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Introduction: The seriously degraded fogging image a�ects the further

visual tasks. How to obtain a fog-free image is not only challenging, but

also important in computer vision. Recently, the vision transformer (ViT)

architecture has achieved very e�cient performance in several vision areas.

Methods: In this paper, we propose a new transformer-based progressive

residual network. Di�erent from the existing single-stage ViT architecture,

we recursively call the progressive residual network with the introduction of

swin transformer. Specifically, our progressive residual network consists of

three main components: the recurrent block, the transformer codecs and

the supervise fusion module. First, the recursive block learns the features

of the input image, while connecting the original image features of the

original iteration. Then, the encoder introduces the swin transformer block to

encode the feature representation of the decomposed block, and continuously

reduces the featuremapping resolution to extract remote context features. The

decoder recursively selects and fuses image features by combining attention

mechanism and dense residual blocks. In addition, we add a channel attention

mechanism between codecs to focus on the importance of di�erent features.

Results and discussion: The experimental results show that the performance

of this method outperforms state-of-the-art handcrafted and learning-

based methods.

KEYWORDS

transformer, residual network, image dehazing, progressive recurrent, multiple

self-attention

1. Introduction

Due to the color distortion, blurring and other quality problems of haze images that

affect further information capture, single image deblurring has always been a challenging

and highly concerned problem. The deblurring method originates from the classical

atmospheric scattering model, and the imaging formula is as follows:

I (x) = J (x) t (x) + A (1− t (x)) ,

t (x) = e−β(λ)d(x),
(1)
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where I (x) is the degraded image, J (x) is the brightness of

the scene when it does not propagate through the water,

t (x) is the transmissivity of the propagation medium, β (λ) is

the attenuation coefficient of different wavelengths of light, λ

represents different color channels, d (x) is the distance between

the camera and objects, and A is the ambient atmospheric

light of the scene. Many deblurring methods based on imaging

models (He et al., 2010; Zhu et al., 2015; Berman et al., 2016,

2018; Middleton, 2019) restore clean images by reversing the

blurring process, in which the atmospheric channel A (x) and the

medium transmission map t(x) need to be estimated by manual

prior. Although the quality of the blurred image is improved to

some extent, these physical priors are not always reliable, and

without priors and constraints, the blurring performance will be

further reduced, resulting in artifacts and color distortion.

With the development of deep learning in recent years,

convolutional neural network has become the backbone of

various visual tasks due to its robustness and accuracy. The

progress of CNN architecture improves network performance

and promotes the progress of single image defogging (Qin et al.,

2020) and other hierarchical visual tasks (Afshar et al., 2020;

El Helou and Süsstrunk, 2020; Akbari et al., 2021). Although

the method based on CNN has special representational ability.

It is unable to learn global and remote semantic information

interaction well due to the localization of convolution operation.

To overcome these problems, some methods add self-attention

mechanism (Wang et al., 2020). While others use full attention

structure to replace traditional RNN modeling, and propose

transformer model to solve Seq2Seq problem (Vaswani et al.,

2017). Compared to CNN, Transformer does not increase to

distance from the number of operations required to calculate the

association between two positions, and can not only do parallel

calculations, but also efficiently process global information and

encode longer sequences. Due to its powerful presentation

capabilities, researchers have applied Transformer to computer

vision tasks such as image representation (Wu et al., 2020),

image segmentation (Zheng et al., 2021), object detection

(Carion et al., 2020; Zhu et al., 2020), pose estimation (Huang

et al., 2020a,b; Lin et al., 2021b) and pre-training (Chen et al.,

2021a). There are still some problems that can not be ignored

when the model is transferred to the visual task, such as the large

scale change of the visual target and the high resolution pixel of

CV.

Recently, researchers have improved Vit, and swin

transformer (Liu et al., 2021) has solved these problems and

proved its effectiveness and superiority in target detection,

instance segmentation, semantic segmentation and other task

fields. Therefore, some methods uses it as the backbone for

image classification, image restoration and medical image

segmentation. For example, Chen et al. (2021b) introduces a

transformer to encode image features and extract contextual

input sequences. Cao et al. (2021) proposes a pure transformer

similar to u-net for medical image segmentation. Input

tokenized image patches to a transformer-based u-shaped

encoder-decoder architecture with skip-connections for local-

global semantic feature learning. Liang et al. (2021) uses several

swin Transformer layers and a residual swin transformer block

with a residual connection for image restoration. In order

to obtain image features from multi-scale, Gao et al. (2021)

proposes a method combining swin transformer trunk and

traditional multi-stage network, which effectively improved

the ability of feature extraction. Yue et al. (2021) proposes an

iterative and progressive sampling strategy and combined with

the transformer to classify images.

Inspired by the above process, we proposed an progressive

residual network (PRnet) based on swin transformer. PRnet

consists of recurrent block, transformer codecs and supervised

fusion modules. First, we have a recurrent block that learns

shallow features of input images and introduces a long

short-term memory (LSTM) network to connect different

iterations, ensuring that more of the original image features

can be retained over multiple iterations of the model. The

transformer codec then learns the sequence representation of

the input image through the u-net structure, and effectively

extracts the remote context features from multiple scales of

the image. The encoder introduces swin transformer block

to encode feature representation from the decomposed patch,

and continuously reduces the resolution of feature map for

local relationship modeling. Decoder decodes hidden features

through convolution and upsampling and realizes dimensional

transformation to further predict the semantic output of the

global context representation. In addition, we connect the

encoders through skip connection and add channel attention.

this design can effectively avoid the loss of original features and

improve the quality of the output image. Finally, the supervised

fusion module combines the attention mechanism and dense

residual blocks to recursively select and fuse the image features

and transfer the attention-guided features to the next stage,

which can effectively preserve the original features of the image

and prevent the model from over-fitting. In addition, the whole

recursive process under the supervision of the original input

image can effectively retain the original resolution characteristics

of the image, improve the learning efficiency and defogging

performance of the network.

To validate our approach, we tested it on different data

sets. A large number of experiments and qualitative and

quantitative evaluations show that our iterative strategy is

beneficial to image restoration and is superior to other state-

of-the art methods (see Figure 1). In short, our contribution

is:

• We introduce the swin transformer into the iterative

progressive residual network (PRnet), which obtains

sufficient contextual semantic information and spatial

features by learning multi-scale feature information of the

input image.

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1084543
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yang et al. 10.3389/fnbot.2022.1084543

FIGURE 1

Image dehazing on the RESIDE dataset (Li et al., 2018). Under

di�erent evaluation indexes, the performance of our method is

the most advanced (SSIM on x-axis and PSNR on y-axis) when

compared with several advanced methods.

• We introduce channel attention between the encoder and

decoder, which makes the module focus on extracting

significant useful features related to clean image in the

input image.

• We design a supervised fusion module, which combined

the dense residual block with attention to conduct recursive

supervised fusion of image features under the supervision

of ground-truth.

2. Related work

In this section, we will conduct a comprehensive review of

fog removal methods and vision transformer relevant to our

work. We will conduct a comprehensive review of single image

defogging algorithms, including traditional image defogging and

deep learning-based image defogging methods.

2.1. Model-based method

By observing and analyzing the imaging process of fog

image and its relationship with clean image, the physical model

of atmospheric scattering for fog imaging is established. The

model-based method tries to estimate the atmospheric light

and medium transmission map using the handmade prior

knowledge, and then restore the blurred image. Dark channel

prior (DCP) is one of the outstanding representatives of priority-

based methods. He et al. (2010) assumed that each pixel with a

value close to zero has at least one color channel, and combined

it with haze imaging model to recover high-quality fog-free

images. Zhu et al. (2015) proposed a method of restoring image

color attenuation by establishing a linear model to estimate the

depth of field information. Berman et al. (2016, 2018) propose

an algorithm based on non-local prior to predicting atmospheric

light by identifying haze lines and estimating transmission per

pixel. Although these methods have achieved some success,

they are still constrained by prior knowledge, which may lead

to insufficient demisting effect and more serious artifacts and

blurriness.

2.2. Deep-learning method

In recent years, a large number of methods based on

deep learning have flooded with the field of dehazing. Some

deep learning methods still combine physical models or prior

knowledge to improve the accuracy of fog removal. Kar et al.

(2020) takes the atmospheric light and transmission diagrams

estimated by convolutional architecture as a prior condition,

and uses an iterative mechanism to gradually update the

estimated value to the more appropriate estimated value of

fuzzy conditions. Yan et al. (2020) uses multi-scale convolutional

neural network combined with atmospheric scattering model

to extract features of different scales from global to local. By

learning the mapping relationship between hazy images and

their transmission images, Ren et al. (2020) predicts projected

images at multiple scales and refined the results of defogging.

Different from the above methods, Anvari and Athitsos (2020),

Liu et al. (2020b), Wang et al. (2021), and Zhang et al. (2022)

directly restores blurred images end-to-end by learning the

mapping between blurred and clear images. Anvari and Athitsos

(2020) combines encoder-decoder structure and residual block

to restore fog-free scenes. Through local residual learning and

feature attention mechanism, Qin et al. (2020) designs an end-

to-end feature fusion attention network to directly restore fog-

free images. Liu et al. (2020b) uses residual blocks in fine-

grained and coarse-grained networks to generate clean images

directly from input fuzzy images. These methods use residual

learning to enable network residual links to bypass unimportant

information and enable the network architecture to focus on

more effective information.

In addition, some methods take into account the

morphological differences of fuzzy images at different scales

to extract, transfer and fuse multi-scale image features. For

example, Yeh et al. (2019) relies on multi-scale residual learning

and image decomposition to remove haze from a single image,

and feature transmission benefited from the basic components

of remnant CNN architecture and simplified u-net structure.

Liu et al. (2019) performs multi-scale estimation based on

attention, alleviates the bottleneck problem of traditional

multi-scale methods and reduces the output image artifacts. Li

et al. (2021) designed a dual attention to extract global features

and guide subsequent recursive units. Through the strengthen-

operate-subtract boosting strategy, Dong et al. (2020) proposes

a multi-scale enhanced defogging network with dense feature
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fusion based on u-net architecture. Despite its success, the

limitations of the convolution layer, the main building block of

CNN networks, limit the ability to learn remote spatial relevance

in such networks. To solve these problems, we have introduced

the swin transformer block in this paper.

2.3. Vision transformer

Transformer was first proposed for machine translation

Vaswani et al. (2017) and is widely used in many natural

languages processing tasks. Because of its powerful

representation ability, it has recently been applied to computer

vision tasks. To adapt transformer for visual tasks, the

researchers have modified it. For example, Transformer model

does not have translation invariance and locality like CNN.

Parmar et al. (2018) applies self-attention to local fields and

solves the problem that it cannot be well generalized to new

tasks when data is insufficient. In addition, location information

is very important for Transformer. Dosovitskiy et al. (2020)

adds position embedding to feature vector and proposes a visual

transformer (ViT), which directly applies pure transformer to

image patch sequence to complete image classification task.

In addition, Transformer model does not have translation

invariance and locality like CNN. So it cannot be generalized to

new tasks when data is insufficient. Liu et al. (2021) improves

ViT by limiting self-attention computation to non-overlapping

local windows and allowing cross-window connections to

improve efficiency. This layered architecture has the flexibility

to model at a variety of scales, which can be well generalized to

new tasks. For example, with Swin Transformer as its backbone,

Xie et al. (2021) uses self-supervised learning methods to handle

object detection and semantic segmentation tasks. Cao et al.

(2021) proposes a pure Transformer similar to u-net for medical

image segmentation based on u-encoder-decoder architecture

and learning local and global semantic features by skipping

connections. Huang et al. (2022) has designed an adaptive

group attention for Swin Transformer, which reduces the model

parameters while taking into account the network performance.

Lin et al. (2021a) tries to incorporate the advantages of layered

FIGURE 2

The proposed framework for PRnet. PRnet extracts early features through recurrent blocks, then extracts multi-scale features through

transformer codec, and finally integrates the features into the supervised fusion module. The blue line represents concatenate operation, and

the black line represents forward.
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Swin Transformer into the standard encoder and decoder

U-shaped architecture at the same time, so as to improve the

semantic segmentation quality of different medical images. It

designes a strong baseline model for image recovery based on

Swin Transformer, and combined Swin Transformer layer with

residual connection for depth feature extraction. The success of

Swin Transformer in these visual tasks proves that it is superior

in some respects to the full convolution approach.

3. Progressive image dehazing
networks

In this section, we first introduce the cross scales supervisory

integration mechanism (CSSI) and then introduce our overall

architecture of progressive residual networks. As shown in

Figure 2, it is made up of recurrent block, a Transformer

encoder-decoder module based on the u-net architecture, and

a supervised fusion module. Finally, we will describe the details

of each module and the loss function in detail.

3.1. Cross scales supervisory integration
mechanism

Our analysis shows that if the encoder and decoder

are independent from each other, multi-scale features

cannot interact with each other, which will greatly reduce

the performance of the model (Figure 3). If features are

fused through simple transfer, convolution or addition

microstructures, and these features are treated equally, it is easy

to cause redundancy and bring great burden to the network.

To solve this problem, we added cross scales supervisory

integration (CSSI) between encoders, which can improve the

learning efficiency of U-codecs, make full use of features of

different scales, and ensure the connectivity of the model.

CSSI converts the output feature of encoder layer through 1×1

convolution. Then, the convolution features are paid attention

to the information useful to the current output features through

the channel attention block (CAB). The channel attention

mechanism aggregates spatial dimension features using

operations such as convolution, activation function, global

average pooling and maximum pooling. Subsequently, the

above features are fused through the following skip connection:

Fi = Ci ⊕ Ei = CAB[conv(Ei)]⊕ Ei , (2)

where Ei and Ci represent the output of the encoder layer

and channel attention mechanism respectively. Next, the output

feature of the encoder layer is fused with the up-sampling and

convolution operation results of the previous decoder layer to

obtain the input feature of the next decoder layer:

Di = CSSI[Fi, conv(↑ Di−1)], (3)

whereDi−1 andDi represent the features of the previous and

next decoder layers.

CSSI explores the relationship between feature maps of

different channels through channel attention, adjusts and

aggregates different feature maps in the process of feature

interaction, and finally transfers them to the decoder layer. On

the one hand, CSSI makes the network pay more attention to

find the significant useful information related to the current

output in the input data, which can effectively avoid the loss of

original features and improve the quality of the output image.

On the other hand, CSSI can improve the efficiency of feature

fusion and interaction between codecs with different resolutions,

effectively reducing the network burden.

3.2. Progressive networks

Swin Transformer interacts with the global information of

the image, without considering the importance of the content of

the image area and the overall structure of the object, and cannot

pay better attention to the structure and details of the image.

In order to make up for the above defects, we propose a new

progressive residual network (PRnet), which solves the problem

of fog removal through multiple stages. At the same time, u-

transformer encoder-decoder is used in each stage to learn

the morphological features of foggy images at different scales.

To avoid the increase and over-fitting of network parameters,

different from the previous multi-stage, we do not pile up

several sub-networks, but use the recursive calculation between

stages to share the same network parameters in multiple stages.

In addition, while swin transformer avoids the segmentation

edge loss problem, the Transformer image is smaller than the

original image resolution. Therefore, ground truth is used to

supervise the network, which can suppress features with less

information in the current stage and only allow useful features

to be transmitted to the next stage.

3.2.1. Progressive recurrent block

We designed a Recurrent block in PRnet to learn the

shallow features of the input image, and introduced the Long

Short-Term Memory (LSTM) (Yamak et al., 2019) networks

to connect different iterations to ensure the propagation of

features across multiple stages of the model. In the process

of feature dependence, more original image features can be

retained. As shown in Figure 4, taking the t iteration as an

example, we input the original foggy image and the predicted

image output by the iteration into the network together, go

through the convolutional layer 3 × 3 × 64 with a step size of

1, and then go through the activation function(ReLU) performs

nonlinear correction. In the subsequent convolution, we did

not perform batch normalization, but added an LSTM layer.

LSTM introduces and splices the feature map output xt−1 from
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FIGURE 3

(A) Encoder-decoder block. (B) Cross scale supervisory integration mechanism between encoder decoder and the last decoder.

FIGURE 4

Progressive recurrent block structure. ⊗ Represents Hadamard Product, and the corresponding elements in the matrix are multiplied.

⊕ Represents matrix addition operation.

the t − 1 iteration and the previous hidden state ht−1. The

feature graph it is obtained by convolution, which is used to

determine which information is important and needs to be

retained. Then feature graphs ft and ot controlling forgotten data

were obtained through sigmoid activation function, and then

forgetting and remembering were carried out according to the

following formula:

Ct = ft ∗ Ct−1 + it ∗
∼
C
t
, (4)

Among them,
∼
C
t
represents the cell state, which is a feature

map obtained by passing ht−1 and xt−1 to the Tanh function.

Next, multiply ot with Ct after Tanh activation to obtain ht to

determine the information carried in the hidden state, namely:

ht = ot ∗ Tanh(Ct), (5)

where ht is output as the current cell, which is passed to the

next time period with the new cell state Ct . The output of the

entire asymptotic recursive process can be expressed as:

fres = LSTM(xt−1, ht−1) (6)

3.2.2. Transformer encoder-decoder

As we all know, multi-scale networks can not only

extract low-level high-resolution features and texture detail

information, but also extract high-level feature semantic

information, and fully extract and utilize image features at

different scales. Therefore, we combine the advantages of swin

transformer and cnn to design encoder-decoder based on u-

net architecture. By learning the sequence representation of the

input image, we can ensure that sufficient contextual semantic

information and spatial features are acquired during the long-

distance transmission.

Swin transformer introduces the locality idea in the

Multiple Self-Attention (MSA)module to perform self-attention

computation in the window region without overlap. Because
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of its hierarchical design and generalization, it has proven

its effectiveness in several fields such as object detection,

semantic segmentation and image denoising. Therefore, we

apply Swin transformer directly in encoder to encode the feature

representation from the decomposed patch.

Our encoder generates different number tokens through

three layers of encoder layer. The first, second and third layers

generate H
4 × W

4 , H8 × W
8 , and H

16 ×
W
16 tokens respectively. Each

stage consists of Patch Merging and some Swin Transformer

Blocks. We merged the image resolution by a sliding window

operation for PatchMerging, and divided the image with a given

size of H × W into RGB image patches, and marked them as

the original pixel Mosaic vector with a size of 4 × 4. It is then

mapped to a vector of dimension 4C using linear embedding. At

this time, the output dimension is set to 2C and the feature size is

set to H
8 × W

8 from the originalH4 × W
4 . Next, the output feature

zl−1 enters two consecutive Swin Transformer Blocks for feature

transformation. Unlike MSA in ViT, Swin Transformer Block

computes self-attention by adding a relative position bias B to

the corresponding head, then the output feature zl−1 of layer l

can be written as follows:

zlm = SW −MSA(LN(zl−1))+ zl−1,

zl = MLP(LN(zlm))+ zl, l = 1, 2, 3,
(7)

where zlm represent the output of multi-head self-attention,

zl represent the output of MLP.

Corresponding to the encoder, a symmetric decoder is

constructed based on the swin transformer, forming an encoder-

decoder based on the u-net architecture.To recover the spatial

order, we use a convolution module and upsampling to form

a Decoder layer. In the first layer the hidden features are first

decoded by bilinear upsampling of the input features ( H16 ×
W
16 × 4C).And then implement dimension transformation in

the convolution module. A linear layer is applied to map the

dimensions to 2C, then the resolution is extended to H
8 × W

8 ,

and finally the output feature (H8 × W
8 × 2C) is fed into the next

Decoder layer. Bilinear up-sampling operation can ensure the

same dimensions before and after the fusion, so that the fusion

and feature mapping under the same dimension can be carried

out again. In addition, Decoder decodes hidden features while

further predicting the semantic output of the global context

representation.

3.2.3. Supervise fusion module

First, the output features of Swin transformer decoder are

supervised by ground-truth and attentionmaps are generated by

Supervised Attention (Zamir et al., 2021) to assist the delivery of

useful features and effectively preserve the original features of

the image. Next, we introduce residual blocks to learn deeper

features. Inspired by Kim et al. (2016), we use recursion to

unfold the residual block by calling the residual block 5 times,

with both input and output channels of 64 and a convolution

kernel size of 3 × 3. In addition, a skip connection is used in

the residual block to connect the input and output, which is

then passed to the next residual block as input. The calculation

formula is as follows:

xi = xi−1 + ReLU(xi−1,wi−1) (8)

where xi is the output of the current residual block, xi−1

is the output of the last residual block, ReLU is the activation

function, which can effectively improve the accuracy of the

model.

3.3. Loss function

The aim of our training is to recover clear images with low-

level and high-level features from fogged images. In order to

obtain high quality images, we use a combined loss function

for optimization during the training process. Therefore, given

a training dataset
{

RnT ,G
n
}N
n
for T-stage, we solve

L =

t
∑

T=1

{αLC(R
n
T ,G

n)+ βLS(R
n
T ,G

n)}, (9)

where RnT is the outputs of stage T, and Gn represents the

ground-truth images. The loss coefficients of α and β are set to

0.2 and 4. And LC is the Charbonnier loss (Charbonnier et al.,

1994), used to calculate the pixel loss between the predicted

image and the ground truth. In addition, LS(R
n
T ,G

n) is the

structural similarity loss (Wang et al., 2004), which is used

to evaluate the structural similarity of the content of the two

images. To avoid images suffering from distortion and low peak

signal-to-noise ratio (PSNR), Ren et al. (2019) uses negative

SSIM loss in an image recovery task and demonstrates the

effectiveness of this loss on PSNR, SSIM and visual.

4. Experimental results

In this section, we first present the training details and

evaluation metrics. Then, our method is compared qualitatively

and quantitatively with advanced methods on multiple datasets.

Finally, we conduct ablation experiments.

4.1. Experimental setup

The RESIDE dataset (Li et al., 2018) is a large-scale

benchmark including synthetic images and real-world blurred

images. The RESIDE is composed of five sub-data sets: Indoor

Training Set (ITS), Outdoor Training Set (OTS), Synthetic
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Objective Testing Set (SOTS), Real-world Task-driven Testing

Set (RTTS) andHybrid Subjective Testing Set (HSTS) constitute.

We selected 20,000 pairs and 500 pairs from SOTS as outdoor

scene training set and outdoor scene test set respectively, and

2,000 pairs of real blurred images from RTTS for testing. In

addition to the RESIDE dataset, we also conducted experiments

on another publicly available dataset. O-HAZE (Ancuti et al.,

2018) is an outdoor scene dataset proposed by NTIRE2018

FIGURE 5

Visual results on the SOTS dataset. Best viewed on a high-resolution display.
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Image Dehazing Challenge, including 45 pairs of real foggy

images and corresponding fog-free images. These fogged images

are taken by professional haze instruments, which can well

record the same visual content under fog-free and fogged

conditions. We choose 35 pairs as the training set, 5 pairs as the

validation set, and 5 pairs as the test set.

Our network was trained on an Ubuntu environment, using

the ADAM (Kingma and Ba, 2014) optimizer and on anNVIDIA

RTX2080ti GPUs. The training was performed using the Pytorch

framework. The initial learning rate was set to 3 × 10−5 and

gradually decreases to 1 × 10−6. The network was trained

for 50 epochs, and the input image size was 512 × 512 ×

3.

In order to evaluate the image quality of single image

defogging and compare it with other methods. We used the two

most commonly used evaluation metrics in defogging methods:

Peak Signal to Noise Ratio (PSNR) and structural similarity

(SSIM). PSNR is a pixel-level image quality evaluation method

used to measure the difference of gray values between two

images. The higher the PSNR value,the lower the distortion

FIGURE 6

Visual results on the O-HAZE dataset. Best viewed on a high-resolution display.
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FIGURE 7

Visual quality comparison on real mist images.

between the evaluated image and the ground-truth image, and

the better the quality; on the contrary, the poorer the quality.

SSIM is a measure of covariance to determine the degree of

structural similarity between images according to the degree of

correlation between image pixels. The higher SSIM value, the

more structure or color information the image retains, and the

better the effect of the resulting image. What’s more, we use the

scikit-image library of python to calculation them. In addition,

since there is no ground-truth image in real-world datasets, we

use Fog Aware Density Evaluator (FADE) (Choi et al., 2015) to

evaluate the haze density of the restored image. We also adopted

the non-reference blind image quality evaluation indicators,

NIQE (Mittal et al., 2012). NIQE is used to normalize the

image contrast into blocks, and determine the image quality by

calculating the average value of the local contrast of each block.

4.2. Image dehazing results

We evaluated the defogging results objectively and

subjectively on different datasets, and compared the proposed

defogging method with seven state-of-the-art methods, namely,

MSCNN, AOD-Net, GCANet (Chen et al., 2019), MSBDN,

FFA-Net, TDN (Chen et al., 2020), PMHLD (Liu et al., 2020a),

DCNet (Bhola et al., 2021), and SSDN (Huang et al., 2021).

4.2.1. Subjective evaluation

We selected outdoor synthetic and real fogged images from

the RESIDE dataset for testing, and combined our method with

seven advanced methods. In addition, to verify the effectiveness

of our network, we also selected real fog images from the

O-HAZE dataset for testing, and selected three of them for

comparison and presentation. The original fogged images,

ground truth and the defogging results using 8 methods are

shown in Figures 5–8.

In Figure 5, the top row shows the input fog image. It

can be seen that MSCNN, AOD-Net and DCNet are not ideal

in a slightly complex environment, and the restored colors

are not bright enough. The GCA, TDN and SSDN methods

have the problems of color difference, color spot and color

oversaturation. MSBDN, FFA-Net, PMHLD and our methods

are relatively close to the real ground images, but MSBDN and

FFA-Net are not satisfactory in restoring remote scenes, while

PMHLD produces color differences in the sky of column 1 and

column 2. In contrast, our method performs better in color

and detail in complex environments. For example, our method

removes the haze around people in the fourth and fifth columns

more thoroughly.

Figure 6 shows the demisting effects of different methods

in the O-HAZE dataset. In the first two layers, the fog removal

effect under the mist is displayed. MSCNN, AOD-Net, MSBDN,

and FFA-Net not only did not remove the influence of haze,

but also deepened the blurriness of the scene and made the

overall color darker. Although GCANet and PMHLD reduce the

fogging effect, the color of the image itself is affected, and the

overall brightness of the output image is low. TDN, SSDN and

our method generate more visible results with more significant

demisting effect and clearer texture details.

Figures 7, 8 show the demisting effect of real scenes at

different shooting distances. In these two images, the overall

brightness of the images restored by MSCNN, GCA-Net, and
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FIGURE 8

Visual quality comparison on real dense fog images.

TABLE 1 Quantitatively compare the dehazing results with SOTA

methods on the RESIDE and O-HAZE datasets.

Method
SOTS O-HAZE

SSIM PSNR SSIM PSNR

MSCNN 0.8436 19.49 0.7359 18.93

AOD-Net 0.8747 22.31 0.6724 18.19

GCANet 0.9151 22.89 0.6633 15.77

MSBDN 0.9068 28.64 0.6378 18.46

FFA-Net 0.9422 31.31 0.6792 18.07

TDN 0.7857 17.38 0.7286 19.41

PMHLD 0.8276 23.81 0.4839 14.40

DCNet 0.8343 19.47 0.7028 20.74

SSDN 0.8852 21.11 0.7789 25.71

Ours 0.9439 33.25 0.8758 24.19

Best and second best scores are red and blue. The table shows the average of the data.

DCNet is low, such as a large area of dark areas in the sky.

The overall color of TDN, MSBDN, and FFA Net is not bright

enough, and the distant scenes are not well recovered. SSDN

and our method restore relatively complete details, but in

the first scene, SSDN is blurred in the vegetation (red box

area), and our details processing is more prominent. Compared

with these advanced methods, PMHLD and our methods

have more realistic details and better visibility in the restored

images.

In summary, our method is visually outstanding in both

synthetic and real scenes, and the recovered images are

more thoroughly defogged and have clearer details such as

color textures.

TABLE 2 Quantitative and e�ciency comparison in RTTS dataset.

Method NIQE FADE Runtimes

MSCNN 3.2499 1.1716 2.3356

AOD-Net 3.4439 1.4342 0.1904

GCANet 3.2615 1.0135 0.0821

MSBDN 3.4248 1.5211 0.0394

FFA-Net 3.4515 2.0205 0.6561

TDN 3.3356 0.9217 0.8767

PMHLD 3.2254 0.7240 0.3321

DCNet 3.4188 1.2886 0.1725

SSDN 3.3756 1.8476 0.3357

Ours 3.1752 0.7873 0.4436

Color numbers indicate the best indicator value.

4.2.2. Objective evaluation

In the previous section we evaluated the images after

defogging through visual effects.In this section, we provide

an objective analysis of several methods using two different

quality evaluation metrics, PSNR and SSIM. We count the data

metrics averaged over the RESIDE dataset and the O-HAZE

dataset for each method and visualize them. In addition, we

also show the values of SSIM and PSNR metrics for several

images in Figure 5. It can be found that the PSNR values of

our method are much higher than the other methods, which

indicates that the less distortion and better quality between the

images processed by our method and the ground-truth images.

As can be observed in Table 1: our method outperforms all

SOTA methods with SSIM and PSNR of 0.9438 and 33.2523

dB on the RESIDE dataset. It is intuitively seen in Figure 1

that our method significantly outperforms other methods in
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FIGURE 9

Single image defogging image obtained in di�erent iterations.

TABLE 3 Use outdoor synthetic images to test models with di�erent

iteration times, use PSNR, SSIM, and TIME for comparison.

SSIM PSNR TIME

Iteration=3 0.9289 32.71 0.3354

Iteration=4 0.9356 33.14 0.3863

Iteration=5 0.9438 33.25 0.4436

Iteration=6 0.9438 33.28 0.4986

The value in the table is the average of all images.

two metrics. In addition, the O-HAZE dataset outperforms the

other methods with 0.8758dB and 24.1986dB. Compared with

the RESIDE dataset, the haze in this dataset is more dense, the

image quality degrades more seriously, and the defogging is

more difficult, which further confirms the effectiveness of our

method in a dense fog environment.

Table 2 shows the objective indicators and time comparison

of all methods on RTTS. NIQE, and BRISQUE evaluated

the overall quality of the image. Our method obtained the

best results of NIQE, indicating that the results in this paper

have excellent colors and details. In terms of FADE metric,

our method obtained suboptimal, while PMHLD obtained the

optimal FADE value. This is inseparable from the effective haze

removal of PMHLD. In terms of time, our method has only

achieved the fourth place, not outstanding in efficiency.

4.3. Ablation study

Our approach shares the same network parameters across

multiple stages through the iterative idea of using recursive

computation between stages. We speculate that the defogging

effect of the model will change with the increase of the number

of iterations, so it is crucial to determine the optimal number of

iterations.We hypothesize that the defogging effect of the model

varies with the number of iterations, so it is crucial to determine

the optimal number of iterations. We trained the model using

iterations 1–6 under the RESIDE dataset, and Figure 9 shows the

effect of image defogging under different iterations. The visual

effects were similar from the 3rd to the 5th iteration, so we

made an objective evaluation of these iterations. According to

the comparison of PSNR and SSIM in Table 3, we found that

the metrics of the third iteration and the fourth iteration were

slightly lower, while the metrics of the fifth iteration and the

sixth iteration were similar. By comparing the time, we choose

the fifth iteration as the optimal number of iterations.

5. Conclusion

In this paper, we propose a new transformer-based

progressive residual network (PRnet). Our method recursively

invokes the residual network to gradually recover clean images

under ground-truth supervision. First of all, PRnet learns the

features of the input images through recurrent block, while

taking care of connecting the different stages to ensure that

more original image features are retained during the multi-

stage feature transfer of the model. We design a codec with

u-net structure in combination with swin-transformer, which

can ensure that sufficient contextual semantic information and

spatial features are obtained during long-distance transmission.

In addition, CSSI, which can ensure the synergy and connectivity

of the transformer codec. Finally, the supervised fusion module

can adaptively select and fuse the image features, and transfer

the attention-guided features to the next stage.In addition,
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we demonstrate the effectiveness of the progressive network

through experiments, and our model provides high-quality

defogging on multiple data sets. Nonhomogeneous de-hazing is

the next topic we would like to explore with our approach, as it

is crucial to study complex foggy environments in real scenarios.
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