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Background: The literature on upper limb robot-assisted therapy showed that

robot-measured metrics can simultaneously predict registered clinical

outcomes. However, only a limited number of studies correlated pre-

treatment kinematics with discharge motor recovery. Given the importance

of predicting rehabilitation outcomes for optimizing physical therapy, a

predictive model for motor recovery that incorporates multidirectional

indicators of a patient’s upper limb abilities is needed.

Objective: The aim of this study was to develop a predictive model for

rehabilitation outcome at discharge (i.e., muscle strength assessed by the

Motricity Index of the affected upper limb) based on multidirectional 2D

robot-measured kinematics.

Methods: Re-analysis of data from 66 subjects with subacute stroke who

underwent upper limb robot-assisted therapy with an end-effector robot

was performed. Two least squares error multiple linear regression models

for outcome prediction were developed and differ in terms of validation

procedure: the Split Sample Validation (SSV) model and the Leave-One-Out

Cross-Validation (LOOCV) model. In both models, the outputs were the

discharge Motricity Index of the affected upper limb and its sub-items

assessing elbow flexion and shoulder abduction, while the inputs were the

admission robot-measured metrics.

Results: The extracted robot-measured features explained the 54% and 71% of

the variance in clinical scores at discharge in the SSV and LOOCV validation

procedures respectively. Normalized errors ranged from 22% to 35% in the SSV

models and from 20% to 24% in the LOOCV models. In all models, the

movement path error of the trajectories characterized by elbow flexion and

shoulder extension was the significant predictor, and all correlations were

significant.
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Conclusion: This study highlights that motor patterns assessed with

multidirectional 2D robot-measured metrics are able to predict clinical

evalutation of upper limb muscle strength and may be useful for clinicians

to assess, manage, and program a more specific and appropriate rehabilitation

in subacute stroke patients.

KEYWORDS

robot-assisted therapy, stroke, motor recovery, upper extremity, kinematics,
biomarkers, predictors

Introduction

Most stroke survivors experience upper limb motor

impairments that negatively influence Activities of Daily

Living (ADL) (Nichols-Larsen et al., 2005). Over the past two

decades, robotic devices have been shown to provide intensive

and highly repeatable therapy, enrich the sensorimotor

experience, and offer customizable and repeatable support

during treatment (Mehrholz et al., 2018; Morone et al., 2020;

Gandolfi et al., 2021). In particular, Mehrholz et al. evidenced the

efficacy of upper limb Robot-assisted Therapy (ulRT) in

improving ADL, arm function, and arm muscle strength

(Mehrholz et al., 2018) in stroke patients.

Recently, robots have been recognised not only as a

rehabilitation device but also as a measurement tool,

suggesting that they can provide a standardized and objective

measure of a patient’s motor control and improve research

knowledge on treatment effects and stroke recovery

(Agrafiotis et al., 2021). In this regard, studies on ulRT have

analyzed the Robot-Measured Kinematic (RMK) data to assess

ulRT-induced biomechanical changes and patient progress over

time (Dipietro et al., 2011; Balasubramanian et al., 2012; Panarese

et al., 2012; Mazzoleni et al., 2013; Tran et al., 2018; Goffredo

et al., 2019). Furthermore, RMK data have also been shown to be

able to capture relevant aspects of goal-directed movements that

may reveal pathological motor synergies in stroke survivors

(Dipietro et al., 2011; Panarese et al., 2012; Goffredo et al.,

2019). RMK metrics were also found to correlate with motor

impairment as measured by Fugl-Meyer upper limb assessment

(Colombo et al., 2005; Duret et al., 2016) and to be representative

of pathological motor synergies when different directions of

movement were analyzed (Panarese et al., 2012; Goffredo

et al., 2019). The latter is in accordance with the kinematic

approach to identify how the central nervous system represents

and implements the motor control strategies necessary to obtain

the movements in stroke patients (Micera et al., 2005). RMK data

were also processed to predict the clinical assessment outcomes

(Krebs et al., 2014; Duret et al., 2019; Agrafiotis et al., 2021;

Goffredo et al., 2021; Grimm et al., 2021; Moretti et al., 2021),

considering the importance of biomarkers of neurorehabilitation

outcomes for evidence-based practice (Langhorne et al., 2009;

Scott and &Dukelow, 2011; Duret et al., 2015; Franceschini et al.,

2018). In this context, the Predict REcovery Potential (PREP2)

tool is the predominant predictor of upper limb functional

outcomes from clinical assessment, Magnetic Resonance

Imaging (MRI) and Transcranial Magnetic Stimulation (TMS)

biomarkers, with an impact on rehabilitation planning and

realistic treatment goal setting (Stinear et al., 2017). Although

PREP2 predicts correctly approximately 70% of patients, the

major limitation is that TMS is not readily available in many

clinical settings (Connell et al., 2021). Therefore, in rehabilitation

hospitals equipped with robots for ulRT, an alternative,

ecological robot-based method to predict rehabilitation

outcome could be the analysis of RMK data at baseline.

However, to the best of our knowledge there is no evidence in

literature on the RMK-based predictors of clinical outcomes at

discharge that account for motor synergies at baseline.

Considering the importance of quantitative indicators of

upper limb function, Krebs et al. and Moretti et al. found that

RMK metrics from a 2D robot can be biomarkers of clinical

outcomes registered on the same day (Krebs et al., 2014; Moretti

et al., 2021). Their findings were consistent with those of Grimm

et al. who analyzed exoskeleton-based kinematics (Grimm et al.,

2021). On the other hand, Agrafiotis et al., developed RMK-based

models of clinical outcomes with the aim of removing inter- and

intra-rater variability and reducing the sample size in stroke

clinical trials (Agrafiotis et al., 2021). To our knowledge, only

Duret et al. predicted upper limb recovery at the end of ulRT

(Duret et al., 2019). They found that selected RMK parameters,

calculated from the total end-effector trajectory did not predict

the upper limb Fugl-Meyer Assessment. In our previous paper

(Goffredo et al., 2021), we analyzed RMKmetrics calculated from

reaching movements with different directions. Specifically, the

movement path error, the mean movement speed, and the

number of speed peaks of each point-to-point trajectory were

analyzed. Then, a generalized linear analysis was applied to

estimate the relationships between the RMK measures at

baseline and the (clinical and RMK) data at the end of ulRT,

considering each direction of movement separately. The analysis

revealed that a subset of the RMKmetrics was correlated with the

probability of rising one class in the Motricity Index at the end of

ulRT. Our multidirectional 2D analysis of RMK metrics showed

that pre-treatment kinematic data are representative of

pathological motor synergies in stroke survivors, i.e., the

ability to perform movements of shoulder (ab-adduction,

internal and external rotation) and elbow (flexion-extension)
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is representative of flexor synergy in stroke patients (Goffredo

et al., 2021). However, despite the importance of predicting

rehabilitation outcomes for clinician decision-making and

treatment optimization, there is a paucity of literature on

post-ulRT rehabilitation outcomes based on patients’ upper

limb abilities and motor synergies at baseline.

The aim of this study is to re-analyze the retrospective data from

our previous study to develop a multidirectional 2D RMK-based

predictive model for rehabilitation outcome (i.e., muscle strength

assessed by theMotricity Index of the affected upper limb) at the end

of ulRT. Potential predictors included patient demographics, stroke

characteristics, and pre-treatment RMK metrics calculated

considering upper limb movements which are representative of

the stroke flexor synergy. In order to reliably predict the discharge

rehabilitation outcome, we compared two least squares error

multiple linear regression models that differ in terms of the

output validation procedure.

Materials and methods

This is a re-analysis of data acquired and processed by the

IRCCS San Raffaele Roma (Rome, Italy) in an observational

retrospective study (Ethical approval no. 06/17; 22/02/2017) on

stroke inpatients who underwent ulRT in addition to the

conventional therapy (Goffredo et al., 2021).

Patients and treatments

Sixty-six stroke patients whowere trained for 20 sessions (5 times/

week; 45min per session) with the In Motion 2 robot (Bionik

Laboratories, Watertown, MA, United States), were included in the

study. The persons were inpatients admitted to the IRCCS San

Raffaele Roma (Rome, Italy) between January 2011 and December

2017who satisfied the following inclusion criteria: age between 18 and

80 years; first event of unilateral hemiparetic stroke; subacute phase

(RT started within 30 ± 7 days post stroke); upper limb Chedoke-

McMaster scores between 2 and 5; Motricity Index affected upper

limb<100; ulRT for 20 sessions. Subjects were excluded from the study

if they had bilateral impairment; chronic phase; ulRT for less than

20 sessions; interruption of the ulRT for more than three consecutive

days; presence of other severe medical conditions; incomplete data in

the database.More detailed information on the ulRT conducted by the

patients is available in the previous papers of the authors (Goffredo

et al., 2019; Goffredo et al., 2021).

Data collection and feature extraction

The following demographic and clinical data have been

collected at baseline: age, gender, affected side, stroke onset

time, and etiology. Moreover, the following clinical outcomes

were recorded before (T1) and after (T2) the ulRT: Motricity

Index of the affected Upper Limb (MIUL) (Bohannon, 1999),

Motricity Index sub-item assessing the elbow flexion (MIELBOW),

and Motricity Index sub-item assessing the shoulder abduction

(MISHOULDER). TheMIUL is a discrete scale measuring themuscle

strength of the paretic upper extremity. Three actions were

separately assessed: pinch grasp, elbow flexion, and shoulder

abduction. Each action was scored (0–33) with a MI sub-item

composed of six classes, as defined by Wade (Wade, 1989). The

total upper extremity score (MIUL) was calculated by adding one

to the sum of the three sub-items (maximum possible score =

100). The MI sub-item related to the pinch grip was not

considered in this study because the InMotion2-based ulRT

typically involves the elbow and shoulder joints.

The RMK metrics were calculated from the trajectories

(200 Hz) recorded by the robot, considering each movement

direction separately (Goffredo et al., 2021). Figure 1 shows the

reference system (coinciding with the lesion side) used to

calculate the RMK metrics. Considering the results of our

previous analysis of kinematic biomarkers for upper-limb

motor recovery (Goffredo et al., 2021), we extracted the

features that were correlated with muscle strength at

discharge, i.e.: Movement Path Error direction A (MPEA),

direction C (MPEC), and direction D (MPED); and mean

Movement Speed direction B (MSB).

The MPE is a measure of accuracy (the value is 0 if the trajectory

lies exactly on a straight line connecting the initial and the final target):

it is computed as themean value of the distance between each point of

the actual path travelled by the subject from the ideal one (i.e., the

straight line connecting the central target and the peripheral one).

Since the considered peripheral targets are along the x and y axes, the

MPE computation is the following:

MPE �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
N

∑N
k�1

∣∣∣∣y[k]∣∣∣∣ directionD

1
N

∑N
k�1

|x[k]| directions A andC

(1)

where N is the number of samples for each trajectory, identified

by the coordinates x[k] and y[k] in the xy plane. TheMS has been

computed from the discrete-time velocity signals vx[k] and vy[k]

along the x and y axes, respectively as the mean value of the

resultant velocities in the xy plane:

MS � 1
N

∑N
k�1

����������������
(vx[k])2 + (vy[k])2

√
(2)

All RMK metrics were recorded at T1 and showed good

test-retest reliability (Koeppel and Pila, 2020). Prior to

modeling, age, stroke onset time, and RMK metrics have

been standardized by subtracting the mean and scaling to

unit variance. Figure 1 includes the list of features used for

model development.
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Statistical analysis and predictive models

All statistical analyses were performed using the R statistical

package system v. 4.2.0 (R Foundation for Statistical Computing,

Austria). A significance level of 5% (p-value ≤ 0.05) was assumed.

Demographic and clinical data were reported with frequencies

and percentages if they were categorical variables, while

continuous variables were expressed with mean and standard

deviation, median, and interquartile range.

The study compared two types of outcome prediction models

that differed in terms of the validation procedure. The first model

was the least squares error multiple linear regression model with

the Split Sample Validation procedure (SSV model). The second

model was the least squares error multiple linear regression with

the Leave-One-Out Cross-Validation procedure (LOOCV

model). In both models, the outputs were MIELBOW (T2),

MISHOULDER (T2), and MIUL (T2) discharge scores (adjusted

for age, sex, stroke onset time, and clinical assessment scores

admission), whereas the inputs were the RMK metrics at

admission.

For the SSV models, 75% of the data were randomly

separated for model training, whereas the remaining 25%

were set aside for model validation (Bosecker et al., 2010).

The Chi-square test for categorical variables, and ANalysis Of

VAriance (ANOVA) for continuous variables when normally

distributed, and otherwise Mann Whitney test, confirmed that

the training and validation data sets were not significantly

different. Moreover, the data set was randomly divided into

four groups (25% data each), and the Kruskal Wallis test

(Bonferroni’s correction) confirmed that there was no

significant difference (p-value>0.05) between any combination

of these groups in training and validation sets.

For the LOOCV models, one of the 66 records was removed,

and the remaining were used to build the model. The resulting

model was then used to make predictions about the record set

aside (Bishop, 1995). This was repeated for each of the 66 cases.

Each prediction model was described by the percentage of

variance explained (R2), the adjusted R2 (Radj
2), the Mean

Absolute Error (MAE), Root Means Squared Error (RMSE),

and normalized RMSE (RMSEn). The normalized MAE

(MAEn) was calculated to compare the performance of the

model for the different dependent variables.

Results were assessed by correlation between therapist-

assigned values and corrected predicted values (Spearman’s

rank correlation coefficient, r, and associated p values). Since

theMIUL is a discrete variable, each predicted value was corrected

using a nearest neighbor procedure by assigning the score with

the minimum Euclidean distance from the valid scores.

Results were assessed by correlation between therapist-

assigned scores and corrected predicted scores (Spearman’s

rank correlation coefficient, r, and associated p-values). The

strength of the correlations calculated in the analyses was

interpreted as follows; |r|=0–0.3 very weak, |r|=0.31–0.5 weak,

|r|=0.51–0.7 moderate, and |r|=0.71–1.0 strong (Moore et al., 2013).

Ethical considerations

Since March 2012, the Italian Data Protection Authority

(Garante per la protezione dei dati personali) declared that

IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico -

Institute for scientific research and healthcare) is authorized to

perform retrospective studies without the approval of the local

Ethical Committee, and mandatory formal communication is

FIGURE 1
Experimental setup, reference system in case of right (I) or left (II) affected limb, and description of the features considered for the models’
development.
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sufficient. Such communication relative to this study was

registered by the Ethical Committee of the IRCCS San

Raffaele Roma (Rome, Italy) on 22/02/2017 (code number:

06/17).

Results

In this study, we compared outcome predictors obtained by

two modeling procedures differing from one another by output

validation.

Split sample validation models

Table 1 shows the patient’s demographics and clinical

characteristics at baseline: data are shown for all recruited

subjects, training set, and validation set separately. No

significant differences (p-value>0.05) were registered between

the training and the validation sets.

Predictive models for muscle strength at T2 of each clinical

outcome were developed using the least squares error multiple

linear regression on the training set. In all models, the movement

path errors in the C (MPEC) and D (MPED) directions were

significant predictors (p-value<0.05). Specifically, MPEC
provided larger contribution (MIELBOW: β = −5.16;

MISHOULDER: β = −5.02; MIUL: β = −13.52) than MPED
(MIELBOW: β = 3.37; MISHOULDER: β = 3.37; MIUL: β = 8.26).

The training and validation results of the SSV models for

estimating the MIELBOW (T2), MISHOULDER (T2), and MIUL (T2)

are shown in Table 2. All correlations were significant at p-value <
0.05. The residual plots had no significant patterns, indicating that

no underlying trends in the data were missed and that the model

was fit. The MIELBOW registered a moderate correlation in the

training set (R2 = 0.683), but a weak one in the validation set (R2 =

0.481). This decrease is more remarkable in MISHOULDER, which is

characterized by an R2 of 0.640 in the training set and a very weak

level of correlation in the validation one (R2 = 0.200). The MIUL
showed the highest R2 value in both datasets. The resulting models

explained 64%–76% of the variance in discharge scores, in the

training set. For predicting the clinical outcomes of a patient in the

validation set, the average error was 6.098 points for the MIELBOW
model (range 0–33), 8.357 points for the MISHOULDER model

(range 0–33), and 17.265 points for theMIULmodel (range 1–100).

To illustrate the MI score predictions, the actual score of each

patient was plotted together with the predictions generated by the

models (Figure 2). The correlation between the therapist-assigned

scores and predicted scores was moderate for MIELBOW (r = 0.794;

p-value < 0.001) andMISHOULDER (r = 0.627; p-value < 0.001), and

strong for MIUL (r = 0.839; p-value < 0.001).

Leave-one-out cross-validation models

The following LOOCV predictive models of discharge

MIELBOW, MISHOULDER, and MIUL were obtained:

M̂IELBOW(T2) � 12.99 − 4.89 ·MPEC(T1) (3)
M̂ISHOULDER(T2) � 13.70 − 4.26 ·MPEC(T1) (4)

M̂IUL(T2) � 32.50 − 11.99 ·MPEC(T1) (5)

The generalizability of each model was evaluated by testing

its ability to predict scores of patients who were not involved in

the development of the model (Table 3). In all models, the MPEC
(i.e., the error of the trajectory towards the body) was the

significant predictor, and all correlations were significant

(p-value<0.05). The residual plots did not have any significant

correlations. The resulting models explained 46.4%–67.6% of the

variance in discharge scores, and the normalized RMSE ranged

from 17% to 22%.

Figure 3 depicts the actually measured score with the

predicted ones generated by the models. The correlation

coefficients between the therapist-assigned scores and the

model’s output evidences a significant correlation in all

TABLE 1 Sample characteristics at baseline (T1).

All data (n = 66) Training set (n = 50) Validation set (n = 16)

Age (years) 64.97 ± 12.75 64.84 ± 13.55 65.38 ± 10.26

Sex, male/female 44 (66.7%)/22 (33.3%) 32 (64.0%)/18 (36.0%) 12 (75.0%)/4 (25.0%)

Side, right/left 39 (59.1%)/27 (40.9%) 27 (54.0%)/23 (46.0%) 12 (75.0%)/4 (25.0%)

Stroke onset time (days) 15.27 ± 18.07 12.88 ± 7.97 22.75 ± 33.59

Etiology, ischemic/hemorrhagic 47 (71.2%)/19 (28.8%) 34 (68.0%)/16 (32.0%) 13 (81.3%)/3 (18.8%)

MIELBOW(T1) 14.0 (9.0–19.0) 14.0 (9.0–19.0) 16.5 (2.25–25.0)

MISHOULDER(T1) 14.0 (9.0–19.0) 14.0 (9.0–19.0) 16.5 (2.25–25.0)

MIUL(T1) 42.0 (19.0–62.0) 40.5 (19.0–58.75) 50.5 (8.25–76.0)

Data are shown as N (%), mean ± SD, or median (IQR). Motricity Index affected elbow flexion (MIELBOW); Motricity Index affected shoulder abduction (MISHOULDER); Motricity Index

affected Upper Limb (MIUL); before ulRT (T1).
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outcomes: MIELBOW (r = 0.747; p-value < 0.001), MISHOULDER

(r = 0.653; p-value < 0.001), and MIUL (r = 0.813; p-value <
0.001).

Discussion

Predicting rehabilitation outcomes based on pre-treatment

characteristics would be of great benefit to clinicians in setting

realistic rehabilitation goals, personalizing treatment activities,

and supporting patient discharge in an appropriate setting

(Stinear et al., 2017). In the present article, we examined the

predictive abilities of two types of multiple linear regression

models to reliably predict the rehabilitation outcome at discharge

using RMK-based features. Specifically, both SSV and LOOCV

validation procedures were considered. Since the ability to

perform point-to-point reaching movements in different

directions is considered in the literature to be representative

of different synergies involved in the performance of reaching

tasks (Panarese et al., 2012; Goffredo et al., 2019), pre-treatment

RMK metrics were considered as predictive features for

rehabilitation outcomes at discharge in the models developed

in this study, with each direction of movement assessed

separately.

The procedure consisted of a re-analysis of 66 inpatients with

subacute stroke who were included in a 4-week ulRT and whose

data had been examined in our previous studies with different

aims (Goffredo et al., 2019; Goffredo et al., 2021). In particular, in

Goffredo et al. (Goffredo et al., 2021), a relationship was found

between RMK measures at baseline and (clinical and RMK) data

at the end of ulRT, considering each direction of movement

separately (Goffredo et al., 2021), and revealing that a subset of

kinematic parameters was correlated with the probability of

rising one class in the Motricity Indexes (when considered as

TABLE 2 SSV predictive models for the clinical outcomes (MIELBOW, MISHOULDER, MIUL) at the end of ulRT (T2). Results of the training and validation sets
are depicted separately.

SSV models

Training set (n = 50) Validation set (n = 16)

RMSE RMSEn (%) R2 (Radj
2 ) MAE (MAEn) RMSE RMSEn (%) R2 (Radj

2 ) MAE (MAEn)

MIELBOW(T2) 5.547 17 0.683 (0.622) 4.234 (18%) 8.186 25 0.481 (0.35) 6.098 (24%)

MISHOULDER(T2) 5.294 16 0.640 (0.570) 4.372 (19%) 11.588 35 0.200 (0.14) 8.357 (35%)

MIUL(T2) 13.859 14 0.765 (0.719) 10.400 (15%) 21.650 21.8 0.628 (0.54) 17.265 (24%)

Motricity Index affected elbow flexion (MIELBOW); Motricity Index affected shoulder abduction (MISHOULDER); Motricity Index affected Upper Limb (MIUL); Root Mean Square Error

(RMSE); normalized Root Mean Square Error (RMSEn);percentage of variance explained (R2); adjusted percentage of variance explained (Radj
2); Mean Absolute Error (MAE); normalized

Mean Absolute Error (MAEn); after ulRT (T2).

FIGURE 2
Scatter plot of MI scores prediction with SSV models. Each patient’s actual score was plotted together with the predictions generated by the
models. Training and validation sets are depicted separately. The results of a linear polynomial fitting are also shown.
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categorical variables). In contrast, in the present study, we

developed models to predict Motricity Indexes at discharge

from selected RMK features and found that the SSV and

LOOCV validation procedures explained 54% and 71% of the

variance in clinical scores at discharge respectively. Normalized

errors ranged from 22% to 35% in the SSVmodels, and from 20%

to 24% in the LOOCV ones.

Our findings are in agreement with the studies of Agrafiotis

et al. (Agrafiotis et al., 2021) and Moretti et al. (Moretti et al.,

2021), although they analyzed chronic stroke patients. Both

studies found a significant correlation between RMK metrics

and clinical outcomes (upper limb Fugl-Meyer Assessment

(Agrafiotis et al., 2021; Moretti et al., 2021), Motor Power

(Agrafiotis et al., 2021), NIH stroke scale (Agrafiotis et al.,

2021), modified Rankin scale (Agrafiotis et al., 2021), Wolf

Motor Function Test (Moretti et al., 2021), Barthel Index

(Moretti et al., 2021), and Medical Research Council score

(Moretti et al., 2021) demonstrating that traditional stroke

assessment scales can be accurately reproduced by robotic

measurements. The outcomes of these studies pave the way

for the use of RMK data to reduce the sample size needed for

future clinical trials on chronic stroke patients (Agrafiotis et al.,

2021) and to objectively, quantitatively, and rapidly assess

impairments in body function (Moretti et al., 2021). However,

most published studies on this topic examined the relationships

between technology-based metrics and clinical assessment

outcomes measured close in time (e.g., concurrently) (Krebs

et al., 2014; Grimm et al., 2021; Olesh et al., 2014; Wang

et al., 1109). Conversely, our findings showed that baseline

data collected from a rehabilitation robotic device are able to

predict clinical outcomes at discharge with statistically significant

accuracy. Mostafavi et al. (Mostafavi et al., 2013) showed results

similar to ours although the RMK metrics derived from an

exoskeleton robot and the predicted rehabilitation outcome at

discharge was an overall measure of disability in ADL (i.e., the

Functional Independence Measure).

FIGURE 3
Scatter plot of MI scores prediction with LOOCVmodels. Each patient’s actual score was plotted together with the predictions generated by the
models. The results of a linear polynomial fitting are also shown.

TABLE 3 Results from the predictive models for the discharge clinical outcomes (MIELBOW, MISHOULDER, MIUL)by applying the Leave-One-Out Cross-
Validation (LOOCV) procedure.

LOOCV models

RMSE RMSEn (%) R2 (Radj
2 ) MAE (MAEn)

MIELBOW(T2) 6.768 20 0.676 (0.631) 5.165 (22%)

MISHOULDER(T2) 7.177 22 0.600 (0.545) 5.680 (24%)

MIUL(T2) 17.103 17 0.753 (0.719) 13.487 (20%)

The “new patients”MAE is the averaged error across all left-out subjects during the LOOCV procedure. Abbreviations:Motricity Index affected elbow flexion (MIELBOW); Motricity Index

affected shoulder abduction (MISHOULDER); Motricity Index affected Upper Limb (MIUL); Root Mean Square Error (RMSE); normalized Root Mean Square Error (RMSEn);percentage of

variance explained (R2); adjusted percentage of variance explained (Radj
2); Mean Absolute Error (MAE); normalized Mean Absolute Error (MAEn); after ulRT (T2).
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Data analysis showed that the significant features for

predicting the discharge Motricity Indexes were the errors of

the trajectories towards the body, which were strongly influenced

by the typical postural patterns of the upper extremity after

stroke (Raghavan, 2015): the trajectory towards the body is

performed by flexing the elbow and extending the shoulder

and is representative of upper limb spastic co-contraction

(Bensmail et al., 2010) and the typical pathological flexor

strategy of stroke survivors (Hefter et al., 2012; McMorland

et al., 2015). In our analysis, the error of the trajectory

towards the body was a significant predictor in both SSV and

LOOCV models, showing that the less accurate and controlled

the trajectory towards the pathological patterns is, the smaller

muscle strength, assessed with the Motricity Index, is at the end

of the ulRT. Our findings agree partly with Gialanella & Santoro

(Gialanella and Santoro, 2015), who showed that at the end of

rehabilitation, the motor score of the functional independence

measure was lower in patients having at admission, the only

flexor synergy of the affected limbs. Similarly, the systematic

review by Coupar et al. (Coupar et al., 2012) found strong

evidence that less impairment at baseline is associated with

better upper limb recovery. Conversely, the outcomes of our

model are not in accordance with Welmer et al. (Welmer et al.,

2006) who found that stroke patients with typical pathological

synergies had significantly better functioning scores.

In our previous analysis of the data (Goffredo et al., 2021), the

error of the trajectory towards the body negatively affects the

probability of increasing one class in the discharge Motricity

Indexes. However, in the re-analysis of data with least squares

multiple linear regression, we found that the error of the

trajectory towards the body was a significant predictor of

Motricity Indexes, which strongly correlate (r > 0.8 for the

MIUL) with the therapist-assigned ones (Figures 2, 3). The

comparison between the SSV and the LOOCV models showed

that the error of the trajectory towards the body was a significant

predictor in bothmodels, whereas the samemetric towards target

D appeared in the SSV models.

In the literature, the most widely recognized predictor of

upper limb functional outcome is the PREP2 tool (Stinear et al.,

2017; Connell et al., 2021), which is based on clinical, MRI, and

TMS biomarkers. Despite its high accuracy, the major

characteristic of PREP2 is that TMS is not readily available in

many clinical settings. Therefore, in rehabilitation hospitals

equipped with robots for ulRT, our ecological, quantitative,

objective analysis of baseline RMK data could be a valuable

alternative to predict the rehabilitation outcome. Furthermore,

since RMK metrics are representative of the ability to perform

goal-directed movements, RMK biomarkers are able to predict

rehabilitation outcomes according to the motor synergies at the

baseline.

This study has the following limitations due to its

retrospective design: a limited number of subjects; lack of an

ICF-based assessment (considering body function, activity, and

participation); and lack of RMK data from able-bodied subjects.

Considering the SSV models, the training and validation datasets

differed with respect to the time of stroke onset: although no

statistical significance was found between groups (p-value>0.05),
it may have influenced the presence of stereotypic movement

synergies. Although the analysis normalized the time of stroke

onset before modelling, future studies with a more homogeneous

sample of patients would be interesting. The limitation of the

study in terms of database size can be partially overcome

considering that LOOCV models are more reliable and

unbiased than SSV ones (Bishop, 1995) and seem particularly

suitable when the dataset is small and an accurate estimation of

model performance is required. In addition, the LOOCV models

confirmed the outcomes of the SSV procedure with a correlation

of up to R2 = 0.753 (RMSEn = 17%). However, the future research

agenda should consider large longitudinal studies including

different categories of robots for upper limb rehabilitation

(Gandolfi et al., 2021), evaluating the patients with an ICF-

based assessment, and comparing the outcomes with a control

group composed of able-bodied subjects.

Nevertheless, the study highlights that in stroke ulRT, the

motor patterns assessed with RMK metrics strongly relate to

discharge rehabilitation outcome and that the accuracy in

performing elbow flexion movement is a significant predictor

of outcome. The developed models, thus, are able to predict the

clinical assessment of upper limb muscle strength and can be

useful to clinicians to assess, manage, and program a more

specific and appropriate rehabilitation in subacute stroke

patients.

Conclusion

Multidirectional 2D RMK-based predictive models were

developed and validated for discharge rehabilitation outcomes

in sixty-six subacute stroke patients who performed ulRT with a

planar end-effector robot. Accuracy in performing elbow flexion

and shoulder extension movements was found to be a significant

predictor of muscle strength at the end of ulRT: patients with a

pathological upper limb flexor strategy were less likely to increase

muscle strength at discharge.

Since the potential recovery of motor function depends on

the synergies that occur after stroke, quantitative and measurable

knowledge of upper limb function before initiation of physical

therapy could be useful for an accurate and individualized

prognosis, allowing more realistic expectations for recovery

and helping to set realistic goals with a personalized

rehabilitation program. In this respect, the results of this

study suggest that subacute stroke patients with a marked

flexor strategy tend to have a worse rehabilitation outcome at

discharge: in these cases, physical therapy should focus on

developing beneficial health synergies and avoid reinforcing

pathological patterns.
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