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Background: Glioblastoma (GBM) is highly malignant and has a worse

prognosis with age, and next-generation sequencing (NGS) provides us with

a huge amount of information about GBM.

Materials and Methods: Through the enrichment scores of cell senescence-

related pathways, we constructed a consensus matrix and mined molecular

subtypes and explored the differences in pathological, immune/pathway and

prognostic. Also we identified key genes related to cell senescence

characteristics using least absolute shrinkage and selection operator (Lasso)

regression and univariate COX regression analysis models. The use of risk factor

formats to construct clinical prognostic models also explored the differences in

immunotherapy/chemotherapy within the senescence-related signatures

score (SRS.score) subgroups. Decision trees built with machine learning to

identify the main factors affecting prognosis have further improved the

prognosis model and survival prediction.

Results: We obtained seven prognostic-related pathways related to cell

senescence. We constructed four different molecular subtypes and found

patients with subtype C1 had the worst prognosis. C4 had the highest

proportion of patients with IDH mutations. 1005 differentially expressed

genes (DEGs) were analyzed, and finally 194 Risk genes and 38 Protective

genes were obtained. Eight key genes responsible for cell senescence were

finally identified. The clinical prognosis model was established based on

SRS.score, and the prognosis of patients with high SRS.score was worse.

SRS.score and age were the vital risk factors for GBM patients through

decision tree model mining.

Conclusion:We constructed a clinical prognosis model that could provide high

prediction accuracy and survival prediction ability for adjuvant treatment of

patients with GBM.
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Introduction

Glioma is the most malignant and common primary

malignant brain tumor, characterized by high morbidity and

mortality and a poor prognosis (Sung et al., 2021). Glioblastoma

(GBM) which originates from glial stem cells or progenitor cells,

can exhibit astonishing cellular heterogeneity (Gimple et al.,

2019). It can be divided into primary glioblastoma and

secondary glioblastoma (Ohgaki and Kleihues, 2013).

Mutations in isocitrate dehydrogenase 1 (IDH1) and

IDH2 drive the development of gliomas, which occur in most

low-grade gliomas and secondary high-grade gliomas, and they

enable the isocitrate dehydrogase (NADP+) activity (Geisbrecht

and Gould, 1999; Haddock et al., 2022). More than 90% of

glioblastomas are IDH wild-type tumors. Incidence increased

with age and was more frequent in male (Le Rhun et al., 2019). In

addition to histological variations, large-scale genetic and

epigenetic analytical studies allowed the differentiation of

several molecular subgroups of IDH wild-type glioblastoma,

characterized by unique DNA methylation patterns associated

with characteristic mutations and expression profiles (Capper

et al., 2018). Therefore, it is critical to elucidate the specific

pathogenesis and treatment of GBM.

Besides methylation and IDH patterns, cell senescence is also

an important factor that has been demonstrated to correlate with

GBM development and the response to cancer therapy (Jinno-

Oue et al., 2010; Schosserer et al., 2017; Calcinotto et al., 2019;

Broestl et al., 2022). Cell senescence refers to a stable state of cell

cycle arrest, in which proliferating cells are resistant to growth-

promoting stimuli, usually caused by DNA damage (Childs et al.,

2017). Senescent cells are characterized by morphological and

metabolic changes, chromatin remodeling, altered gene

expression, and the appearance of a pro-inflammatory

phenotype known as the senescence-associated secretory

phenotype (SASP) (Faget et al., 2019).

Although aging may have evolved as a mechanism to avoid

malignant transformation of damaged cells, the onset of aging

may lead to many age-related lesions, including cancer, tissue

degeneration, and inflammatory diseases. Senescent cells

accumulate with age, eventually leading to normal aging

processes and age-related conditions (Campisi, 2013). The

advances in the field of aging research have been largely

driven by the connection between aging, and age-related

lesions, including cancer, neurodegeneration, and metabolic

and cardiovascular diseases (He and Sharpless, 2017). Rodent

models have shown that selective removal of senescent cells in the

body reduces inflammation and enhances immune system

function, thereby delaying the progression of age-related

diseases, enhancing health, and prolonging life (Gieryng et al.,

2017). For example, aging-inducing drugs such as certain

chemotherapy drugs may be effective against cancer by

inhibiting replication potential. However, the accumulation of

senescent cells in patients undergoing chemotherapy is thought

to lead to adverse side effects, especially fatigue (Demaria et al.,

2017). In addition, senescent cells can promote cancer recurrence

and metastasis by releasing the SASP component (Guccini et al.,

2021).

The results achieved with respect to the potential of existing

novel GBM biomarkers are encouraging. Some of these, such as

the IDHmutation, the 1p19q deletion and the methylation of the

methylation of O6-methylguanine-DNA methyltransferase

(MGMT) promoter, are often tested in routine clinical

practice. However, there is still a lack of exploration on the

biomarkers of cell senescence in GBM. Based on the importance

of cell senescence for GBM, we conducted the research in this

paper.

Materials and methods

Data collection and processing

We downloaded the expression data of The Cancer Genome

Atlas (TCGA)-GBM using the UCSC xena browser (https://xena.

browser.net/). The ENSG was matched to GeneSymbol, and

Genes were removed when it is missing up to 50 percent of

the sample. After screening, TCGA-GBM dataset contained a

total of 524 samples. In addition, we obtained clinical data and

sample mutation data of the corresponding samples from TCGA

database through the TCGA GDC API tool. In addition, the

“mRNAseq_693(batch1)” and “mRNAseq_325(batch2)”

datasets containing GBM samples were downloaded from the

Chinese Glioma Genome Atlas (CGGA) (http://www.cgga.org.

cn/) database and the samples were screened with the same

thresholds as TCGA. There are 133 and 85 glioblastoma samples

left, respectively.

Related pathways and recognition
molecular subtypes of cell senescence
characteristics

Here, we obtained 16 cell senescence-related pathways from

the MsigDB database, and calculated the enrichment scores of

each pathway using ssGSEA algorithm based on the expression

data of the TCGA-GBM. In addition, we also relied on the

survival package to construct a univariate COX regression

model based on the clinical data of the corresponding samples

to explore the relationship between pathways and prognosis (Liu

et al., 2018). The consistency matrix was constructed using

consistent clustering (ConsensusClusterPlus) to cluster and

type the samples (Wilkerson and Hayes, 2010). The molecular

subtypes of the TCGA-GBM cohort were obtained using the

screened normalized enrichment score with cell senescence

characteristics. We used the “pam” algorithm and the

“euclidean” as metric distances and performed 500 bootstrapss
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procedures, each of which included 80% of the patients in the

TCGA-GBM cohort. The number of clusters was set to be 2 to 10,

and the optimal classification was determined by calculating the

consistency matrix and cumulative distribution function (CDF),

thereby determining the molecular subtypes of the TCGA-GBM

cohort.

Differences between different molecular
subtypes and clinical pathological
characteristics, mutation characteristics
and immune characteristics

We compared the differences between clinical variable data

and mutation data in TCGA-GBM cohort by molecular typing.

At the same time, in order to explore the difference in immune

infiltration in different molecular subtypes, we first calculated the

relative abundance of 22 immune cells with the CIBERSORT

algorithm, and then used the ESTIMATE algorithm to evaluate

the immune cell infiltration (Aran et al., 2015; Newman et al.,

2015). At the same time, we used Tumor Immune Dysfunction

and Exclusion (TIDE) to assess the potential clinical effects of

immunotherapy in our defined molecular subtypes, with a higher

TIDE predictive score indicating a higher likelihood of immune

escape, suggesting that patients were less likely to benefit from

immunotherapy (Jiang et al., 2018).

Analysis of differential pathways in
different molecular subtypes

In order to investigate pathways of different biological processes

in different molecular subtypes, we performed gene set enrichment

analysis (GSEA) using all candidate gene sets in the Hallmark

database (Liberzon et al., 2015), where we defined that false

discovery rate (FDR) < 0.05 was considered to be a significant

enrichment pathway. As used herein, all genes involved in hallmark

pathway (h.all.v7.0.symbols.gmt) analysis were derived from

MSigDB. Thus, differential pathways significantly enriched in

different molecular subtypes can be explored.

Construction of SRS.score system for
evaluation of glioblastoma samples

Previous studies had demonstrated that the feasibility of gene-

related prognostic models in tumors (Yuan et al., 2021a; Ren et al.,

2021;Wang et al., 2022a; Yuan et al., 2022a). Differentially expressed

gene in C1vs nonC1, C2vs nonC2, C3vs nonC3, C4vs nonC4 using

limma package (Ritchie et al., 2015), and the threshold was set as

FDR < 0.05 and |log2 fold change (FC)| >1.5. Then, the differential
genes that met the threshold were subjected to univariate COX

regression, and the differential genes that met the p < 0.01 were

identified as genes with both differences and effects on prognosis.

Subsequently, we used the least absolute shrinkage and selection

operator (Lasso) (Yuan et al., 2021b) regression method to further

screen for prognostic genes significantly related to prognosis. On the

basis of linear regression, the penalty term (lambda× absolute value

of slope) was added to reduce the over-fitting of the model and

improve the generalization ability of the model. Here, we performed

the Lasso regression using the R software package glmnet (Friedman

et al., 2010). First, the change trajectory of each independent variable

is analyzed, and it can be seen that with the gradual increase of

lambda, the number of independent variable coefficients tending to

0 will gradually increase.We use 10-fold cross-validation to build the

model and analyze the confidence interval under each lambda. The

stepAIC method in Mass package starts with the most complex

model and sequentially deletes a variable to reduce AIC (Zhang,

2016). The smaller the value, the better the model is. We calculated

the SRS.score for each patient using the following formula:

SRS.score = Σ(βi × Expi). Expi refers to the level of gene

expression of phenotypic prognostic-related gene features of cell

senescence, βi is the Cox regression coefficient of the correspond

gene. SRS.score was normalized to zscore. According to the

threshold of “0”, the patients were divided into different groups

of SRS.score. The survival curve was drawn by Kaplan-Meier

method for prognosis analysis, and the significance of the

difference was determined by log-rank test. The genes obtained

after Lasso regression were subjected to stepwise multiple factor

regression analysis again, and finally determined to be the cell

senescence related genes affecting the prognosis.

Establishing and verifying the clinical
prognosis model

According to the formula defined by our SRS.score system,

the cell senescence-related prognosis risk score of each sample

was calculated and normalized. The prognosis of each group was

discussed by drawing the risk factor chart, and the time-

dependent ROC curve (Blanche et al., 2013) was drawn to

show the classification efficiency of 1, 2, 3 and 5-year

prognosis prediction. At the same time, we use the same

model to verify in CGGA cohort.

Different clinicopathological features/
immune/pathway features in SRS.score
grouping

In order to explore the differences of SRS.score in the clinical

data of TCGA, we grouped SRS.score according to different

clinicopathological features. More, we also used CIBERSORT

algorithm to calculate the relative abundance of 22 kinds of

immune cells in different SRS.score groups, and ESTIMATE

algorithm to evaluate the infiltration of immune cells. In order to
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observe the relationship between SRS.score and biological

functions of different samples, we selected the gene expression

profiles corresponding to glioblastoma samples in TCGA-GBM

cohort and used the R software package Gene Set Variation

Analysis (GSVA) (Hänzelmann et al., 2013) for ssGSEA analysis.

By calculating the scores of different functions of each sample,

the ssGSEA score of each sample corresponding to each function

was obtained. Further, the correlation between these functions

and SRS.score was calculated, and the biological functions with

correlation greater than 0.3 were displayed.

Difference in immunotherapy/
chemotherapy between SRS.score groups

To explore the difference in immunotherapy between the

SRS.score groups, we first compared the expression of immune

checkpoints between the SRS.score groups. Again, we used TIDE

to assess the potential clinical effects of immunotherapy in our

defined SRS.score groups (Jiang et al., 2018).

The combination of SRS.score and clinical
pathological features further improves the
prognosis model and survival prediction

We constructed the decision tree by age, sex, IDH. Mutation,

MGMT. promoter.methylation, and SRS.score of glioblastoma

patients in the TCGA-GBM cohort. Univariate and multivariate

Cox regression analyses of SRS.score and clinical pathology were

performed while nomograms were constructed to quantify risk

assessment and survival probability in patients with

glioblastoma. We evaluated the model’s prediction accuracy

using not only Calibration curve but also decision curve

analysis (DCA).

Drug sensitivity analysis

pRRophetic (Geeleher et al., 2014) was used to predict the

sensitivity of traditional medicines to IC50.

Sangerbox provided assistance with this article (Shen et al.,

2022).

Results

Molecular typing based on cell
senescence characteristics

The workflow was showed in Supplementary Figure S1. First,

we obtained 16 cellular senescence-related pathways from the

MsigDB database and calculated the enrichment scores of the

16 pathways by the ssGSEA method. Furthermore, in order to

understand the relationship between these cellular senescence

pathways and prognosis, we performed univariate Cox regression

analysis based on clinical data from TCGA-GBM cohort. The

results showed that in the TCGA-GBM cohort, a total of seven

pathways were associated with the prognosis of glioblastoma, as

shown in Figure 1A (p < 0.05). Next, we used consensus

clustering analysis based on the enrichment score of seven cell

senescence pathways with significant prognosis to classify

samples in TCGA-GBM cohort. The optimal clustering

number could be determined according to the cumulative

distribution function (CDF) and observed the CDF delta area

curve. From it, we could find that there was a relatively stable

clustering result when the cluster was selected as 4 (Figures

1B,C). Finally, we selected k = 4 to obtain four stable molecular

subtypes (Figure 1D). Further analysis of the prognostic features

of these four molecular subtypes based on patient survival data

revealed significant differences in their outcomes as shown in

Figure 1E, where patients in the C4 had a better prognosis, while

patients in the C1 subgroup had the worst prognosis (Figure 1E,

p = 0.0023). In addition, we also compared the “ssGSEA scores”

(Figures 1F,G) of the seven cell senescence-related pathways

among the different molecular subtypes defined by us, and

found that, except for the significant enrichment of the

“fridman senescence up” pathway in C1, the enrichment

scores of other cell senescence-related pathways in C4 were

the highest, suggesting that the biological mechanisms related

to cell senescence were significantly enriched in C4.

Clinicopathological features between four
molecular subtypes

In the TCGA-GBM cohort, we compared the distribution of

different clinical features across the four molecular subtypes to see if

clinical features differed among the subtypes. The results showed

that only IDHmutations and Status had significant differences in the

four subtypes. The proportion of patients with IDH mutations was

the highest in C4 subtype and the lowest in C1 subtype. While

gender and age did not differ significantly among the four subtypes.

In the aspect of 1p19q combined deletion, it can be seen that the

majority of patients with glioblastoma were non-codel. As for

methylation of MGMT promoter, the methylation degree of

MGMT promoter of subtype C1 was significantly lower than

that of other molecular subtypes (Figure 2).

Mutation characteristics between
molecular subtypes

In addition, we explored differences in genomic changes

between the four molecular subtypes in the TCGA cohort.

Here, we obtained the molecular characteristics of TCGA-

Frontiers in Pharmacology frontiersin.org04

Li et al. 10.3389/fphar.2022.1034794

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1034794


FIGURE 1
Molecular subtype with cell senescence-related pathways score in TCGA-GBM cohort. (A) Forest map of cell senescence associated pathways
with significant prognosis; (B) TCGA-GBM cohort queue sample CDF curve; (C). TCGA-GBM cohort sample CDFDelta area curve, Delta area curve of
consensus clustering, indicating the relative change in area under theCDF curve for each category number k comparedwith k– 1. The horizontal axis
represents the category number k and the vertical axis represents the relative change in area under CDF curve; (D) The heat map of sample
clustering when consensus k = 4; (E) relationship KM curve of prognosis of four subtypes; (F) Differences of “ssgsea scores” of cell aging-related
pathways with significant prognosis among different subtypes of TCGA-GBM cohort; (G) “ssGSEA scores” thermograms of cell aging-related
pathways with significant prognosis in different subtypes of TCGA-GBM cohort.
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GBM from a previous pan-cancer study (Thorsson et al., 2018)

and performed multi-group analysis of different molecular

subtypes using the Kruskal–Wallis test. Lower scores of

Homologous Recombination Defects and Fraction Altered

were shown in C1 (Figure 3A). We also compared the

relationships of the 4 molecular subtypes with the 6 molecular

subtypes reported in the previous literature (Figure 3B), and

found that there were more “Classic-like” molecular subtype in

C3, more “Mesenchymal-like” molecular subtype in C2, and

more “LGm6-GBM” in C1. In addition, we also analyzed the

correlation between gene mutation and molecular subtypes

(Figure 3C), and found that there was a significant correlation

between molecular subtypes and gene mutation. The TP53, NF1,

ATRX, RB1, and IDH1 genes have a wide range of somatic

mutations in glioblastoma, with the IDH1 gene having a high

mutation frequency in both C3 and C4. The mutation rate of

NF1 in C1/C2 is relatively high, while that in C3/C4 is relatively

low. The association between NF1 and GBM has been well

studied and it is interesting to note that some changes, such

as inactivated NF1 mutations/deletions, are associated with

estimated proportion of immune cells or cluster activities

(Luoto et al., 2018).

The immune characteristics between
molecular subtypes

To further clarify the differences in the immune

microenvironment of patients in different molecular

subtypes, we assessed the degree of immune cell infiltration

in our TCGA-GBM cohort by the expression levels of

immune-related genes. First, we calculated the relative

abundance of 22 immune cells using CIBERSORT. For

example, in Figure 4A, we could observe that most immune

cell types showed significant differences between molecular

subtypes. The most significantly different immune cells

included activated CD4 memory T cells, follicular helper

T cells, gamma delta T cells, and neutrophils. At the same

time, we also used ESTIMATE to assess immune cell

infiltration. “ImmuneScore” of C1 and C2 is significantly

higher than that of other subtypes, indicating high immune

cell infiltration. More than that, we analyzed whether there

were differences in immunotherapy between different

molecular subtypes in the TCGA-GBM cohort. First, we

compared the expression of immune checkpoints among

subtypes (Figure 4B), and we could see that most of the

immune checkpoints were differentially expressed among

four subtypes. Further, we analyzed the differences in

immunotherapy among the different subtypes. Here, TIDE

was conducted to assess the potential clinical effects of

immunotherapy in our defined molecular subtypes. A

higher TIDE predictive score indicates a higher likelihood

of immune escape, suggesting that patients are less likely to

benefit from immunotherapy. As shown in Figure 4C, TIDE

score was the lowest in C1 of the TCGA-GBM cohort and it

was more likely to benefit from immunotherapy. At the same

time, we also observed a high dysfunction score for subtypes

C1 and C2, which indicates that although C1 and C2 had high

FIGURE 2
Clinicopathological features of molecular subtypes in TCGA-GBM cohort.
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immune infiltration, it was the cause of poor prognosis due to

dysfunction. In addition, we also analyzed the response levels

of different molecular subtypes in the TCGA cohort to the

common chemotherapeutic or targeted drugs Temozolomide,

PD-0332991, BMS-754807 and IPA-3, and found that C1 was

more sensitive to PD-0332991, C2 subtype was more sensitive

to BMS-754807, and C4 was more sensitive to Temozolomide

and IPA-3 (Figure 4D).

Pathway analysis in four molecular
subtypes

Next, we analyzed whether there were differentially activated

pathways among different molecular subtypes. To identify these

pathways, we performed GSEA using all candidate gene sets from

the Hallmark database (Liberzon et al., 2015), where FDR <
0.05 was considered to be significantly enriched. We obtained a

FIGURE 3
Genomic changes of molecular subtypes in TCGA-GBM cohorts. (A) Comparison of the differences among the molecular subtypes of
homologous recombination defects, aneuploidy score, fraction altered, number of segments, and tumormutation burden in the TCGA-GBM cohort;
(B) Comparison of four molecular subtypes with other molecular subtypes; (C) Somatic mutations in four molecular subtypes (chi-square test). *p <
0.05; **p < 0.01; ***p < 0.0001; ****p < 0.0001.
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total of 42 pathways, and by observing the normalized

enrichment score (NES), we could see that the enrichment

scores of most of the pathways in C3 and C4 in the TCGA-

GBM cohort were less than 0, which represented that most of the

pathways were likely in an inhibitory state compared with C1 and

C2. Compared to the C3, 27 pathways were significantly enriched

in the C1 and 35 pathways were significantly enriched in the

TCGA-GBM cohort as shown in Figure 5A. We also compared

abnormal pathways between C1 and C3 in different cohorts of

glioblastomas, as shown in Figure 5B. On the whole, the activated

pathways mainly include some immune-related pathways such as

interface gamma response, interface alpha response, allograft

rejection, and inflammatory response. Other cell cycle-related

pathways were also activated, such as E2F targets, G2M

checkpoint, and MYC targets v1 (Figure 5A). In addition, we

also compared the pathways of difference between C1 and C2,

between C1 and C3, and between C2 and C3 among different

TCGA-GBM cohorts (Figure 5C). All in all, the immune

regulatory pathway and cell cycle pathway of patient C1 were

activated, so we deduced that the cell senescence gene for

molecular typing might play a very important role in the

immunosuppressive microenvironment and tumor

microenvironment. Next, we analyzed whether there were

differentially activated pathways among different molecular

subtypes. To identify these pathways, we performed GSEA

using all candidate gene sets from the Hallmark database,

where FDR < 0.05 was considered to be significant

enrichment. A significant accumulation of 29 pathways in

FIGURE 4
Differences of immune cell infiltration in different molecular subtypes. (A) The differences of 22 immune cell scores among different molecular
subtypes in the TCGA-GBM cohort; The differences of ESTIMATE immune infiltration among differentmolecular subtypes in the TCGA-GBM cohort;
(B) Immunocheckpoints for differential expression between different subgroups in the TCGA-GBM cohort; (C) Difference in TIDE analysis results
between groups in the TCGA-GBM cohort; (D) The box plots of the estimated IC50 for temozolomide, PD-0332991, BMS-754807 and IPA-3 in
TCGA-GBM cohort.
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subtype C1 was seen in the TCGA-GBM cohort, and overall, the

activated pathways mainly included some immune-related

pathways such as interferon alpha response, interferon gamma

response, inflammatory response, allograft reject, and

complement pathway. (Figure 5A). We also compared the

pathways of differences between different C2 subtypes and

other subtypes, and we could find that the immune regulatory

pathway of patients with C2 subtype was in the active state. In

addition, we found that C3 and C4 subtypes were generally

immunosuppressed, while cell cycle-related pathways were

activated.

It has been found in a previous study (Wang et al., 2022b)

that cancer cells can induce cell senescence by inhibiting cell

cycle, and a major feature of senescent cells is the up-regulation

of cyclin-dependent kinases (CDK inhibitory proteins), such as

InK4a and p21, to induce cell cycle arrest. Thirty-one genes

related to cell cycle progression (CCP) were identified in a

previous study (Cuzick et al., 2011). CCP scores of samples in

the TCGA-GBM cohort were calculated by ssGSEA method, and

the results showed that CCP scores of C4 were significantly

higher than those of other molecular subtypes. At the same time,

we calculated the G1/S score of each sample in the TCGA-GBM

cohort by downloading G1/S phase-related genes from KEGG

official website. Similarly, we used ssGSEA’s method to calculate

the score of each sample in the TCGA data set about

G2 checkpoint. It turned out that both G1/S and

G2 checkpoints had significantly higher C4-related scores than

the other subtypes (Figure 5B).

Similarly, inhibition of telomerase will also induce cell

senescence (Wang et al., 2022b). In the body, cancer cells

usually avoid telomere loss by activating telomerase activity.

Reactome telomere extension by telomerase was download via

GSEA. The reaction cycle has been inferred from in vitro

studies of telomerase from multiple organisms (Vega et al.,

2003; Smogorzewska and de Lange, 2004). Here, the score was

calculated using the ssGSEAmethod, and we finally found that

the telomere extension score of telomerase in C4 was higher

than that of other subtypes. Aging cells secrete cytokines that

affect the surrounding cells. This effect can be achieved by

promoting epithelial-mesenchymal transition (EMT) to

facilitate tumor migration and metastasis. Moreover, aging

tumor cells can recruit special macrophages to promote the

production of blood vessels and lymphatic vessels, and

provide other tumor cells with the oxygen and nutrients

needed for growth, thereby promoting the growth and

metastasis of tumors. It was found that the EMT score of

C1 was higher than that of other subtypes (Yu et al., 2021). We

selected genes in the hypoxia pathway to analyze the hypoxia

score of the samples with ssGSEA. Meanwhile, we analyzed

the angiogenesis scores of the samples based on 24 genes

selected from the literature (Masiero et al., 2013), and found

that the hypoxia and angiogenesis scores of C1 and C2 were

FIGURE 5
Differences in pathway enrichment fractions among different molecular subtypes. (A) GSEA analysis results from the TCGA-GBM cohort; (B)
Differences in ssGSEA scores of cell senescence-associated pathways in the TCGA-GBM cohort; (C) Score differences of different molecular
subtypes in 10 pathways related to tumor abnormalities in the TCGA-GBM cohort.
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significantly higher than those of the other two molecular

subtypes. In addition, we also analyzed the differences of four

molecular subtypes in the previous study (Sanchez-Vega et al.,

2018) of the 10 oncogenic pathways, and significant

differences in the 10 pathways could be observed. The

ssGSEA scores of some famous pathways, such as Cell

Cycle, HIPPO, MYC, also were calculated and we found

different subtypes had evident distinctions among them.

Determination of key genes related to cell
senescence characteristics

In the previous analysis, we identified four different

molecular subtypes based on the enrichment score of seven

cell senescence-related pathways significantly associated with

prognosis. Next, we screened the genes with differential

expression between C1 and non-C1, C2 and non-C2, C3 and

non-C3, and C4 and non-C4 subtypes (FDR < 0.05 and

|log2FC| > 1.5). There was 197 DEGs in C1 vs nonC1,

313 DEGs in C2 vs nonC2, 331 DEGs in C3 vs nonC3,

718 DEGs in C4 vs nonC4. Through union of 4 molecular

types, 1005 genes were finally screened. Next, we performed

univariate COX regression analysis on the differentially

expressed genes among subtypes, and identified a

total of 232 genes that had a greater impact on the prognosis

(p < 0.01), including 194 Risk and 38 Protective genes

(Figure 6A). Further, we used lasso regression to further

compress these 232 cell senescence genes to reduce the

number of genes in the risk model. From the Figure 6, we

can see that the model is optimal when lambda = 0.057.

Therefore, we chose 20 genes when lambda = 0.057 as the

target gene for the next step (Figures 6B,C). Further, based on

the 20 genes in the lasso analysis results, we use the stepwise

multivariate regression analysis, and the stepwise regression

utilizes the AIC chi-square information criterion, which

considers the statistical fitting degree of the model and the

number of parameters used for fitting. It indicates that the

model obtains enough fitting degree with fewer parameters.

Finally, we identified eight genes (GPRASP1, BST2, IGFBP6,

FIGURE 6
Screening of key genes in cell senescence-related pathways. (A) A total of 232 promising candidates were identified among the DEGs; (B) The
path of each argument as lambda changes; (C) Confidence interval under lambda. (D) Distribution of lasso coefficients of the senescence-related
gene signatures.
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COL9A3, CLEC5A, GOLGA8A, HIST3H2A, ATF7IP) as cell

senescence-associated genes that affect prognosis (Figure 6D).

RiskScore = +0.094*IGFBP6+0.063*CLEC5A+0.189*GPRASP1-

0.094*GOLGA8A+0.083*COL9A3-0.168*ATF7IP+0.103*BST2-

0.122*HIST3H2A.

The establishment and verification of
clinical prognosis model

The cell senescence-related prognostic risk score (SRS.score)

for each sample was calculated and normalized according to the

formula defined by the SRS.score of our samples. The

distribution of SRS.score for patients in the TCGA-GBM

cohort was displayed by mapping risk factors, suggesting that

a higher SRS.score sample had a worse prognosis. 1-, 2- and 3-

years AUC were 0.65, 0.73, and 0.79, respectively, and low group

had better survival time in TCGA dataset (Figure 7A). To

confirm the robustness of the clinical prognosis model

prediction of cell senescence-associated gene signature, we

performed verification in two CGGA cohorts, and we

calculated the SRS.score of patients in two CGGA cohorts in

the same way. The distribution of SRS.score, status and gene

expressions were showed in CGGA1 dataset. 1-, 2- , 3- and 5-

years AUC were 0.6, 0.73, 0.73, and 0.78, and low group had

better survival time in CGGA1 dataset (Figure 7B). In the

FIGURE 7
Establishment and test of SRSscore model. (A) SRS.score, survival time and survival state, and expression of senescence-related genes in the
TCGA-GBM cohort; ROC curve and AUC of the SRS.score classification in the TCGA-GBM cohort; KM survival curve distribution of SRS.score in the
TCGA-GBM cohort; (B) SRS.score, survival time and survival state, and expression of senescence-related genes in the CGGA1 cohort; ROC curve and
AUCof the SRS.score classification in the CGGA1 cohort; KM survival curve distribution of SRS.score in the CGGA1 cohort; (C) SRS.score, survival
time and survival state, and expression of senescence-related genes in the CGGA2 cohort; ROC curve and AUC of the SRS.score classification in the
CGGA2 cohort; KM survival curve distribution of SRS.score in the CGGA2 cohort.
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CGGA2 cohorts, similarly phenomenon were observed

(Figure 7C).

The manifestations of SRS.score in
different clinical pathological features

We compared the distribution of SRS.score among the

subgroups with clinicopathological features in the TCGA-

GBM cohort and found significant differences between the

SRS.score subgroups for age, gender, and IDH Mutation. At

the same time, we compared the differences of SRS.score among

molecular subtypes and found that SRS.score of C1 with poorest

prognosis had the highest SRS.score while C4 had the lowest

SRS.score with best prognosis. Meanwhile, we also compared the

differences in clinical pathological characteristics between the

SRS.score subgroups in the TCGA-GBM cohort, and found that

patients in the high SRS.score group were older and accounted

for more proportion of male patients. In addition, we also

compared the relationship between the SRS.score subgroup

FIGURE 8
Specificity of clinical features in the SRS.score subgroups. (A) Differences of SRS.score among different clinical pathological groups in TCGA-
GBM cohort; (B)Clinicopathological features between SRS.score groups in TCGA-GBM cohort; (C) KM curve of SRS.score between high and low risk
groups among different clinical pathological groups in TCGA-GBM cohort.
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FIGURE 9
Difference between immune infiltration and Hallmarker pathway in SRS.score subgroups. (A) The proportion of immunocytes in the TCGA-
GBM cohort; (B) The proportion of immunocyte components calculated by ESTIMATE software in the TCGA-GBM cohort; (C)Correlation analysis of
22 immune cell components and SRS.score in TCGA-GBM cohort; (D) Results of correlation analysis between KEGG pathway with correlation
greater than 0.3 with SRS.score and SRS.score; (E) Analysis of Correlation between Age of Samples and SRS.score in the TCGA-GBM cohort.
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and the four previously defined molecular subtypes, and found

that patients with C1 of SRS.score-high were significantly higher

than those with SRS.score-low group (Figures 8A,B). In addition,

we compared the presence of different clinicopathological

features in the TCGA-GBM cohort for differences in

prognosis in our defined high-and low-risk groups for

SRS.score, and the results showed that our risk group

performed equally well in different clinical subgroups,

demonstrating the reliability of our risk group (Figure 8C).

Immune/pathway characteristics between
SRS.score subgroups

To elucidate the differences in the immune

microenvironment of patients in the SRS.score subgroup, we

compared the relative abundance of 22 immune cells in the

SRS.score high and low subgroups in the TCGA-GBM cohort

and observed that most of the immune cells differed significantly

in the SRS.score high and low subgroups. The immunocytes of

neutrophils, plasma cells, and dendritic cells resting showed the

most significant differences in the SRS.score subgroups,

indicating that the difference in SRS.score might be due to the

difference in the infiltration degree of these immunocytes

(Figure 9A). Meanwhile, ESTIMATE was conducted to

evaluate the immune cell infiltration. “ImmuneScore” in the

SRS.score-high group was significantly higher than that in the

SRS.score-low group, with higher immune cell infiltration

(Figure 9B). Furthermore, we analyzed the relationship

between SRS.score and 22 immune cell components, and we

found a significant correlation between SRS.score and some

immune cells (Figure 9C). In order to observe the relationship

between SRS.score and biological function of different samples,

we selected the gene expression profiles corresponding to

glioblastoma samples in the TCGA-GBM cohort, and

performed ssGSEA analysis. For the functions with correlation

greater than 0.3, a total of 23 pathways significantly correlated

with SRS.score were obtained, of which four pathways were

negatively correlated with SRS.score, and the remaining

19 pathways were positively and negatively correlated with

SRS.score (Figure 9D). In addition, we also calculated the

correlation between SRS.score and the patient’s age, and

found a significant positive correlation between SRS.score and

the patient’s age (Figure 9E).

Differences of immunotherapy/
chemotherapy between SRS.score
subgroups

Furthermore, we analyzed whether there were differences in

immunotherapy among SRS.score groups in TCGA-GBM cohort.

On the whole, the transcription level of immune checkpoint related

genes in SRS.score-high is significantly higher than that in

SRS.score-low (Figure 10A). Further, we analyzed the differences

of different SRS.score groups in immunotherapy. MDSC, the

myeloid-derived suppressor cells, is the precursor of dendritic

cells (DCs), macrophages and granulocytes, and has the ability to

significantly inhibit the immune cell response. We found that the

level of MDSC in SRS.score-Low was significantly higher than that

in SRS.score-high (p = 0.00013). M2 tumor-associated macrophages

have the same trend asMDSC. On the contrary, the scores of cancer

associated fibroblasts (CAF), Exclusion and Dysfunction in

SRS.score-high are significantly higher than those in SRS.score-

low (p < 0.05). Here, we use TIDE to evaluate the potential clinical

effects of immunotherapy in our defined SRS.score-high and low

groups. The higher the TIDE prediction score, the higher the

probability of immune escape, suggesting that patients are less

likely to benefit from immunotherapy. Furthermore, we analyzed

the relationship between SRS.score and TIDE score, and found that

there was a significant positive correlation between SRS.score and

TIDE score (p < 0.001), which suggested that SRS.score-high group

had a higher possibility of immune escape and a lower possibility of

benefiting from immunotherapy. There is a significant positive

correlation between SRS.score and MDSC, tumor-associated

macrophage (TAM).M2 and Exclusion (Figures 10B,C). In

addition, we also analyzed the response of SRS.score in TCGA-

GBM cohort to traditional chemotherapy/target drugs

temozolomide, PD-0332991, BMS-754807, and IPA-3, and found

that SRS.score-low was more sensitive to BMS-754807 and IPA-3.

SRS.score-high is more sensitive to PD-0332911, which indicates

that the effect of using PD-0332911 as a chemotherapy drug may be

better than other chemotherapy drugs for GBM patients

(Figure 10D).

SRS.score combined with
clinicopathological features to further
improve the prognosis model and survival
prediction

Here, we constructed a decision tree according to the age, sex,

IDH.Mutation, MGMT.promoter.methylation and SRS.score of

glioblastoma patients in TCGA-GBM cohort. The results showed

that only two key factors, SRS.score and age, remain in the decision

tree. According to these two key factors, four different risk

subgroups (Figure 11A) are determined. SRS.score is the most

powerful parameter. There were significant differences in overall

survival in the four risk subgroups. Among them, the risk

subgroups “Lowest” and “Low” were all patients with

SRS.score-low. The prognosis in the class = High group was the

worst, which indicated that the prognosis of older patients with

high SRS.score was even worse (Figures 11B,C). In addition, we

also found differences in the distribution of our defined molecular

subtypes among the different risk subgroups, with the “Mediate”

and “Highest” risk subgroups accounting for more of our defined
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molecular subtypes C1 and C2 (Figure 11D). Univariate and

multivariate Cox regression analyses of SRS.score and clinical

pathology revealed that SRS.score was the most significant

prognostic factor (Figures 11E,F). In order to quantify the risk

assessment and survival probability in patients with glioblastoma,

we combined SRS.score with other clinical pathological features to

establish nomogram, and from the model results, SRS.score had

the greatest impact on the survival rate prediction (Figure 11G).

Further, we evaluated the prediction accuracy rate of the model

using Calibration curve. We could observe that the predicted

calibration curves of the three calibration points in 1, 2, and

3 years were close to the coincidence with the standard curve,

which indicated that the nomogram had good prediction

performance (Figure 11H). In addition, DCA was used to

evaluate the reliability of the model. It can be observed that the

benefits of SRS.score and nomogram are significantly higher than

FIGURE 10
Differences in Immune Checkpoints and Drug Susceptibilities in the SRS.score subgroups. (A) Immune checkpoints of differential expression
between different groups in TCGA-GBM cohort; (B) The difference of TIDE analysis results between different packets in TCGA-GBM cohort; (C)
Correlation analysis between tide results and SRS.score; (D) The box plots of the estimated IC50 for cisplatin, doxorubicin, methotrexate and
paclitaxel in TCGA-GBM cohort.

Frontiers in Pharmacology frontiersin.org15

Li et al. 10.3389/fphar.2022.1034794

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1034794


the extreme curve. Compared with other clinical pathological

features, Nomogram and SRS.score both show the most

powerful survival prediction ability (Figures 11I,J).

Discussion

Glioblastoma is the most malignant glioma of astrocytomas.

At present, the standard treatment is mainly surgical resection,

postoperative adjuvant chemotherapy and radiotherapy.

However, tumor recurrence occurs in approximately 90% of

patients 6–9 months after treatment. With the development of

next-generation sequencing (NGS) technology, we have obtained

a better understanding of glioblastoma. The process of cell aging

is closely related to the aging and diseases of the body. With the

deepening of the research on cell aging, it is found that all kinds

of stimulation to cells, stress reaction and DNA damage may

cause cell aging. It has been suggested that after activation of

oncogenes, telomere dysfunction can be induced in certain cells

with precancerous lesions, accelerating the production of cell

FIGURE 11
Identify the clinical features that have the greatest impact on prognosis in GBM. (A) Patients with full-scale annotations including SRS.Score, age,
gender , IDH.Mutation and MGMT.promoter.methylation were used to build a survival decision tree to optimize risk stratification; (B) Significant
differences of overall survival were observed among the four risk subgroups; (C,D) Comparative analysis in subgroups; (E,F) Univariate and
multivariate analysis of SRS.score and other clinical features; (G)Nomogrammodel of SRS.Score and age; (H) 1-,2-and 3-year calibration curves
for nomograms; (I) Decision curve of nomogram; (J) Nomograms showed the strongest viability predictions.
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senescence. With the deepening of research, the phenomenon of

oncogene-induced cell senescence has been considered as an

important barrier against tumorigenesis in vivo, and there is a

complex correlation between cell senescence and the occurrence/

development of tumors. Therefore, we sorted out 16 different

pathways related to cell aging, screened out 7 pathways related to

prognosis through the clinical data of TCGA, and identified

4 molecular subtypes through consistent clustering.

We explored the clinicopathological features in four

molecular subtypes. We found that IDH mutation is abundant

in C4 subtypes, and that the prognosis of C4 subtype is better

than that of other subtypes. As we know from the previous

literature, the IDHmutation is an early event in the development

of glioma and it persists throughout the development from

diffuse and anaplastic astrocytoma of the IDH mutation to

GBM. Gliomas with IDH1 and IDH2 mutations had a better

prognosis than wild-type gliomas (Cohen et al., 2013). 1p19q

codeletion represents the combined loss of chromosome 1 (1p)

and chromosome 19 (19q) in short arm, which is considered as a

genetic marker to predict the response of patients with diffuse

glioma to chemotherapy and combined radiotherapy and

chemotherapy, and the overall survival time of patients with

diffuse glioma is longer (Louis et al., 2019; Zheng et al., 2020). In

this study, it was found that the mutation probability of NF1 gene

in C1 and C2 with worse prognosis was high. According to

previous reports in the literature, NF1 mutation affected the drug

resistance of targeted drug mechanism of cerebellar glioblastoma

(Cho et al., 2019). Six of the seven senescence pathways with

prognostic significance have protective factors for patients,

except one: fridman senescence up. This risk pathway was

significantly enriched in C1, and the other six protective

pathways were most significantly enriched in C4. This is

probably the reason for the worst prognosis of C1. The

process by which cancer cells bypass cellular senescence and

become immortal requires not only the loss of a key gene such as

TP53, but also additional mutations and/or epigenetic changes.

Homologous recombination defects and fraction altered are

more common in C1. The absence of homologous recombination

leads to genetic instability, genomic instability being the hallmark

of various cancers, with increasing accumulation of DNA

damage. The application of radiotherapy and chemotherapy in

cancer treatment is generally based on this property of cancer

(Lim et al., 2012; Huang and Zhou, 2021; Matos-Rodrigues et al.,

2021). Fraction of genome altered is the percentage of genome

that has been affected by copy number gains or losses. Moreover,

the variation of copy number will also affect the prognosis of

GBM patients (Umehara et al., 2019).

The immune microenvironment plays an important role in

tumors, with infiltrating immune cells in GBM composed of central

nervous system (microglia) and peripheral macrophages,

granulocytes, bone marrow-derived suppressor cells (MDSC), and

T lymphocytes. Intratumoral density of glioma-associated

microglia/macrophages (GAMs) and MDSC was the highest

among malignant gliomas and negatively correlated with patient

survival (Gieryng et al., 2017). The immune scores of C3 and

C4 with better prognosis were much lower than those with

worse prognosis, which indicated that with the significant

activation of cell senescence pathway, GBM could be induced to

age and tumor growth could be inhibited, just as TGF-β-induced
p15INK4B expression accelerated the aging of liver cancer (Senturk

et al., 2010). With the MDSC score in C4 being the highest, it

suggested immune infiltration was in an activated state in contrast to

C1. C1 had the lowest TIDE score and was associated with the worst

prognosis. It indicated that while there were immunologic

opportunities in C1, it was also the most likely to respond to

immunotherapy, thereby improving the prognosis. Among

several chemotherapeutic agents, PD-0332991 was more effective

as a chemotherapy strategy for patients in C1.

Among the differential pathways of Hallmark, most of the

pathways in C1 and C2 were significantly up-regulated (NES >
0), such as IL2-JAK-STAT3 signaling, TNFA signaling viaNFKB,

and complement, while these pathways were significantly down-

regulated in C3 and C4 (NES < 0). STAT3 expression in tumor-

associated immune cells was also exceptionally strong.

Continuous activation of STAT3 in tumor-associated immune

cells activates the expression of downstream genes VEGF, IL-10

and IL-6, and causes the proliferation of tumor-infiltrating

hematopoietic stem cells, which ultimately leads to poor

prognosis (Wang et al., 2018). Interestingly, CCP scores, G1/S

phase and G2 checkpoint-related scores of C4 were much higher

than those of other subtypes, indicating that cell cycle-related

pathways were significantly activated in C4.

Previous researches reported the significance of gene

signature in cancer (Yuan et al., 2021c; Yuan et al., 2022b;

Chen et al., 2022; Ma et al., 2022; Miao et al., 2022; Ren et al.,

2022). In this study, we constructed the clinical prognostic model

by calculating cell senescence-associated prognostic risk scores

for each sample. After the screening process of the key genes, we

finally identified eight genes related to cell senescence that have

clinical significance: IGFBP6, HIST3H2A, GPRASP1,

GOLGA8A, COL9A3, CLEC5A, BST2, ATF7IP. In TCGA-

GBM cohort, the prognosis of patients with high SRS.score

deteriorates with the rise of SRS.score. Conducting the same

method on two CGGA cohorts proves the accuracy and stability

of our model’s prediction ability.

Subsequently, we found that patients in the high-SRS.score

group were older and more male, and there was no mutation in

IDH. Interestingly, SRS.score was lower in the C4 and highest in

the C1, consistent with the previous survival curve for the C1.

Within subgroups of different clinical variables, patients in the

high-SRS.score group all had worse prognosis outcomes, which

indicates that our risk subgroup had good prediction effect. GBM

patients with high SRS.score had poor prognosis and were

accompanied by higher immune infiltration.

SRS.score and age showed a significant positive correlation,

indicating that the increase in age was also a risk factor for
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patients with GBM. We also found that the pathways TNFA

signaling via NFKB, IL2-STAT5 signaling and p53 pathway also

showed a significant positive correlation with SRS.score,

suggesting that these pathways might be a potential

mechanism for poor prognosis in patients with high-SRS.score

group. The transcription levels of most immune checkpoints

were higher in the high-SRS.score group, and the TIDE score also

had a positive correlation with SRS.score, suggesting that the

high-SRS.score group was more sensitive to immunotherapy. In

chemosensitivity studies, the high-SRS.score group was more

sensitive to PD-0332911, just like C1. PD-0332991 is a highly

specific inhibitor of cyclin-dependent kinase 4/6 that highly

specifically induces G1 phase arrest and thereby inhibits

tumor growth (Borghesan et al., 2019). In the high SRS.score

group, previously identified genes related to cell senescence

characteristics such as IGF-BP6 (Fu et al., 2013) and others

significantly increased in transcription level with the increase of

SRS.score, and they had the function of promoting cell cycle. The

use of PD-0332991 could significantly induce cell cycle arrest,

thus playing a role in the treatment of patients with GBM.

Finally, we constructed a decision tree using machine learning

and found that SRS.score and age play key factors in the prognosis

of patients with GBM. The construction of four risk subgroups

based on these two key factors reveals that older patients with high-

SRS.score had the worst prognosis, and the C4 subgroup had the

highest proportion in the lowest risk subgroup and the lowest

proportion in the HIGH group. Subsequent univariate/

multivariate COX regression suggested that age, IDH.Mutation,

MGMT.promoter.methylation (Bell et al., 2018) and SRS.score

were all significant risk factors in the risk factor subgroup.

However, there are some limitations to this study. First, we

were unable to demonstrate the differences and roles of disease

stages in the progression of GBM due to the lack of information

on the GBM progression (such as the tumor stage). Second, our

results were derived from bioinformatic analyses and were not

further validated experimentally and clinical analysis.

Conclusion

Molecular subtypes of TCGA-GBM by enrichment scores of

seven prognostic cell senescence-related pathways revealed that

C1 had the worst prognosis, and at the same time, C1 had the

most IDH WT, a higher level of immune infiltration, high

immune escape, and downregulation of cell senescence-related

pathways, which might be the reasons for C1’ s poor prognosis.

We selected eight genes related to cell senescence from TCGA-

GBM, which filled the gap in the absence of biomarkers in the cell

senescence pathway of GBM.

SRS.score model is robust and independent of clinical

pathological features, and has stable prediction performance

on independent data sets. Above all, we combined SRS.score

with clinical pathological features and adopted decision tree

model to further improve the prognosis model and survival

prediction, which has high prediction accuracy and survival

prediction ability. This provides a basis for the adjuvant

treatment of patients with GBM and personalized precision

medicine treatment.
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