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The Holocene reefs off southeast Florida provide unique insights into the

biogeographical and ecological response of western Atlantic coral reefs to past

climate change that can be used to evaluate future climate impacts. However,

previous studies have focused on millennial-scale change during the stable mid-

Holocene, making it difficult to make inferences about the impact of shorter-term

variability that is relevant to modern climate warming. Using uranium-series dating

of newly discovered subfossil coral rubble deposits, we establish a new high-

resolution record of coral community development off southeast Florida during a

period of variable climate in the late Holocene. Our results indicate that coral

communities dominated by reef-building Acropora palmata and Orbicella spp.

persisted in the nearshore environments off southeast Florida ~75 kmnorth of their

primary historical ranges between ~3500 and 1800 years before present. This

timing coincideswith regional warming at the northern extent of the AtlanticWarm

Pool, suggesting a likely link between regional oceanographic climate and the

expansion of cold-sensitive reef-building coral communities to the high-latitude

reefs off southeast Florida. These findings not only extend the record of coral-reef

development in southeast Florida into the late Holocene, but they also have

important implications for future range expansions of reef-building coral

communities in response to modern climate change.
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coral reefs, climate change, coral range expansion, late Holocene, Florida, southeast
Florida reef tract
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2022.995256/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.995256/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.995256/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.995256/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.995256&domain=pdf&date_stamp=2022-12-06
mailto:amodys@gmail.com
https://doi.org/10.3389/fmars.2022.995256
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.995256
https://www.frontiersin.org/journals/marine-science


Modys et al. 10.3389/fmars.2022.995256
Introduction

Since the late 1970s, researchers have documented a

continuous decline in live coral cover throughout the tropical

western Atlantic (Gardner et al., 2003; Bruno and Selig, 2007;

Jackson et al., 2014). Climate-driven coral bleaching events and

regional coral disease outbreaks have been implicated as the

major causes of this decline, and on many reefs, have resulted in

the near extirpation of several ecologically critical coral taxa

including the once dominant reef-builders, Acropora palmata

andOrbicella spp. (Aronson and Precht, 2001; Bruno et al., 2007;

Edmunds, 2015; Randall and van Woesik, 2015). The loss of

these taxa has had a dramatic effect on the health and function of

coral-reef ecosystems throughout the region (Kuffner and Toth,

2016), prompting aggressive management actions such as

establishment of marine protected areas and coral restoration

programs (Mellin et al., 2016; Bruno et al., 2019). However,

without substantial global efforts to mitigate climate change,

projected increases in the frequency and intensity of heat-

associated stress events over the next century are expected to

severely limit the efficacy of most local conservation efforts

(Aronson and Precht, 2006; Kennedy et al., 2013; Hoegh-

Guldberg et al., 2018; Bruno et al., 2019; Goreau and

Hayes, 2021).

Despite diminishing coral populations in the tropics, there is

growing evidence that Acropora and Orbicella spp. are currently

expanding their ranges northward into the cooler, subtropical

waters off southeast Florida and in the northwestern Gulf of

Mexico in an apparent response to rising ocean temperatures

(Precht and Aronson, 2004; Precht et al., 2014). Similar

warming-induced range expansions of tropical corals have also

been documented on subtropical and temperate reefs in Japan

(Yamano et al., 2011), the Mediterranean Sea (Serrano et al.,

2013), and southeastern Australia (Baird et al., 2012; Tuckett

et al., 2017), suggesting that higher latitude reef environments

across the globe may provide crucial refuge to thermally sensitive

coral species in a future warming world (Precht and Aronson,

2004; Beger et al., 2014; Makino et al., 2014). However, because

these trends were only recently documented, there is still

considerable uncertainty regarding whether coral populations

can persist in high latitude environments under varying future

climate-change scenarios (Yara et al., 2012; Muir et al., 2015;

Hoegh-Guldberg et al., 2017).

The fossil record offers a unique opportunity to examine the

biogeographical response of coral-reef communities to climate

change over temporal scales longer than modern ecological

studies (Precht and Aronson, 2006; Precht and Miller, 2007;

Greenstein and Pandolfi, 2008; Pandolfi, 2011). For instance,

geological investigations of relict reefs off the coast of southeast

Florida have revealed that well developed A. palmata-dominated

reefs were flourishing well north of their historical ranges during

the Holocene Thermal Maximum (HTM) [~10500 to 5400 years

before present (B.P.)] (Lighty et al., 1978; Precht and Aronson,
Frontiers in Marine Science 02
2004; Precht et al., 2014). Warmer climate conditions at this time

coupled with the northward transport of coral larvae via the

warm-water Florida Current likely permitted a more northerly

distribution of cold-sensitive A. palmata, leading to the

development of an expansive barrier reef complex along the

shallow continental shelf (Lighty et al., 1978; Precht and

Aronson, 2004; Banks et al., 2007; Stathakopoulos and Riegl,

2015; Toth et al., 2021). Significant reef development continued

off southeast Florida until the late Holocene when changing

climate conditions eventually resulted in the southward

contraction of A. palmata to its historical limit at Fowey

Rocks Reef off Miami, Florida (Toth et al., 2021).

The fossil reefs off southeast Florida provide a long-term

context that, when compared with modern coral-reef

communities, can help inform future conservation responses

to climate-associated reef degradation (Precht and Miller, 2007).

To date, however, most published studies from the region have

relied on a limited number of submerged outcrops, narrow-

diameter reef cores, and surface sampling with coarse millennial-

scale resolutions (e.g., Lighty et al., 1978; Banks et al., 2007;

Stathakopoulos and Riegl, 2015; Toth et al., 2021) making it

difficult to extrapolate the higher frequency variability relevant

to modern climate warming. Furthermore, existing records from

southeast Florida are limited to the relatively stable climate of the

HTM, which may be a poor analogue for more dynamic climate-

change scenarios (Toth et al., 2021). To address this issue, we

present a new high-resolution record of A. palmata- and

Orbicella spp.-coral community development on the southeast

Florida reef tract (SFRT) during the more variable climate of the

late Holocene. Our record is based on high-precision Uranium-

Thorium (U-Th) dating of paleo-reef deposits recently

discovered off the coast of northern Broward County, Florida.

Our results not only extend the timeline of high-latitude reef

development off southeast Florida into the late Holocene, but

they also provide critical insights into the potential range

expansion of tropical western Atlantic reef-building coral taxa

in response to modern climate warming.
Materials and Methods

Regional setting

The Florida reef tract is a semi-continuous complex of coral-

reef habitats extending ~580 km along Florida’s Atlantic

coastline from Dry Tortugas National Park to offshore

northern Palm Beach County (Figure 1A). It can be divided

into two primary biogeographical subregions based on their

characteristic geomorphology and accretion histories: the

southeast Florida reef tract (SFRT) and the Florida Keys reef

tract (FKRT) (Lidz et al., 2003; Banks et al., 2007). Although

both subregions are connected by the northward flowing Florida

Current (Frys et al., 2020), modern stony coral assemblages
frontiersin.org
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exhibit considerable latitudinal variability with decreasing

diversity and abundance north of their shared boundary at

Fowey Rocks reef in Biscayne National Park (Blair and Flynn,

1989; Precht and Miller, 2007; Burman et al., 2012). Historically,

this reef was the northernmost extent of A. palmata growth in

the western Atlantic, marking a distinct transition to cooler,

more turbid environmental conditions along the SFRT to the

north (Vaughan, 1914; Smith, 1943; Jaap, 1984). Although

various stress-tolerant, eurytopic species of stony coral are still

present throughout the SFRT, modern benthic communities are

now dominated by non-accreting organisms such as macroalgae,

sponges, and soft corals (Raymond, 1972; Goldberg, 1973;

Moyer et al., 2003; Walker, 2012a).

Despite the lack of significant reef-building coral communities

on the SFRT at present, previous geological investigations have

revealed an underlying structure composed almost entirely of

Holocene-aged A. palmata coral framework (Lighty et al., 1978;

Precht and Aronson, 2004; Banks et al., 2007; Stathakopoulos and

Riegl, 2015; Toth et al., 2021). Extensive mapping and coring
Frontiers in Marine Science 03
studies delineated these structures into two discrete, progressively

deeper relict reef terraces known as the inner reef (~8 m below

mean sea level [bMSL]) and outer reef (~16 m bMSL) (after

Moyer et al., 2003, based on Lighty et al., 1978). Radiometric

dating indicates that reef development on the outer reef reached

its northernmost extent off northern Palm Beach County during

the early to mid-Holocene but then started contracting southward

at ~7800 years B.P. when climate conditions began changing

throughout the subtropical western Atlantic. As the outer reef

contracted southward, it also backstepped to the inner reef on the

central and southern portions of the reef tract as sea level rose.

However, by 3000 years B.P., coral-reef development throughout

the SFRT had essentially shut down, leaving behind relict reef

structures with minimal stony coral cover (Precht et al., 2000;

Toth et al., 2021).

Inshore of the inner reef off Broward and Miami-Dade

counties there also exists a series of shore-parallel hardbottom

ridges called the “nearshore ridge complex (NRC)” (3–6 m

bMSL). Unlike the offshore relict reefs, which are composed
FIGURE 1

Description of the study area in relation to the broader biogeographical setting of the Florida reef tract. (A) Location of study area (red dot) on
Southeast Florida reef tract (SFRT) extent, the full extent of which is shown by the dark blue polygon. Inset map shows main currents affecting
the region. Estimated maximum Atlantic Warm Pool extent in fall (defined as sea surface temperatures (SSTs) warmer than 28.5° [Wang et al.,
2008]) is shaded in red. (B) Map of study area with sampling sites marked in red. Map was made by overlaying 1-m resolution lidar bathymetry
and 1-m resolution aerial imagery. Bathymetric map was generated with digital elevation models acquired by U.S. Army Corp of Engineers in
2017. Aerial imagery was collected by PhotoScience, Inc. on March 8, 2013. (C) Interlocked sub-fossil Acropora palmata coral branches
overlying antecedent coquinoid limestone surface. (D) Sub-fossil Orbicella spp. coral colony (~1.5 m diameter) surrounded by unconsolidated
Acropora-dominated coral rubble and smaller branching coral rubble. Photos by A.B.M.
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almost entirely of mid-Holocene A. palmata framework, the

NRC is characterized by submerged beach ridges composed of

Pleistocene-aged coquinoid limestone known as the Anastasia

Formation (Raymond, 1972; Banks et al., 2007). The NRC has

been the site of recent range expansions of A. cervicornis, which

were first documented in the late 1990s (Vargas-Ángel et al.,

2003). Occasional colonies of A. palmata and O. annularis have

also been identified throughout the NRC as far north as Broward

County (Precht and Aronson, 2004, Burman et al., 2012), but

they are relatively rare compared to the expansive A. cervicornis

thickets in the area (Burman et al., 2012; Walker et al., 2012b;

D’Antonio et al., 2016).
Sample collection and U-Th dating

Subfossil coral rubble deposits were sampled along the

northern extent of the nearshore ridge complex (NRC) ~600

meters off the coast of northern Broward County in southeast

Florida (26°13’N, 80°5’W) (Figure 1B). Initial research dives

revealed the presence of extensive subfossil coral rubble deposits

scattered across the surface of exposed coquina ridges, forming a

relatively thin veneer (< 1.2 m) of landward-fining coral rubble

interspersed with partially buried subfossil massive corals

(Figures 1C, D). Based on these dives, four collection sites

representing the full spatial extent of the subfossil coral

deposits were selected. Within each site, coral fragments were

collected haphazardly along two 50 x 5 m belt transects oriented

parallel to the shoreline and from single 50-cm diameter pits

(depths between 30 and 60 cm) excavated at a random point

along each transect. For massive corals too large to collect by

hand, 5-cm wide sections were removed from the outer surface

of the colony using a hammer and chisel. After collection, each

sample was identified to the lowest taxonomic level possible and

prepared for U-Th dating (See Supplementary material for

details). Although the majority of samples encountered in this

study were identifiable to the species level, several Orbicella spp.

colonies were indistinguishable between Orbicella faveolata and

O. annularis (sensu stricto) due to significant bioerosion.

However, we note that the majority of Orbicella colonies

encountered in our study were identified as O. annularis

(sensu stricto) based on the presence of irregular lobes or

columnar morphology.

To constrain the timing of coral community development, a

total of 40 subfossil A. palmata and Orbicella spp. coral samples

collected across all four sites were selected for U-Th dating.

High-precision U-Th dating offers an opportunity to derive

centennial- or even decadal-scale reconstructions from

Holocene and historic coral-reef death assemblages (Clark

et al., 2017; Leonard et al., 2020; Hammerman et al., 2022). In

this study, U-Th ages were determined using a ThermoScientific

NEPTUNE PLUS Multi-collector Inductively Coupled Plasma

Mass Spectrometer (MC-ICP-MS) at the Department of Earth
Frontiers in Marine Science 04
and Planetary Sciences, Rutgers University (see Supplementary

material for details). To construct a relative chronology of coral

community development, the probability distribution of the U-

Th ages was calculated using a non-parametric Kernel Density

Estimation (KDE) approach in R (IsoplotR 3.3 package,

Vermeesch, 2018). In this analysis, peaks in the KDE

distribution reflect temporally clustered ages of broken and

transported A. palmata branches as well as displaced or in situ

subfossil Orbicella spp. colonies and are therefore interpreted as

estimated peaks in net coral community growth and detrital

skeletal accumulation (see Supplementary material for details).

The resulting age distribution was then compared with long-

term regional paleoclimate records in order to identify potential

controls on coral community development.
Results

The U-Th ages of 40 subfossil A. palmata and Orbicella spp.

coral samples collected across all four sites ranged between 4276 ±

24 (2s) and 975 ± 6 (2s) years B.P (Table S1). Kernel density

estimation revealed a bimodal age distribution with 82.5% of all

ages falling within two primary temporal clusters centered at 3036

± 379 and 2322 ± 238 years B.P. (Figure 2) Although the

proportion of A. palmata and Orbicella spp. sample ages varied

between each growth cluster, there was no significant difference in

ages between taxa (ANOVA, F1,38 = 2.675, p = 0.11), indicating

minimal taphonomic bias due to time averaging (see

Supplementary material for details). Lastly, consecutive coral

ages were separated by an average of ~85 years, indicating that

centennial-scale patterns of coral community development were

captured by our sampling strategy.
Discussion

Our results provide new evidence that coral communities

dominated by A. palmata and Orbicella spp. began colonizing

the NRC off southeast Florida as early as 1500 years after the

shutdown of reef accretion on the adjacent inner reef tract (5800

years B.P., Stathakopoulos and Riegl, 2015) and at least 1800

years after the NRC was flooded by rising sea level (based on

Khan et al., 2017). Although several mechanisms have been

proposed to explain the regional decline of reef development,

extensive radiometric dating of relict reef framework indicates

that accretion likely terminated at the end of the HTM when

changing climate conditions forced the latitudinal limit of cold-

sensitive A. palmata corals southward (Precht and Aronson,

2004; Precht et al., 2014; Toth et al., 2021). The specific climate

mechanism responsible for conditions inhospitable to reef

growth has been attributed to an orbitally forced deepening of

the polar jet stream over the North American continent and an

associated increase in the frequency of winter cold fronts
frontiersin.org
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reaching southeast Florida (Toth et al., 2021). Both A. palmata

and Orbicella corals are highly sensitive to cold-water

temperatures, and as a result, periodically undergo widespread

mass mortality in the subtropical western Atlantic following

severe cold fronts (Hudson et al., 1976; Roberts et al., 1982;

Lirman et al., 2011; Jones et al., 2020). Therefore, increase in

cold-front frequency would have likely limited their ability to

build reef frameworks on the SFRT after the HTM (Toth et al.,

2021). Our findings, however, suggest that despite changing

winter climate conditions, nearshore reef temperatures off

southeast Florida were periodically favorable for A. palmata

and Orbicella spp. coral growth until at least 1800 years B.P.

Although millennial-scale climate change in the North

Atlantic region during the late Holocene was dominated by

externally forced cooling (Wanner et al., 2008; Marcott et al.,

2013), paleoclimate records from the subtropical western

Atlantic indicate higher frequency sea-surface temperature

(SST) variability over shorter centennial timescales. In

particular, SST reconstructions from the northern Gulf of

Mexico and Florida Straits reveal a period of sustained SST

warming between ~3500 and 2000 years B.P. (Figures 3A, B;

Poore et al., 2004; Lund and Curry, 2004; Thirumalai et al., 2018;

Thirumalai et al., 2021). Both sites are located at the northern

extent of the Atlantic Warm Pool (AWP) (Wang and Enfield,

2001), a feature that forms annually when warm Caribbean

water masses are transported around the Florida Peninsula and

into the subtropical western Atlantic via the Loop and Florida

currents (Lee et al., 1995; Lund and Curry, 2004; Figure 1A).

Because of this specific circulation pattern, ocean temperatures

in southeast Florida are strongly influenced by the extent of the

AWP (Domingues et al., 2018), which has been shown to
Frontiers in Marine Science 05
fluctuate over centennial timescales with the North Atlantic

Oscillation (NAO) and Atlantic Multidecadal Variability

(AMV) (Richey et al., 2007; Wang et al., 2008). Centennial-

scale warming at the northern extent of the AWP corresponds to

the timing of late Holocene range expansions on the NRC

centered at ~3000 and 2300 years B.P., (Figures 3A, B, D),

suggesting a potential coupling between the northern extent of

coral community growth in southeast Florida and regional

oceanographic variability.

Because of its proximity to the continental shelf, the Florida

Current exerts a significantmoderating effect on ocean temperatures

off southeast Florida, especially after the passage of strongwinter cold

fronts. For example, in 2010, Florida’s reefs experienced one of the

most severe cold events on record, with water temperatures

throughout the Florida Keys plummeting below the lower thermal

limits of most coral species (<16°C) for several consecutive weeks

(Lirman et al., 2011; Kemp et al., 2016). However, the nearshore and

offshore reefs in southeast Florida never experienced lethal

temperatures below 16°C (SECREMP, 2011) despite colder air

temperatures than in the Florida Keys. As a result, cold-water

bleaching and mortality were not reported north of Miami,

including on the shallowest segments of the NRC where

interaction with inlet outflow results in the greatest heat flux

(Lirman et al., 2011). We hypothesize that centennial-scale

expansions of the AWP and associated warming of the Florida

Current may have enhanced this buffering effect off southeast

Florida during the late Holocene, allowing for the expansion of

cold-sensitive A. palmata and Orbicella coral communities despite

increased regional cold-front frequency and intensity.

Our U-Th dating results show that by ~1800 years B.P. A.

palmata- and Orbicella-dominated reef communities were no
FIGURE 2

Kernel Density Estimate distribution curve produced from the U-Th age data [in years before present (BP)] obtained from subfossil Acropora
palmata and Orbicella spp. coral skeletons (see Supplementary material for more details). Individual U-Th ages are shown as points.
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longer present on the NRC off northern Broward County with the

exception, perhaps, during a brief period at 975 years B.P.

(indicated by a single A. palmata age). The regional extirpation

of these corals corresponds to a long-term shift towards cooler
Frontiers in Marine Science 06
SSTs throughout the North Atlantic (Wanner et al., 2008),

including at the northern AWP sites in the Gulf of Mexico and

Florida Straits (Figures 3A, B; Poore et al., 2004; Lund and Curry,

2004; Thirumalai et al., 2018; Thirumalai et al., 2021). Significantly

cooler temperatures relative to 3500–2000 years B.P. may have

diminished the warm water buffering effect of the Florida Current,

thus limiting the ability of A. palmata and Orbicella spp. corals to

persist in southeast Florida for the last ~1800 years. We

hypothesize that high multidecadal SST variability during the

past 1800 years likely limited the establishment and subsequent

growth ofA. palmata andOrbicella spp. communities on the NRC

despite recurrent warm intervals. Not surprisingly, A. palmata

and Orbicella spp. corals were absent on the NRC during the Little

Ice Age (1450 to 1850 CE) when SSTs in the northern AWP

region were punctuated by cooling as much as 2°C compared to

instrumental records spanning between 1970 and 2010 CE

(Richey et al., 2007; Thirumalai et al., 2018).

Sea level also plays a prominent role in the structural

development of coral reefs by controlling the accommodation

space provided as it rises (Neumann and Macintyre, 1985;

Buddemeier and Hopley, 1988; Hubbard, 1988; Macintyre,

2007). When sea-level rise is in equilibrium with carbonate

production, reef accretion is generally vertical; however, when it

is higher or lower relative to carbonate production, vertical

accretion is inhibited (Neumann and Macintyre, 1985). Based on

reconstructed sea-level estimates for the western Atlantic region

(Khan et al., 2017), paleodepths on the NRC off northern Broward

County averaged ~1.9 m MSL between ~3300 and 1800 years B.P.

(Figure 3C). Sea level increased just ~0.9 m at an average rate of

only 0.7 m per 1000 years during this period, and vertical reef

accretion was, therefore, negligible. This contrasts with the offshore

mid-Holocene reefs that exhibited average accretion rates ranging

between 2.53 and 5.34 m per thousand years when sea-level rise

was considerably faster (Lighty et al., 1978; Stathakopoulos and

Riegl, 2015). Slower sea-level rise, shallow water depths, and the

resulting lack of vertical accommodation space on the NRC likely

explains the limited vertical reef accretion on the NRC during the

late Holocene. Sea level, however, cannot explain the termination

of A. palmata and Orbicella spp. coral communities on the NRC

because it continued to rise – albeit slowly – throughout the late

Holocene (Khan et al., 2017).

Although regional climate was likely the primary control on

centennial-scale expansions of A. palmata and Orbicella spp.

communities off southeast Florida during the late Holocene,

several other factors have been shown to limit reef growth over

broad spatial and temporal scales. For instance, high nutrient

runoff and turbidity during climatic wet periods can inhibit reef

growth by lowering coral calcification rates and enhancing the

severity of disease outbreaks (Hallock and Schlager, 1986; van

Woesik and Done, 1997; Bruno et al., 2003). However,

hydroperiod reconstructions from the southeastern Everglades

indicate a shift from wet to dry conditions at ~2800 years B.P.,

which does not correlate with the timing of coral community
B

C

D

A

FIGURE 3

Comparison between late Holocene reef growth on the
nearshore ridge complex (NRC) off southeast Florida, sea level,
and sea-surface temperature (SST) variability in the subtropical
western Atlantic. SST reconstructions from (A) the Garrison Basin
in northwestern Gulf of Mexico (GoM) [Thirumalai et al., 2021]
and (B) the Florida Straits (SST composite created from records
near the Dry Tortugas [Lund and Curry, 2004] by Thirumalai
et al., 2021). Modern observations of mean-annual SST at each
location are indicated by black dot with error bars (error bars
indicate standard deviation over 1970—2010 CE; SST was taken
from HadISST, Rayner et al., 2003). (C) Estimated late Holocene
relative sea level from Khan et al., 2017 and calculated paleo-
water depths (see Supplementary material). (D) Kernel Density
estimate (KDE) distribution of the 40 U-Th ages obtained from
Acropora palmata and Orbicella spp. samples at study site. Pink
shaded bar shows relative warming in both records and overlap
with reef growth.
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development or termination at our study site (Glaser et al.,

2013). Increased rates of siliciclastic sedimentation have also

been implicated as a limiting factor for high-latitude coral

community development in southeast Florida (Smith et al.,

1950), but there is no apparent mechanism or available record

that would suggest appreciable localized changes in

sedimentation over the <2000-year period represented by this

study. Cold-water upwelling has also been shown to inhibit

modern coral community development in southeast Florida;

however, significant cold-water excursions (below 20°C)

associated with upwelling are limited to the northernmost

extent of the reef tract beyond 26.7°N (Walker et al., 2012b;

Jones et al., 2020). Additional detailed proxy records are needed

to fully resolve these factors, but we conclude that climate was

likely the primary factor modulating coral community

development off southeast Florida during the late Holocene.

Although our findings indicate persistence of reef-building

coral assemblages in southeast Florida during late Holocene warm

periods, there is still considerable uncertainty regarding whether

the current rate of climate warming will result in a similar

response. As climate change continues to accelerate, there is

increasing evidence that extreme temperature events are also

becoming more frequent, severe, and widespread (Stott, 2016),

posing a substantial threat to subtropical reef communities existing

near their thermal and environmental thresholds (Beger et al.,

2014). Benthic temperature monitoring across the SFRT indicates

that maximum summer temperatures are already regularly

exceeding the bleaching threshold previously established for

stony coral communities in the western Atlantic (Jones et al.,

2020; Manzello et al., 2007). As a result, coral bleaching and disease

outbreaks are increasing in frequency and severity throughout the

region, with some of the most dramatic declines recently observed

during the 2015−16 El Nino Southern Oscillation (Walton et al.,

2018; Jones et al., 2020). Since then, coral losses have continued

largely due to an associated outbreak of stony coral tissue loss

disease, which has recently decimated coral populations

throughout the western Atlantic (Precht et al., 2016; Walton

et al., 2018; Alvarez-Filip et al., 2019). Although rising ocean

temperatures may have facilitated long-term range expansions of

cold-sensitive coral taxa during late-Holocene warm periods, it is

uncertain whether the current warming rate will support a similar

response given the suite of other disturbances that coral reefs are

now facing.
Conclusions

Our findings provide new evidence for an expanded period

of high-latitude Acropora- and Orbicella-dominated coral

community development on the NRC off northern Broward

County ~1500 years after the shutdown of reef accretion on the

adjacent offshore barrier reef. Despite post-HTM cooling in the

North Atlantic and an atmospheric circulation pattern
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conducive to higher cold-front frequency in southeast Florida,

A. palmata and Orbicella spp. coral communities persisted in the

shallow waters off southeast Florida for over 2000 years. The

timing of this expansion coincides with shorter term centennial-

scale warming relative to present at the northern extent of the

AWP. We suggest that shorter-term warming and expansion of

the AWP likely facilitated the expansion of cold-sensitive coral

communities on the NRC by modulating local SSTs via the

Florida Current. This warm water buffering effect is currently

observed on the modern reef tract, however, would have greatly

diminished after ~2000 years B.P. when SSTs in the AWP

became highly variable with frequent cold-water excursions.

As a result, A. palmata and Orbicella spp. coral community

development terminated on the NRC off northern Broward

County after ~1800 years B.P. and has been absent ever since.

Given the high temporal resolution of our study and the higher

climate variability at the time, we suggest that the expansion and

persistence of A. palmata and Orbicella spp. coral communities off

southeast Florida during the late Holocene may provide a more

comparable analogue for current and future trends compared with

records from the mid-Holocene. Projected climate change is not

only expected to result in continued ocean warming throughout

the North Atlantic, but also amplify winter extremes over the

North American continent (Kodra et al., 2011; Cohen et al., 2021).

Our results suggest that contemporaneous warming in the

northern AWP region may facilitate continued expansion and

persistence of cold-sensitive coral communities on the nearshore

reefs off southeast Florida despite worsening winter climate

conditions like during the late Holocene; however, this will

depend on the rate of modern warming and the impacts of

recent disease outbreaks and other anthropogenic disturbances.
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