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Microexpressions are very transitory expressions lasting about 1/25∼1/2 s,

which can reveal people’s true emotions they try to hide or suppress.

The PREMERT (pseudorandom ecological microexpression recognition test)

could test the individual’s microexpression recognition ability with six

microexpression Ms (the mean of accuracy rates of a microexpression

type under six expression backgrounds), and six microexpression SDs (the

standard deviation of accuracy rates of this microexpression type under

six expression backgrounds), but it and other studies did not explore

the general microexpression recognition ability (the GMERA) or could not

test the GMERA effectively. Therefore, the current study put forward and

established the GMERA with the behavioral data of the PREMERT. The

spontaneous brain activity in the resting state is a stable index to measure

individual cognitive characteristics. Therefore, the current study explored

the relevant resting-state brain activity of the GMERA indicators to prove

that GMERA is an individual cognitive characteristic from brain mechanisms

with the neuroimaging data of the PREMERT. The results showed that (1)

there was a three-layer hierarchical structure in human microexpression

recognition ability: The GMERA (the highest layer); recognition of a type of

microexpression under different expression backgrounds (the second layer);

and recognition of a certain microexpression under a certain expression

background (the third layer). A common factor GMERA was extracted from

the six microexpression types recognition in PREMERT. Four indicators of the

GMERA were calculated from six microexpression Ms and six microexpression

SDs, such as GMERAL (level of GMERA), GMERAF (fluctuation of GMERA),

GMERAB (background effect of GMERA), and GMERABF (fluctuation of

GMERAB), which had good parallel-forms reliability, calibration validity, and

ecological validity. The GMERA provided a concise and comprehensive

overview of the individual’s microexpression recognition ability. The PREMERT

was proved as a good test to measure the GMERA. (2) ALFFs (the

amplitude of low-frequency fluctuations) in both eyes-closed and eyes-

opened resting-states and ALFFs-difference could predict the four indicators
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of the GMERA. The relevant resting-state brain areas were some areas of

the expression recognition network, the microexpression consciousness and

attention network, and the motor network for the change from expression

backgrounds to microexpression. (3) The relevant brain areas of the GMERA

and different types of microexpression recognition belonged to the three

cognitive processes, but the relevant brain areas of the GMERA were the

“higher-order” areas to be more concise and critical than those of different

types of microexpression recognition.

KEYWORDS

GMERA, PREMERT, three-layer hierarchical structure, ALFFs, overlap

Introduction

Microexpressions are very transitory expressions lasting
about 1/25∼1/2 s, which can reveal people’s true emotions they
try to hide or suppress (Ekman and Friesen, 1975; Porter et al.,
2012). Even if liars deliberately use the dissemble strategy, they
still cannot prevent the disclosure of the true expression, thus
producing microexpressions. Therefore, microexpressions can
be used as an important tool to detect real emotions and lies
(Shen et al., 2017). Microexpression recognition ability is the
ability of a person or a machine to recognize another person’s
microexpressions. In the current study, we only explore the
human microexpression recognition ability. A microexpression
recognition test with good simplicity, reliability, validity, and
ecological validity is very important, which can quickly and
effectively measure a person’s microexpression recognition
ability to screen and cultivate excellent talents. Furthermore,
some representative indicators are needed, which should
measure people’s microexpression recognition ability stably,
effectively, succinctly, and comprehensively. Therefore, they
should have good reliability and validity, have as few
indicators as possible, and can measure the overall recognition
ability of different microexpressions under different expression
backgrounds, such as sadness, fear, disgust, surprise, and
happiness, and microexpressions under sadness, fear, disgust,
neutral, surprise, and happiness expression backgrounds (Zhang
et al., 2017, 2020b; Yin et al., 2019, 2020). It is obvious that the
representative indicators must be based on good tests.

Spearman (1928) proposed that human intelligence includes
two factors: One is the general intelligence factor (GIF), which
is derived from innate inheritance and manifested in general
activities, indicating the level of individual ability. The other
is a specific factor, which is the ability of an individual to
perform a special activity that differs from others. Vernon
(1966) proposed that the structure of intelligence is arranged in
hierarchies: The highest is the GIF; the second layer is two big
factors, namely, speech and education factor, and operation and
mechanical factor; the third layer is five small factors, including
speech, quantity, mechanical information, spatial ability, and

manual operation; and the fourth layer is special factors. The
general intelligence test measures the GIF. Darwin (1871) and
Galton (1887) proposed that humans may be under evolutionary
selection pressure to form the general personality factor (GPF)
in the same way that the GIF is formed. Musek (2007) adopted
stepwise higher-order factor analyses to conduct exploratory
factor analysis on multiple Big Five personality questionnaires
and obtained big two factors above the big five dimensions, and
the GPF was extracted based on big two factors, which explained
more than 60% of the common variation in sophomore factors.

Drawing on the GIF (Spearman, 1928; Vernon, 1966)
and GPF (Musek, 2007; Wu, 2017; Wu et al., 2021),
the current study put forward the concept of the general
microexpression recognition ability (GMERA). We assumed
that human microexpression recognition ability has a three-
layer hierarchical structure: The highest layer is the GMERA,
which may be derived from innate heredity and influenced by
learning, and manifests the level of individual microexpression
recognition ability (the current study); the second layer is
the individual’s ability to recognize a type of microexpression
under different expression backgrounds, for example, anger
microexpression under sadness, fear, disgust, neutral, surprise,
and happiness expression backgrounds (Yin et al., 2020; Zhang
et al., 2020b); and the third layer is an individual’s ability to
recognize a certain microexpression under a certain expression
background, for example, anger microexpression under sadness
expression background (please refer to Figure 1, Zhang et al.,
2017; Zhu et al., 2017; Yin et al., 2019). The GMERA can be
obtained by extracting a common factor from various kinds of
microexpressions recognition abilities. Its tests and indicators
should meet the above requirements.

Matsumoto et al. (2000) developed the Japanese and
Caucasian Brief Affect Recognition Test (JACBART, classical
microexpression recognition) to measure the microexpression
recognition ability (Hall and Matsumoto, 2004; Matsumoto and
Hwang, 2011). It only used the neutral expressions backgrounds
before and after a brief microexpression to hide it but did
not examine the influence of backgrounds with emotional
expressions. The real microexpressions are embedded in the
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FIGURE 1

The picture of the experiment procedure from Zhang et al. (2020b). These images are licensed by the copyright owners, Tottenham et al. (2009)
and Zhang et al. (2020b).

backgrounds of various expressions. Therefore, the ecological
validity of JACBART is not good enough to test the GMERA.

Zhang et al. (2017) examined the recognition characteristics
of six basic microexpression types (sadness, fear, anger,
disgust, surprise, and happiness) under seven basic expression
backgrounds (the six basic expressions and neutral) to establish
an ecological microexpression recognition test (EMERT), and
obtained the recognition accuracy rates and background effects
of the six microexpression types. Zhu et al. (2017) used a
simplified edition of EMERT to find the microexpression
recognition difference between depressive patients and normal
people. Yin et al. (2019) extended EMERT to WEMERT (weak).
Although the series of EMERTs improved the ecological validity
of the microexpression recognition test, they used a between-
subjects Latin Square block design for backgrounds, which
made the participants perform different EMERTs. The two
participants’ scores could not be compared strictly because the
exercise effect and fatigue effect between them were different.
They cannot be used to test the GMERA. They did not come up
with the concept and operational definition of the GMERA too.
Therefore, Zhang et al. (2020b) for the first time used the within-
subject pseudorandom design backgrounds to improve EMERT
to PREMERT (pseudorandom EMERT). Each participant took
the same test and got comparable test scores.

The spontaneous brain activity in the resting state is a
stable index to measure individual cognitive characteristics (Liu
et al., 2017), such as emotional ability (Heuvel and Pol, 2010;
Li X., 2015; Xue et al., 2015), intelligence (Langer et al., 2012;
Zhang, 2021), creativity (Li et al., 2016; Jiang et al., 2018),
music skills (Leipold et al., 2021; Long, 2022), and personality
(Adelstein et al., 2011; Wang, 2016). A kind of inherited neural
activation pattern indicated by specific resting-state activations
could predict microexpression perception performance (Yin
et al., 2020; Zhang et al., 2020b). Yin et al. (2020) used eyes-
closed and eyes-opened resting-state fMRI to find that in
EMERT, the ALFFs-relevant brain areas (brain areas whose
ALFFs were related to the microexpression recognition) of the
six microexpression types recognition were some frontal lobes,
insula, cingulate cortex, hippocampus, parietal lobe, caudate
nucleus, thalamus, amygdala, occipital lobe, fusiform, temporal

lobe, cerebellum, and vermis, and the ALFFs-relevant brain
areas of background effects were some frontal lobes, insula,
cingulate cortex, cuneus, amygdala, fusiform, occipital lobe,
parietal lobe, precuneus, caudate lobe, putamen lobe, thalamus,
temporal lobe, cerebellum, and vermis. Zhang et al. (2020b)
found that in PREMERT, the ALFFs-relevant brain areas of the
six microexpression types recognition were some frontal lobes,
insula, cingulate cortex, hippocampus, amygdala, fusiform
gyrus, parietal lobe, caudate nucleus, precuneus, thalamus,
putamen, temporal lobe, and cerebellum, and the ALFFs-
relevant brain areas of background effects were some frontal
lobes, central anterior gyrus, supplementary motor area, insula,
hippocampus, amygdala, cuneus, occipital lobe, fusiform gyrus,
parietal lobe, caudate nucleus, pallidum, putamen, thalamus,
temporal lobe, and cerebellum. The PREMERT can be used to
test the GMERA. Unfortunately, the study only explored the
recognition of the six microexpression types, but neither put
forward nor calculated the GMERA, thus, they did not explore
the inherited neural activation pattern of the GMERA. The
relevant brain areas of the GMERA should be the “higher-order”
areas compared to the brain areas related to different types of
microexpression recognition.

Therefore, the current study puts forward the concept of the
GMERA, used exploratory factor analysis to extract the common
factor from the six microexpression types’ recognition scores to
prove it, and calculated the average of the six microexpression
types’ recognition scores as its operational definition. Then, the
ALFFs-relevant brain areas of the indicators of the GMERA
were explored to prove that GMERA is an individual cognitive
characteristic of brain mechanisms. The overlap and difference
between the relevant brain areas of the GMERA and different
types of microexpression recognition were analyzed.

Materials and methods

Participants

The current study used the data of Zhang et al. (2020b) to
make a new analysis. Fifty-three college students of Southwest
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University in China participated in the study. The number
of male and female participants was 24 and 29, respectively.
The age M ± SD = 21.60 ± 2.39. They were all right-
handed with normal or corrected-to-normal eyesight and
without color blindness. They had similar Chinese college
entrance examination scores. They had never taken part in
microexpression recognition experiments before and were not
engaged in investigation, interrogation, lie detection, etc.,
thus, they had no training in lie detection, microexpression
recognition, or other detection skills. In addition, it was explored
which brain activity differences would influence differences
in microexpression recognition ability. Therefore, individual
differences were not interfering factors in the current study.
All the participants met the criteria for functional magnetic
resonance imaging (fMRI) scanning, namely, they had no
metal implants, were not claustrophobic, and had a head size
compatible with the head coil. They all volunteered and could
quit at any time. Each participant completed an informed
consent form before the experiments. They got corresponding
rewards after completing the experiments. The experiments
were in accordance with the ethical guidelines of the Declaration
of Helsinki and were approved by the Scientific Review
Committee of the Faculty of Psychology, Southwest University,
China.

Experimental apparatus and materials

Seven kinds of basic expression opened-mouth pictures of
eight models (four men and four women, including white, black,
and yellow people) from the NimStim face expression database
(Tottenham et al., 2009) were used as the backgrounds, namely,
neutral, sadness, fear, anger, disgust, surprise, and happiness.
Except for neutral expressions, the other six kinds of expressions
were used as microexpressions. The pixels of all images were
modified to be 338 × 434 with a gray background (GRB:
127, 127, and 127) (Zhang et al., 2017). The Lenovo ThinkPad
T410i notebook computer and 14.1-inch LCD screen, which had
1,280 × 800 resolution and 60 Hz of refresh rate, were used
to do the experiments. E-prime 2.0 was used to compile the
experimental procedure.

Experimental design and procedures

The experiment was 7 (expression backgrounds: neutral
vs. sadness vs. fear vs. anger vs. disgust vs. surprise vs.
happiness) × 6 (microexpression types: sadness vs. fear vs. anger
vs. disgust vs. surprise vs. happiness) within-subject design. As
there were seven expression backgrounds, in order to balance
the sequential effect, the within-subject pseudorandom design
for backgrounds was used in the current study rather than
the Latin Square block design for backgrounds in EMERT

(Zhang et al., 2017; Yin et al., 2020), and the within-subject
pseudorandom design for microexpression types was also used
in the current study as in EMERT.

Participants were 70 cm away from the screen. On the
computer keyboard, six keys of SDF-JKL corresponded with
sadness, fear, anger, disgust, surprise, and happiness. First,
the center of the screen would show the “+” for 400 ms;
second, the empty screen lasted 200 ms; then, the front
expression background was presented for 800 ms, after which
the microexpression image would appear for 133 ms, followed
by 800 ms of back expression background (Matsumoto et al.,
2000; Zhang et al., 2017). The front and back expression
backgrounds and microexpressions were of the same model’s
face and the front and back expression backgrounds were the
same. Participants needed to try to identify the briefly presented
microexpression between the front and back expression
backgrounds. The participants were asked to press a key
according to the microexpression they saw as accurately as
possible instead of as soon as possible (no time limit). After the
participants pressed the key, an empty screen would show for
1,000 ms. Then, the fixation point “+” was presented for 400 ms,
and the next trial started. The experiment procedure is shown
in Figure 1. For a detailed procedure, please see Zhang et al.
(2020b).

A month before the PREMERT, all the participants lay in
the fMRI scanner to undergo structural scanning, eyes-closed
and eyes-opened resting-states scans. About a week later, the
participants needed to do two EMERT measurements, such
as EMERT1 and EMERT2. Because Zhang et al. (2017) and
Yin et al. (2020) proved that EMERT had good reliability
and validity, we used the correlation between PREMERT and
EMERT as the parallel-forms reliability and criterion validity of
the GMERA.

Behavioral data collection and analysis

The mean of accuracy rates of a microexpression type
under six expression backgrounds (except the same expression
background as the microexpression, because in that case, it was
a normal expression rather than a microexpression) was used as
the index of this microexpression type recognition, and it was
abbreviated as microexpression M. The standard deviation of
accuracy rates of this microexpression type under six expression
backgrounds (except the same expression background as the
microexpression) was used as the background effect index of this
microexpression type recognition (Zhang et al., 2017, 2020b; Yin
et al., 2019, 2020), and it was abbreviated as microexpression
SD. A single sample t-test was made for each microexpression
M with random level 1/6 to find whether the participants could
recognize the microexpression than random. A single sample
t-test was made for each microexpression SD with random level
0 to find whether the background effect existed.
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Exploratory factor analysis was conducted on the six
microexpression Ms to prove whether there was a common
factor GEMRA. The principal axis factor decomposition method
was adopted to extract factors based on eigen values greater
than 1. The maximum convergence iterations were less than
100 times. On the premise of the existence of a common
factor GEMRA, four indicators of GEMRA were calculated.
The average of the six microexpression Ms was calculated
as the operational definition of GMERAL (level of GMERA).
The standard deviation of the six microexpression Ms was
calculated as the operational definition of GMERAF (fluctuation
of GMERA). The average of the six microexpression SDs
was calculated as the operational definition of GMERAB
(background effect of GMERA). The standard deviation of
the six microexpression SDs was calculated as the operational
definition of GMERABF (fluctuation of GMERAB). A single
sample t-test was made for GMERAL with random level
1/6 to find whether the participants could recognize the
microexpression than random. A single sample t-test was made
for GMERAF, GMERAB, and GMERABF with random level 0
to find whether the fluctuation of GMERA existed.

The Pearson correlation was made between the four
indicators of GEMRA in PREMERT and the corresponding
indicators in EMERT1, EMERT2, JACBART, and expression
to get the parallel-forms reliability, criterion validity, and
ecological validity of the GMERA.

Resting-state data collection and
analysis

The participants were instructed that the fMRI was not
harmful and that they should get enough sleep the night before
the scans and take it easy during the scans. They lay in the fMRI
scanner to undergo structural scanning, eyes-closed and eyes-
opened (look at the cross naturally without great concentration)
resting-states scans, each of which was 8 min. They were
instructed not to think about anything, and if they could not
help it, then not to think about certain things (Li et al., 2016; Liu
et al., 2017; Jiang et al., 2018; Zhang et al., 2020a; Zhang and Liu,
2021).

The fMRI data were collected using a Siemens 3.0 T
magnetic resonance imaging scanner and an 8-channel phased
front head coil. Eyes-closed and eyes-opened resting-state
imaging used gradient echo (GRE) single-excitation echo-planar
imaging (EPI). Scan parameters were as follows: The phase
encoding direction was R/L, TR = 2,000 ms, TE = 30 ms,
FA = 90◦, FOV = 220 mm × 220 mm, matrix size = 64 × 64,
depth = 3 mm, planar resolution = 3.44 mm × 3.44 mm,
interval scanning, 33 layers, layer spacing = 0.6 mm, total
240 layers, 8 min. Structural imaging used a 3D TlWI (MP-
RAGE) sequence with sagittal scans. Scan parameters were as

follows: TR = 2,600 ms, TE = 3.02 ms, FA = 8◦, no interval,
FOV = 256 mm × 256 mm, matrix size = 256 mm × 256 mm,
total 176 layers. All the participants first received the structural
scan, then half received the eyes-closed and eyes-opened
resting-state scans, and half received the eyes-opened and eyes-
closed resting-state scans.

Pretreatment and analysis of resting-state data used
DPARSF 3.0 Advanced Edition Calculate (Yan et al., 2016)
in Original Space (Warp by DARTEL), following standard
procedures: (1) Conversion of raw DICOM-format data to
NIFTI format. To allow for signal stabilization of the image,
the first 10 TR images were removed, after which time
layer correction (slice timing) and head movement correction
(realignment, adopting Friston 24) were conducted. If head
movement greater than 2 mm occurred during the resting state,
the data were deleted. (2) The new segment + DARTEL was
used to split the structural T1 data without standardization, and
register the T1 split data directly to the resting-state functional
images. Before registration of structural and functional data,
the AC-PC line of each participant’s T1 image and the resting-
state function were registered, and then automatic registration
was applied. Therefore, the resting-state analysis took place
in the original T1 space. (3) Head motion, linear drift, white
matter, and cerebrospinal fluid via regression were adjusted
for. (4) Low-frequency fluctuations ALFFs (filter range: 0.01–
0.1 Hz) were calculated. (5) The resting-state function was
registered to the standard MNI space (normalized by DARTEL),
using Bounding Box [−90, −126, −72; 90, 90, 108] and a
3 mm × 3 mm × 3 mm voxel size, with 4 mm × 4 mm × 4 mm
full width at half maximum (FWHM) smoothing.

REST1.8 (Song et al., 2011) was first used to extract
the amplitude of low-frequency fluctuations (ALFFs, Zang
et al., 2007) during resting-states in 116 Anatomical Automatic
Labeling (AAL) brain areas. ALFFs were normalized to mALFFs.
Second, SPSS19.0 was used to implement Pearson correlation
analyses between ALFFs in 116 AAL brain areas and the
indicators of GMERA. The ALFFs-difference of eyes-opened
minus eyes-closed was used as an index of transition from
internal feeling and self-consciousness to external stimulus
processing (Nakano et al., 2012; Nakano, 2015; Zhang et al.,
2020b; Zhang and Liu, 2021). Its significance was detected by
correlation analyses between that and the indicators of GMERA.
Since the original ALFF for each AAL brain area (the average
ALFF of its all voxels) was extracted (Wang, 2009; Li W. S., 2015;
Tang et al., 2018), a multiple comparisons correction could not
be made for the correlation analyses mentioned above (Yin et al.,
2020; Zhang et al., 2020b; Zhang and Liu, 2021). The relevant
brain areas were visualized with the BrainNet Viewer (Xia et al.,
2013)1.

1 http://www.nitrc.org/projects/bnv/
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Results

SPSS 19.0 was used for statistics. There were 53 valid
participants in PREMERT, 46 valid participants in the
eyes-closed resting-state, and 51 valid participants in the
eyes-opened resting-state because seven participants’ head
movements were greater than 2 mm in the eyes-closed resting-
state and two participants in the eyes-opened resting-state.

Behavioral data

Each microexpression M was significantly greater than
random level 1/6 with a single sample t-test (ps < 0.001). Each
microexpression SD was significantly greater than random level
0 with a single sample t-test (ps < 0.001). They were shown in
Table 1.

Exploratory factor analysis was conducted on the six
microexpression Ms (please refer to Materials and methods
section). The results showed that KMO = 0.60 ≥ 0.5 and
sphericity test P < 0.001, thus, it was suitable for exploratory

TABLE 1 The scores of PREMERT.

Microexpression PREMERT
M± SD (n = 53)

T-value Cohen’s d

Sadness M 0.32 ± 0.21 5.42*** 0.73

Fear M 0.28 ± 0.15 5.55*** 0.76

Anger M 0.56 ± 0.26 11.12*** 1.51

Disgust M 0.49 ± 0.21 11.42*** 1.54

Surprise M 0.68 ± 0.2 18.59*** 2.57

Happiness M 0.78 ± 0.26 17.23*** 2.36

Sadness SD 0.15 ± 0.06 17.65*** 2.50

Fear SD 0.16 ± 0.06 18.70*** 2.67

Anger SD 0.16 ± 0.06 19.89*** 2.67

Disgust SD 0.17 ± 0.05 22.71*** 3.40

Surprise SD 0.16 ± 0.08 15.60*** 2.00

Happiness SD 0.10 ± 0.08 8.60*** 1.25

***p < 0.001.

TABLE 2 The exploratory factor analysis of microexpression
recognition accuracy.

Microexpression Factor

GMERA

Happiness M 0.922

Anger M 0.723

Sadness M 0.709

Surprise M 0.691

Disgust M 0.560

Fear M 0.480

Extraction method: principal axis factor decomposition. One factor has been extracted.
Eight iterations are required.

factor analysis. Only one factor was extracted, whose initial eigen
value > 1. It could explain 55.82% of the total variance. This
common factor is the GMERA. The factor matrix was shown in
Table 2.

The four indicators such as GMERAL, GMERAF, GMERAB,
and GMERABF are shown in Table 3. The GMERAL of
PREMERT was significantly higher than the random level 1/6
but was not significantly different with 0.5. The GMERAF,
GMERAB, and GMERABF were all significantly greater than the
random level 0.

Kolmogorov–Smirnov analysis found that all four indicators
of the GMERA in PREMERT followed a normal distribution,
ps > 0.05. Pearson correlation analysis found that the GMERAL,
GMERAF, GMERAB, and GMERABF in PREMERT were
significantly positively correlated with some corresponding
indicators in EMERT1 and EMERT2. The GMERAL in
PREMERT was significantly positively correlated with the
accuracy in JACBART and expression. Of course, the four
indicators in PREMERT were not all correlated with the
corresponding indicators in EMERT1, EMERT2, JACBART,
or expression. Even if it was correlated, the correlation
coefficient was not 1.

Brain imaging data

Pearson correlation analysis was made between ALFFs of
the resting-state and the four indicators of the GMERA (refer
to Table 4 and Figure 2; please refer to the Supplementary
material for the original data).

The GMERAL was positively related to some areas of
the expression recognition network (Insula_R in the eyes-
opened resting-state; and Temporal_Pole_Sup_L in the ALFFs-
difference) (Hu et al., 2009; Yin et al., 2020; Zhang et al., 2020b),
the microexpression consciousness and attention network
(Rolandic_Oper_R and Insula_R in the eyes-opened resting-
state; Parietal_Sup_R and Parietal_Inf_R in the eyes-closed and
eyes-opened resting-states; and Temporal_Pole_Sup_L in the
ALFFs-difference) (Dehaene et al., 2011; Huang et al., 2017; Yin
et al., 2020; Zhang et al., 2020b, 2021; Zhang and Liu, 2021), and
the motor network for the change from expression backgrounds
to microexpression (Rolandic_Oper_R and Vermis_1_2 in the
eyes-opened resting-state) (Penhune and Steele, 2012; Zhang,
2014; Yin et al., 2020; Zhang et al., 2020b, 2021; Zhang and
Liu, 2021); but was negatively related to some area of the motor
network (Cerebelum_Crus1_L in the eyes-opened resting-state).

The GMERAF was positively related to some areas of
the microexpression consciousness and attention network
(Parietal_Sup_R in the eyes-opened resting state); but
was negatively related to some areas of the expression
recognition network (Cingulum_Mid_L in the eyes-closed
resting-state; Fusiform_R in the eyes-opened resting-state;
and Temporal_Pole_Mid_R in the ALFFs-difference),
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TABLE 3 The indicators of the GMERA.

Index PREMERT
(M ± SD)

T-value Cohen’s d EMERT1
(M± SD)

rPR−EM1 EMERT2
(M ± SD)

rPR−EM2 JACBART rPR−J Expression rPR−E

GMERAL 0.52 ± 0.16 15.93*** 2.21 0.58 ± 0.15 0.757** 0.62 ± 0.15 0.836** 0.58 ± 0.17 0.904** 0.68 ± 0.18 0.590**

GMERAF 0.24 ± 0.07 25.55*** 3.43 0.26 ± 0.07 0.570** 0.25 ± 0.07 0.510** 0.29 ± 0.09 – 0.23 ± 0.07 –

GMERAB 0.15 ± 0.03 37.76*** 5 0.15 ± 0.04 – 0.14 ± 0.04 0.346*

GMERABF 0.07 ± 0.02 21.78*** 3.5 0.07 ± 0.03 0.413** 0.07 ± 0.02 –

rPR−J was the r between PREMERT and JACBART. rPR−E was the r between PREMERT and expression. rPR−EM1 was the r between PREMERT and EMERT1. rPR−EM2 was the r between
PREMERT and EMERT2.
*p < 0.05, **p < 0.01, and ***p < 0.001.

the microexpression consciousness and attention network
(Cingulum_Mid_L in the eyes-closed resting-state; Frontal_
Mid_Orb_R and Temporal_Pole_Mid_R in the ALFFs-
difference), and the motor network for the change from
expression backgrounds to microexpression (Cingulum_Mid_L
in the eyes-closed resting-state; and Cerebelum_6_R in the
eyes-opened resting-state).

The GMERAB was positively related to some areas of
the microexpression consciousness and attention network
(Frontal_Mid_Orb_R in the ALFFs-difference) and the
motor network for the change from expression backgrounds
to microexpression (Vermis_10 in the eyes-closed and
eyes-opened resting-states; Cerebelum_9_L and Vermis_9
in the eyes-opened resting-states; and Cerebelum_3_L,
Cerebelum_3_R, Cerebelum_4_5_L, and Vermis_3 in the
ALFFs-difference); but was negatively related to some areas
of the expression recognition network (Cingulum_Mid_R and
Angular_R in the eyes-opened resting-state; Temporal_Mid_R
in the eyes-opened resting-state and the ALFFs-difference;
and Temporal_Mid_L in the ALFFs-difference), the
microexpression consciousness and attention network
(Rolandic_Oper_R in the ALFFs-difference; Cingulum_Mid_R,
Parietal_Inf_R, and Angular_R in the eyes-opened resting-
state; Temporal_Mid_R in the eyes-opened resting-state and
the ALFFs-difference; and Temporal_Mid_L in the ALFFs-
difference), and the motor network for the change from
expression backgrounds to microexpression (Rolandic_Oper_R
in the ALFFs-difference).

The GMERABF was positively related to some areas
of the expression recognition network (Postcentral_L and
Postcentral_R in the eyes-closed resting-state; Heschl_R and
Temporal_Sup_R in the eyes-closed and eyes-opened resting-
states; and Hippocampus_L, Temporal_Pole_Mid_R, and
Thalamus_R in the ALFFs-difference), the microexpression
consciousness and attention network (Heschl_R and
Temporal_Sup_R in the eyes-closed and eyes-opened
resting-states; and Frontal_Mid_Orb_R, Hippocampus_L,
Temporal_Pole_Mid_R, Caudate_L, and Thalamus_R in
the ALFFs-difference), and the motor network for the
change from expression backgrounds to microexpression
(Postcentral_L, Postcentral_R, and Vermis_1_2 in the eyes-
closed resting-state; Thalamus_R in the ALFFs-difference);
but was negatively related to some areas of the expression

recognition network (Cingulum_Post_R in the eyes-closed
resting-state; Postcentral_L, Postcentral_R, Cuneus_L, and
Occipital_Sup_L in the ALFFs-difference), the microexpression
consciousness and attention network (Cingulum_Post_R in
the eyes-closed resting-state; and Precentral_L, Precentral_R,
Frontal_Mid_Orb_R, Parietal_Sup_L, Parietal_Inf_L, Parietal_
Inf_R in the ALFFs-difference), and the motor network for
the change from expression backgrounds to microexpression
(Putamen_L, Vermis_6, and Vermis_7 in the eyes-opened
resting-state; Precentral_L, Precentral_R, Postcentral_L, and
Postcentral_R in the ALFFs-difference).

Comparison of relevant brain areas
between the general microexpression
recognition ability and different types
of microexpression recognition

Using the neuroimaging data from Zhang et al. (2020b), the
relevant brain areas of the six microexpression Ms were added
up to form the relevant brain areas of the microexpression Ms,
and the relevant brain areas of the six microexpression SDs were
added up to form the relevant brain areas of the microexpression
SDs. We compared the relevant brain areas of the GMERAL
in the current study with the microexpression Ms in Zhang
et al. (2020b), because they both measured the microexpression
recognition ability, and we compared the relevant brain areas
of the GMERAB in the current study with the microexpression
SDs in Zhang et al. (2020b), because they both measured the
microexpression recognition ability fluctuation by expression
backgrounds, to get the consistency (particularity) of relevant
brain areas between them (see Table 5 and Figure 3).

(1) There were nine common relevant brain areas between
the GMERAL and the Microexpression Ms, such as some
areas of the expression recognition network (Insula_R
and Temporal_Pole_Sup_L), the microexpression
consciousness and attention network (Parietal_Sup_R,
Parietal_Inf_R, Insula_R, and Temporal_Pole_Sup_L),
and the motor network for the change from expression
backgrounds to microexpression (Rolandic_Oper_R,
Cerebelum_Crus1_L, and Vermis_1_2). There were 0
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TABLE 4 The rs between ALFFs of resting-state and the four indicators of the GMERA.

Resting-state AAL brain area ALFF (M ± SD) GMERAL GMERAF GMERAB GMERABF

Eyes-closed Frontal_Mid_Orb_R 0.9046 ± 0.0702 −0.333*

Eyes-closed Cingulum_Mid_L 0.9449 ± 0.0305 −0.299*

Eyes-closed Cingulum_Post_R 0.9358 ± 0.0445 −0.373*

Eyes-closed Postcentral_L 0.841 ± 0.0602 0.349*

Eyes-closed Postcentral_R 0.877 ± 0.0657 0.318*

Eyes-closed Parietal_Sup_R 0.9339 ± 0.0607 0.332*

Eyes-closed Parietal_Inf_R 1.0619 ± 0.0626 0.389**

Eyes-closed Putamen_L 0.7931 ± 0.0376 −0.341*

Eyes-closed Heschl_R 1.0802 ± 0.102 0.418**

Eyes-closed Temporal_Sup_R 1.0748 ± 0.0659 0.416**

Eyes-closed Vermis_1_2 1.8573 ± 0.3437 0.292*

Eyes-closed Vermis_10 2.2163 ± 0.5643 0.298*

Eyes-opened Rolandic_Oper_R 0.8617 ± 0.0306 0.287*

Eyes-opened Insula_R 0.9707 ± 0.0383 0.300*

Eyes-opened Cingulum_Mid_R 0.9166 ± 0.0292 −0.390**

Eyes-opened Fusiform_R 0.87 ± 0.0273 −0.281*

Eyes-opened Parietal_Sup_R 0.9307 ± 0.0635 0.338* 0.282*

Eyes-opened Parietal_Inf_R 1.0503 ± 0.0555 0.329* −0.351*

Eyes-opened Angular_R 1.0596 ± 0.0718 −0.295*

Eyes-opened Putamen_L 0.8082 ± 0.0314 −0.291*

Eyes-opened Heschl_R 1.052 ± 0.0815 0.359**

Eyes-opened Temporal_Sup_R 1.0466 ± 0.0538 0.320*

Eyes-opened Temporal_Mid_R 0.9796 ± 0.0289 −0.283*

Eyes-opened Cerebelum_Crus1_L 0.9529 ± 0.0982 −0.306*

Eyes-opened Cerebelum_6_R 0.9167 ± 0.0491 −0.306*

Eyes-opened Cerebelum_9_L 0.7644 ± 0.2913 0.292*

Eyes-opened Vermis_1_2 1.8789 ± 0.37 0.287*

Eyes-opened Vermis_6 0.9287 ± 0.071 −0.326*

Eyes-opened Vermis_7 0.8218 ± 0.0615 −0.297*

Eyes-opened Vermis_9 1.076 ± 0.2724 0.391**

Eyes-opened Vermis_10 2.1888 ± 0.5697 0.330*

ALFFs-difference Precentral_L −0.0177 ± 0.0322 −0.321*

ALFFs-difference Precentral_R −0.0314 ± 0.051 −0.368*

ALFFs-difference Frontal_Mid_Orb_R 0.0226 ± 0.0401 −0.315*

ALFFs-difference Rolandic_Oper_R −0.0038 ± 0.0192 −0.431**

ALFFs-difference Frontal_Mid_Orb_R 0.0215 ± 0.0445 0.321* 0.305*

ALFFs-difference Hippocampus_L 0.0123 ± 0.0284 0.296*

ALFFs-difference Cuneus_L −0.0627 ± 0.1053 −0.293*

ALFFs-difference Occipital_Sup_L −0.0093 ± 0.0562 −0.306*

ALFFs-difference Postcentral_L −0.0395 ± 0.0437 −0.329*

ALFFs-difference Postcentral_R −0.0471 ± 0.047 −0.390**

ALFFs-difference Parietal_Sup_L −0.0054 ± 0.0499 −0.308*

ALFFs-difference Parietal_Inf_L −0.0094 ± 0.0343 −0.319*

ALFFs-difference Parietal_Inf_R −0.0103 ± 0.0484 −0.382**

ALFFs-difference Caudate_L 0.0064 ± 0.0386 0.393**

ALFFs-difference Thalamus_R −0.0134 ± 0.0354 0.367*

ALFFs-difference Temporal_Pole_Sup_L 0.0069 ± 0.0486 0.294*

ALFFs-difference Temporal_Mid_L −0.0004 ± 0.0231 −0.376*

(Continued)
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TABLE 4 (Continued)

Resting-state AAL brain area ALFF (M ± SD) GMERAL GMERAF GMERAB GMERABF

ALFFs-difference Temporal_Mid_R −0.0086 ± 0.0267 −0.339*

ALFFs-difference Temporal_Pole_Mid_R −0.0001 ± 0.022 −0.303* 0.375*

ALFFs-difference Cerebelum_3_L 0.0345 ± 0.1515 0.336*

ALFFs-difference Cerebelum_3_R 0.027 ± 0.1784 0.368*

ALFFs-difference Cerebelum_4_5_L −0.0108 ± 0.0515 0.342*

ALFFs-difference Vermis_3 0.0049 ± 0.1315 0.332*

*p < 0.05 and **p < 0.01.

FIGURE 2

The ALFFs-relevant brain areas of the GMERA.

brain areas only related to the GMERAL. There were 51
brain areas only related to the Microexpression Ms.

(2) There were 12 common relevant brain areas between the
GMERAB and the Microexpression SDs, such as some
areas of the expression recognition network (Temporal_
Mid_L and Temporal_Mid_R), the microexpression
consciousness and attention network (Parietal_Inf_R,
Angular_R, Temporal_Mid_L, and Temporal_Mid_R),
and the motor network for the change from expression
backgrounds to microexpression (Rolandic_Oper_R,
Cerebelum_3_L, Cerebelum_3_R, Cerebelum_4_5_L,
Vermis_3, and Vermis_10). There were four brain
areas only related to the GMERAB, such as some areas
of the microexpression consciousness and attention
network (Frontal_Mid_Orb_R and Cingulum_Mid_R)
and the motor network for the change from expression
backgrounds to microexpression (Cerebelum_9_L and
Vermis_9). There were 76 brain areas only related to the
microexpression Ms.

Discussion

The general microexpression
recognition ability in PREMERT had
good reliability and validity

In PREMERT, a common factor GMERA was extracted
from the recognition accuracy rates of six microexpression types
by exploratory factor analysis. Four indicators were calculated
from six microexpression Ms and six microexpression SDs,
such as GMERAL, GMERAF, GMERAB, and GMERABF. The
GMERAL was significantly higher than the random level 1/6,
but was not significantly different with 0.5, indicating that the
participants had certain general microexpression recognition
abilities. The GMERAF, GMERAB, and GMERABF were all
significantly greater than the random level 0, indicating that
the GMERA fluctuated, and there were background effect and
background effect fluctuations.
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TABLE 5 The overlap of relevant brain areas between GMERAL and microexpressionMs, and between GMERAB and microexpression SDs.

Resting state AAL brain area GMERAL MicroexpressionMs Overlap Resting state AAL brain area GMERAB Microexpression SDs Overlap

Eyes-closed Parietal_Sup_R 1 1 2 Eyes-closed Vermis_10 1 1 2

Eyes-closed Parietal_Inf_R 1 1 2 Eyes-opened Parietal_Inf_R 1 1 2

Eyes-opened Rolandic_Oper_R 1 1 2 Eyes-opened Angular_R 1 1 2

Eyes-opened Insula_R 1 1 2 Eyes-opened Temporal_Mid_R 1 1 2

Eyes-opened Parietal_Sup_R 1 1 2 Eyes-opened Vermis_10 1 1 2

Eyes-opened Parietal_Inf_R 1 1 2 Difference Rolandic_Oper_R 1 1 2

Eyes-opened Cerebelum_Crus1_L 1 1 2 Difference Temporal_Mid_L 1 1 2

Eyes-opened Vermis_1_2 1 1 2 Difference Temporal_Mid_R 1 1 2

Difference Temporal_Pole_Sup_L 1 1 2 Difference Cerebelum_3_L 1 1 2

Eyes-closed Frontal_Sup_L 0 1 1 Difference Cerebelum_3_R 1 1 2

Eyes-closed Rolandic_Oper_R 0 1 1 Difference Cerebelum_4_5_L 1 1 2

Eyes-closed Frontal_Sup_Medial_L 0 1 1 Difference Vermis_3 1 1 2

Eyes-closed Frontal_Sup_Medial_R 0 1 1 Eyes-opened Cingulum_Mid_R 1 0 1

Eyes-closed Insula_R 0 1 1 Eyes-opened Cerebelum_9_L 1 0 1

Eyes-closed Cingulum_Ant_L 0 1 1 Eyes-opened Vermis_9 1 0 1

Eyes-closed Cingulum_Mid_L 0 1 1 Difference Frontal_Mid_Orb_R 1 0 1

Eyes-closed Amygdala_L 0 1 1 Eyes-closed Frontal_Sup_Orb_R 0 1 1

Eyes-closed Fusiform_R 0 1 1 Eyes-closed Rolandic_Oper_R 0 1 1

Eyes-closed Parietal_Sup_L 0 1 1 Eyes-closed Frontal_Mid_Orb_L 0 1 1

Eyes-closed Precuneus_L 0 1 1 Eyes-closed Hippocampus_R 0 1 1

Eyes-closed Thalamus_L 0 1 1 Eyes-closed Cuneus_L 0 1 1

Eyes-closed Thalamus_R 0 1 1 Eyes-closed Occipital_Mid_L 0 1 1

Eyes-closed Heschl_L 0 1 1 Eyes-closed Postcentral_R 0 1 1

Eyes-closed Heschl_R 0 1 1 Eyes-closed Parietal_Inf_R 0 1 1

Eyes-closed Cerebelum_Crus1_L 0 1 1 Eyes-closed Angular_R 0 1 1

Eyes-closed Cerebelum_3_L 0 1 1 Eyes-closed Caudate_L 0 1 1

Eyes-closed Cerebelum_4_5_L 0 1 1 Eyes-closed Caudate_R 0 1 1

Eyes-closed Vermis_3 0 1 1 Eyes-closed Putamen_L 0 1 1

Eyes-opened Frontal_Sup_Orb_L 0 1 1 Eyes-closed Pallidum_L 0 1 1

Eyes-opened Frontal_Sup_Orb_R 0 1 1 Eyes-closed Heschl_R 0 1 1

Eyes-opened Rolandic_Oper_L 0 1 1 Eyes-closed Temporal_Sup_L 0 1 1

Eyes-opened Insula_L 0 1 1 Eyes-closed Temporal_Mid_L 0 1 1

Eyes-opened Cingulum_Ant_L 0 1 1 Eyes-closed Vermis_1_2 0 1 1

Eyes-opened Hippocampus_L 0 1 1 Eyes-closed Vermis_3 0 1 1

(Continued)
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TABLE 5 (Continued)

Resting state AAL brain area GMERAL MicroexpressionMs Overlap Resting state AAL brain area GMERAB Microexpression SDs Overlap

Eyes-opened ParaHippocampal_L 0 1 1 Eyes-opened Precentral_L 0 1 1

Eyes-opened Amygdala_L 0 1 1 Eyes-opened Precentral_R 0 1 1

Eyes-opened Occipital_Inf_L 0 1 1 Eyes-opened Frontal_Sup_Orb_R 0 1 1

Eyes-opened Fusiform_R 0 1 1 Eyes-opened Supp_Motor_Area_L 0 1 1

Eyes-opened Precuneus_L 0 1 1 Eyes-opened Frontal_Mid_Orb_R 0 1 1

Eyes-opened Caudate_L 0 1 1 Eyes-opened Insula_R 0 1 1

Eyes-opened Thalamus_L 0 1 1 Eyes-opened Hippocampus_R 0 1 1

Eyes-opened Thalamus_R 0 1 1 Eyes-opened Lingual_R 0 1 1

Eyes-opened Heschl_L 0 1 1 Eyes-opened Occipital_Mid_L 0 1 1

Eyes-opened Heschl_R 0 1 1 Eyes-opened Occipital_Mid_R 0 1 1

Eyes-opened Temporal_Pole_Sup_L 0 1 1 Eyes-opened Occipital_Inf_L 0 1 1

Eyes-opened Temporal_Pole_Sup_R 0 1 1 Eyes-opened Occipital_Inf_R 0 1 1

Eyes-opened Cerebelum_3_L 0 1 1 Eyes-opened Fusiform_R 0 1 1

Eyes-opened Cerebelum_4_5_L 0 1 1 Eyes-opened Postcentral_L 0 1 1

Eyes-opened Cerebelum_6_R 0 1 1 Eyes-opened Parietal_Sup_L 0 1 1

Eyes-opened Vermis_3 0 1 1 Eyes-opened Parietal_Sup_R 0 1 1

Difference Frontal_Inf_Tri_R 0 1 1 Eyes-opened Parietal_Inf_L 0 1 1

Difference Insula_L 0 1 1 Eyes-opened Angular_L 0 1 1

Difference Insula_R 0 1 1 Eyes-opened Caudate_L 0 1 1

Difference Parietal_Inf_L 0 1 1 Eyes-opened Caudate_R 0 1 1

Difference Putamen_R 0 1 1 Eyes-opened Pallidum_L 0 1 1

Difference Heschl_R 0 1 1 Eyes-opened Pallidum_R 0 1 1

Difference Temporal_Pole_Sup_R 0 1 1 Eyes-opened Vermis_1_2 0 1 1

Difference Temporal_Inf_R 0 1 1 Eyes-opened Vermis_3 0 1 1

Difference Cerebelum_Crus1_L 0 1 1 Eyes-opened Vermis_4_5 0 1 1

Difference Cerebelum_Crus2_R 0 1 1 Eyes-opened Vermis_7 0 1 1

Difference Frontal_Sup_Orb_L 0 1 1

Difference Frontal_Mid_Orb_L 0 1 1

Difference Frontal_Inf_Orb_L 0 1 1

Difference Rolandic_Oper_L 0 1 1

Difference Olfactory_L 0 1 1

Difference Hippocampus_R 0 1 1

Difference Amygdala_R 0 1 1

Difference Cuneus_L 0 1 1

(Continued)
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TABLE 5 (Continued)

Resting state AAL brain area GMERAL MicroexpressionMs Overlap Resting state AAL brain area GMERAB Microexpression SDs Overlap

Difference Cuneus_R 0 1 1

Difference Occipital_Sup_L 0 1 1

Difference Occipital_Sup_R 0 1 1

Difference Occipital_Mid_L 0 1 1

Difference Occipital_Mid_R 0 1 1

Difference Occipital_Inf_L 0 1 1

Difference Occipital_Inf_R 0 1 1

Difference SupraMarginal_L 0 1 1

Difference SupraMarginal_R 0 1 1

Difference Angular_R 0 1 1

Difference Caudate_L 0 1 1

Difference Caudate_R 0 1 1

Difference Putamen_L 0 1 1

Difference Putamen_R 0 1 1

Difference Thalamus_L 0 1 1

Difference Thalamus_R 0 1 1

Difference Temporal_Sup_R 0 1 1

Difference Temporal_Pole_Sup_L 0 1 1

Difference Temporal_Inf_R 0 1 1

Difference Cerebelum_4_5_R 0 1 1

Difference Cerebelum_6_L 0 1 1

Difference Cerebelum_10_L 0 1 1

Difference Vermis_4_5 0 1 1

Difference Vermis_7 0 1 1

If an AAL brain area was related to the GMERAL, GMERAB, one of the microexpression Ms, or one of the microexpression SDs, the corresponding number was 1, else, the corresponding number was 0. The numbers of the GMERA and PREMERT
added up to form the number of the overlap, such as two indicating the AAL brain area was related to both the GMERA and PREMERT and 1 indicating the AAL brain area was related to one of the GMERA and PREMERT. The relevant brain areas of
microexpression Ms and microexpression SDs in PREMERT were derived from Zhang et al. (2020b).
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FIGURE 3

The overlap of relevant brain areas between GMERAL and Microexpression Ms, and between GMERAB and Microexpression SDs.

The GMERAL, GMERAF, GMERAB, and GMERABF in
PREMERT were significantly positively correlated with some
corresponding indicators in EMERT1 and EMERT2, indicating
that the four indicators of the GMERA had good parallel-
forms reliability and calibration validity. The GMERAL in
PREMERT was significantly positively correlated with the
correct rate in JACBART and expression, indicating that the
GMERAL of PREMERT had good calibration validity. Of
course, the four indicators of the GMERA in PREMERT
were not all correlated with the corresponding indicators in
EMERT1, EMERT2, JACBART, or expression. Even if it was
correlated, the correlation coefficient was not 1, indicating
that the GMERA in PREMERT had ecological validity and
was indeed different from those in EMERT1, EMERT2,
JACBART, and expression.

Because the pseudo-random design in PREMERT ensured
that each participant took the same test, the GMERAL could
measure the GMERA level of each participant, including
the recognition ability of six microexpression types in seven
expression backgrounds. The GMERAF measures the GMERA
fluctuation degree (stability) among microexpression types.
The GMERAB measures the overall GMERA background
effect, that is, the degree of fluctuation (stability) in different

expression backgrounds. The GMERABF measures the degree
of fluctuation (stability) of the GMERA background effect
among microexpression types. In Zhang et al. (2020b), each
microexpression type was recognized under seven different
expression backgrounds (sadness, fear, anger, disgust, surprise,
happiness, and neutral), thus, there were six microexpression
recognition accuracy rates for a microexpression type (except
a microexpression under the expression background of its
own emotion, in that case, the microexpression became
a normal expression), which were the third layer in the
three-layer hierarchical structure of human microexpression
recognition ability. Microexpression M was used to summarize
a microexpression type recognition under seven expression
backgrounds, and microexpression SD was used to generalize a
microexpression type recognition fluctuation (stability) among
seven expression backgrounds. Thus, microexpression M and
microexpression SD were the second layers generalized from the
third layer. The four indicators of the GMERA were the highest
layer generalized from the second layer to provide a concise
and comprehensive overview of key information of PREMERT.
Since the GMERA could be obtained with good reliability and
validity in PREMERT, PREMERT was proved a good test to
measure the GMERA in turn.
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In the third layer, there was only one indicator, the
microexpression recognition accuracy, but it contained 7
(expression backgrounds: neutral vs. sadness vs. fear vs. anger
vs. disgust vs. surprise vs. happiness) × 6 (microexpressions:
sadness vs. fear vs. anger vs. disgust vs. surprise vs.
happiness) = 42 different sub-indicators (Zhang et al., 2017;
Zhu et al., 2017; Yin et al., 2019). Those were too many to
generalize an individual’s microexpression recognition ability.
In the second layer, two indicators such as microexpression
M and microexpression SD were set up to get a concise
and comprehensive overview of the third layer (Yin et al.,
2020; Zhang et al., 2020b). The indicator number in the
second layer was twice as much as that in the third layer,
but it only contained 2 (indicators: microexpression M vs.
microexpression SD) × 6 (microexpressions: sadness vs. fear vs.
anger vs. disgust vs. surprise vs. happiness) = 12 different sub-
indicators. However, those were still too many to generalize an
individual’s microexpression recognition ability. Therefore, the
current study put forward four indicators of the GMERA in
the highest layer such as the GMERAL, GMERAF, GMERAB,
and GMERABF to get a concise and comprehensive overview
of the second layer. The indicator number in the highest layer
was also twice as much as that in the second layer, but it
only contained four different sub-indicators. We can see that
if we want to reduce the sub-indicators and keep as much
information as possible about the lower layer to get a concise
and comprehensive overview, the indicators of the higher layer
have to be twice the lower layer. When the indicators and their
sub-indicators overlapped, the highest layer was received with
convergence. The Stepwise Higher-Order Factor Analyses tend
to find a common factor to get the most concise overview but
lose much information, which is a defect. However, the GIF
(Vernon, 1966) and GPF (Musek, 2007) did not consider that
defect, so they lost a lot of information, especially the ability
fluctuation. The current study pointed out and considered
that defect, and used the indicators twice to avoid losing
key information on the lower layer. This approach can be
generalized to other areas of ability including GIF and GPF in
the future.

The relevant resting-state brain areas
of the general microexpression
recognition ability in PREMERT

The amplitude of low-frequency fluctuations of some
brain areas in both eyes-closed and eyes-opened resting-
states and their ALFFs-difference could predict the four
indicators of the GMERA in the expression recognition
network, the microexpression consciousness and attention
network, and the motor network for the change from expression
backgrounds to microexpression. The three cognitive processes
of microexpression recognition were logically deduced, and

then the relevant brain areas were classified into the three
cognitive processes according to the functions of these brain
areas found in previous studies (Yin et al., 2020; Zhang et al.,
2020b). Logically speaking, if the functions of the relevant brain
areas for the three cognitive processes are strong, then the level
of the general microexpression recognition ability should be
high, which was partly proved by the positively relevant brain
areas of the GMERAL. The negatively relevant brain area of
the GMERAL was some area of the motor network, which
might be because of good motor function, and the participants
could easily switch between the expression backgrounds and
the microexpression, thus it was difficult for them to get
consciousness of the new stimulus of microexpression (Huang
et al., 2015; Zhang et al., 2015).

If we improve an individual’s function of the positively
relevant brain areas of GMERAL, and/or reduce his/her
function of the negatively relevant brain areas of GMERAL,
his/her GMERA level may improve. This is a good thing.
However, if we improve an individual’s function of the positively
relevant brain areas of GMERAF, GMERAB, or GMERABF,
and/or reduce his/her function of the negatively relevant
brain areas of GMERAF, GMERAB, or GMERABF, his/her
GMERA fluctuation, GMERA background effect, or GMERAB
fluctuation may improve. This is a mixed blessing, which may
improve some special microexpression recognition, but can
reduce GMERA stability.

The GMERAF, GMERAB, and GMERABF measured
the GMERA fluctuation caused by the microexpression
emotional types and expression backgrounds. Therefore,
logically speaking, if the functions of some relevant brain areas
for the three cognitive processes are strong, the participants will
recognize each microexpression with each emotional type and
under each expression background well to make the recognition
stable, and the GMERA fluctuation should be low, which
was partly proved by the negatively relevant brain areas of
the GMERAF, GMERAB, and GMERABF. Of course, if the
functions of other relevant brain areas for the three cognitive
processes are strong, the participants may sensitively recognize
expression types of both microexpressions and expression
backgrounds, and easily get consciousness and attention on
both microexpressions and expression backgrounds, thus, they
will be strongly influenced by microexpression emotional types
and expression backgrounds; they may also easily change
from expression backgrounds to microexpression and from
microexpression to expression backgrounds, thus it was difficult
for them to get consciousness of the novel stimulus of
microexpression (Huang et al., 2015; Zhang et al., 2016). These
should make the GMERA fluctuation high, which was partly
proved by the positively relevant brain areas of the GMERAF,
GMERAB, and GMERABF.

Yin et al. (2020) found that ALFFs of some brain areas in
a resting state were related to the six microexpression types
recognition in EMERT. Zhang et al. (2020b) found that ALFFs
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of some brain areas in a resting-state were related to the six
microexpression types recognition in PREMERT. But they did
not put forward or explore the GMERA. The current study
found a kind of inherited neural activation pattern indicated by
specific resting-state activations that could predict the GMERA,
which indicated that the spontaneous brain activity in the
resting-state is a stable index to measure microexpression
perception performance, and could in turn prove that the
GMERA is an individual cognitive characteristic from brain
mechanisms since the spontaneous brain activity in the resting
state is a stable index to measure the individual cognitive
characteristics (Heuvel and Pol, 2010; Li et al., 2016; Liu et al.,
2017; Jiang et al., 2018). In the future, task-state fMRI or event-
related potential ERP experiments are needed to further explore
the specific functions of each brain area in the GMERA cognitive
processes.

The overlap and difference of relevant
brain areas between the general
microexpression recognition ability
and different types of microexpression
recognition

In the current study, the GMERAL measured the level
of the GMERA, and the GMERAB measured the background
effect of the GMERA, which was the highest layer. In
Zhang et al. (2020b), the microexpression Ms measured
the individual’s microexpression recognition ability under
different expression backgrounds, and the microexpression SDs
measured the individual’s microexpression recognition ability
fluctuation by different expression backgrounds, which were
the second layers. We compared the relevant brain areas of
the highest layer with the second layer to get the overlap and
difference of relevant brain areas between them and found
that they all belong to the expression recognition network, the
microexpression consciousness and attention network, and the
motor network for the change from expression backgrounds
to microexpression, but the relevant brain areas of GMERAL
and GMERAB were concise and critical, and the relevant brain
areas of microexpression Ms and microexpression SDs were rich
and tedious. Therefore, the GMERA was much more focused
and simplified to measure the microexpression recognition
ability and its fluctuation in the relevant brain areas, which
indicated that the relevant brain areas of the GMERA should
be the “higher-order” areas from innate heredity and influenced
by learning compared to the brain areas related to different
types of microexpression recognition. This is beneficial to
improve the function of these critical brain areas to develop the
microexpression recognition ability in the future because the
more the areas of the brain areas need intervention, the more
work intervention, and vice versa.

The limitations of the current study

The participants had no training in lie detection,
microexpression recognition, or other detection skills. But
their cognitive skill levels were not measured. They had
similar Chinese college entrance examination scores, which
could not make sure that they had similar IQs. Despite
this, it was explored which brain activity differences would
influence differences in microexpression recognition ability.
Therefore, individual differences were not interfering factors
but beneficial factors in the current study. However, it is
very valuable to explore how IQ and other cognitive skill
levels influence GMERA in the future. The spontaneous brain
activity in the resting state was impacted by many individual
cognitive characteristics (Liu et al., 2017), such as emotional
ability (Heuvel and Pol, 2010; Li X., 2015; Xue et al., 2015),
IQ (Langer et al., 2012; Zhang, 2021), creativity (Li et al.,
2016; Jiang et al., 2018), music skills (Leipold et al., 2021;
Long, 2022), and personality (Adelstein et al., 2011; Wang,
2016). These individual cognitive characteristics may affect
the GMERA by influencing spontaneous brain activity in the
resting state. For example, some frontal and parietal lobes
were the commonly relevant brain areas between IQ and
GMERA. Of course, the GMERA had its unique brain areas.
In the future, we can compare the brain areas related to these
cognitive characteristics revealed by different literature and the
GMERA revealed by the current study explores the qualitative
relationship among them. We should measure these cognitive
characteristics, the GMERA, and the spontaneous brain activity
in the resting state of the same group of participants, and
then use correlation, path analysis, structural equation model,
and other methods to investigate the quantitative relationship
among them.

At the time of recruitment, participants were required to
be right-handed only to participate in the current study. It
was judged whether a participant was right-handed or not by
asking which hand he/she used to carry out various activities
in daily life, such as writing, eating with chopsticks, and
carrying things. It was further verified that the participant
signed informed consent. Since a formal handedness test was
not performed, there might be some participants writing with
the right hand but being left-handers. Although the likelihood
of this is low, it should be considered and excluded in
future studies.

The participants were asked to close their eyes or look
naturally without great concentration at a cross on a screen with
their eyes opened, take a break for 8 min each, and try not
to think about anything or something intently (Li et al., 2016;
Liu et al., 2017; Jiang et al., 2018; Zhang et al., 2020a; Zhang
and Liu, 2021). The instruction seemed a bit weird because
it is almost impossible for human beings to think of nothing.
However, it is useful to make the participants think as less as
possible because the resting state is to measure spontaneous
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brain activity without any cognitive activation from external
stimuli or internal thinking. It was to keep the participants
from focusing so much on the cross that it affected their
resting state by asking the participants to look naturally without
great concentration at the cross. Of course, this allowed visual
information about the cross and things around to enter the
participants’ brains, but this setting was necessary to simulate
the effect of the visual background of the environment when the
participants were at rest with their eyes opened. The instruction
and setting method need to be further optimized to get a more
desirable resting state.

The resting-state measurement is not without problems.
Dizziness, stress, anxiety, sleepiness, etc., strongly influence
resting-state activity (Heinrich et al., 2014; Mutschler et al.,
2014). The current study instructed that the fMRI was not
harmful, that participants should get enough sleep the night
before and take it easy in the scan, and that claustrophobic
people should not participate. These methods could reduce
the distractions to some extent, but could not eliminate them
completely. In addition, resting-state fMRI maybe not be a
proper resting-state measure since the measurement is loud
and partly even annoying (tight bore, etc.). Therefore, it is
necessary to make the fMRI scan more comfortable and use EEG
(electroencephalogram) to record the resting state.

What does resting-state activity really tell us about the
neural underpinnings? Is it either a stable index of individual
cognitive characteristics (Heuvel and Pol, 2010; Li et al.,
2016; Liu et al., 2017; Jiang et al., 2018) or temporary
emotional and cognitive states (Heinrich et al., 2014; Mutschler
et al., 2014)? The participants took part in the resting-state
fMRI scans a month before the PREMERT, and resting-state
activity was still related to the GMERA in the PREMERT,
which indicated that resting-state activity could predict the
GMERA stably rather than temporarily, and it was a stable
index of the individual microexpression recognition ability.
Although the current study could not eliminate temporary
emotional and cognitive states completely, the results showed
that the temporary emotional and cognitive states a month
ago could predict the GMERA, which indicated to some extent
that the temporary emotional and cognitive states should
be the stable individual cognitive characteristics induced and
measured by the resting-state fMRI scans, that means when a
participant takes part in the resting-state fMRI scans, he/she
will produce the specific temporary emotional and cognitive
states each time, and different participants will produce different
specific temporary emotional and cognitive states in the same
time. That may be caused by the brain function difference
between heredity and learning. If we can eliminate temporary
emotional and cognitive states as completely as possible (as
mentioned above), more relevant brain areas of the GMERA
may be found. Those possibilities can be investigated in the
future.

Conclusion

The current study put forward and established the GMERA,
and explored the relevant resting-state brain activity of its
indicators. The results showed the following:

(1) There was a three-layer hierarchical structure in human
microexpression recognition ability: The GMERA (the
highest layer); recognition of a type of microexpression
under different expression backgrounds (the second
layer); and recognition of a certain microexpression
under a certain expression background (the third layer).
A common factor GMERA was extracted from the
six microexpressions recognition in PREMERT. Four
indicators of the GMERA were calculated from six
microexpression Ms and six microexpression SDs, such
as GMERAL, GMERAF, GMERAB, and GMERABF,
which had good parallel-forms reliability, calibration
validity, and ecological validity. The GMERA provided a
concise and comprehensive overview of the individual’s
microexpression recognition ability. The PREMERT was
proved as a good test to measure the GMERA.

(2) Amplitude of low-frequency fluctuations in both
eyes-closed and eyes-opened resting-states and ALFFs-
difference could predict the four indicators of the GMERA.
The relevant resting-state brain areas were some areas of
the expression recognition network, the microexpression
consciousness and attention network, and the motor
network for the change from expression backgrounds to
microexpression.

(3) The relevant brain areas of the GMERA and different
types of microexpression recognition belonged to the
three cognitive processes, but the relevant brain areas
of the GMERA were the “higher-order” areas to be
more concise and critical than those of different types of
microexpression recognition.
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