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Transcription factors (TFs) are typical regulators for gene expression and play

versatile roles in cellular processes. Since it is time-consuming, costly, and

labor-intensive to detect it by using physical methods, it is desired to develop a

computational method to detect TFs. Here, we presented a capsule network-

based method for identifying TFs. This method is an end-to-end deep learning

method, consisting mainly of an embedding layer, bidirectional long short-

term memory (LSTM) layer, capsule network layer, and three fully connected

layers. The presented method obtained an accuracy of 0.8820, being superior

to the state-of-the-art methods. These empirical experiments showed that

the inclusion of the capsule network promoted great performances and that

the capsule network-based representation was superior to the property-

based representation for distinguishing between TFs and non-TFs. We

also implemented the presented method into a user-friendly web server,

which is freely available at http://www.biolscience.cn/Capsule_TF/ for all

scientific researchers.
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Introduction

Transcription factors (TFs) are also sequence-specific DNA-binding factors, a family
of proteins that control the expression of target genes (Karin, 1990; Latchman, 1997).
The TFs are widely distributed, and their numbers vary with the size of the genome
(Nimwegen, 2006). The larger genomes are likely to have a larger number of TFs
on average. Approximately 10% of genes in the human genome are conservatively
estimated to code for TFs. Consequently, the TFs are the potentially largest family
of proteins in humans. The TFs exert regulating roles alone or together with other
proteins in a complex by hindering or facilitating the recruitment of RNA polymerase
(a type of enzyme) to specific DNA regions (Roeder, 1996; Nikolov and Burley, 1997).
The regulation roles of the TFs are either positive or negative. The TFs promote the
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recruitment of RNA polymerase function as activators and
contrarily ones to hold back recruitment as repressors.
The TFs are involved in many important cellular processes
including transcription regulation. Some TFs are responsible
for cell differentiation (Wheaton et al., 1996), some respond
to intercellular signals (Pawson, 1993), and some reply
to environmental changes (Shamovsky and Nudler, 2008).
Mutations in the TFs are discovered to be implied in many
diseases (Bushweller, 2019). The TFs are a control switch to
turn on or off to ensure when, where, and how many genes are
accurately expressed. Thus, it is a fundamental problem but a
therapeutic opportunity for drug discovery and development to
accurately identify TFs. Physical or chemical methods (called
wet experiments) are a prime alternative to identify TFs. The
wet experiments include SELEX-based methods (Roulet et al.,
2002), MITOMI (Rockel et al., 2012), and ChIP-based assays
(Yashiro et al., 2016). Most known TFs were discovered by
wet experiments and deposited in public databases (Wingender
et al., 1996; Riaño-Pachón et al., 2007; Zhu et al., 2007; Zhang
et al., 2020). The wet experiments accumulated a limited number
of TFs at the expense of an enormous amount of time and
money. It is only by the wet experiments that it is impossible and
insufficient to discover all TFs in all the tissues or species all over
the world. With advances in artificial intelligence, it is becoming
possible to learn a computational model from these known TFs
to recognize new unknown TFs which will be subsequently
examined by the wet experiments. The computational methods
shrank greatly the numbers of potential TFs that the wet
experiments scanned, and thus, save a vast volume of time and
money. The computational methods are becoming essentially
complementary to the wet experiments, and both are jointly
accelerating the exploration of the TFs.

To the best of our knowledge, Liu et al. (2020) pioneered
the first computational method for discriminating TFs from
non-TFs. Liu et al. extracted three types of sequence
features: composition/transition/distribution (CTD) (Tan et al.,
2019), split amino acid composition (SAAC), and dipeptide
composition (DC) (Ding and Li, 2015). Comprehensively
comparing the contribution of features and performances
of five frequently used machine learning algorithms: logistic
regression, random forest, k-nearest neighbor, XGBoost, and
support vector machine (SVM). Liu et al. finally chose 201
optimal features and SVM for building the classifier. Liu et al.
opened an avenue to identify TFs. Lately, Li et al. (2022) created
a different idea from Liu et al. to distinguish TFs and non-
TFs. Instead of designing sophisticated features. Li et al. directly
took the sequence as input, split three amino acid residues as
a basic unit, and employed long short-term memory (LSTM)
for capturing semantic differences between TFs and non-TFs. Li
et al. promoted the predictive accuracy to 86.83%. The LSTM is
a special recurrent neural network (RNN) which suffered from
the long-distance dependency. The capsule network proposed
is a novel neural work architecture (Sabour et al., 2017),

whose remarkable advantage is to capture relationship between
local parts. This just made up for the deficiency of LSTM.
Inspired by this, we proposed a capsule network-based method
for TFs prediction.

Materials and methods

Data

The training and the testing data were downloaded from
the website1 (Li et al., 2022), which was manually collected by
Liu et al. (2020). The original dataset contained 601 human
and 129 mouse TFs which preferred methylated DNA (Graves
and Schmidhuber, 2005; Wang et al., 2018) and 286 TFs which
preferred non-methylated DNA (Yin et al., 2017). Liu et al.
(2020) conducted the following steps for improving the quality
of the dataset. The sequences containing illegal characters such
as “X”, “B”, and “Z” were first removed. Then, the CD-HIT,
which is a clustering tool (Huang et al., 2010; Zou et al., 2020),
was used to decrease redundancy between sequences. The cutoff
threshold was set to 0.25, meaning that the sequence identity
between any two sequences was no more than 0.25. Third, less
than 50 amino acid sequences were excluded. A total of 522
TFs were finally preserved as positive samples after the above
three processes. Liu et al. sampled the same number of non-TFs
from the UniProt database (release 2019_11) which meets the
following five requirements: (1) reviewed proteins, (2) proteins
with evidence at protein level, (3) proteins in full length and of
more than 50 amino acid residues, (4) proteins without DNA-
binding TF activities, and (5) Homo sapiens proteins with less
than 25% sequence identity in the CD-HIT. Liu et al. divided the
data further into the training and the independent test dataset at
the ratio of 8:2, with the former containing 406 positive and 406
negative samples, and the latter containing 106 positive and 106
negative samples.

Methods

As shown in Figure 1, the proposed method called
Capsule_TF is a deep learning-based method. It mainly contains
five layers, namely, embedding layer, bidirectional LSTM layer,
capsule network layer, and three fully connected layers. The
protein sequence as input goes through the embedding layer
and is then embedded into low-dimensional vectors. The
bidirectional LSTM layer and the capsule network layer are used
to extract high-level representations of protein sequences. Three
fully connected layers are finally used to discriminate TFs from
non-TFs. The Capsule_TF is an end-to-end deep learning model
without designing any features.

1 https://bioinfor.nefu.edu.cn/TFPM/
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FIGURE 1

The architecture of the proposed capsule network-based method. On represents the word vector after the bidirectional LSTM layer. TF and NTF
represent the final predicted outcome as a transcription factor or not.

Embedding
It is mandatory for text sequence input to be converted

into digital sequences which are suitable to be processed by
the subsequent machine learning algorithms. There are many
ways of converting text sequences into digital sequences, such
as a one-hot encoding scheme (Buckman et al., 2018) and
Word2vec (Rong, 2014). The one-hot encoding scheme fails to
capture relationships between words and is opt to yield sparse
representation when the vocabulary is large. It is a common
practice to use embedding to translate text sequences into dense
digital vectors. In the field of text analysis by the deep neural
network, the embedding is generally the first layer generally
defined by

x̂i = Wexi (1)

where x̂i denotes the embedding of the word, xi represents
input, and We ∈ Rn × k denotes a lookup table that stores the
embedding of words. We is the learnable parameter.

Long short-term memory
The LSTM (Hochreiter and Schmidhuber, 1997) belongs to

the family of recurrent neural networks (RNNs) (Sherstinsky,
2020), which is typically a neural network sharing parameters
at all time steps. The LSTM was pioneered by Hochreiter and
Schmidhuber (Hochreiter and Schmidhuber, 1997) and later
was continuously improved. The structure of the current LSTM
was mainly made up of the cell state, the hidden state, the
input, and the output. Figure 2 demonstrates the structure of
the LSTM at the time step t which is identical at all the time
steps. The cell state preserved memories for preceding words but
was regulated by the gates to determine how much information
was conveyed to the next time step. There are three gates in the
LSTM: forget gate, input gate, and output gate. The forget gate is
defined as

ft = σ
(
Wf ·

[
ht−1, xt

]
+ bf

)
(2)

where ht−1 denotes the hidden state at time step t − 1, xt is the
input at time step t, Wf and bf are learnable parameters, and σ

is the sigmoid function. Obviously, the output of the forget gate
falls between 0 and 1. The input gate and the candidate cell are
defined, respectively, as

it = σ
(
Wi ·

[
ht−1, xt

]
+ bi

)
(3)

and
C̃t = tanh

(
Wc ·

[
ht−1, xt

]
+ bc

)
(4)

where Wi, Wc, bi, and bc are learnable parameters. The cell state
is updated by

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

The preceding information is all forgotten if the forget gate
is 0, namely, ft = 0, all the information is born in mind if
ft = 1, and part are born if ft is more than 0 but less than 1.
Obviously, the forget gate determines how much memories for
preceding words are preserved. The input gate and the candidate
cell determine how much new information about the time step
is added to the cell state. The contribution of the time step t to
the cell state is nearly nothing if the second item in Equation (5)
is equal to 0. The hidden states are updated jointly by the cell
state and the output gate

ht = Ot ∗ tanh (Ct) (6)

where Ot denotes the output gate which is computed by

Ot = σ
(
Wo

[
ht−1, xt

]
+ bo

)
(7)

Compared with the traditional RNN, the LSTM solved
well long-term dependency issues by the cell state conveying
memory. To capture both directional dependencies between
words, the bidirectional LSTM was used here. Due to
its efficiency and effectiveness in sequence analysis, the
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FIGURE 2

Illustration of long short-term memory (LSTM) structure (Olah, 2015).

LSTM has been widely applied to the N6-methyladenosine
prediction (Chen et al., 2022), speech recognition (Sak
et al., 2015), continuous B-cell epitope prediction (Saha and
Raghava, 2006), N4-Acetylcytidine prediction (Zhang et al.,
2022), lysine succinylation identification (Huang et al., 2021),
sentiment analysis (Arras et al., 2017), and action recognition
(Du et al., 2015).

Capsule network
The capsule network is a newly developed neural network

in 2017 (Sabour et al., 2017). The capsule network is different
from the conventional neural network. The basic unit of the
capsule network is capsules which are defined as a set of neurons,
while the latter consists of neurons. The neuron is generally a
scalar value that represents a single pattern, while the capsules
are a multi-dimensional vector, being able to represent multi-
patterns. In addition, the capsule network is capable of capturing
links between different local properties (Jia and Meng, 2016; Xi
et al., 2017), which the convolution neural network (Shin et al.,
2016) fail to discover. At the heart of the capsule network lies the
dynamic routing as illustrated in Figure 3. vi was assumed to be
the capsules in the layer L, whose prediction vectors are defined
by

uj|i = Wijvi (8)

where Wij is a learnable matrix. The capsule sj in the layer L+1
denotes a weighted sum over the prediction vectors, which is
computed by

sj =
∑
i = 1

cijuj|i (9)

where cij is the coupling coefficient. The output of the capsule sj

is further activated by a non-linear "squashing" function so that
short vectors get shrunk to almost zero length and long vectors

get shrunk to a length slightly below 1.

aj =
||si||

1+ ||si||
2

si

||si||
(10)

The coupling coefficient represents the probability of two
capsules to the couple. The more consistent the two capsules,
the large the coupling coefficient. The coupling coefficient is
initialized as the log prior probabilities that the capsule j was
coupled to the capsule i.

cij =
exp

(
bij
)∑

k exp
(
bkj
) (11)

The prior probabilities are updated by the dynamic routing
algorithm

bij = bij + ajuj|i (12)

The dynamic routing algorithm is to iterate the Equations
(9) to (12).

ui = Wivi (13)

Metrics

For binary classification, there are four common metrics:
sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthews
correlation coefficient (MCC), which are defined by

Sensitivity = Sn =
TP

TP + FN
(14)

Specificity = Sp =
TN

TN + FP
(15)

Accuracy = Acc =
TP + TN

TP + TN + FP + FN
(16)

MCC =
TP × TN − FP × FN

√
(TP × FP)(TP + FN)(TN + FP)(TN + FN)

(17)

Frontiers in Microbiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1048478
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1048478 November 30, 2022 Time: 13:59 # 5

Zheng et al. 10.3389/fmicb.2022.1048478

FIGURE 3

Illustration of dynamic routing in the capsule network (Lee, 2018).

where TP and TN are the numbers of correctly predicted
positive and negative samples, respectively, as well as FP and
FN are the numbers of wrongly predicted positive and negative
samples, respectively. In addition, we also employed the receiver
operating characteristic (ROC) to evaluate performances. The
area under the ROC curve (AUC) lies between 0 and 1. The more
the AUC, the better the performance.

Results

There are two state-of-the-art methods for predicting TFs.
One is the deep learning-based method by Li et al. (2022),
which is called Li’s method, and another is the sequence feature-
based method by Liu et al. (2020), which is called Liu’s method.
To examine the Capsule_TF for efficiency and effectiveness in
identifying TFs, we compared it with these two methods by
the independent test. As shown in Table 1, the Capsule_TF
is completely superior to the two methods. The Capsule_TF

TABLE 1 Comparison with two states of the art methods in the
independent test.

Method Sn Sp Acc MCC AUC

Capsule_TF 0.9151 0.8490 0.8820 0.7658 0.9252

Li et al. (2022) 0.8868 0.8396 0.8663 0.7272 0.9130

Liu et al. (2020) 0.8019 0.8585 0.8302 0.6614 0.9116

The bold highlighted the best values.

increased the Sn by 0.0283 over Li’s and even 0.1132 over Liu’s.
The Capsule_TF increased MCC by 0.0386 over Li’s and even
0.1044 over Liu’s.

Discussion

Effect of position

The length of amino acid sequences varies with TFs. The
longest reached 4,834 amino acid residues, the shortest is only
51 residues, and each TFs have an average of 536 residues. It is
compulsory that the input is of the unified length in the machine

TABLE 2 Predictive performance of amino acid residues from
different positions.

Data Sn Sp Acc MCC AUC

Upstream_500 0.9151 0.8490 0.8820 0.7658 0.9252

Centre_500 0.8773 0.8679 0.8726 0.7453 0.9084

Downstream_500 0.9056 0.8396 0.8726 0.7469 0.9149

TABLE 3 Predictive performance of the method without capsule
network.

Method Sn Sp Acc MCC AUC

Non-Capsule 0.6320 0.8867 0.7594 0.5365 0.8120

With-Capsule 0.9151 0.8490 0.8820 0.7658 0.9252
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FIGURE 4

Principal component analysis (PCA) visualization about the different features: (A) PKx, (B) relative amino acid propensity, (C) physicochemical
characteristics, and (D) capsule network-based features. As seen in this image, orange represents non-TFs and blue represents TFs.

learning algorithm. We investigated the effects of the number
of amino acid residues at different positions on discriminating
TFs from non-TFs. We chose 500 amino acid residues at
the start, at the middle, and the end, respectively. As shown
in Table 2, their predictive performances are approximately
equivalent, meaning that positions have little effect. A potential
reason is that 500 amino acid residues might contain sufficient
information about TFs.

Contribution of capsule network

In comparison with Li’s method, the remarkable
characteristic of the Capsule_TF is to utilize the capsule
network. In order to investigate the contribution of the

capsule network to classifying TFs, we removed it. The
predictive performance after excluding the capsule network is
listed in Table 3. Obviously, all metrics except Sp. decreased
precipitously. Sn decreased from 0.9151 to 0.6320, Acc from
0.8820 to 0.7594, MCC from 0.7658 to 0.5365, and AUC from

TABLE 4 Performance comparison across different features by SVM.

Feature Sn Sp Acc MCC

PKx 0.5660 0.7452 0.6556 0.3164

Relative amino acid propensity 0.6792 0.7075 0.6933 0.3869

Physicochemical characteristics 0.5283 0.6981 0.6132 0.2297

Capsule network-based feature 0.9151 0.8396 0.8773 0.7568

The bold highlighted the best values.
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TABLE 5 Performance comparison across different features by
logistic regression.

Feature Sn Sp Acc MCC

Pkx 0.7075 0.5660 0.6368 0.2764

Relative amino acid propensity 0.5943 0.6509 0.6226 0.2457

Physicochemical characteristics 0.6981 0.5849 0.6415 0.2849

Capsule network-based feature 0.9245 0.7924 0.8584 0.7233

TABLE 6 Performance comparison across different features by linear
discriminant analysis (LDA).

Sn Sp Acc MCC

Pkx 0.6981 0.5094 0.6038 0.2113

Relative amino acid propensity 0.6321 0.5472 0.5896 0.1799

Physicochemical characteristics 0.7736 0.5189 0.6462 0.3024

Capsule network-based feature 0.8962 0.7830 0.8396 0.6836

0.9252 to 0.8120. The results indicated that the capsule network
contributed much to identifying TFs.

Comparison with feature-based
methods

The discriminative features provide a potential explanation
to distinguish between both classes of samples. We compared
three frequently used property-based features with the capsule
network-based features. Three property-based features are PKx,
relative amino acid propensity (RAA), and physicochemical
characteristics (Li et al., 2008, 2021; Zhang et al., 2019).
The output of the capsule layer was considered as the
capsule network-based feature. Figure 4 visualizes the first two
components of four types of features. The first two components
were computed by PCA (Yang et al., 2004). Obviously, the first
two components of the capsule network-based features are more
discriminative than those of the other three types of features.
We used the SVM (Noble, 2006) to compare the discriminative
abilities of these features. As shown in Table 4, the capsule
network-based feature is superior to the three property-based
features. We also compared the logistic regression and LDA
with the Capsule_TF. As listed in Tables 5, 6, the Capsule_TF
is superior to the logistic regression and the LDA, and the
capsule network-based features are superior to the conventional
representations.

The previous results indicated that the Capsule_TF
outperformed two state-of-the-art methods: Li’s method (Li
et al., 2022) and Liu’s method (Liu et al., 2020). Li’s method (Li
et al., 2022) is a Bi-LSTM-based method, while Capsule_TF not
only employed Bi-LSTM but also utilized a capsule network.
The inclusion of a capsule network effectively promoted the
representation of protein sequences of TFs. The ablation

experiments validated the contribution of the capsule network
to the identification of TFs (Table 3). Liu’s method (Liu et al.,
2020) is feature-based. We compared features extracted by
Capsule_TF with traditional sequence property-based features.
As shown in Figure 4 and Table 4, the capsule network-based
feature is more discriminative than the traditional sequence
property-based feature. Despite the Capsule_TF obtaining
superior performances over the state-of-the-art methods, there
were some limitations that need to be improved in the
feature. First, the consumption time in dynamic routing is
very large. Therefore, Capsule_TF is not suitable to deal with
large-scale datasets. Second, the interpretability of Capsule_TF
needs to be improved.

Web application

We realized the presented method into a web application
which is freely available.2 The web application is based on the
Django framework and utilized python and Tensorflow. The
web application is very easy for users to use. The first thing is for
the user to upload the predicted protein sequences in the FASTA
format to the textbox or the file to the web. Clicking the “submit”
button, users will obtain the results. The consuming time is
directly proportional to the number of protein sequences. In
addition, users could download the training and testing dataset
in the experiments.

Conclusion

The TFs are very influential in transcription regulation. It
is a challenging task to accurately recognize TFs at present.
We presented a capsule network-based method for identifying
TFs, which outperformed the state-of-the-art methods in the
experiments. The presented method benefits from the inclusion
of a capsule network, which captures a more informative
representation than the property-based method. We also
developed a web application that facilitated the detection of
TFs. The method and the web application are helpful to
identify TFs and to further explore their roles. The TFs play
typically regulating roles in gene expression by binding to
short DNA sequences. The roles of TFs depend on their
binding to DNA sequences. In the future, we hope to create an
effective and efficient method to recognize such binding and
interpret its mechanism from the semantics of both protein
and DNA sequences.

2 http://www.biolscience.cn/Capsule_TF/
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