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Abstract 
Detailed, accurate, and frequent mapping of land cover are the prerequisite regarding areas of 

reclaimed mines and the development of sustainable project-level for goals. Mine reclamation is 
essential as the extractive organizations are bounded by-laws that have been established by 
stakeholders to ensure that the mined areas are properly restored. As databases at the mines area 
become outdated, an automated process of upgrading is needed. Currently, there are only few 
studies regarding mine reclamation which has less potential of land cover classification using 
Unmanned Aerial Vehicle (UAV) photogrammetry with Deep learning (DL). This paper aims to 
employ the classification of land cover for monitoring mine reclamation using DL from the UAV 
photogrammetric results. The land cover was classified into five classes, comprising: 1) trees, 2) 
shadow, 3) grassland, 4) barren land, and 5) others (as undefined). To perform the classification 
using DL, the UAV photogrammetric results, orthophoto and Digital Surface Model (DSM) were used. 
The effectiveness of both results was examined to verify the potential of land cover classification. 
The experimental findings showed that effective results for land cover classification over test area 
were obtained by DL through the combination of orthophoto and DSM with an Overall Accuracy 
of 0.904, Average Accuracy of 0.681, and Kappa index of 0.937. Our experiments showed that land 
cover classification from combination orthophoto with DSM was more precise than using orthophoto 
only. This research provides framework for conducting an analytical process, a UAV approach 
with DL based evaluation of mine reclamation with safety, also providing a time series information 
for future efforts to evaluate reclamation. The procedure resulting from this research constitutes 
approach that is intended to be adopted by government organizations and private corporations so 
that it will provide accurate evaluation of reclamation in timely manner with reasonable budget. 
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Introduction 
  Mine reclamation can be defined as the 
technique designed to assist governments reshape 
the terrain and plantation of the trees [1]. Mine 
reclamation is important because it helps to 
minimize destruction and avoids harmful envi-
ronmental effects in mined areas, to return the 
soils to their state of pre-mining, and to protect 
the landscape [2]. Previously, monitoring tech-
niques relied on visual perception or computer-
related classification techniques [3] thorough 
mining surface cover mapping while enhancing 
the reliability of the mining area. Traditional 
methods of measuring cannot achieve high pre-
cision; additionally, the monitoring can only 
capture images at the point level and cannot 
monitor an entire surface [4]. Therefore, land 
cover mapping is a fundamental task for moni-
toring in mine reclamation and management. 
 UAV technology can acquire image data with 
high spatial and temporal resolution in a scalable 
manner at local scales, compared to conventional 
Photogrammetric works. UAV has recently been 
widely used in various photogrammetric appli-
cations, such as the management of natural 
resources [5–6]. Using UAV images combined 
with ground-based measurements, [7] investigated 
the extent of mine reclamation. The development 
of UAV photogrammetry has replaced conven-
tional approaches and has become a modern 
technology for monitoring in mining areas [4]. 
UAV technology is being developed aggressively 
(over the years) regarding mapping applica-
tions. Moreover, UAV as a low budget process 
that fewer time constraints and less manpower 
rather than satellites or manned aircraft that insure 
expensive flight costs, are time-consuming, 
weather dependent data collection, restricted 
workability, limited flying time, and low ground 
resolution mapping process [8–11]. UAV photo-
grammetry is thus an attractive approach for 
mine reclamation monitoring. 
 A classification of land cover in a mine in-
cludes land cover details and the forms of human 

activity involved in land use [12]. Land cover is 
classified into two methods, pixel-based and 
object-based methods [13]. Mapping of land 
cover follows the fulfillment of a shared vision 
of mining development, where existing and 
potential land-use values and preferences are 
estimated, reported, and reviewed in a clear, trans-
parent, and inclusive manner. Some research 
has focused on studying thorough mining sur-
face cover mapping while enhancing the reliabi-
lity of the mining surface area [3]. Monitoring 
the effects of the landscape in reclaimed mines 
provide useful information regarding the long-
term geological and environmental consequences 
of mining operations [14]. Thus, the classification 
of land cover of a mine includes the complete 
land cover details. 
 Deep learning (DL) is the application of 
machine learning techniques that have been ap-
plied in recent years to the tasks involved in the 
classification of images, which provides infor-
mation from images efficiently and the derived 
features are often very effective for processing 
images [15]. The visual recognition of deep 
learning is based on convolution neural networks 
CNN [16]. Recent development in CNN has 
allowed it to perform better with improved 
models in different domains, such as object 
detection, dense semantic labeling, and image 
classification [16–17]. The previous result 
published regarding the image classification in 
deep learning was provided by [18–19]. U-net 
is a specific model used in the Fully Connected 
Network (FCN), where the output segmented 
image is generated by a CNN. U-net was first 
proposed by [20] for biomedical segmentation 
by a special form of fully convolutional network. 
DL does not require feature engineering, nor 
does it need an automatic process, however it 
appeals to researchers from the remote sensing 
community for testing of its usability for land-
cover mapping [21–23]. Therefore, environmental 
protection and monitoring of the reclaimed 
mines area is essential for concerned authorities, 
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so the requirements for updating of the database 
using the automated method of classification 
must be a priority. 
 The objective of the research is to pro-vide a 
potential algorithm based on deep learning for 
the classification of land cover at the reclaimed 
mine based on the UAV photogrammetric re-
sults. Extractive organizations are expected to 
provide definitive decision-making activities, 
those impacting the environment, that are ob-
structed by the management so to make sure that 
the company complies with the law and ensure 
that the mined areas are properly restored. 
Previous reviews indicate that monitoring the 
reclaimed mines area for land cover classifi-
cation in Thailand DL has not been applied. 
This was a result of insufficient development of 
research, and the DL based on CNN with UAV 
was proposed to carry out land cover classifica-
tion at the reclaimed mines area at low altitude. 
 The following section will include: Section 
2 presents the study area and data-sets; Section 
3 presents the method of DL with CNN; Section 
4 presents the results and assessment of the 

system compared to two methods: orthophoto 
and combination of orthophoto with DSM; Sec-
tion 5 present the discussion; and Section 6 focuses 
on the conclusion and next stages of monitoring 
mine reclamation. 
 
Study area and datasets 
 The study site is located at Mae Moh mine in 
Mae Moh District, Lampang Province, Thailand. 
The Mae Moh mine is the largest Lignite mine 
in Thailand, it is one of the many locations where 
lignite has been producing fuel for the power 
plants managed by the Electricity Generating 
Authority of Thailand (EGAT). The terrain has 
a vegetated area of 135 km2. The selected re-
clamation area of the mine was planted with a 
variety of trees for five years, such as the Silver 
Trumpet tree (Tabebuia aurea). The average 
height of the tress is between 1 and 2 meters. The 
study area is located in between the 18°20’07” N - 
18°20’13” N latitude and 99°45’08” E - 
99°45’13” E longitude, and covers an area of 
9,744.66 m2. The area of study in this research 
is shown in Figure 1.

 

 
Figure 1 The study area in this research: the red and blue boxed areas are used for train and 

test datasets of DL, respectively.
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1) Data acquisition 
 The DJI Phantom 4 of the UAV platform 
equipped with a normal digital camera was used 
to collect the imagery of the reclaimed area. The 
flight planning of DJI Phantom 4 for automati-
cally controlling the UAV route was performed 
using the Pix4Dcapture mobile application on a 
smartphone. The UAV imagery was acquired on 
the 2nd October 2020 with a flying height of 50 m 
above the ground resulting in the ground sample 
distance (GSD) of 2.58 cm pixel-1. For UAV flight 
planning parameters based on the pix4D capture 
of mobile phone application, double grid mis-
sion with camera angle of 45 degree, 80% forward 
overlap and 70% side-overlap were suitable for 
complex elevation of this area. The size of each 
image was 54723648 pixels (approximately 20 
MP) and the UAV image set comprised 372 images. 
For geo-referencing, the placement of five targets 
over the experimental area were used as ground 
control points (GCPs) of the UAV photogrammetry. 
The locations of GCPs were observed by Real-
Time Kinematic (RTK) technique of Global Navi-
gation Satellite System (GNSS) surveying at cen-
timeter-level accuracy with the coordinate system 
based on the World Geodetic System (WGS) 1984. 
 
2) Data processing for UAV photogrammetry  
 For photogrammetric processing, firstly, the 
 

points measurement (also known as tie points) on 
the UAV imagery and geo-referencing with ground 
control points are used in bundle block adjustment 
for image orientation. Secondly, the dense image 
matching helps to generate a dense number of 
points as point cloud. Thirdly, the outcome of the 
point cloud is used for generating DSM. Finally, 
an orthophoto generated from UAV imagery is 
geometrically corrected such that the scale of the 
photograph is uniform and utilized in the same 
manner as a map. Orthophotos have the advan-
tages of a high-detail, precise analysis combined 
with the advantages of a map, including a uniform 
size and true geometry. Orthophotos display all 
the valuable information of a photograph [24]. 
 In this study, the Pix4D software was used to 
generate a dense point cloud, DSM, and ortho-
photo from a set of photos that overlap and include 
the geo-referenced details [25]. The images were 
matched for the orientation using the following 
functions: align photos and optimize cameras. 
Regarding the UAV photogrammetric process-
ing, the Root Mean Square Errors (RMSE) of 
georeferencing with five GCPs was 2.23 cm. The 
point cloud was created using the orientation 
and position of the camera. The UAV outcomes 
obtained from Pix4D software were a single 
RGB image of orthophoto and DSM at the same 
resolution of 5 cm, as shown in Figure 2.

 
Figure 2 UAV photogrammetric results used in this work (a) Orthophoto and (b) DSM. 
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Figure 3 The two datasets for DL: (a) training and (b) test area subset from orthophoto. 

 
 To prepare the dataset for DL, both ortho-
photo and DSM of the UAV photogrammetric 
results were selected into two areas; train and 
test, as shown in Figure 1. Both areas were taken 
into two subsets from orthophoto and DSM 
using ArcGIS at a resolution of 1,101988 and 
1,100985 pixels, as shown in Figure 3 (a) and 
(b), respectively. 
 
Methodology 
1) Pre-processing 
 Before the model training with DL, both 
datasets of orthophoto and DSM should be in 
the same type of grid data. The digital number 
(DN) in each band of RGB image for ortho-
photo is based on the data type integer and the 
value of DN is between 0 and 255. However, 
the value of gird data in DSM is the elevation as 
a decimal in centimeter-level. Since two datasets 
have unique attributes, the rescaling of data was 
implemented using normalization. Normalization 
refers to scaling the values of the DSM as the 
same data type of orthophoto. 
  
2) Model training 
 In deep learning techniques, patch level ana-
lysis is used to resolve challenges raised by dis-
tortion and optimization for segmentation, which 

problems are associated with the extraction of 
pixel-level and object-level features [26]. During 
the training process, the module can autono-
mously learn the parameters required for spatial 
transformation and does not need to add any ad-
ditional supervisory processing to the training. 
Patches are the sub-boxes of an image that is 
used at one time of a convolutional layer which 
is divided into the block of pp (patch size) and 
each block is independently considered. Based 
on the resolution of the RGB image and/or DSM 
and the expected size of the objects in the image, 
the size of the image patch is used to train the 
model. The patch size used in this study was 
512512 pixels. 
 The accuracy and loss were calculated during 
the training process. The accuracy and loss curves 
show a large alternation phenomenon at the be-
ginning of training which is more evident in 
training dataset. This observation is related to 
the small mini-batch size set in this study. Also, 
the scale of network oscillations in the late train-
ing period is even smaller than that in the early 
training period because of the strategy having 
the learning rate every 10 epochs. The model with 
the highest accuracy in the training dataset is 
selected as the final model and is applied to the 
test dataset. 
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2.1) Convolution neural network (CNN)  
 CNN is one of the most commonly used 
deep learning algorithms, which has recently 
achieved a significant interest in image pro-
cessing [27]. It is also primarily designed to deal 
with inputs in the form of multidimensional arrays 
[28]. They were effective in tasks with multiple 
arrays configured in 2D, such as object recogni-
tion in images [16]. CNN includes three types 
of layers 1) convolutional layers, 2) pooling layers 
and 3) fully-connected layers, as follows: 
 1) Convolutional layer 
 The Convolution layer is the main compo-
nent of the CNN with local relations and weights 
of mutual characteristics. The main task of the 
Convolution layer is to learn the feature repre-
sentations. Each neuron of the same map cha-
racteristics is used to extract local features at 
different positions in the former layer, but its 
extraction for single neurons is local charac-
teristics of the same positions in the former map 
[29]. 
 2) Pooling layer 
 The goal of pooling layers is to gradually de-
crease the representation dimensionality and thus 
further minimize the number of parameters and 
the computational complexity of the model. In 
the input, the pooling layer operates over each 
activation map, and scales, using the "MAX" 
function [30]. To boost performance, pooling was 
used with non-equal filters and measured over-
laps of the areas. 
 3) Fully connected layers 
 The fully-connected layer is close to how 
neurons in a CNN are organized. Neurons in the 
fully-connected layer, are directly linked to with-
out being connected to any layer, the neurons in 
the two adjacent layers [31]. 
 The network consisted of one 2D convolution 
layer in the description for this analysis, learn-
ing 64 kernels with a filter size of 33. The 
convolution layer passes through a rectified linear 
unit (ReLU) layer before being down-sampled 
with a filter size of 22 through max pooling. 

A dense layer is followed by ReLU activation 
with 128 neurons following final softmax dense 
layer with five neurons indicating the number of 
classes. The network was configured using a clas-
sifier from Adam with a batch size of 32, and 15 
epochs. The loss for the training was calculated 
using categorical cross-entropy. 
 
2.2) U-net  
 The U-net is a deep learning network architec-
ture, which is widely used for semantic segmen-
tation tasks. It was first proposed by Ronneberger, 
et al. [20] for medical image segmentation. U-net 
model mainly relies on convolution operations 
to learn high-level features. Unlike a general 
convolutional network, U-net is a full-convolution 
network that does not include a fully connected 
layer and also not demanding on the amount of 
dataset. This network is simple, efficient, and 
easily used. Its architecture was mainly divided 
into two parts, namely, an encoder and a decoder. 
The encoder continuously sampled through 
multiple convolution layers to obtain different 
image levels. The decoder performed multi-
layer deconvolution on the top-level feature 
map and combined different feature levels in the 
down-sampling process to restore the feature map 
to the original input image size and complete the 
end-to-end semantic segmentation task of the 
image. In this study, the network was improved 
to make it suitable for the land cover classifi-
cation at reclaimed mines area based on the 
original U-net architecture. 
 
2.3) Ground truth data 
 Ground truth can be said as the representation 
of the real features over the Earth’s surfaces and 
also is essential to assess the accuracy of the 
trained model from DL. This is used in statis-
tical models to prove or disprove key findings. 
The ground truth data involves the process of 
collecting the right objective (verifiable) data 
for this test [32]. The processed ground image 
(ground truth image) dataset was manually labeled 
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by visual interpretation using the Image labeler 
application in MATLAB R2020b. Each image 
has a hand-drawn mask indicating the classified 
area as ground truth (GT). GT helps image data 
to be linked with the features to actual characteris-
tics on the image with per-pixel GT for multiple 
classes. Additionally, imagery can be reviewed 
to verify ground cover and extract different features. 
The key aspect of the GT is the pixel resolution 
labeling. 
 In this research, five land cover groups were 
considered: (i) trees, (ii) shadow, (iii) grassland, 
(iv) barren land, and (v) others. The database 
provides GT labels that associate each pixel with 
one of five semantic classes. Total 1,011,839 
pixels of the test area dataset were labeled in the 
image labeler with area of 2,702.85 m2, as shown 
in Table 1. Each class was labeled according to 
its respective class. 
 
Table 1 Number of pixels per land cover class 
in the test area for the ground truth 

Land cover class No. of pixel Areas (m2) 
Trees 138,452 346.13 
Shadow 51,976 129.94 
Grassland 725,547 1,813.87 
Barren land 163,008 407.52 
Others 2,156 5.39 

 
3) Experimental design 
 The classification of reclaimed mine areas 
can be automatically performed using DL from 
outcomes of UAV photogrammetry (i.e. ortho-
photo or DSM). To assess the potential of land 
cover classification in this research, the efficacy 
of two environments was explored using the DL 
with CNN from 1) the orthophoto (RGB) imagery 
and 2) the combination of orthophoto with DSM. 
For the step of the training model, both the 
orthophoto imagery, and the combination of 
orthophoto with DSM were trained separately 
for 15 epochs, and the two model were generated. 
The two trained models were applied separately 
to the train and test area as the prediction results 

for the land cover classification of the reclaimed 
mines area. The classified results from both trained 
models were evaluated with the same ground truth 
data using the DL. Figure 4 shows the workflow 
and evaluation performed with programming 
on MATLAB R2020b software for automated 
processing. 
  

 
Figure 4 Workflows and evaluation of the 

proposed classification based on DL. 
 

4) Accuracy Assessment 
 In the evaluation process, the variance between 
the outcome of classification and the reference 
data is due to a classification error. However, the 
error of the misclassified area should be investi-
gated to provide a reliable report on the accuracy 
of classification. The confusion matrix table helps 
an algorithm to visualize its results [33]. The in-
stances in a projected class are expressed in each 
row of the matrix, while each column represents 
instances in a real class (or vice versa) [34]. After 
the generation of a confusion matrix, other im-
portant accuracy assessment elements, including 
overall accuracy (OA), Average Accuracy (AA), 
per class accuracy (PA), and kappa coefficient, 
were derived. 
 In general, overall accuracy shows us what 
percentage was correctly mapped from all of the 
study areas. The percentage of total classified 
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pixels currently classified in the particular land 
cover groups was determined by OA and was 
computed by dividing the total correctly classi-
fied pixels (Tmn or the sum of major diagonal) by 
the total number of pixels (N) in the confusion 
matrix, as shown in Eq. 1, and PA was calculated 
using Eq. 2; 
 

                  OA = ∑Tmn
N

                          (Eq. 1) 
 

                  PA = ∑Tmn
Si

                          (Eq. 2) 
 

 Where Tmn is the total number of the cor-
rectly classified pixels in row m and column n 
and Si is the total number of pixels in the row. 
Average accuracy (AA) was computed as in 
Eq. 3 defining C as the number of the classes. 
                
                  𝐴𝐴𝐴𝐴 = ∑ 𝑃𝑃𝑃𝑃𝑚𝑚

1
𝐶𝐶

𝐶𝐶                       (Eq. 3) 
 
 Alternatively, the Kappa coefficient is a 
calculation of the actual and predicted values 
consistency of an error matrix that takes into 
consideration non-diagonal elements [35]. Kappa 
analysis is known as a powerful way to evaluate 
a single mistake matrix and comparison of the 
differences between error matrix [36]. The value 
of the kappa ranges from 0 to 1. The analysis of 
Kappa produces a K metric, a quantitative estimate 
of the properly labeled pixels and the degree of 
consensus or Landis and Koch [37]. The kappa 
was calculated as: 
 

          𝑘𝑘 =
𝑁𝑁∑ 𝑇𝑇𝑝𝑝𝑝𝑝𝑚𝑚

𝑝𝑝,𝑝𝑝=1 −∑ 𝑅𝑅𝑖𝑖,𝑚𝑚
𝑝𝑝,𝑝𝑝=1 𝑆𝑆𝑗𝑗

𝑁𝑁2−∑ 𝑅𝑅𝑖𝑖𝑚𝑚
𝑝𝑝,𝑝𝑝=1 ,𝑆𝑆𝑗𝑗

          (Eq. 4) 

 
 Where m is the number of classes, Tpq is 
the number of correctly classified pixels in 
row p and column q, Ri is the total number of 
pixels in row p, Sj is the total number of pixels 
in column q and N is the total number of 
pixels. 
 

 Model validation is used to determine how 
effective an estimator is on data that it has been 
trained on and generalizable to new input. The 
training and validation time on the horizontal axis 
and a consistency metric is plotted by validation 
curves. An accuracy curve is a standard measure 
of consistency derived from the matrix of uncer-
tainty and displays both correct and incorrect 
classifications [38]. The accuracy is calculated 
as shown in Eq. 5. 
 

         𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝=1

∑ ∑ 𝐶𝐶𝑝𝑝𝑝𝑝𝑛𝑛
𝑝𝑝=1

𝑛𝑛
𝑝𝑝=1

             (Eq. 5) 
 

 Where Cpq is the correct classification on the 
diagonal, n is the number of classes, Cpq is the 
number of times items of class p were classified 
as class q (an incorrect classification) and 
∑ ∑ 𝐶𝐶𝑝𝑝𝑝𝑝𝑚𝑚

𝑝𝑝=1
𝑁𝑁
𝑝𝑝=1  is the total number of samples 

that were analyzed. 
 
 Another metric for interpreting the potential 
of DL is the loss curve which demonstrate 
whether the process of optimization and relative 
improvement in learning enhances several epochs 
during the training [39]. The loss function is 
calculated using Eq. 6. 
 
               Loss = 1- accuracy                 (Eq. 6) 
 
Results 
 After training of DL based on U-net model, 
land cover classification for the train and test 
dataset is predicted. During model training, the 
accuracy and loss curves were used to quali-
tatively test the outcomes and suggested that in 
the processing there was no indication of over-
fitting. Validation curves (accuracy and loss) of 
the two models evaluate the results of orthophoto 
and combination of orthophoto with DSM. The 
accuracy and loss curves demonstrate the con-
sistency of the training over the iterations for the 
DL with CNN. The accuracy curves in both the 
methods saturated after the 10th epoch. After the 
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iterations were completed, the accuracy curves 
of both the model were identical. The findings 
revealed that the learning rate was positively 
linked to model efficiency. After 15 iterations, 
the loss curves reached a smooth stage, with the 
highest precision. The accuracy of the 0.1 curve 
was the highest when the iteration was stopped. 
 Regarding the comparison results for the 
predicted results from DL, Figure 5 and 6 show 
the classification of land cover from 1) orthophoto 
and 2) combination of orthophoto with DSM. 

 According to a visual interpretation between 
Figure 5 (c) and (d) with Figure 6 (c) and (d), both 
of them were similar in each class. It is likely 
that there is insignificantly identified for the type 
of land cover. In addition, the tree canopy for 
both the datasets was appropriately classified, 
and also shadow helps to detect the correct 
amount of area with the trees. In conclusion, the 
DL for land cover classification demonstrates 
an efficient approach for monitoring the vegeta-
tion (i.e. trees) at the reclaimed mines.

 

  
                           (a)                                                                     (b) 

 
(c) 

 

 
(d) 

Figure 5 Training datasets and results after classification using DL (a) Orthophoto,  
(b) DSM, (c) land cover map from orthophoto and (d) land cover map from orthophoto  

and DSM with legend. 
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                         (a)                                                                     (b) 

 
(c) 

 

 
(d) 

Figure 6 Test datasets and results after classification using DL (a) orthophoto,  
(b) DSM, (c) land cover map from orthophoto and (d) land cover map from orthophoto  

and DSM with legend. 
 

In Figure 7, the number of pixels in the parti-
cular class of both datatsets were derived from 
the classification results of Figure 6 (c) and (d). 
The classificated results were approximately 
balanced for both datasets over test area. The 
number of shown pixels for the land cover clas-
sification obtained from both datasets range from 
a minimum of 0.1% and 0.3% (at the other class) 
to a maximum of 56.0% and 58.4% (at the grass-
land class). Therefore, the balanced distribution 
of pixels between land cover classes resulted in 
a simple equal distribution of training samples. 

 

For validation of prediction results using DL, 
the evaluation criteria for OA, AA, and K were 
presented in Table 2. When the orthophoto was 
combined with DSM, the overall accuracy (OA) 
for training and testing datasets were 0.987 and 
0.904, respectively. However, the OA and K of 
training and testing for the orthophoto and a com-
bination of orthophoto with DSM are similar. 
Moreover, in the case of the testing for a combi-
nation of orthophoto with DSM, AA is lower 
accuracy as compared to the orthophoto due to 
misclassification error in other class, as illustrated 
in Table 3. 
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Figure 7 Percentage of classified pixels from test area for each land cover class. 

 
Table 2 Output using standard accuracy metrics of the classification methods 

Dataset Model Overall accuracy 
(OA) 

Average accuracy 
(AA) 

Kappa Index 
(K) 

Training Orthophoto 0.987 0.938 0.991 
Orthophoto and DSM 0.987 0.948 0.991 

Testing Orthophoto 0.900 0.837 0.935 
Orthophoto and DSM 0.904 0.681 0.937 

 
Table 3 Training and test dataset with PA obtained by a different class 

Class Training  Test 
Orthophoto Orthophoto and 

DSM 
 Orthophoto Orthophoto and 

DSM 
Trees 0.978 0.983  0.731 0.770 
Shadow 0.967 0.969  0.770 0.788 
Grassland 0.992 0.994  0.920 0.933 
Barren land 0.982 0.970  0.963 0.913 
Others 0.772 0.824  0.800 0.000 

 
Based on the training and test results for each 

class, Table 3 shows the per-class accuracy (PA) 
achieved by the proposed model. The results from 
the training data suggest that the deep learning 
with a combination of orthophoto and DSM was 
able to classify almost all classes excluding others 
with relatively high accuracy. The maximum per-
class accuracy of the orthophoto and a combina-
tion of orthophoto with DSM for the grassland 
were 0.992 and 0.994, respectively. Focusing 

on the classification of vegetation area, the PA 
of combining orthophoto with DSM for both trees 
and grassland were relatively higher than the 
orthophoto. Also, from Table 3, in terms of the 
classification results of the test dataset, the PA 
of combination orthophoto with DSM was more 
accurate than of orthophoto excluding barren land 
and other class. The accuracy of trees was 3.9% 
greater when orthophoto was combined with 
DSM and the accuracy of grassland increased 
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by 1.3% when orthophoto was combined with 
DSM. It is likely that the classification results 
for the vegetation obtained from orthophoto and 
DSM were significantly potential for the DL 
approach. However, the other class was mis-
classified when orthophoto was combined with 
DSM. Because of the inequalities in the dataset 
of other class for training with DL (from Figure 
7), dataset of the labelled pixel for GT was the 
least of all. It is noticed that a contributing factor 
may also be the lack of adequate sampling [40]. 
On the other hand, most of the sampled pixels 
in the training dataset were for grassland 
(approximately 58.5%); the highest precision of 
classification was predicted by grassland for 
both approaches. 

 
Discussion 

The findings of the study clearly show that 
the UAV approach for supporting mine reclama-
tion provides photogrammetric results, consis-
ting of orthophoto and DSM, that is possibly 
more useful information for monitoring land 
cover. Deep learning technique can employ the 
automatic extraction of land clover using the 
trained datasets from orthophoto and/or DSM at 
the pixel level (Figure not shown). UAV and deep 
learning approach provide land cover classifi-
cation especially vegetation area of mine re-
clamation which is supporting measure and also 
is valuable tool for monitoring and managing 
the reclaimed mines. The effectiveness of land 
cover was determined using the DL technique 
with training and test datasets from between 
orthophoto and a combination of orthophoto 
with DSM. The results comparison of the land 
clover classification based on DL revealed that 
the use of both orthophoto and DSM provides 
more accurate than orthophoto, especially the 
vegetation area (trees and grassland), as shown 
in Tables 3 and 4. As the DSM can offer useful 
information of height above ground surface 
especially for vegetation (such as trees), adding 
this information helps to improve accuracy [41]. 

On the other hand, the use of orthophoto and 
DSM for DL revealed that the misclassification 
for barren land and other class due to adequate 
labeled data mentioned by Marcos, et al. [40]. 
However, for mine reclamation, the vegetation 
area was more important due to the regulation 
of plantation from the concerned authorities and 
natural recovery. 

In our land-cover classification task, it is clear 
that the reliability of deep-learning approaches 
[32, 41]. The spatial resolution of the orthophoto 
and DSM available in this analysis was 5 cm, 
which was adequate for vegetation classification. 
In the terms of the shadow, it is necessary to 
separate the shadow area from the tree crown 
measurement because calculating the vegetation 
area would be more precise when excluding 
shadow [42–43]. The results for the image clas-
sification as in Figures 6 and 7 analyzed shows 
precise results based on Tables 3 and 4 for the 
land cover especially vegetation. Relevantly, the 
timeline for estimating land cover from digital 
images are based on models is also substantially 
improved relative to conventional approaches. 
Applying the DL methods to trained U-Net 
models, land cover maps are generated. Few 
computationally effective CNN for detection, 
semantic labelling has been added [16–17, 32]. 
Land cover classification is essential for mine 
reclamation, as it can help reduce mine recovery 
to assess the mine field. Several studies have been 
developed to create effective architectures that 
can be performed in land cover based on DL 
[15, 21]. In addition, regarding the state of art 
technologies, introducing DL and UAV into the 
periodic monitoring of mine reclamation could 
be considered as an effective result for reducing 
discrepancies among public administration and 
private companies, and at the same time, contri-
buting to monitoring the sustainable development 
of extractive mining activities. 

DL with a UAV photogrammetric approach 
platform could be more suitable for much more 
extensive restorations and perhaps further im-
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provements could be achieved using multispec-
tral sensors with more bands or hyperspectral 
sensors to enhance the spectral information. This 
study was limited by UAV imagery with a normal 
(RGB) camera at the mines area with the pattern 
of vegetation. These results indicated that com-
bination of orthophoto with DSM provides a 
comprehensive database of UAV imagery at an 
affordable cost, which can be exploited for land 
cover mapping and detecting the changes of ve-
getation at reclaimed mines area. The accuracy 
of image classification is as improved by Li, et 
al. [44], the accuracy of OA, AA, and K was 
higher for the training data using the combi-
nation of orthophoto and DSM with the spatial 
resolution of 5 cm pixel-1. The DL with U-net 
architecture showed land cover classification 
results in their mapping accuracies using between 
orthophoto and combination of orthophoto with 
DSM. 

Based on deep learning of land cover classi-
fication, accuracy depends on several factors, 
such as the surface types, and the solar angle du-
ring image acquisition using UAV. The effect of 
the solar angle can be considered as 1) shadow, 
and 2) the intensity of light. Firstly, the presence 
of shadows due to solar angle is not able to 
visualize all the vegetation area [43]. Secondly, 
the colors of the visible spectrum, as well as band 
of the wavelengths, are present with relatively 
various intensity of sunlight [45] which may 
lead to the different color of the UAV imagery. 
These effects from solar angle should be consi-
dered in the future study. 

 
Conclusions 

Monitoring open-pit mine areas with UAV 
imagery and deep learning is effective and valu-
able as it offers timely and reliable information 
for mine reclamation. The resulting method can 
periodically and consistently sample the pixel 
size restoration at the region of interest for con-
fined or unsafe areas to be monitored. It is 
capable to achieve detailed documents such as 

orthophoto, DSM, and land cover maps integrated 
with previous cartography and official databases. 
The introduction of emerging DL and Unmanned 
aerial systems (UAS) brings us exciting oppor-
tunities for monitoring the reclamation of the 
low-cost device and extensive analysis. The over-
all workflow was automated for land cover 
mapping also the particular emphasis on trouble-
some areas could be applied. However, it is 
convenient for the expertise to check the right 
implementation and assist with key decisions 
for land cover classification, such as the digiti-
zation of training and test areas. Moreover, 
relative to what would have been achieved in 
the traditional inspection of the reclaimed areas, 
the fieldwork duration in our case study was 
substantially shortened. To conclude, the time 
required to collect the ground-truth data and the 
UAV flight is enough to examine the reclaimed 
area, also the data processing can be carried out 
within a short time. From the experiment study 
at Mae Moh mine in Lampang, Thailand, the 
trained model in DL was applied to identify the 
vegetation areas for the test and train datasets 
from both orthophoto and DSM have higher 
precision of OA, AA, k, and PA than only ortho-
photo due to the height information. The precise 
values of land cover classification for test area 
from combining orthophoto with DSM with OA, 
AA, and K were 0.904, 0.681, and 0.937, res-
pectively.  

In future work, in terms of the monitoring 
mine reclamation on the vegetation area for land 
cover classification, applying trained model of 
classification for UAV dataset at different time 
will be evaluated. Also, it will offer a practical 
solution in mine reclamation for relevant autho-
rities to make appropriate decision. 
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