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Objectives: Although the preoperative assessment of whether a bladder cancer

(BCa) indicates muscular invasion is crucial for adequate treatment, there

currently exist some challenges involved in preoperative diagnosis of BCa

with muscular invasion. The aim of this study was to construct deep learning

radiomic signature (DLRS) for preoperative predicting the muscle invasion

status of BCa.

Methods: A retrospective review covering 173 patients revealed 43 with

pathologically proven muscle-invasive bladder cancer (MIBC) and 130 with

non–muscle–invasive bladder cancer (non- MIBC). A total of 129 patients were

randomly assigned to the training cohort and 44 to the test cohort. The

Pearson correlation coefficient combined with the least absolute shrinkage

and selection operator (LASSO) was utilized to reduce radiomic redundancy. To

decrease the dimension of deep learning features, Principal Component

Analysis (PCA) was adopted. Six machine learning classifiers were finally

constructed based on deep learning radiomics features, which were adopted

to predict the muscle invasion status of bladder cancer. The area under the

curve (AUC), accuracy, sensitivity and specificity were used to evaluate the

performance of the model.

Results: According to the comparison, DLRS-based models performed the

best in predicting muscle violation status, with MLP (Train AUC: 0.973260 (95%

CI 0.9488-0.9978) and Test AUC: 0.884298 (95% CI 0.7831-0.9855))

outperforming the other models. In the test cohort, the sensitivity, specificity

and accuracy of the MLP model were 0.91 (95% CI 0.551-0.873), 0.78 (95% CI

0.594-0.863) and 0.58 (95% CI 0.729-0.827), respectively. DCA indicated that

the MLPmodel showed better clinical utility than Radiomics-only model, which

was demonstrated by the decision curve analysis.
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Conclusions: A deep radiomics model constructed with CT images can

accurately predict the muscle invasion status of bladder cancer.
KEYWORDS

radiomics, deep learning, bladder cancer, machine learning, convolutional neural
network (CNN)
Introduction

BCa is one of the world’s 10 most common cancers (1), of

which more than 500,000 newly diagnosed cases and about

200,000 deaths are reported worldwide every year (2). Over 90%

of all malignant cases of BCa are derived from urothelial

carcinoma, which is recognized as the most prevalent

histological type of BCa (3). BCa can be divided into two types

depending on how deep the tumor has infiltrated: no-muscle-

invasive and muscle-invasive. Depth of tumor infiltration affects

the management and prognosis of patient, which means that an

accurate preoperative staging is rather vital for making

appropriate therapeutic decisions for patients with BCa (4, 5).

The EAU guidelines recommend radical cystectomy for MIBC

patients and bladder preservation for non- MIBC patients (6).

MIBC can be diagnosed by histopathology. A biopsy

following transurethral resection of a bladder tumor (TURBT)

and a cystoscopy serve as the gold standard for the diagnosis of

BCa. However, cystoscopy can induce a variety of complications,

such as urethral injury and urinary tract infection. Additionally,

due to the limited positioning, the collected biopsy specimens

are relatively less and fail to reflect the overall scope of the

tumor, resulting in the underestimation of the stage of the

tumor (7).

In addition, several studies have reported muscle infiltration

during subsequent radical cystectomy in some of the patients

diagnosed with stage T1 who underwent TURBT. As a result,

those patients with inadequate staging may experience a

recurrence of the disease due to inadequate treatment.

Computed tomography (CT) often serves as a common non-

invasive imaging modality to diagnose patients with suspected

BCa. However, the accuracy of CT in preoperative staging only

reaches 35-40%. MRI is more accurate than CT in this way, but

its high cost, prolonged scanning times, and several utilization

contraindications limit the widespread use of MRI. Therefore,

the development of a more accurate technique to assess BCa

invasiveness is required.

Radiomics is an emergent imaging analysis, in which the

radiological images are quantified so as to provide novel imaging

biomarkers (8). The radiomics can contribute to elevating the

accuracy of diagnosis, prognosis, and prediction, especially in
02
oncology (9).In recent years, DL approaches have made major

breakthroughs in computer vision, benefitting from the rapid

expansion of data volume and computing capacity. Among the

deep learning models applied in image analysis, convolutional

neural networks are widely adopted, through which effective

feature data can be extracted from image data and the inner

structure of feature data can be learned for classification. CNNs

is capable of automatically learning deep features of the input

data, involving attributes, contour characteristics, location

information and other high-dimensional information of the

image object, which greatly elevates the recognition rate of the

object. For certain cancer diagnosis, deep learning algorithm

have achieved expert-level performance in segmentation and

classification of medical images (10, 11).Neural networks usually

requires huge amounts of data for training, however, it is difficult

to obtain the high-quality labeled medical image in the real

world. Considering this, transfer learning acts as a useful strategy

for employing CNNs to medical image categorization (12, 13).

Multiple studies, for example, suggest that CNNs pretrained on

ImageNet data may be utilized to develop medical image

classification models (14, 15).We hypothesized that deep

learning features extracted from CT images could be utilized

to modify the radiomics models for predicting MIBC.

Consequently, the purpose of this research is to investigate the

potential of using DLR to develop ML models based on

enhanced CT combined with radiomics for distinguishing

MIBC from non- MIBC.
Materials and methods

Figure 1 shows our workflow. This retrospective analysis

obtained ethical approval and waived the informed consent

requirement. We retrospectively reviewed the medical charts

of patients with BCa who received surgical treatments from

April 2017 to December 2021. Inclusion criteria for patients

were described as follows: (1) patients who underwent surgery

and following treatment at Zhongshan people’s hospital from

April 2017 to December 2021 with pathologically confirmed

urothelial carcinoma; and (2) patients with histopathologically

confirmed BCa by radical or partial cystectomy or TURBT
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within 4 weeks of CT scans. (1) patients had received

chemotherapy or radiotherapy prior to surgery; (2) poor

bladder filling or image quality; (3) tumors found during

cystoscopy that were not visible on preoperative CT scans; and

(4) postoperative pathological specimens lacking detrusor

muscle. From the medical records, baseline clinical-pathologic

data including age, sex, hydronephrosis status, and pathologic T

stage were obtained from the medical records. The TNM staging

system according to the 8th edition of the International Union

Against Cancer. Patient enrollment and exclusion details are

shown in Figure 2.
Statistical analysis

In the training and testing cohorts, the clinical and

pathological data were analyzed using Python 3.7.0 software. An

analysis of diagnostic performance was conducted using ROC

curves, area under the curve (AUC), and accuracy, sensitivity, and

specificity as measures of diagnostic performance.
Imaging equipment

CT imaging examinations were performed using the Philips

ICT 256 and the Philips IQon spectral CT. Device parameters

are as follows: tube voltage 120 kV or 130kv, with activated
Frontiers in Oncology 03
automatic tube current modulation, collimation 64 × 0.6 mm

(Philips ICT 256) or 64 × 0.625 mm (Philips IQon spectral CT);

pitch 0.9; image matrix 512× 512; slice thickness/slice interval 1

mm/1 mm (Philips ICT 256) or 0.683 mm/0.751 mm (Philips

IQon spectral CT). Pixel spacing 0.605-0.751mm. The patients

were scanned from the hemidiaphragm to the pelvic foor.The

patients were injected with 100 mL of iopamidol or 80 mL of

ioversol intravenously, followed by a 50 mL saline chaser at a

rate of 3 mL/s. Corticomedullary-phase, nephrographic-phase,

and excretory-phase images were obtained at 30 s, 60 s, and 300 s

after the threshold was achieved in the thoracoabdominal aorta

junction, respectively.
Data preprocessing and tumor
segmentation

Uneven voxel spacing in medical volumes is common due to

the various acquisition protocols of each scanner, which we

resolve using fixed resolution resampling algorithms. We

manually delineated the region of interest for the entire tumor

using ITK-SNAP (version 3.6.0; http://itk-snap.org). When a

patient had multiple tumors, the maximum lesion was

segmented for the features extraction. Lesions that could not

be seen on the CT image or were less than 0.5 cm in size were

not annotated.
FIGURE 1

Workflow of our study. First, ROI segmentation is performed. Then, radiomics features and deep learning features are extracted and modeling
and model test are performed. MLP Multilayer Perceptron.
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Interobserver reproducibility assessment

Interclass correlation coefficients (ICC) were used to

measure ROI delineation reproducibility. A urologist manually

delineated the region of interest (ROI) on CT images from 30

patients selected at random. Four weeks later, another urologist

performed a repeat segmentation of the ROI region on these 30

patients. ICCs greater than 0.80 were considered to be

good agreements.
Results

Patients’ characteristics

We collected 173 patients in this study. 129(75%)

patients were used as the training cohort, and 44 patients
Frontiers in Oncology 04
were used as the test cohort. Training and test cohorts

included the following clinical characteristics: age,

number of lesions, therapeutic approach, number of lesions,

and hydronephrosis status. We compared the clinical

characteristics of the patients using an independent sample t

test, Mann-Whitney U test, or c2 test, where appropriate.

Clinical characteristics of patients in the training cohort and

test cohort are shown in Table 1. Table 2 shows the

distribution of the clinical characteristics of the patients in

the training and test sets. Differences were considered

statistically Significant for p< 0.05. There were no significant

differences of exact number of lesions, Gender, Therapeutic

approach, Number of lesions and age in the training and

test cohorts. As shown in Table 2, there were no differences

between the tra in ing and tes t ing cohorts in age ,

hydronephrosis status, gender, therapeutic approach, or

number of lesions.
FIGURE 2

Flow diagram of patient enrollment and exclusion. muscle-invasive bladder cancer (MIBC), non–muscle–invasive bladder cancer (non- MIBC).
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Radiomics feature extraction

All CT images were resampled to a voxel size of 1 × 1 × 1

mm and discretized to grayscale with the bandwidth set to 5

before extracting radiomics features. The CT image extracts

radiomic features using PyRadiomics (version:3.0.1). After

PyRadiomics processing, we obtained a total of 107 categories

of radiomics features. The 107 categories of radiomics features

include 18 geometry features, 14 intensity features, and 75

texture features. Most of the features are based on the Imaging

Biomarker Standardization Initiative’s Feature Definitions
Frontiers in Oncology 05
(IBSI) (16). 1735 radiomics features were obtained using LoG

(s:1.0, 2.0, 3.0), Wavelet, LBP3D, Exponential, Square,

SquareRoot, Logarithm, and Gradient transform. The details

of these parameters are shown at (https://pyradiomics.

readthedocs.io/en/latest/customization.html).
Feature selection

The intraclass correlation coefficients (ICCs) are used to

evaluate the reproducibility of image features extracted from CT
TABLE 1 Comparison of the clinical characteristics of the enrolled patients in the training and test sets.

Characteristics Training cohort(n=129) Test cohort (n=44)

MIBC non- MIBC ALL P value MIBC non- MIBC ALL P value

Age 68.1250 ± 10.7065 66.7216 ±
12.9605

67.0698 ±
12.4142

0.58122896 62.2727 ±
8.7646

64.4545 ±
12.5202

63.9091 ±
11.6376

0.596155872

Exact number of lesions 1.2500 ± 0.6222 1.2577 ± 0.7675 1.2558 ± 0.7319 0.95891122 1.3636 ± 0.6742 1.1212 ± 0.3314 1.1818 ± 0.4458 0.119461671

Gender 0.91801102 0.100118555

Male 6(0.1875) 19(0.1959) 25(0.1938) null 7(0.2121) 7(0.1591)

Female 26(0.8125) 78(0.8041) 104(0.8062) 11(1.0000) 26(0.7879) 37(0.8409)

Hydronephrosis <0.001 <0.001

Yes 12(0.3750) 5(0.0515) 17(0.1318) 4(0.3636) null 4(0.0909)

No 20(0.6250) 92(0.9485) 112(0.8682) 7(0.6364) 33(1.0000) 40(0.9091)

Therapeutic approach 0.05545129 0.014801282

Cystectomy 9(0.2812) 13(0.1340) 22(0.1705) 3(0.2727) 1(0.0303) 4(0.0909)

TURBT 23(0.7188) 84(0.8660) 107(0.8295) 8(0.7273) 32(0.9697) 40(0.9091)

Number of lesions 0.77081506 0.24399552

Multiple 6(0.1875) 16(0.1649) 22(0.1705) 3(0.2727) 4(0.1212) 7(0.1591)

Single 26(0.8125) 81(0.8351) 107(0.8295) 8(0.7273) 29(0.8788) 37(0.8409)
fro
SD, standard deviation; MIBC, muscle-invasive bladder cancer; non- MIBC, non-muscle-invasive bladder cancer.
TABLE 2 Clinical characteristics of Bca patients in the training and test sets.

Characteristics ALL Training cohort (n=129) Test cohort (n=44) pvalue

Age, mean ± SD, years 66.2659 ± 12.2659 67.0698 ± 12.4142 63.9091 ± 11.6376 0.140423502

Exact number of lesions, mean ± SD, Number 1.2370 ± 0.6703 1.2558 ± 0.7319 1.1818 ± 0.4458 0.528753697

Gender 0.611104898

Male 32(0.1850) 25(0.1938) 7(0.1591)

Female 141(0.8150) 104(0.8062) 37(0.8409)

Hydronephrosis 0.476321023

Yes 21(0.1214) 17(0.1318) 4(0.0909)

No 152(0.8786) 112(0.8682) 40(0.9091)

Therapeutic apporach 0.204023849

Cystectomy 26(0.1503) 22(0.1705) 4(0.0909)

TURBT 147(0.8497) 107(0.8295) 40(0.9091)

Number of lesions 0.861599096

Multiple 29(0.1676) 22(0.1705) 7(0.1591)

Single 144(0.8324) 107(0.8295) 37(0.8409)
SD, standard deviation; MIBC, muscle-invasive bladder cancer; non- MIBC, non-muscle-invasive bladder cancer.
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images. The features with ICCs > 0.80 were kept after analysis. In

the end, 1616 radiomic features were retained after robustness

assessment. After that, we calculated the correlation coefficient

between each image feature using the Spearman rank correlation

coefficient. One feature is randomly removed if the correlation

coefficient between any two features is greater than 0.9. To

preserve the capacity to depict features to the maximum degree

possible, we use a greedy recursive deletion strategy for feature

filtering, in which the feature with the greatest redundancy in the

current cohort is removed each time.
Deep learning feature extraction

Before extracting the DTL features, images of the largest

slice of the tumor area were selected to represent the patient.

Then, the image grayscale values are normalized to the range (–

1, 1) using a min-max transformation. The size of the

cropped image was resized to 224*224 pixels. Due to

the limited dataset, the resnet50 model (Figures 3) was

trained on the ILSVRC-2012 dataset before extracting the

deep learning features. Finally, the resnet50 model extracted

and output 2048 features. In order to prevent overfitting and

improve generalization, PCA was used to reduce the dimension

of these features to 128. Pytorch is used to implement the deep

learning framework of our network.

As a result of the leak of image data, we carefully cohort the

learning rate to achieve better generalization. In this study, we

adapted the cosine decay learning rate algorithm. Our learning

rate is as follows:

ht = hi
min +

1
2

hi
max − hi

min

� �
1 + cos

Tcur

Ti
p

� �� �

hi
min = 0, hi

max , =0.01, Ti =30 Represents the minimum

learning rate, the maximum learning rate, and the number of

iteration epochs, respectively. Other hyperparameter

configurations are as follows: optimizer: SGD, loss function:

sigmoid cross entry.
DLR signature building

We further explored whether model performance could be

improved by fusing radiomics and deep learning features. Using

1735 radiomics features and 128 deep transfer learning features,

we constructed a deep learning radiomics (DLR) signature. To

obtain optimal features, we further reduce the dimensions of the

fused features by LASSO after we have reduced and compressed

the features using ICC, Spearman rank correlation coefficient,

and PCA. In LASSO, the coefficients of many irrelevant features

are set to zero entirely, depending on the weights l. A minimum

standard of 10-fold cross-validation was used in order to
Frontiers in Oncology 06
determine the optimal l, where the final value of l produced

the smallest cross-validation error (Figures 4A, B). The DLR

signature is constructed by linearly combining non-zero

coefficients. By combining selected features weighted by their

coefficients, Rad-scores is calculated by a linear combination of

non-zero coefficients from selected features selected by LASSO.

Ultimately, we selected 30 coefficients that contain 11 radiomics

features and 19 deep learning features. Figure 5 shows the Rad-

score histogram.

DLR= 0.21000371276202448 -0.011196 * DL-0 -0.003878 *

DL-1 -0.015362 * DL-6 +0.014477 * DL-15 +0.003652 * DL-55

-0.017882 * DL-67 -0.013772 * DL-69 -0.013185 * DL-75

+0.039252 * DL-76 -0.007971 * DL-77 +0.023570 * DL-78

-0.008322 * DL-83 +0.001110 * DL-89 +0.007005 * DL-92

+0.006138 * DL-96 +0.018146 * DL-111 +0.003174 * DL-113

+0.025918 * DL-115 +0.004912 * DL-120 -0.001756 *

exponential_gldm_LargeDependenceLowGrayLevelEmphasis

+0.063979*exponential_glrlm_LongRunHighGrayLevel

Emphasis-0.011250*exponential_glr lm_LongRunLow

GrayLevelEmphasis+0.022313*exponential_glszm_SizeZone

NonUniformity+0.002403*lbp-3D-m2_glcm_ClusterShade-

0 . 0 2 8 1 8 3 * o r i g i n a l _ s h a p e _ F l a t n e s s - 0 . 0 5 4 4 9 0 *

o r i g i n a l _ s h a p e _ S p h e r i c i t y - 0 . 0 1 3 3 2 0 * w a v e l e t -

HHL_firstorder_Mean+0.023863*wavelet-HHL_glcm_Idn

+0.004126*wavelet-LHH_glcm_Idn+0.023375*wavelet-

LHL_glszm_LargeAreaHighGrayLevelEmphasis
Model construction

Predictive models were constructed using radiomics

combined with deep transfer transfer learning features. A

variety of machine learning algorithms were tested, including

LR、SVM、KNN、Random Forest、ExtraTrees、XGBoost、

LightGBM, and deep learning-multilayer perception (MLP).

With cross-test, all model parameters were optimized using

scikit-learn’s GridSearch function. The MLP model uses three

hidden layers with hidden dims of 256, 128, and 64. Adam

optimizes and the learning rate is cohort to be 0.0001. Deep

learning and radiomics signature building and model evaluation

Described in detail in the Supplementary Material.
Model performance evaluation

In the training and test cohorts, the MLP model performed

well, achieving AUC of 0.973 (95% CI: 0.948-0.997) and 0.884

(95% CI: 0.783-0.985) respectively. In the training cohort, this

MLP model had 93% accuracy, 96.87% sensitivity, 91.75%

specificity, 79.48% NPV, and 98.88% PPV. In the test cohort,

the model achieved accuracy, sensitivity, specificity, PPV, and

NPV of 81.81%, 90.90%, 78.78%, 58.82%, and 96.29%,

respectively. As shown in Figures 6A, B, ROC curves were
frontiersin.org
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constructed for each MLP model and the AUC was calculated

for each ROC curve. The diagnostic performance of the above

machine learning models is shown in Table 3. The results of the

radiology-only approach and the deep transfer learning

approach have been described in detail in the Supplementary

Material. Figure 7 shows the decision curve analysis based on,

Radiomics-only Model, and the Deep Learning-Based

Radiomics Model.
Discussion

In this study, deep learning and radiomic feature extraction

from CT images were involved to develop MIBC and NO-MIBC

classification models. An AUC of 0.78 (95% CI 0.637-0.928) was

achieved by the MLP model constructed with radiomic features

for assessing muscle invasion in BCa. The MLP model with

radiomic features and deep learning features achieved better

diagnostic performance, which was validated in the test cohort

with an AUC value of 0.884 (95% CI 0.783-0.986).

The accurate staging of BCa is critical to minimizing the risk

of under-or over-treatment. It is general for BCa patients to

determine their stage by undergoing a CT scan. However, the

diagnostic value of CT images for T-stage bladder cancer is

limited due to the relatively poor soft tissue contrast of CT

images. Usually, CT is used to evaluate bladder cancer at T3 and

higher stages (5). The soft tissues are detected by MRI, as is more

sensitive than a CT scan. Nevertheless, some downsides of MRI

such as high cost and long exam duration, limit its widespread

use for these applications. Most traditional medical image

assessments are rooted in qualitative features like tumor

density, enhancement pattern, regularity of tumor margins,

and anatomical relationship to surrounding tissues. In

contrast, radiomics analysis extracts high-throughput

quantitative features from medical images, enabling the

objective evaluation of medical images, which overcome the

disadvantage of assessing medical images depending on

radiologists’ experience. Radiomics as a promising method for

preoperative staging of bladder cancer has displayed

good results.

In the staging of bladder cancer, diagnostic potential has

been demonstrated in radiomics. Kozikowski et al. (17),

summarized eight relevant radiomics studies, showing high

diagnostic performance of radiomics in predicting MIBC.

There exhibited an overall 82% (95% CI: 77-86%) sensitivity

and 81% (95% CI: 76-85%) specificity for predicting BCa

muscle invasion status. Zhang et al. (18), collected 441

patients from two medical centers and randomly divided

them into three cohorts: a training cohort of 293 patients;

an internal test cohort of 73 patients; and an external test

cohort of 75 patients. A logistic regression model was

developed based on eight imaging radiomic features, of
FIGURE 3

ResNet50 Architecture.
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which the accuracy was validated on internal and external

cohorts, achieving an AUC of 0.820 (95% CI 0.698-0.941) in

the internal test cohort, and 0.784 (95% CI 0.674-0.893) in the

external test cohort. Garapati et al. (19), developed a machine

learning model for assessing bladder cancer staging by

analyzing the morphological and textural characteristics of

83 bladder tumors. In both test cohorts, the AUCs of the ANN

(Artificial Neural Network) classifier were 0.89 and 0.92,

respectively. However, the above study only focused on the

radiomic features of CT images.

Deep learning features of convolutional neural networks

have been shown to be highly accurate in predicting survival,

molecular subtypes, and recurrence in bladder cancer patients in

many studies (20, 21). To date, fewer studies have examined the

application of deep learning techniques in the preoperative

staging of bladder cancer. Compared to radiomics, deep
Frontiers in Oncology 08
learning methods do not require manual outlining of ROI

regions, which can reduce contour variations of different

manual segmentations.

In order to develop a deep learning model to predict the

muscle invasiveness of bladder cancer, Zhang et al. (22). used

Enhanced CT Images. The model they studied obtained AUC of

0.791 (95% CI, 0.678-0.904) in an external validation cohort.

Another study found that a CT-based deep learning convolution

neural network model could achieve AUCs of 0.997 for

preoperative prediction of BCa muscle invasive status (23).

However, they only used deep learning features to assess the

preoperative muscle infiltration status of Bca and did not

incorporate radiomic features.Numerous studies have been done

to combine radiomics with deep learning features to increase

model prediction performance, despite the lack of interpretability

of deep deep learning features.In this study, we propose a deep
A B

FIGURE 4

(A) MSE of cross test. (B) Based on the optimal l value of 0.0449 with log(l) = 0.044984 features were selected.
FIGURE 5

Rad-score histogram based on selected features.
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learning radiomics model for the accurate assessment of muscle

invasion status in BCa patients preoperatively.The significance of

the association between the radiomic and depth-learning features

and the expression of the depth of tumor cell infiltration was

quantified along with these features. The DLRS-based models

attained an AUC of 0.884298(95% CI 0.7831-0.9855), which was

the highest. To our knowledge, this is the first study to use deep

learning radiomics to forecast the status of muscle infiltration in

bladder cancer prior to surgery. Our study shows that the deep
Frontiers in Oncology 09
learning features extracted using resnet50 are complementary to

the radiomics features.

The dimensions of raw features of the image extracted using

resnet50 will reach 2048, posing great difficulty in the processing

of the classifier in the later stage. PCA (Principal Component

Analysis), also known as the principal component analysis

method, is one of the most widely adopted algorithms for data

dimensionality reduction. Since PCA can reduce the

dimensionality of raw features while minimizing the loss of
FIGURE 7

The decision curve analysis of all models for patients.
A B

FIGURE 6

In the above figure, the performance of the MLP model is shown under the radiomics-only approach, the deep transfer learning approach, and
the deep learning radiomics-based signature approach. Rad, Radiomics; DTL, Deep Transfer Learning; DLR, Deep Learning Radiomics. (A) Model
performance in the training set. (B) Model performance in the test set.
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raw data,it was used in this study to reduce the dimensionality of

deep learning features. We found that the discriminatory

capability of the model incorporating deep learning features

with radiomics features was enhanced in comparison to the

model with radiomics only, demonstrating the value of deep

learning features in the diagnosis of cancer. This result has also

been found in other studies in the field of medical imaging

(15, 24).

Convolutional neural networks as a deep learning technique

are widely used for image recognition, which can automatically

extract features from images based on convolutional operations,

enabling them to detect subtle differences between MIBC and

NO-MIBC. We selected Resnet50 as our deep learning feature

extractor. With the residual block, Resnet network architecture

is deeper and more capable of capturing subtle features in images

in comparison to other CNN architectures. Therefore, Resnet is

often employed for deep learning feature extraction from

medical images, accompanied with excellent performance in

this regard, which was also demonstrated by other medical
Frontiers in Oncology 10
image studies. The muscle invasion status of bladder cancer

patients was predicted using deep learning features that were

extracted through transfer learning techniques, with an AUC of

0.76 achieved in the test cohort. For the failure of the transfer

learning model to outperform the radiomics-only model, a

possible explanation is that the neural network was initialized

with pre-trained model weights obtained from ImageNet rather

than medical images. Despite the unsatisfactory results, this

study provides evidence that deep convolutional neural

networks can extract information used for BCa staging from

CT images, laying the groundwork for future research in

this field.

There were several limitations to this study. First, the present

study is a retrospective analysis involving only one center;

therefore, prospective studies from multiple centers will be

necessary to validate the model’s predictive capabilities.

Second, compared to other studies, our machine learning

models constructed using only radiomics features performed

poorly. The most likely explanation is that the imbalance
TABLE 3 Performance of the machine learning in the training and testing cohorts.

Model
name

Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Precision Recall F1
Score

Threshold Data-
cohort

SVM 0.992248 0.999356 0.9978 -
1.0000

1.000000 0.989691 0.969697 1.000000 0.969697 1.000000 0.984615 0.228051 train

SVM 0.727273 0.754821 0.5900 -
0.9196

0.727273 0.727273 0.470588 0.888889 0.470588 0.727273 0.571429 0.302342 test

KNN 0.775194 0.853254 0.7894 -
0.9171

0.812500 0.762887 0.530612 0.925000 0.530612 0.812500 0.641975 0.400000 train

KNN 0.772727 0.825069 0.7002 -
0.9500

0.636364 0.818182 0.538462 0.870968 0.538462 0.636364 0.583333 0.400000 test

RandomForest 0.976744 0.999517 0.9984 -
1.0000

1.000000 0.969072 0.914286 1.000000 0.914286 1.000000 0.955224 0.300000 train

RandomForest 0.613636 0.641873 0.4490 -
0.8348

0.636364 0.606061 0.350000 0.833333 0.350000 0.636364 0.451613 0.300000 test

ExtraTrees 1.000000 1.000000 nan - nan 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 train

ExtraTrees 0.704545 0.782369 0.6301 -
0.9347

0.727273 0.696970 0.444444 0.884615 0.444444 0.727273 0.551724 0.300000 test

XGBoost 0.945736 0.984214 0.9639 -
1.0000

0.937500 0.948454 0.857143 0.978723 0.857143 0.937500 0.895522 0.380025 train

XGBoost 0.704545 0.673554 0.4862 -
0.8609

0.636364 0.727273 0.437500 0.857143 0.437500 0.636364 0.518519 0.293565 test

LightGBM 0.968992 0.975515 0.9502 -
1.0000

0.937500 0.979381 0.937500 0.979381 0.937500 0.937500 0.937500 0.333712 train

LightGBM 0.772727 0.716253 0.5387 -
0.8938

0.545455 0.848485 0.545455 0.848485 0.545455 0.545455 0.545455 0.279661 test

MLP 0.930233 0.973260 0.9488 -
0.9978

0.968750 0.917526 0.794872 0.988889 0.794872 0.968750 0.873239 0.307806 train

MLP 0.818182 0.884298 0.7831 -
0.9855

0.909091 0.787879 0.588235 0.962963 0.588235 0.909091 0.714286 0.214518 test

LR 0.914729 0.975515 0.9521 -
0.9989

0.968750 0.896907 0.756098 0.988636 0.756098 0.968750 0.849315 0.276470 train

LR 0.727273 0.768595 0.6065 -
0.9306

0.727273 0.727273 0.470588 0.888889 0.470588 0.727273 0.571429 0.116137 test
fron
AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.
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between non- MIBC and MIBC in our sample affected the

results. Third, we used only the arterial phase of the CT

images in our analysis but we will add venous and excretory

phase images in the future. Fourth, the model may be limited to

some extent by a selection bias. Patients who received

preoperative treatment and those with no visible tumor on

preoperative enhanced CT images were excluded. As a result,

it is unclear whether the proposed model will be effective for

them. Due to the limitations of the data cohort, we chose a

transfer learning strategy to train the resnet50 model, and in

future studies we hope to avoid overfitting by pre-training the

deep learning model on large medical images. Manual

segmentation achieved good agreement in this study, and

semantic segmentation models could be used in future studies

to increase the reproducibility of the work (25).

In summary, by extracting radiomics features and DLR from

CT images, we constructed various machine learning classifiers

to distinguish MIBC from non- MIBC, and the results indicated

that DLR Signature-based MLP provided great clinical utility in

distinguishing non- MIBC from MIBC.
Conclusions

We developed and validated deep learning and radiomics

models based on CT images to distinguish MIBC from non-

MIBC and found that they were superior to models constructed

using radiomics features only.
Data availability statement

The datasets presented in this article are not available for

public access due to patient privacy concerns but can be obtained

from the corresponding author on reasonable request approved

by the institutional review boards of all participating institutions.

Requests to access the datasets should be directed to RQY,

zsrm2022@163.com.
Ethics statement

The requirement for informed consent was waived, and this

retrospective study was approved by the Zhongshan City
Frontiers in Oncology 11
People's Hospital Clinical Research and Animal Experiment

Ethic Committee.
Author contributions

Working concept or design: WTC, RQY. Data collection:

DSZ, JK, FJ. SXF. Drafting the paper: WTC, MCG, WTC

analysised the data. Making significant revisions to the paper:

RQY, WTC. All authors contributed to the article and approved

the submitted version.
Acknowledgments

Our experiments were carried out on OnekeyAI platform.

Thank OnekeyAI and it’s developers’ help in this scientific

research work.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.1019749/full#supplementary-material
References
1. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer
incidence and mortality: A global overview and recent trends. Eur urol (2017) 71
(1):96–108. doi: 10.1016/j.eururo.2016.06.010

2. Lenis AT, Lec PM, Chamie K, Mshs MD. Bladder cancer: A review. Jama
(2020) 324(19):1980–91. doi: 10.1001/jama.2020.17598
3. Verma S, Rajesh A, Prasad SR, Gaitonde K, Lall CG, Mouraviev V, et al.
Urinary bladder cancer: Role of MR imaging. Radiographics (2012) 32(2):371–87.
doi: 10.1148/rg.322115125

4. van de Putte EEF, Behrendt MA, Pigot GLS, van der Kwast TH, van Rhijn
BWG. Prognostic significance of substage and WHO classification systems in T1
frontiersin.org

mailto:zsrm2022@163.com
https://www.frontiersin.org/articles/10.3389/fonc.2022.1019749/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.1019749/full#supplementary-material
https://doi.org/10.1016/j.eururo.2016.06.010
https://doi.org/10.1001/jama.2020.17598
https://doi.org/10.1148/rg.322115125
https://doi.org/10.3389/fonc.2022.1019749
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2022.1019749
urothelial carcinoma of the bladder. Curr Opin Urol (2015) 25(5):427–35. doi:
10.1097/MOU.0000000000000202

5. Baldauf A, Koch R, Heberling U, Thomas C, Froehner M, Bruins HM, et al.
European Association of urology guidelines on muscle-invasive and metastaticbladder
cancer: Summary of the 2020 guidelines. Eur Urol (2021) 79(1):82–104.

6. Milowsky MI, Rumble RB, Lee CT. Guideline on muscle-invasive and
metastatic bladder cancer (European association of urology guideline): American
society of clinical oncology clinical practice guideline endorsement summary. J
Oncol Pract (2016) 12(6):588–U250. doi: 10.1200/JCO.2015.65.9797

7. Baldauf A, Koch R, Heberling U, Thomas C, Froehner M, Bruins HM, et al.
European Association of urology guidelines on muscle-invasive and metastatic
bladder cancer: Summary of the 2020 guidelines. Eur Urol (2021) 79(1):82–104.
doi: 10.1016/j.eururo.2020.03.055

8. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM,
Granton P, et al. Radiomics: Extracting more information from medical images
using advanced feature analysis. Eur J Cancer (2012) 48(4):441–6. doi: 10.1016/
j.ejca.2011.11.036

9. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren
J, et al. Radiomics: the bridge between medical imaging and personalized medicine.
Nat Rev Clin Oncol (2017) 14(12):749–62. doi: 10.1038/nrclinonc.2017.141

10. Siegel C. 0Re: Classification of cancer at prostate MRI: Deep learning versus
clinical PI-RADS assessment. J Urol (2020) 204(3):597–7. doi: 10.1097/
JU.0000000000001164

11. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al.
Dermatologist-level classification of skin cancer with deep neural networks.
Nature (2017) 542(7639):115–8. doi: 10.1038/nature21056

12. Cheplygina V, de Bruijne M, Pluim JPW. Not-so-supervised: A survey of
semi-supervised, multi-instance, and transfer learning in medical image analysis.
Med Image Anal (2019) 54:280–96. doi: 10.1016/j.media.2019.03.009

13. Samala RK, Chan H-P, Hadjiiski L, Helvie MA, Richter CD, Cha KH. Breast
cancer diagnosis in digital breast tomosynthesis: Effects of training sample size on
multi-stage transfer learning using deep neural nets. IEEE Trans Med Imaging
(2019) 38(3):686–96. doi: 10.1109/TMI.2018.2870343

14. Hu Y, Xie C, Yang H, Ho JWK, Wen J, Han L, et al. Computed tomography-
based deep-learning prediction of neoadjuvant chemoradiotherapy treatment
response in esophageal squamous cell carcinoma. Radiother Oncol (2021) 154:6–
13. doi: 10.1016/j.radonc.2020.09.014

15. Dai M, Liu Y, Hu Y, Li G, Zhang J, Xiao Z, et al. Combining multiparametric
MRI features-based transfer learning and clinical parameters: application of
Frontiers in Oncology 12
machine learning for the differentiation of uterine sarcomas from atypical
leiomyomas. Eur Radiol (2022). doi: 10.1007/s00330-022-08783-7

16. Zwanenburg A, Vallieres M, Abdalah MA, Aerts HJWL, Andrearczyk V,
Apte A, et al. The image biomarker standardization initiative: Standardized
quantitative radiomics for high-throughput image-based phenotyping. Radiology
(2020) 295(2):328–38. doi: 10.1148/radiol.2020191145

17. Kozikowski M, Suarez-Ibarrola R, Osiecki R, Bilski K, Gratzke C, Shariat SF,
et al. Role of radiomics in the prediction of muscle-invasive bladder cancer: A
systematic review and meta-analysis. Eur Urol Focus (2022) 8(3):728–38. doi:
10.1016/j.euf.2021.05.005

18. Zhang G, Wu Z, Zhang X, Xu L, Mao L, Li X, et al. CT-based radiomics to
predict muscle invasion in bladder cancer. Eur Radiol (2022) 32(5):3260–8. doi:
10.1007/s00330-021-08426-3

19. Garapati SS, Hadjiiski L, Cha KH, Chan H-P, Caoili EM, Cohan RH, et al.
Urinary bladder cancer staging in CT urography using machine learning.Med Phys
(2017) 44(11):5814–23. doi: 10.1002/mp.12510

20. Woerl AC, Eckstein M, Geiger J, Wagner DC, Daher T, Stenzel P, et al. Deep
learning predicts molecular subtype of muscle-invasive bladder cancer from
conventional histopathological slides. Eur urol (2020) 78(2):256–64. doi:
10.1016/j.eururo.2020.04.023

21. Lucas M, Jansen I, van Leeuwen TG, Oddens JR, de Bruin DM, Marquering
HA. Deep learning-based recurrence prediction in patients with non-muscle-
invasive bladder cancer. Eur Urol Focus (2022) 8(1):165–72. doi: 10.1016/
j.euf.2020.12.008

22. Zhang G, Wu Z, Xu L, Zhang X, Zhang D, Mao L, et al. Deep learning on
enhanced CT images can predict the muscular invasiveness of bladder cancer.
Front Oncol (2021) 11(null):654685. doi: 10.3389/fonc.2021.654685

23. Yang Y, Zou X, Wang Y, Ma X. Application of deep learning as a
noninvasive tool to differentiate muscle-invasive bladder cancer and non-muscle-
invasive bladder cancer with CT. Eur J Radiol (2021) 139:109666. doi: 10.1016/
j.ejrad.2021.109666

24. Ding J, Zhao R, Qiu Q, Chen J, Duan J, Cao X, et al. Developing and
validating a deep learning and radiomic model for glioma grading using
multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted
imaging: a robust, multi-institutional study. Quantitative Imaging Med Surg
(2022) 12(2):1517–+. doi: 10.21037/qims-21-722

25. Ma X, Hadjiiski LM, Wei J, Chan HP, Cha KH, Cohan RH, et al. U-Net
based deep learning bladder segmentation in CT urography. Med Phys (2019) 46
(4):1752–65. doi: 10.1002/mp.13438
frontiersin.org

https://doi.org/10.1097/MOU.0000000000000202
https://doi.org/10.1200/JCO.2015.65.9797
https://doi.org/10.1016/j.eururo.2020.03.055
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1097/JU.0000000000001164
https://doi.org/10.1097/JU.0000000000001164
https://doi.org/10.1038/nature21056
https://doi.org/10.1016/j.media.2019.03.009
https://doi.org/10.1109/TMI.2018.2870343
https://doi.org/10.1016/j.radonc.2020.09.014
https://doi.org/10.1007/s00330-022-08783-7
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1016/j.euf.2021.05.005
https://doi.org/10.1007/s00330-021-08426-3
https://doi.org/10.1002/mp.12510
https://doi.org/10.1016/j.eururo.2020.04.023
https://doi.org/10.1016/j.euf.2020.12.008
https://doi.org/10.1016/j.euf.2020.12.008
https://doi.org/10.3389/fonc.2021.654685
https://doi.org/10.1016/j.ejrad.2021.109666
https://doi.org/10.1016/j.ejrad.2021.109666
https://doi.org/10.21037/qims-21-722
https://doi.org/10.1002/mp.13438
https://doi.org/10.3389/fonc.2022.1019749
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	CT-based deep learning radiomics signature for the preoperative prediction of the muscle-invasive status of bladder cancer
	Introduction
	Materials and methods
	Statistical analysis
	Imaging equipment
	Data preprocessing and tumor segmentation
	Interobserver reproducibility assessment

	Results
	Patients’ characteristics
	Radiomics feature extraction
	Feature selection
	Deep learning feature extraction
	DLR signature building
	Model construction
	Model performance evaluation

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


