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Background: Previous studies have shown that cognitive impairment is

common after stroke. Transcranial direct current stimulation (tDCS) is a

promising tool for rehabilitating cognitive impairment. This study aimed to

investigate the effects of tDCS on the rehabilitation of cognitive impairment in

patients with stroke.

Methods: Twenty-two mild–moderate post-stroke patients with cognitive

impairments were treated with 14 tDCS sessions. A total of 14 healthy

individuals were included in the control group. Cognitive function was

assessed using the Mini-Mental State Examination (MMSE) and the

Montreal Cognitive Assessment (MoCA). Cortical activation was assessed

using functional near-infrared spectroscopy (fNIRS) during the verbal

fluency task (VFT).

Results: The cognitive function of patients with stroke, as assessed by the

MMSE and MoCA scores, was lower than that of healthy individuals but

improved after tDCS. The cortical activation of patients with stroke was lower

than that of healthy individuals in the left superior temporal cortex (lSTC),

right superior temporal cortex (rSTC), right dorsolateral prefrontal cortex

(rDLPFC), right ventrolateral prefrontal cortex (rVLPFC), and left ventrolateral

prefrontal cortex (lVLPFC) cortical regions. Cortical activation increased in the

lSTC cortex after tDCS. The functional connectivity (FC) between the cerebral

hemispheres of patients with stroke was lower than that of healthy individuals

but increased after tDCS.
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Conclusion: The cognitive and brain functions of patients with mild-to-

moderate stroke were damaged but recovered to a degree after tDCS.

Increased cortical activation and increased FC between the bilateral cerebral

hemispheres measured by fNIRS are promising biomarkers to assess the

effectiveness of tDCS in stroke.

KEYWORDS

post-stroke patients, transcranial direct current stimulation (tDCS), functional
near-infrared spectroscopy (fNIRS), cognitive impairment (CI), cortical activation,
functional connectivity

Introduction

Post-stroke cognitive impairment is a common
complication after a stroke and an important risk predictor
of declining quality of life (1, 2). For example, up to 55% of
patients with stroke have episodic memory deficits, 40% have
executive function deficits, and 23% have language deficits (3).
The high prevalence of cognitive dysfunction after stroke makes
cognitive rehabilitation interventions crucial.

After a stroke, people have been found to have abnormal
cortical activation in the brain, which is associated with
persistent functional impairment. Several studies have found
that the extent of cortical activation in patients with stroke is
related to the degree of functional damage (4, 5). In addition,
the balance between the cerebral hemispheres of patients
with stroke is destroyed; the decreased excitability of one
hemisphere cortex may lead to the enhancement of the opposite
hemisphere’s cortex (6). The competition model between
cerebral hemispheres explains this phenomenon, showing that
homologous regions in healthy brains inhibit each other.
When a stroke occurs, this interhemispheric inhibition (IHI)
is destroyed, leading to disinhibition of the contralateral cortex
and excessive activation, further reducing brain function (7–
9). Thus, according to the competition model between cerebral
hemispheres, the functional connectivity (FC) between the
bilateral cerebral hemispheres is weakened or increased when
a stroke occurs. Caliandro analyzed the small-world properties
of the resting-state FC of patients with acute stroke using
electroencephalography (EEG) and found that the increase or
decrease of the small-world properties in patients with stroke
depends on the frequency band analyzed (10). Lu and Arun used
task-state FC based on functional near-infrared spectroscopy
(fNIRS). They found that compared with the resting state, the
FC of the stroke group increased during the task state (11).
Compared with the healthy group, the FC of the stroke group
during the task state was increased (11, 12). Hence, there is
no consensus regarding this issue. In addition, it is critical to
regulating stroke based on the levels of cortical activation due
to abnormal brain cortical activation. Abnormal FC is very
common in stroke patients with cognitive impairment.

Transcranial direct current stimulation (tDCS) is a non-
invasive brain stimulation technique (13) that has been widely
used to improve cognitive function in patients with stroke
(2, 14). Previous studies indicated three different electrode
placement schemes for tDCS. First, the anode electrode was
placed above the affected cerebral hemisphere to increase the
excitability of neurons; the cathode was set as the reference
electrode. Second, the cathode was placed above the healthy
hemisphere to reduce the excitability of neurons; the anode
was set as the reference electrode. Third, the anode was placed
on the affected side and the cathode on the healthy side to
balance the excitability of neurons in both hemispheres (15–17).
In this study, we placed the anodes and cathodes on F3 and F4
electrodes (10–20 EEG electrodes) with a 2 mA intensity.

Some research has shown that using tDCS with anodes
and cathodes on F3 and F4 electrodes can improve cognitive
function in patients with stroke. Baker found that anodal
tDCS with anodes and cathodes on F3 and F4 electrodes
enhanced naming accuracy in patients with stroke (18). Park
found that using anode tDCS and cognitive rehabilitation
training simultaneously positively impacted mild-to-moderate
cognitive dysfunction in patients with stroke (19). Shaker used
tDCS/sham tDCS to investigate the effect of tDCS on cognitive
functions in patients with stroke. They found that cognitive
functions were higher after tDCS than sham tDCS in terms of
attention and concentration, figural memory, logical reasoning,
and reaction behavior (2).

Using tDCS with the anodes and cathodes on F3 and F4
electrodes can improve the cognitive ability of individuals with
cognitive impairment after stroke (20) and change their cortical
excitability (21). In animal studies (22, 23), direct currents
have been shown to change brain excitability. Based on this
discovery in animal models, Nitsche and Paulus conducted
a study on tDCS in humans (23). They found that anodic
stimulation increased cortical excitability, whereas cathodic
stimulation decreased it. Due to IHI after stroke, tDCS can
increase ipsilateral and reduce contralateral excitability (24). For
example, Feltman and Sarkis found that placing anodes and
cathodes on F3 and F4 electrodes with 2 mA intensity could
activate the dorsolateral prefrontal cortex (DLPFC) and enhance
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cognitive function (25–27). Some studies have reported that
tDCS positively affects the treatment of patients with stroke
(24, 28). This study aimed to investigate whether the cortical
activation of patients with stroke after anodic tDCS would
change. We hypothesized that anodic tDCS would increase
cortical excitability in the left cerebral hemisphere.

Using tDCS with anodes and cathodes on F3 and F4
electrodes also changed FC in patients with stroke. Some
studies using fMRI technology have found that tDCS can widely
regulate interhemispheric connectivity in patients with stroke
(29), increasing connectivity between the hemispheres (30, 31).
This study aimed to investigate whether the FC of patients with
stroke after anodic tDCS would be changed. We hypothesized
that anodic tDCS would increase the FC between the bilateral
cerebral hemispheres.

Various techniques can be used to observe the cortical
activation in the brain. Several characteristics of fNIRS, a non-
invasive optical technique, including portability, non-invasive,
cost-effectiveness, and tolerance, make it a favorable tool for
clinical nursing and neuroscience research (32). fNIRS can
indirectly detect the oxy-hemoglobin (oxy-Hb) and the deoxy-
hemoglobin (deoxy-Hb) concentration change in particular
brain regions of the participants while performing tasks. fNIRS
observes the activation of the cerebral cortex by determining
the intensity of the scattered light in the cerebral cortex
(33). The cortical activity observed based on fNIRS can
also be used to further study brain functional connectivity
(34, 35). Regarding the identification of oxy-Hb vs. deoxy-
Hb indicators, oxy-Hb has a stronger signal amplitude than
deoxy-Hb, thus, the former is often used for fNIRS research.
Several neuroimaging studies have consistently shown that mild
cognitive impairment and dementia involve reduced cerebral
blood flow compared to normal cognition controls. This is
largely localized to the medial temporal lobe, posterior cingulate,
prefrontal cortex (PFC), and inferior parietal cortex (36–38).
It is generally believed that oxy-Hb changes are important
indicators of activity intensity and cognitive function in the
brain. fNIRS has also been used to study cortical activation
in patients with stroke. For example, Kim used fNIRS to
study the oxy-Hb changes in patients with stroke in robotic
mirror therapy to observe the efficacy of the therapy (39).
Mihara also used fNIRS to study cortical activation differences
between patients with stroke and healthy peers during ataxia
gait (40). Therefore, this study used fNIRS to study the
oxy-Hb changes in cortical activation and FC after tDCS in
patients with stroke.

The verbal fluency task (VFT) has been used to measure
executive functions (41). There are indications that the
sensitivity of fNIRS is sufficient to detect small metabolic
changes during the execution of cognitive tasks, including the
VFT of letters or categories (42). Moreover, the VFT is the
most widely used task with impaired understanding activation
(43). When participants performed the VFT, the prefrontal

cortex was extensively activated, especially the DLPFC (2, 44).
A series of studies have found that lesions after post-stroke
may be widespread in the frontal and temporal regions (45,
46). Therefore, this study used the VFT to measure executive
function in stroke patients with cognitive impairment.

Materials and methods

Participants

There were 22 patients with mild–moderate stroke (15 men
and 7 women) and 14 healthy individuals (10 men and 4
women). Twenty-two mild–moderate stroke patients with post-
stroke cognitive impairment met the criteria of stroke diagnosis
and treatment guidelines. The onset time was within 2 weeks to
6 months. Education level was higher than 6 years. The cognitive
impairment occurred after the stroke. Their National Institutes
of Health Stroke Scale (NIHSS) score on admission was less
than 20 (47). Those with severe visual impairment, hearing
impairment, and other factors affecting cognitive examination
such as sensory aphasia were excluded. All patients were right-
handed. The demographic data of the participant are shown in
Table 1.

Informed consent was signed by the patient himself
or by his immediate family. The study was approved by
the Ethics Committee of Yuebei People’s Hospital Affiliated
with Shantou University Medical College (Ethical approval
number: SUMC-IRB-2020) on 29 April 2020 and registered
in the Chinese Clinical Trials Registry (registration No.
ChiCTR2000032804).

Research process

The Montreal Cognitive Assessment (MoCA) and the
Mini-Mental State Examination (MMSE) were used to detect
cognitive states before and after tDCS. The fNIRS with VFT was
performed before and after tDCS. The tDCS intervention was
taken only in the stroke group. The research process is shown in
Figure 1.

TABLE 1 Demographic data of the participant.

Characteristic ST HI t df p

N 22 14 NA

Age (mean ± SD) 60.91 ± 8.79 55.5 ± 4.958 1.875 34 0.070

Sex (mean ± SD) 0.623 34 0.538

MMSE (mean ± SD) 20 ± 4.739 28.21 ± 2.082 −5.247 34 <0.001

MoCA (mean ± SD) 13.78 ± 4.045 28.07 ± 1.592 −12.629 34 <0.001

ST means patients with stroke, and HI means healthy individual. MMSE presents the
mini-mental state examination; MoCA presents the Montreal cognitive assessment.
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FIGURE 1

Research process.

Transcranial direct current stimulation

Treatment procedure: Patients with stroke receive tDCS
treatment 7 times a week for 2 weeks (once a day). The duration
of each tDCS application is 30 min. In the tDCS setting, the
anode was attached over the F3 (10–20 EEG electrodes) (48)
with 2 mA intensity. The return electrode was positioned over
the F4 (10–20 EEG electrodes). After each tDCS application,
the patients completed a brief adverse effect questionnaire (49).
Before the tDCS, after the 7 times tDCS, and after the 14 times
tDCS, the participants were tested for cognitive and cerebral
hemodynamic signals with fNIRS, respectively.

Cognitive function measurement

All subjects were treated with comprehensive clinical
evaluation. The MMSE is the most often used short screening
tool for providing a clear impression of overall cognitive decline
and checking the recovery of cognitive function after stroke (50,
51). Its validity has been demonstrated in patients with stroke
(52). The MoCA can be used to assess people’s cognitive ability,

including aspects of memory, executive function, attention,
concentration, language, abstract reasoning, and orientation,
with a maximum score of 30 (53, 54). Its validity has been
demonstrated in patients with stroke (54).

Functional near-infrared spectroscopy
measurement

Verbal fluency task process
The VFT flow is shown in Figure 2. The task time was about

170 s. The first 40 s and the last 70 s of the experiment are
used to collect the resting-state signal of the participants. During
these two stages, the participants are required to count from
one to five repeatedly. During the second stage, the participants
performed VFT of three consecutive word-generating tasks,
each of which lasted 20 s.

Functional near-infrared spectroscopy signal
acquisition

During the VFT experiment, we used a 52-channel fNIRS
device (ETG-4000 Optical Topography System) to estimate
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FIGURE 2

Experimental flowchart. The experiment has three procedures: 40-s pre-task, 60-s verbal fluency task (VFT) task, and 70-s post-task.

changes in regional cortical Hb concentration during the
cognitive activation task, as described previously (55). The
probes (17 emitters and 16 detectors, alternating) were fixed
using 3 × 11 thermoplastic shells with an inter-optode distance
of 3.0 cm. Each adjoining pair of an emitter and detector was
referred to as a “channel,” resulting in 52 channels in total
(Figure 3A). The lowermost probes were positioned along the
Fp1–Fp2 line according to the International 10–20 EEG system
(Figure 3B). The probes can measure Hb values bilaterally
from the prefrontal and temporal surface regions at a depth
of 20–30 mm from the scalp. This depth range corresponds
roughly to the surface of the cerebral cortex. NIRS measures
relative changes in oxy- and deoxy-Hb concentrations (in mM)
using two wavelengths (695 and 830 nm) of near-infrared light
based on the modified Beer–Lambert law (56). The sampling
frequency is 10 Hz. The experiment was carried out in a quiet
room with an appropriate temperature. After the experiment,
the subjects were asked to sit quietly in the most comfortable
position and minimize eye and other body movements.

Nine ROIs were set at the following regions (57): right
superior frontal cortex (rSFC) (detected by the 1st, 2nd,
11th, and 12th channels), right superior temporal cortex
(rSTC) (detected by the 22nd, 23rd, 32nd, 33rd, 43rd, and
44th channels), right dorsolateral prefrontal cortex (rDLPFC)
(detected by the 3rd, 4th, 13th, 14th, 15th, 24th, and 25th
channels), right ventrolateral prefrontal cortex (rVLPFC)
(detected by the 34th, 35th, 45th, and 46th channels), medial
prefrontal cortex (mPFC) (detected by the 5th, 6th, 16th, 26th,
27th, 36th, 37th, 38th, 47th, and 48th channels), left dorsolateral
prefrontal cortex (lDLPFC) (detected by the 7th, 8th, 17th,
18th, 19th, 28th, and 29th channels), left ventrolateral prefrontal
cortex (lVLPFC) (detected by the 39th, 40th, 49th, and 50th
channels), left superior frontal cortex (lSFC) (detected by the
9th, 10th, 20th, and 21st channels), and left superior temporal
cortex (lSTC) (detected by the 30th, 31st, 41st, 42nd, 51st,
and 52nd channels).

Data processing of functional
near-infrared spectroscopy data

The fNIRS data were analyzed using the Homer2 package
in MATLAB and customized MATLAB-based script (58). First,
the raw light intensity file has been converted to homer2 file
format (.nirs). Then, the raw fNIRS data were first converted
to optical density (function: hmrIntensity2OD), and using the
manufacturer’s recommendations, channels with a variation
coefficient greater than 15% are considered bad channels and
deleted from the analysis. A wavelet transform was used to
correct motion artifact (function: hmrMotionCorrectWavelet)
using the default interquartile range (0.1), as this is optimal
for motion correction. Any remaining motion artifact was
then removed through the motion artifact detection tool
(function: hmrMotionArtifact, tMotion = 0.5, tMask = 1.0,
STDEVthresh = 20, AMPthresh = 5.0). The signal was then
bandpass-filtered (function: hmrBandpassFilt, hpf = 0.000,
lpf = 0.10) to remove baseline drift and physiological noise.
Finally, the concentration changes of oxy-Hb were then
computed according to the modified Beer–Lambert law.
Additionally, we took the final 5 s of the pre-task rest period
as the baseline. The oxy-Hb values were then saved as text files
for each subject. Finally, the oxy-Hb time series for each subject
was z-scored by channel. Note that post-analysis in this study
was solely based on oxy-Hb, since the oxy-Hb signal is known to
be more robust and sensitive than deoxy-Hb to task-associated
changes (59–61).

Based on the MATLAB-based Nirs_Kit software (62), we
used the GLM model (63, 64), using mission oxygenated
hemoglobin (oxy-Hb) β value minus rest oxygenated
hemoglobin β value, representing the cortical activation.
Then, we used an independent sample t-test to compare the
cortical activation between patients with stroke and healthy
control groups and used the ANOVA test to compare the
cortical activation among before tDCS, after 7 times tDCS, and
after 14 times tDCS in the stroke group.
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FIGURE 3

Location of NIRS channels. (A) Arrangement of the 17 emitters and 16 detectors and definition of the channels. (B) The anatomical site
corresponding to each channel.

Data analysis of functional connectivity

As stroke can disrupt FC and cause brain-wide network
changes (65), it is important to investigate brain-wide network
dynamics during post-stroke recovery. This study uses a
technology similar to the existing research to study FC (66,
67). The Nirs_Kit toolbox was used to conduct statistical
comparisons (62). The primary threshold (test statistic) for
electrode pairs was set to a conservative value of t = 3.1
(equivalent to p = 0.001) to ensure that only highly robust
and reliable connectivity differences would be compared at
the cluster level (68). A value of p < 0.05 (two-tailed) was
used as the secondary significance threshold for family-wise
corrected cluster analysis (5,000 permutations) (68). Subsequent
visualization of brain networks was performed using the
BrainNet viewer toolbox (69).

Results

Mini-mental state examination and
Montreal cognitive assessment

First, based on previous studies and clinical observations,
we assume that the cognitive function of the stroke group is

lower than that of the healthy control group. We used the
independent sample t-test to compare the MMSE and MoCA
of the stroke group and the healthy control group. The results
show that both MMSE score (m = 20 ± 4.739) and MoCA
score (m = 13.78 ± 4.045) in the stroke group were lower
than that in the healthy control group (m = 28.21 ± 2.082),
(m = 28.07 ± 1.592), [t(34) = –5.247, p< 0.001], [t(34) = –12.629,
p < 0.001]. This shows that compared with the healthy control
group, the cognitive function of the stroke group has decreased.

Second, we assume that after the tDCS, the cognitive
function of patient with stroke will increase. Therefore, we
conducted an ANOVA test on MMSE and MoCA scores of
three tests in the stroke group. The results showed that there
was a significant difference in MoCA score among before tDCS,
after 7 times tDCS, and after 14 times tDCS [F(1, 58) = 11.860,
p < 0.001]; the results of multiple comparisons show that
the MoCA score after 7 times tDCS (m = 18.10 ± 5.612) is
significantly higher than that before tDCS (m = 14.38 ± 4.631)
[p = 0.025]; the results of multiple comparisons show that
the MoCA score after 14 times tDCS (m = 20.17 ± 5.426) is
significantly higher than that before tDCS (m = 14.38 ± 4.631)
[p < 0.001], as shown in Figure 4. There were marginally
significant differences in MMSE score among before tDCS,
after 7 times tDCS, and after 14 times tDCS [F(1, 58) = 3.782,
p = 0.057]; the results of multiple comparisons show that
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the MMSE score after 14 times tDCS (m = 24.44 ± 4.105)
was marginally significantly higher than that before tDCS
(m = 21.33 ± 5.453) [p = 0.057]. This shows that after 7 times
tDCS and 14 times tDCS, the cognitive function measured by
MoCA of patients with stroke has been significantly improved.

Cortical activation

First, based on the phenomenon that the cognitive function
of the stroke group is lower than that of the healthy control
group, we assume that the cortical activation of the stroke group
is lower than that of the healthy control group. Therefore,
we compared the cortical activation of the stroke group and
the healthy control group in nine brain cortexes, including
rSFC, rSTC, rDLPFC, rVLPFC, mPFC, lDLPFC, lVLPFC, lSFC,
and lSTC. The independent sample t-test results show that
the β value of the stroke group was lower than that of the
healthy control group in the rSTC [m(stroke) = 0.510 ± 0.970,
m(control) = 1.705 ± 1.381, t(34) = –2.966, p = 0.006],
rDLPFC [m(stroke) = 0.035 ± 0.522, m(control) = 0.592 ± 0.599,
t(34) = –2.852, p = 0.008], rVLPFC [m(stroke) = 0.163 ± 0.711,
m(control) = 0.906 ± 0.894, t(34) = –2.683, p = 0.011],
lVLPFC [m(stroke) = 0.400 ± 0.391, m(control) = 0.951 ± 0.674,
t(34) = –2.677, p = 0.016], and lSTC [m(stroke) = 0.360 ± 0.635,
m(control) = 1.641 ± 1.754, t(34) = –2.533, p = 0.023], as shown in
Figure 5A. This shows that compared with the healthy control
group, the brain cortical activation of the stroke group during
the VFT has decreased in a wide range of brain regions.

Second, we assume that after the tDCS, the cortical
activation in lSTC of patient with stroke will increase. Therefore,
we conducted an ANOVA test on cortical activation in lSTC of
three tests in the stroke group. The results showed that there
were significant differences in the lSTC in the stroke group

among before tDCS, after seven times tDCS, and after 14 times
tDCS [F(1, 58) = 4.488, p = 0.038], as shown in Figure 6; the
results of multiple comparisons showed that the β value on the
lSTC during VFT after 14 times tDCS (m = 0.360 ± 0.643) was
significantly higher than that before tDCS (m = 1.122 ± 1.576)
[p = 0.038], as shown in Figures 5B, 6. This shows that after
14 times tDCS, the cortical activation in the lSTC in the stroke
group has been significantly improved.

Third, we further explored whether the cortical activation
of the patient with stroke has recovered to normal level after 14
times tDCS. we assume that there is no difference between the
cortical activation of patients with stroke after 14 times tDCS
and that of the healthy control group. The independent sample
t-test results show that there is no difference between the cortical
activation on all cortexes in patients with stroke after 14 times
tDCS and that in the healthy control group. This shows that after
14 times tDCS, the cortical activation of patients with stroke has
recovered to the same level as that of healthy peers.

Functional connectivity

First, as the balance between the cerebral hemispheres of
patients with stroke is destroyed (6), we propose the assumption
that the FC between bilateral cerebral hemispheres in the stroke
group is lower than that in the healthy control group. We used
the correlation between bilateral cerebral hemispheric channels’
oxy-Hb during VFT to represent FC. The result shows that the
FC between rSTC and lSTC in the stroke group is significantly
lower than that in the healthy control group. The FC between
rDLPFC and lSTC in the stroke group is significantly lower
than that in the healthy control group, as shown in Figure 7A.
This shows that compared with the healthy control group, the
FC between bilateral cerebral hemispheres of the stroke group

FIGURE 4

Comparison of MMSE and MoCA between the first, second, and third tests. ∗∗P < 0.05 and ∗∗∗P < 0.001.
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FIGURE 5

(A) Difference of the β value of oxy-Hb during VFT between the stroke group and the healthy individual group on rSTC, rDLPFC, rVLPFC, and
lVLPFC areas. (B) The difference of the β value of oxy-Hb on the right superior temporal cortex (rSTC) during VFT between three tests in patient
with stroke. ∗∗P < 0.05 and ∗∗∗P < 0.001.

during the VFT has decreased, especially the FC between the
lSTC and the rSTC and the FC between the lSTC and the
rDLPFC.

Second, we assume that after the tDCS, the FC between
bilateral cerebral hemispheres of patient with stroke will
increase. Similarly, we used the correlation between bilateral
cerebral hemispheric channels’ oxy-Hb during VFT to represent
FC. The unexpected results showed that the FC between
rVLPFC and lSTC after seven times tDCS is significantly
lower than that before tDCS in the stroke group, as shown in
Figure 7B, but the expected results showed that the FC between
lSFC and rSTC after 14 times tDCS is significantly higher than
that before tDCS in the stroke group, as shown in Figure 7C.
Similarly, the expected results showed that the FC between lSFC
and rSTC after 14 times tDCS is significantly higher than that
after seven times tDCS in the stroke group. The FC between the

mPFC and the rSTC after 14 times tDCS is significantly higher
than that after seven times tDCS in the stroke group. The FC
between the lSTC and rSTC after 14 times tDCS is significantly
higher than that after seven times tDCS in the stroke group, as
shown in Figure 7D. This shows that after 14 times tDCS, the
FC between bilateral cerebral hemispheres of the stroke group
during the VFT has increased. In addition, during the whole 14
times of tDCS, the stimulation from the 7th to the 14th time was
the most effective.

Discussion

Post-stroke cognitive impairment is a common
complication after stroke (1, 2). After a stroke, people
have been found to have decreased brain cortical activation
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FIGURE 6

Brain activation map of the left superior temporal cortex (lSTC). (A) Brain activation map of lSTC in the healthy individual group. (B) Brain
activation map of lSTC in the stroke group before tDCS. (C) Brain activation map of lSTC in the stroke group after seven times tDCS. (D) Brain
activation map of lSTC in the stroke group after 14 times tDCS.

(4, 5) and FC (10–12), which is associated with persistent
functional impairment. Therefore, regulating neural activity
in stroke patients with cognitive impairment is critical. tDCS
is a promising tool for increasing cortical activity (20) and FC
(29–31). fNIRS is a non-invasive optical technique that can
indirectly observe the activation of the cerebral cortex (33).
Therefore, we investigated the effect of tDCS with anodes
and cathodes on F3 and F4 electrodes on the rehabilitation
of cognitive impairment in patients with stroke using fNIRS
technology. This study’s results showed that the cognitive
function of patients with stroke was lower than that of healthy
individuals but improved after tDCS. The cortical activation of
patients with stroke was lower than that of healthy individuals
in the lSTC, rSTC, rDLPFC, rVLPFC, and lVLPFC cortical
regions; cortical activation increased in the lSTC cortex after
tDCS. The FC between the cerebral hemispheres of patients
with stroke was lower than that of healthy individuals and
increased after 14 tDCS sessions. This shows that the cognitive
and brain function of patients with mild-to-moderate stroke
were damaged but could recover after tDCS.

Cognitive function in older adult patients with stroke is
impaired and can be improved after tDCS. This research
shows that the cognitive function identified by the MMSE and
the MoCA scores in patients with stroke was lower than in
healthy peers but improved after tDCS. Post-stroke cognitive
impairment is a known complication after stroke and a critical
risk predictor of a decline in quality of life (1–3). Some
researchers applied tDCS to stimulate the brain cortex. They
found that cognitive functions, such as naming accuracy (18),
the scores of attention and concentration, figural memory,
logical reasoning, reaction behavior (2), working memory (20,
70), and executive function (27), improved in patients with
stroke. Therefore, it can be inferred that the tDCS intervention
is an effective treatment to improve cognitive function for stroke
patients with cognitive impairment.

Cortical brain activation in older adult patients with stroke
is decreased and can be re-activated after tDCS. This research
shows that cortical activation in patients with stroke was lower
than in healthy individuals in the cortices of the lSTC, rSFC,
rDLPFC, rVLPFC, and lVLPFC. This increased to the same
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FIGURE 7

(A) Decrease of FC of oxy-Hb during VFT in patients with stroke compared with the healthy individual group; (B) the decrease of FC of oxy-Hb
during VFT of the first test compared with the second test in patients with stroke; (C) the increase of FC of oxy-Hb during VFT of the first test
compared with the third test in patients with stroke; (D) the increase of FC of oxy-Hb during VFT of the second test compared with the third test
in patients with stroke.

level as normal peers in the lSTC after tDCS. Consistent with
the results of this study, previous studies have also found
that the decreased extent of cortical activation in patients
with stroke is related to the degree of functional damage
(4, 5). Post-stroke, the lesions may be widespread in the
frontal and temporal regions (45, 46). Fortunately, a series
of studies have found that tDCS can alter the excitability
of the cortex (21, 24–28, 71). Anodic stimulation increases
cortical excitability, whereas cathodic stimulation decreases it
(71). In addition, regarding the IHI state after stroke, tDCS
can increase ipsilateral excitability and reduce contralateral
excitability due to the destruction of IHI after stroke (24). This
study placed the anodes and cathodes on F3 and F4 electrodes
(10–20 EEG electrodes) with 2 mA intensity and found that
the cortical activation of patients with stroke increased in the
lSTC cortex after tDCS. Therefore, tDCS positively affects the
recovery of cerebral cortical function in patients with stroke
(24, 28).

The brain FC between the bilateral cerebral hemispheres
of older adult patients with stroke is decreased but can be

re-connected after tDCS. This research showed that the FC
between the bilateral cerebral hemispheres in patients with
stroke was lower than in healthy individuals and increased
after 14 tDCS sessions. Consistent with the results of this
study, previous studies found that the damage to neural systems
caused brain-wide network changes. The balance between the
cerebral hemispheres of patients with stroke is destroyed (6)
when a stroke occurs, leading to the disinhibition of the
contralateral cortex and excessive activation, further reducing
brain function (7–9). The promising findings are that tDCS can
widely increase this interhemispheric connectivity in patients
with stroke (29–31).

This research makes an important contribution to the
diagnosis and effective treatment of brain function in patients
with cognitive impairment after stroke. Theoretically, this
research confirms that patients with stroke have brain function
damage (4, 5, 45, 46). Second, this study expanded the
research range of brain function damage to the connectivity
between the bilateral cerebral hemispheres. Based on the
theoretical model of competition inhibition between the
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bilateral cerebral hemispheres (6–9), this study found that in
patients with stroke, the FC between the bilateral cerebral
hemispheres is abnormally reduced. More importantly, based
on previous studies, this study confirmed that tDCS is an
effective intervention for post-stroke cognitive impairment. In
placing the anodes and cathodes on F3 and F4 electrodes
during tDCS, we can effectively improve cognitive impairment
after stroke, re-activate the cerebral cortex, and re-connect
the FC of the bilateral cerebral hemispheres. In this study,
we found that increased cortical activation and FC between
bilateral cerebral hemispheres measured by fNIRS are promising
biomarkers to assess the effectiveness of tDCS in patients with
stroke. These two neural indicators can be used clinically to
measure cerebral function recovery in stroke patients with
cognitive impairment.

Limitations

This study had some limitations. There was no control
group with healthy older adult peers in the tDCS intervention
study, and the use of drugs in treating patients with stroke
has not been controlled. Future researchers can verify these
results using more cognitive task paradigms. Moreover, they
can explore the mechanism of action of tDCS and drug use in
treating patients with stroke.

Conclusion

In conclusion, post-stroke cognitive impairment is a
common complication of stroke. After a stroke, people have
been found to have abnormal cortical activation in the brain,
which is associated with persistent cognitive impairment. tDCS
is a promising tool for assessing changes in cortical activation.
fNIRS is a non-invasive optical technique that can indirectly
observe cortical activation. This study investigated the effect of
tDCS on the rehabilitation of cognitive impairment in patients
with stroke using fNIRS technology. This study’s results showed
that the cognitive ability of patients with stroke, measured
on the MMSE and MoCA, was lower than that of healthy
individuals but was improved after tDCS. The cortical activation
of patients with stroke was lower than that of healthy individuals
on the lSTC, rSTC, rDLPFC, rVLPFC, and lVLPFC cortical
regions; this increased in the lSTC cortex after tDCS. The
FC between the cerebral hemispheres of patients with stroke
was lower than that of healthy individuals and increased after
14 tDCS. This shows that the cognitive and brain function
of mild-to-moderate patients with stroke were damaged but
could be recovered after tDCS. Increased cortical activation
and increased FC between the bilateral cerebral hemispheres
measured by fNIRS are promising biomarkers to assess the
effectiveness of tDCS in stroke.
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