and cytokines released by cells.

Cytokines and chemokines produced locally by tumors and their

interactions with extracellular matrix components reprogram

infiltrating immune cells to obtain different functional

phenotypes, which guide the immune system into inflammatory

or anti-inflammatory responses and then reshape the surrounding

microenvironment and promote tumor proliferation and

progression. At present, an increasing amount of data shows that

iron metabolism in the TME is also an important factor in

maintaining the survival of cancer cells. Cancer cells have unique

characteristics of iron metabolism, which provide the necessary

iron for the rapid proliferation and metastasis of cancer cells.

Compared with malignant tumor cells, the genetic stability of

normal cells in the TME determines the therapeutic stability of this

target (56). As a new treatment mode, immunotherapy has

attracted increasing attention from researchers (57). Various

preclinical studies have shown that immunotherapy-based

methods have been successful in animal models. A large number

of phase I and II clinical trials have shown that immunotherapy is

safe and, in some cases, prolongs OS and PFS (36, 58, 59). In

gliomas, the therapeutic effect of ICB has always been

unpredictable and uncommon, and only 8% of GBM patients

show a clear response (60, 61). Therefore, understanding the

factors and factors affecting the TME is of great significance to

the treatment of gliomas. Here, using the CIBERSORT algorithm

and TIMER web portal, we first report that high hepcidin

expression in glioma correlated with the increased infiltration of

B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and

dendritic cells (Figures 7 and Supplementary Figure S4). Single-cell

RNA sequencing analysis further suggested that hepcidin was

expressed at high levels in macrophages. Moreover, a significant

association between hepcidin and various immune cell marker sets

was observed in glioma (Table 1, Table 2). Hepcidin expression

was also positively correlated with PD-1 and CTLA-4 expression.

More importantly, we found that there was a significant positive
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correlation between hepcidin and TMB (Figure 8). Furthermore,

most immune checkpoint genes, including PD-1, PD-L1,

PDCD1LG2, CTLA4, HAVCR2, LAG3, TIGHT and SIGLEC15,

were highly expressed in the hepcidin high-expression group of

patients with LGG andGBM (Figure 8F). TIDEwas further used to

predict immunotherapy responses of different hepcidin expression

groups and to verify this conclusion. TIDE scores were lower in the

hepcidin low-expression group than in the hepcidin high-

expression group, implying that immunotherapy may provide a

greater benefit to patients in the hepcidin low-expression group

(Figure 8G). Our study identified important roles for and the

prognostic potential of hepcidin, a key factor involved in iron

metabolism, in glioma and its relationship with immunity, which

will provide a new idea for the clinical treatment of glioma.

However, our research still has many limitations. For

example, this research is mainly focused on the analysis of

databases. The roles of hepcidin must be validated in a larger

patient population. Second, we mainly analyzed the prognostic

value of hepcidin expression in glioma, the signaling pathways

involved and the relationship with immune cell infiltration using

bioinformatics methods. Additional in vivo and in vitro

experiments are required to verify the function of hepcidin.

Third, the specific mechanisms of the upstream and downstream

pathways of hepcidin remain to be further explored.

In summary, these findings suggest that hepcidin could be a

new target for immune-related glioma therapy. However, the

exact role of hepcidin in the tumor immune microenvironment

still needs to be further explored.
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SUPPLEMENTARY FIGURE 1

Analysis of the relationship between hepcidin expression and clinical

features of patients in TCGA dataset. (A)The relationship between
hepcidin expression and clinical features of patients in TCGA dataset.
Frontiers in Oncology 19
(B) Relationships between hepcidin expression and different clinical
features. ***p < 0.001.

SUPPLEMENTARY FIGURE 2

Cox regression analysis and establishment of the prognostic model using
TCGA dataset. (A) The univariate analysis of hepcidin expression in TCGA

dataset. (B) The multivariate analysis of hepcidin expression in TCGA dataset.
(C) The nomogram was constructed based on four factors for predicting 1-

year, 3-year or 5-year survival of patients with glioma in TCGA. (D) The

calibration plots of internal validation in TCGA dataset showed good
consistency in predicting 1-year, 3-year or 5-year survival. (E) The 1-year, 3-

year and 5-year ROC curves for TCGA dataset. **p < 0.01 and ***p < 0.001.

SUPPLEMENTARY FIGURE 3

Functional analysis of DEGs between high and low hepcidin expression

groups using TCGA dataset. (A) Heatmaps of the DEGs between hepcidin

high and low expression groups. (B, C) The GO and KEGG analyses of
DEGs. (D, E) GSEA of GO (D) and KEGG (E) analyses of hepcidin high and

low expression groups in TCGA dataset.

SUPPLEMENTARY FIGURE 4

Analysis of immune cell infiltration with the CIBERSORT algorithm in

TCGA database. (A) The abundance ratios of immune cells in TCGA

samples. The 22 specific immune cells that corresponded to one
sample are indicated with different colors in the bar plot. (B) The

correlation analysis of cells in TCGA database. (C) The changes in the
proportions of 22 subtypes of immune cells in high and low hepcidin

expression groups of tumor samples. Horizontal and vertical axes
represent TIICs and relative percentages, respectively. Blue and red

colors represent low and high hepcidin expression groups, respectively.

SUPPLEMENTARY FIGURE 5

Hepcidin expression in different cells was analyzed in GSE84465,
GSE89567, GSE131928, GSE148842 and GSE138794 datasets using the

TISCH database.

SUPPLEMENTARY FIGURE 6

The correlations between hepcidin and expression of macrophage
markers based on the TCGA database. (A) Scatterplots of the

correlations between hepcidin expression and CD163, CD68, MARCO,
MRC1, MSR1 and FCGR3A expression in GBM. (B) Scatterplots of the

correlations between hepcidin expression and CD163, CD68, MARCO,
MRC1, MSR1 and FCGR3A expression in LGG.

SUPPLEMENTARY FIGURE 7

The effect of hepcidin expression on temozolomide sensitivity. (A) The
higher the expression of hepdicin, the lower the IC50 value of

temozolomide in brain tumors. (B) Hepcidin expression was negatively

correlated with temozolomide sensitivity in brain tumors. ****p < 0.0001.
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