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Abstract. In situ carbonate U–Pb dating studies have prolif-
erated dramatically in recent years. Almost all these studies
have targeted relatively young terrestrial calcite up to Car-
boniferous in age. To assess the robustness of the carbonate
U–Pb chronometer in deep time, we carried out in situ U–
Pb analyses in magnesite–ankerite–calcite carbonates in the
martian meteorite Allan Hills (ALH) 84001. Carbonates in
ALH 84001 formed at ca. 3.94 Ga, and there is little evi-
dence that much happened to this rock since then, making
it an ideal sample to test the robustness of the U–Pb sys-
tem in old carbonates. We obtained a concordant date of
3941± 49/110 Ma (n= 14, MSWD= 2.0), which is identi-
cal to the step-leaching Rb/Sr date determined previously.
These results thus confirm that old carbonates are amenable
to U–Pb dating in samples that have had a relatively simple
history post-carbonate formation.

1 Introduction

Analytical developments in laser ablation inductively cou-
pled plasma mass spectrometry (LA-ICP-MS) over the last
decade have driven important progress in in situ dating
of carbonates – particularly of calcite and, occasionally,
dolomite – using the radioactive decay of uranium (U) into
lead (Pb) (see the recent review by Roberts et al., 2020, for
example). Indeed, biogenic, diagenetic, and vein carbonates
can typically incorporate up to ca. 10–20 µgg−1 U and up to
ca. 100 µgg−1 U in speleothems (e.g. Roberts et al., 2020).
Carbonates typically also incorporate initial Pb, meaning that
multiple analyses on carbonate samples often yield linear ar-
rays in a Tera–Wasserburg inverse concordia diagram, pro-
viding information on both the 207Pb/206Pb composition of

the initial Pb and the age of formation of the carbonates. Re-
cent applications of carbonate U–Pb dating using LA-ICP-
MS include constraining the timing of sedimentation, lithi-
fication, and diagenesis (e.g. Drost et al., 2018; Godeau et
al., 2018; Mueller et al., 2020; Brigaud et al., 2021); fault-
ing (e.g. Ring and Gerdes, 2016; Roberts and Walker, 2016;
Goodfellow et al., 2017; Nuriel et al., 2017, 2019; Hansman
et al., 2018; Beaudoin et al., 2018; Holdsworth et al., 2019;
Smeraglia et al., 2019); aragonite-to-calcite conversion in
ammonites (Li et al., 2014); alteration of oceanic crust
(Coogan et al., 2016); veining, hydrothermalism, and min-
eralisation (Burisch et al., 2017, 2018; Parrish et al., 2018;
Walter et al., 2018; Bertok et al., 2019; Drake et al., 2019,
2020; MacDonald et al., 2019); palaeoclimate reconstruc-
tions (Nicholson et al., 2020); and hominin dispersion (Scar-
dia et al., 2019), for example.

All these in situ studies have targeted relatively young
samples (younger than ca. 465 Ma), with two thirds of the
dates being younger than 50 Ma and all but three being
younger than 300 Ma (Table S1 in the Supplement). This
is consistent with the accepted idea that carbonates are not
very resistant to resetting of their U–Pb isotope systemat-
ics when thermal- and/or fluid-related alteration events take
place after their formation (e.g. Roberts et al., 2020). How-
ever, a few studies have focused on dating older carbonate
samples, using wet chemistry to isolate Pb isotopes, and ob-
tained Pb/Pb isochron dates ranging between ca. 1.60 and
2.84 Ga (Moorbath et al., 1987; Bau et al., 1999; Ray et
al., 2003; Sarangi et al., 2004; Fairey et al., 2013). These
Pb/Pb dates have been interpreted as dating the deposition
of these carbonates, suggesting that, in some settings, the
Pb isotope systematics of carbonates can remain undisturbed
for billions of years. To further assess the robustness of the
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carbonate U–Pb chronometer in deep time, we decided to at-
tempt in situ LA-ICP-MS U–Pb dating of carbonates in the
martian meteorite Allan Hills 84001 (ALH 84001). The for-
mation of these carbonates has been dated at 3.94± 0.02 Ga
(2σ ) using Rb-Sr analyses on acid leachates via thermal
ionisation mass spectrometry (Borg et al., 1999; Beard et
al., 2013; date recalculated using a 87Rb decay constant of
1.3972× 10−11 a−1; Villa et al., 2015).

The meteorite ALH 84001 is an orthopyroxenite – a
cumulate rock mostly comprising orthopyroxene, olivine,
and chromite (e.g. Mittlefehldt, 1994) – which formed
4.09± 0.03 Ga ago, as suggested by Lu-Hf and Pb/Pb dat-
ing (Bouvier et al., 2009; Lapen et al., 2010). Carbonate-rich
areas are irregularly scattered throughout ALH 84001, ap-
pearing as spherical or hemispherical globules, discs along
fractures, and irregular fillings in orthopyroxene (see review
by Treiman, 2021, and references therein). The patches of
carbonates show strong compositional zoning, ranging from
calcite-rich to magnesite–siderite solid solution composi-
tions (e.g. Corrigan and Harvey, 2004; Holland et al., 2005).
These carbonates likely formed at low temperature (ca. 10–
20 ◦C; Halevy et al., 2011; del Real et al., 2016) during fluid–
rock interactions that were broadly contemporaneous with
the main shock event recorded in ALH 84001 (e.g. Treiman,
2021). In order to test the robustness of the U–Pb system in
ca. 4 Ga-old carbonates, it is essential to understand the ge-
ological history of those carbonates to assess whether they
have been affected by any hydrous or other alteration event
since their formation.

Dating carbonate-rich fractions in ALH 84001 using
the Rb-Sr system yielded a precise formation age of
3.94± 0.02 Ga (2σ ; Borg et al., 1999; Beard et al., 2013),
which is consistent with a less precise Pb/Pb isochron
corresponding to a date of 4.045± 0.090 Ga (2σ ; Borg et
al., 1999). The formation of these carbonates occurred at a
low temperature (< 20 ◦C) and likely involved the mixing of
two different water sources, one rich in Ca, the other rich
in Fe (e.g. Halevy et al., 2011, del Real et al., 2016; Bridges
et al., 2019, Treiman, 2021). These carbonate-forming fluids
equilibrated with the atmosphere at the time, unlike igneous
minerals in the matrix (Shaheen et al., 2015). A contempo-
raneous impact event raised the temperature of the surround-
ing plagioclase to ca. 1400 ◦C, melting it to produce glass
and faulting carbonate globules (Mittlefehldt, 1994). Follow-
ing this, Treiman (2021) states “there is little evidence that
anything had happened to ALH 84001 since 3.9 Ga” – un-
til another impact event at ca. 14 Ma, which caused the pro-
genitor material that formed ALH 84001 to be ejected from
Mars (Eugster et al., 1997). After ca. 14 Ma in space, ALH
84001’s parent meteoroid fell to Antarctica ca. 13 000 years
ago (Eugster et al., 1997) and remained buried deep in the
ice for millennia, only emerging at the surface of the Allan
Hills ice field probably no more than 500 years ago (Krähen-
bühl et al., 1998). Finally, there is extensive olivine and glass
of plagioclase composition in ALH 84001, with no evidence

of any alteration to clays or phyllosilicates. Modelling of Ar
diffusion within the constituent minerals implies that the pro-
genitor material for ALH 84001 was not subjected to temper-
atures > 30 ◦C for any “long duration” (Cassata et al., 2010;
Shuster and Weiss, 2005). All these lines of evidence indicate
that the minerals in ALH 84001 were not exposed to hydrous
fluids or temperatures> 25–30 ◦C during the last 3.9 Ga (e.g.
Treiman, 2021).

2 Studied sample

The studied polished section (Fig. 1) was derived from a
chip of the ALH 84001,287 allocation from the NASA An-
cient Mars Meteorite Program. The section contains patches
of carbonates, associated with chromite, in between larger
orthopyroxene grains (Fig. 1). The carbonates display the
range of compositions typical for ALH 84001 carbonates,
from Mg-rich magnesite to Ca-rich calcite, with intermedi-
ate Fe-rich ankerite areas (Fig. 1). The Mg- and Fe-rich car-
bonates seem to be part of broken rosettes, while the Ca-rich
carbonates appear to be associated with maskelynite (Fig. 1).

3 Laser ablation inductively coupled plasma mass
spectrometer analyses

U–Pb analyses were carried out at the University of Manch-
ester using a Teledyne Photon Machines Analyte Excite+
193 nm ArF excimer laser ablation system equipped with a
HelEx II active two-volume ablation cell coupled to an Agi-
lent 8900 triple-quadrupole inductively coupled plasma mass
spectrometer (ICP-MS) using a signal-smoothing device (see
Table S2 for a summary of the analytical setup and data pro-
cessing procedure).

The material ablated from target carbonates was carried
to the ICP-MS by high purity He, which was mixed with
Ar before injection into the plasma source. High purity N2
was added to the He stream at a flow rate of 2 mLmin−1 to
enhance sensitivity. Tuning of the ICP-MS and mass cali-
bration were performed at the start of the analytical session
by optimising the ion signals during ablation of the NIST
SRM 612 reference glass while maintaining 238U+/232Th+

close to unity and minimising the 232Th16O+/232Th+ ratio
(ca. 0.3 %). Glass and carbonates were ablated using a 25
µm laser beam size, a fluence of 4 Jcm−2, and a repetition
rate of 5 Hz. Each analysis lasted 50 s and was preceded by
30 s counting time of the gas blank (background). The masses
analysed and the corresponding dwell times are reported in
Table S2.

The reference glass NIST614 (0.823 µgg−1 U, 2.32 µgg−1

Pb; Jochum et al., 2011) was used to correct for 207Pb/206Pb
fractionation, while mass bias correction of the measured
238U/206Pb ratios was carried out using repeated analyses of
the reference calcite WC-1, which has a thermal ionisation
mass spectrometry (TIMS) age of 254.4± 6.4 Ma (Roberts et
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Figure 1. Backscattered electron image (a) and composite X-ray map (b) of the target carbonate patches in ALH 84001. Mineral abbrevia-
tions are ank= ankerite, cal= calcite, chr= chromite, mgs=magnesite, msk=maskelynite, and opx= orthopyroxene.

al., 2017). To ensure accuracy, the Duff Brown Tank (DBT)
calcite (64.0± 0.7 Ma; Hill et al., 2016) and AUG-B6 cal-
cite (43.0± 1.0 Ma; Pagel et al., 2018) were also analysed
and used as secondary reference materials. Since there is no
U/Pb magnesite–ankerite carbonate reference material, we
have to rely on using a calcite reference material to correct
for U/Pb fractionation in ALH 84001 carbonates.

Data processing was carried out using Iolite v4.5, using
the NIST614 glass as a primary reference material to remove
instrument baseline contributions, the mass bias of Pb iso-
topes, and the downhole fractionation and instrumental drift
of 206Pb/238U ratios (Paton et al., 2011). The reproducibil-
ity obtained on NIST614 for 207Pb/206Pb (± 1.7 %, n=
9, 95 % confidence level) and 206Pb/238U (± 1.6 %, n= 9,
95 % confidence level) ratios were propagated by quadrature
addition into 207Pb/206Pb and 206Pb/238U individual uncer-
tainties for each analysis. Repeated analyses of the NIST612
glass yielded an average 207Pb/206Pb ratio of 0.871± 0.044
(n= 8, 2 standard deviation), which is within error of its
known 207Pb/206Pb ratio of 0.90745± 0.00004 (Baker et
al., 2004).

The data obtained for the reference calcite WC-1 were
then plotted in a Tera–Wasserburg diagram using Iso-
plotR (Vermeesch, 2018) and yielded a lower intercept un-
corrected date of 255.2± 5.9 Ma (95 % confidence level,
MSWD= 1.1, n= 10) for a discordia anchored at the
common 207Pb/206Pb ratio of 0.85± 0.04, determined by
Roberts et al. (2017). To obtain the known intercept age of
254.4± 6.4 Ma for the WC-1 calcite, we applied a linear cor-
rection factor of 1.0031 to the measured 206Pb/238U ratios,
which we also applied to all the samples analysed in the ses-
sion, as is commonly done for carbonate U–Pb dating by
LA-ICP-MS (e.g. Roberts et al., 2017; Drost et al., 2018;
Kylander-Clark, 2020). All calculated dates are associated
with two uncertainties: the first one includes the random un-

certainties for each analysis (internal uncertainties on mea-
sured 207Pb/206Pb and 206Pb/238U ratios and reproducibil-
ity on repeated NIST614 analyses), while in the second one,
systematic uncertainties (2.5 % uncertainty on the WC-1 age
and 0.14 % and 0.11 % on the 235U and 238U decay constants,
respectively; Jaffey et al., 1971) are propagated by quadratic
addition.

The data obtained on the DBT calcite yielded a lower
intercept date of 64.9± 2.2/2.8 Ma (95 % confidence level,
MSWD= 2.9, n= 12) for a discordia anchored at a com-
mon 207Pb/206Pb ratio of 0.74± 0.02, calculated based on
isotope dilution and multi-collector ICP-MS analyses (Hill
et al., 2016) (Fig. S1 in the Supplement). Because of its
lower U abundance and younger age, the data obtained
on the AUG-B6 calcite are less precise, yielding a con-
cordia date of 40.8± 2.0/2.2 Ma (95 % confidence level,
MSWD concordance+ equivalence= 2.2, n= 8) (Fig. S1),
which is identical to a 238U/206Pb weighted average date
of 41.6± 2.1/2.3 Ma (95 % confidence level, MSWD= 0.4,
n= 8). All results are available in Table S3.

4 Results

The carbonates analysed in ALH 84001 contain ca. 0.1–
0.4 µgg−1 U and 0.1–0.5 µgg−1 Th (Table 1). When plot-
ted in a Tera–Wasserburg 207Pb/206Pb vs. 238U/206Pb di-
agram, ALH 84001 carbonates yield a concordant date of
3941± 49/110 Ma (n= 14, MSWD= 2.0; Fig. 2a), which
is identical to a weighted mean 207Pb/206Pb date of
3967± 56/113 Ma (n= 14, MSWD= 1.9; Fig. 2b). In de-
tail, the Mg-rich and Ca-rich carbonate analyses yield con-
cordia dates of 3890± 72 Ma (2σ , MSWD= 1.5, n= 8) and
3995± 69 Ma (2σ , MSWD= 2.4, n= 6), respectively; U–
Pb dates for these two carbonate compositions are, therefore,
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Table 1. LA-ICP-MS results for ALH 84001 carbonates.

Analysis # 204Pb ± Pb U Th Th/U Ratios± 2σ Conc. Dates± 2σ
(cps)a (µg g−1) (µg g−1) (µgg−1) (%) (%)b (Ma)

238U/ ±
207Pb/ ±

207Pb/ ±
206Pb/ ±

206Pb 206Pb 206Pb 238U

MgRich_1 100 110 0.11 0.26 0.20 0.76 1.06 29.2 0.4037 28.3 109 3923 370 4270 853
MgRich_3 −123 82 0.12 0.14 0.08 0.57 1.17 23.9 0.5356 25.2 92 4342 327 3976 671
MgRich_4 10 50 0.13 0.19 0.12 0.64 1.23 18.1 0.4295 24.9 96 4016 329 3835 504
MgRich_5 −4 42 0.20 0.41 0.50 1.21 1.29 8.8 0.3570 12.5 99 3737 178 3698 244
MgRich_6 27 49 0.10 0.18 0.13 0.74 1.06 13.0 0.3850 20.1 111 3852 275 4274 395
MgRich2_1 1 36 0.25 0.39 0.48 1.25 1.23 9.0 0.4049 9.8 98 3927 140 3840 254
MgRich2_2 −18 70 0.12 0.24 0.22 0.92 1.09 15.3 0.4378 21.0 104 4044 282 4197 456
MgRich2_4 −34 41 0.11 0.26 0.27 1.02 1.32 12.4 0.4347 12.9 90 4034 180 3642 335
CaRich_1 50 93 0.06 0.22 0.09 0.41 1.14 24.0 0.4134 25.8 103 3958 340 4070 686
CaRich_2 −2 33 0.10 0.26 0.18 0.68 1.04 9.9 0.3834 9.8 113 3845 140 4346 306
CaRich_3 20 100 0.19 0.43 0.42 0.98 1.33 14.0 0.3767 19.2 95 3819 264 3618 376
CaRich_4 −5 40 0.16 0.27 0.27 0.98 1.17 9.8 0.4042 12.6 101 3925 177 3983 285
CaRich_5 −7 52 0.06 0.38 0.09 0.24 1.13 10.2 0.4742 10.9 98 4163 152 4082 300
CaRich_6 19 45 0.03 0.37 0.08 0.21 1.04 9.3 0.4646 12.1 105 4132 169 4347 288

a Background-corrected 204Pb intensity, calculated using the measured 204(Pb+Hg) and 202Hg, and a 204Hg/202Hg of 0.22932.
b Concordance (100× 206Pb/238U date / 207Pb/206Pb date).

Figure 2. Tera–Wasserburg 207Pb/206Pb vs. 238U/206Pb diagram (a) and 207Pb/206Pb dates (b) obtained on ALH 84001 carbonates.
Ellipses (a) and error bars (b) correspond to 2σ standard errors. The bold black ellipse in (a) corresponds to the calculated concordia date
and associated uncertainty.

indistinguishable when uncertainties are considered. Carbon-
ate analyses plot on the concordia curve, indicating that they
do not contain appreciable amounts of common Pb. This is
consistent with the measured 204Pb intensities that are within
error of 0 counts per second, although it is fair to point out
that this observation is qualitative, considering the large un-
certainties associated with the 202Hg, 204(Hg+Pb), and cal-
culated 204Pb count rates (Tables 1 and S3). It is noteworthy
that 202Hg intensities in ALH 84001 carbonates are about an
order of magnitude higher than in the terrestrial carbonate
standards (Table S3). This could indicate that martian car-
bonates contain higher Hg abundances than terrestrial car-

bonates. Alternatively, we think that this extra Hg likely orig-
inates from contamination of the ALH 84001 section by Au
coating applied in the past for secondary ion mass spectrom-
etry studies.

5 Discussion and implications

5.1 Comparison with previous ALH 84001 carbonate
dating studies

In situ U–Pb dating of carbonates in ALH 84001 using LA-
ICP-MS yields a concordia date of 3941± 49/110 Ma, which
is identical to the carbonate step-leaching Rb-Sr isochron
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date of 3.94± 0.02 Ga (Borg et al., 1999; Beard et al., 2013)
and the less precise Pb/Pb isochron date of 4.045± 0.090 Ga
(Borg et al., 1999). Before propagating the ± 2.5 % uncer-
tainty associated with the age of the primary U–Pb refer-
ence carbonate WC-1 and the uncertainties associated with
the 238U and 235U decay constants, the carbonate U–Pb con-
cordia date is associated with a fairly precise 2σ uncertainty
of ± 1.2 %, which increases to ± 2.8 % when all uncertain-
ties are propagated. This suggests that in situ U–Pb dating of
carbonates has the potential to yield precise dates, but it also
highlights the need to reduce uncertainties on reference ma-
terials. Our LA-ICP-MS results also indicate that using a cal-
cite primary reference material for correcting U/Pb fraction-
ation in Mg- and Fe-rich carbonate matrices, such as mag-
nesite and ankerite, produce accurate dates (within the ob-
tained uncertainties). A final point worth highlighting is the
fact that carbonates in ALH 84001 do not contain appreciable
amounts of common Pb, as indicated by their concordant U–
Pb date of ca. 3.94 Ga. This is unusual, as most examples in
terrestrial system carbonates do contain common Pb, incor-
porated during their crystallisation (e.g. Roberts et al., 2020).
This observation suggests that the fluids from which ALH
84001 carbonates formed contained very little Pb.

5.2 Robustness of the carbonate U–Pb chronometer
and further applications

Our in situ LA-ICP-MS analyses confirm that carbonates
in ALH 84001 formed ca. 3.94 Ga ago and that the U–Pb
chronometer in these carbonates has remained closed to any
disturbance event since they formed. This is consistent with
the suggestion that not much happened to ALH 84001 be-
tween 3.9 Ga and its launch from Mars 14 Ma ago (Treiman,
2021), and indicates that this latter event did not reset the car-
bonate U–Pb chronometer. From the evidence summarised
in Sect. 1, Treiman (2021) concluded that minerals in ALH
84001, including the carbonates, have experienced neither
temperatures in excess of ca. 25 ◦C nor exposure to any hy-
drous fluids since 3.9 Ga, leading to the conclusion that the
climate of Mars has remained globally cold and dry since
then. Any aqueous events occurring on Mars due to a glob-
ally warmer and wetter climate, therefore, took place be-
fore 3.9 Ga. Heating and aqueous alteration events due to me-
teoroid impacts could have occurred at any time, but these
would have been strictly localised. Our U–Pb data back up
the view that the carbonates in ALH 84001 have not experi-
enced any alteration since they formed, supporting the con-
clusion that the progenitor material of ALH 84001 was not
exposed to hydrous fluids or high temperature events for the
last 3.9 Ga, suggesting a globally cold and dry Mars since
then.

On the other hand, carbonates in terrestrial Archean sam-
ples are probably not the best suited for U–Pb dating, as most
Archean formations would have been heated up to at least
low greenschist metamorphic conditions and/or would have

been affected by hydrothermal alteration, because the Earth
is geologically active and harbours a complex hydrological
cycle. On the other hand, the results of this study open up
opportunities for dating old carbonates in samples that have
had a relatively simple history post-carbonate formation. For
example, volatile-rich carbonaceous chondrites (e.g. CI and
CM chondrites) typically contain carbonates formed during
fluid–rock interactions on their parent asteroids ca. 4563–
4561 Ma-ago (e.g. Lee et al., 2014; Jilly-Rehak et al., 2017,
and references therein), which is within 10 Myr of the for-
mation of the first solids in the solar system. Bulk CI and
CM chondrites contain ∼ 10 ngg−1 U (e.g. Braukmüller et
al., 2018; Turner et al., 2021), a significant proportion of
which is potentially hosted in labile phases such as carbon-
ates (e.g. Burkhardt et al., 2019; Turner et al., 2021). As they
make up ∼ 1 vol. %–2 vol. % of CM chondrites (e.g. Lee et
al., 2014), these carbonates could host a few 100’s ngg−1 U,
which is similar to the U abundance in the ALH 84001 car-
bonates analysed here. After this phase of early hydrothermal
alteration, during which carbonates formed, it is thought that
not much happens to volatile-rich carbonaceous chondrites
on their parent asteroids until they end up on the Earth as
meteorite fragments. Carbonates in carbonaceous chondrites
could thus be prime targets to further constrain the timing of
hydrothermal alteration on volatile-rich asteroids using the
U–Pb dating chronometer.
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