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ABSTRACT
Objective: Posterior cingulate gyrus atrophy is found in early clinical stage of Alzheimer’s disease (AD) patients.1 
Diffusion tensor imaging (DTI) can be used for evaluating microstructure change in brain parenchyma.2 Our 
objective was to compare the microstructural change at posterior cingulate gyrus between AD patients and normal 
control subjects by using DTI.
Methods: The retrospective review of 23 AD patients, diagnosed by NINCDS-ADRDA with available MRI data 
including DTI, and 19 normal control subjects was performed. The DTI parameters of posterior cingulate gyrus of 
each group were analyzed and compared.
Results: The mean diffusivity (MD), axial diffusivity and radial diffusivity (RD) of posterior cingulate gyrus were 
significantly increased in AD patients compared with normal control subjects (p value <0.001, <0.001, <0.001, 
respectively). The fractional anisotropy (FA) was slightly decreased in AD patients compared with normal control 
subjects but did not reach statistical significance (p value=0.71).
Conclusion: Microstructural change at posterior cingulate gyrus demonstrated by DTI parameters including MD, 
axial diffusivity and RD were significantly different between AD patients and normal control subjects. These results 
were probably helpful for early diagnosis, evaluation, and follow up of the AD patients as correlate with clinical 
findings.
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INTRODUCTION
	 Alzheimer’s disease (AD) is a major cause of dementia 
which brings disability to older adults worldwide. Early 
detection of AD can provide early treatment for this 
disease and thus delay progression and disability. Many 
investigations are now emerging to fulfill this purpose 

Abbreviations: DTI: Diffusion tensor imaging; FA: Fractional anisotropy; ROI: Region of interest; MD: Mean diffusivity; 
RD: Radial diffusivity; AD: Alzheimer’s disease

such as CSF tau level, genetic test, FDG or amyloid PET. 
However, AD patients are still diagnosed late in disease 
course.1-6

	 Furthermore, other causes of dementia such as 
dementia with Lewy bodies (DLB), frontotemporal dementia 
(FTD) and idiopathic normal pressure hydrocephalus 
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(iNPH) also share common symptoms and signs with 
AD, but need different specific treatments. A test that 
can detect AD early and also provide differentiation from 
other causes will bring many benefits to these patients.7-9

	 The previous study by Pengas et al.,10 showed that 
atrophy of posterior cingulate cortex and hippocampus 
was a feature of early AD. The studies by Minoshima  
et al., and Nestor et al., also showed hypometabolism 
in both areas.11-13

	 Diffusion tensor imaging (DTI) is one of the imaging 
tools for studying microstructural change of white matter 
which is believed to account for early AD. Previous 
studies14-16 demonstrated abnormal FA and MD in posterior 
cingulate gyrus in AD patients. Our objective was to 
compare microstructural change at posterior cingulate 
gyrus between AD patients and normal control subjects 
by using DTI.

MATERIALS AND METHODS
	 The study was approved by Siriraj Institutional 
Review Board (Si 651/2557). Twenty-three AD patients 
(11 males and 12 females, mean age 78.82 years; range 
66-90 years) diagnosed according to NINCDS-ADRDA 
criteria 201117,18,19 with available MRI scan including 
DTI data were included in the disease group (Table 1). 
Nineteen normal cognitive subjects (10 males and 9 
females, mean age 59.52 years old; range 47-80 years) 
were enrolled as the control group and recruited from 
the patients who underwent the MRI study due to non-
specific symptoms such as headache or vertigo with 
normal cognitive function, no abnormal neurological 
examination and no detectable gross MRI abnormality 
such as infarction, hemorrhage or mass lesion.

MR Imaging Data Acquisition 
	 MRI acquisitions were done on two machines; the 
first one was a 3.0 tesla MR system (Archieva, Philips, 
The Netherlands) with an 8-channel head coil and DTI 
protocol was a single shot, spin echo EPI; 32 diffusion 
encoding directions; b value = 0 and 800 s/mm2; acquisition 
matrix 112x112; FOV 22.4 cm; voxel size = 2 mm (RL) 
x 2 mm (AP) with 60 contiguous slices, slice thickness 
2.3 mm, and acquisition time was 12:39 min. The other 
machine was a 3.0 tesla MR system (Ingenia, Philips 
Medical System, Best, the Netherlands) with 16-channel 
head coil and DTI protocol was a single shot, spin echo 
EPI; 32 diffusion encoding directions; b-value = 0 and 
800 s/mm2; acquisition matrix 112x112; FOV 22.4 cm; 
voxel size = 2 mm (RL) x 2 mm (AP) with 60 contiguous 
slices, slice thickness = 2.0 mm, and acquisition time 
was 12:14 min. The 3D-T1 weighted image and fluid-

attenuated inversion recovery images were performed in 
all patients. In AD group, coronal oblique T1W at right 
angles to the longitudinal axis of the hippocampus was 
also obtained.

DTI Processing
	 Processing of the diffusion data including brain 
extraction and correction for eddy current distortions 
by using FSL (FMRIB Software Library, version 5.0.8) 
were done.20 Then dtifit for local fitting of diffusion 
tensors was performed. The standard template for ROI 
measurement (Harvard-Oxford Cortical Structural Atlas) 
of the posterior cingulate gyrus was placed. Finally, the 
diffusion tensor parameters including FA, MD, axial 
diffusivity, and RD were derived and compared between 
the AD group and control group. (Fig 1)

Statistical analysis
	 Statistical analysis was performed using PASW (SPSS) 
version 18. Continuous data analysis was measured and 
presented as means, standard deviations (SD), min and 
max parameters. Categorical data analysis was divided by 
each group and converted into percentage. Sex, education 
and Scheltens score between AD patients and normal 
control subjects were compared using Chi-square test. 
Age at scanning between each group was compared 
using unpaired t-test.
	 The diffusion tensor parameters (FA, MD, Axial 
diffusivity, and RD) were compared between the AD group 
and control group using Mann-Whitney U test. P-value 
less than 0.05 was considered statistically significant.

RESULTS
	 We investigated 23 AD patients (11 males, 12 
females, mean age at scanning: 78.8±6.1 years) and 19 
normal control subjects (10 males, 9 females, mean age 
at scanning: 55.0±9.0 years). The age of scan in AD group 
was higher than that in control group (p< 0.001). No 
gender difference between the two groups (p= 0.757) 
was observed.
    	 Regarding education in AD group, there were 
2 patients (8.7%) with no study, 11 patients (47.8%) 
with primary school graduation, 5 patients (21%) with 
secondary school graduation and 5 patients (21%) with 
college degree. The mean age of onset was 77.6±7.0 years 
and mean TMSE scores (0-30) was 20.83±4 .5 points in 
AD group.
    	 Scheltens score (range from 0-4 points) in AD group 
were 2 points in six patients (26.1%), 3 points in fifteen 
patients (65.2%) and 4 points in two patients (8.7%) 
whereas the Scheltens score in control group was 1 point 
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TABLE 1. Shows demographic data as sex, age, TMSE score, education, Scheltens score, age at MRI scanning and 
underlying diseases of AD patient group. 

	Number	 Sex	 Age	 TMSE	 Education	 Scheltens	 Age at MRI	 Underlying
			   (years)	 (0-30)			   score	 scanning	 diseases
							       (0-4) 	 (years)

	 AD1	 Male	 87	 24	 Primary school	 3	 87	 DM, HT, DLP

	 AD2	 Female	 78	 21	 Primary school	 3	 77	 DM, HT, DLP

	 AD3	 Male	 66	 19	 Secondary school	 3	 66	 None

	 AD4	 Female	 87	 22	 Primary school	 3	 87	 HT

	 AD5	 Male	 82	 21	 Secondary school	 3	 82	 HT, DLP

	 AD6	 Female	 79	 25	 Primary school	 3	 79	 HT

	 AD7	 Female	 84	 19	 Primary school	 3	 84	 HT, DLP

	 AD8	 Female	 90	 19	 No study	 3	 90	 DM, HT

	 AD9	 Male	 83	 14	 University	 3	 83	 DM

	 AD10	 Male	 71	 23	 No study	 2	 71	 HT, DLP

	 AD11	 Male	 72	 23	 University	 2	 73	 HT, DLP

	 AD12	 Female	 80	 18	 Secondary school	 3	 81	 HT, DLP

	 AD13	 Female	 84	 21	 Primary school	 3	 84	 DM, HT, DLP

	 AD14	 Female	 79	 26	 University	 3	 79	 HT, DLP

	 AD15	 Male	 67	 22	 Secondary school	 2	 70	 DM, HT, DLP

	 AD16	 Male	 74	 8	 Secondary school	 2	 74	 HT, DLP

	 AD17	 Female	 76	 16	 Primary school	 3	 78	 HT, DLP

	 AD18	 Female	 81	 15	 Primary school	 4	 82	 DM, HT

	 AD19	 Female	 67	 23	 Primary school	 2	 70	 HT, DLP

	 AD20	 Female	 79	 27	 Primary school	 3	 80	 HT, DLP

	 AD21	 Male	 71	 24	 Primary school	 3	 79	 HT, DLP

	 AD22	 Male	 81	 27	 University	 4	 82	 None

	 AD23	 Male	 68	 22	 University	 2	 75	 None

Abbreviations: DM=diabetes mellitus, HT=hypertension, DLP= dyslipidemia 

Fig 1. Showed region of interest 
analysis of the posterior cingulate 
gyrus demonstrated in axial, 
sagittal and coronal views in FA 
map in AD patient.
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TABLE 2. Shows mean FA, mean MD, mean axial diffusivity, and mean RD of AD patients and normal control 
subjects. 

         Parameters	 AD patients 	 Normal control subjects	 P value

	 (±SD and range)	  (±SD and range)	

Fraction anisotropy (FA)	 0.216 ± 0.035	 0.218 ± 0.027	 0.71

	 (0.181-0.251)	 (0.191-0.245)	

Mean diffusivity	 1.396 ± 0.195	 1.178 ± 0.137	 <0.0001

(MD, 10-3 mm2/s)	 (1.201-1.591)	 (1.041-1.315)	

Axial diffusivity	 1.659 ± 0.194	 1.459 ± 0.263	 <0.0001

(AD, 10-3 mm2/s )	 (1.465-1.853)	 (1.196-1.722)	

Radial diffusivity	 1.267 ± 0.200	 1.064 ± 0.143	 <0.0001

(RD, 10-3 mm2/s)	 (1.067-1.467)	 (0.921-1.207)	

in eighteen patients (94.7%), and 2 points in one patient 
(5.3%). Mean Scheltens score in AD group was significantly 
higher than that in control group  (p < 0.001). (Table 1)

FA
	 The mean FA at posterior cingulate gyrus in AD 
group was slightly lower than that in control group 
(0.216 ± 0.035 vs 0.218 ± 0.027, respectively). However, 
there was no statistically significant difference between 
the two groups (p-value is 0.71). (Table 2)

MD
	 MD at posterior cingulate gyrus in AD group (1.396 
± 0.195 x 10-3 mm2/s) was statistically significantly higher 

than that in control group (1.178 ± 0.137 x 10-3 mm2/s), 
p value <0.001. (Table 2)

Axial diffusivity
	 Axial diffusivity at posterior cingulate gyrus in AD 
group (1.659 ± 0.194 x 10-3 mm2/s) was significantly 
higher than that in control group (1.459 ± 0.263 x 10-3 

mm2/s), p value <0.001. (Table 2)

Radial diffusivity (RD)
	 RD at posterior cingulate gyrus in AD group (1.267 
± 0.200 x 10-3 mm2/s) was significantly higher than that 
in control group (1.064 ± 0.143 x 10-3 mm2/s), p value 
<0.001. (Table 2) 

DISCUSSION
	 In early AD, atrophy of hippocampus and posterior 
cingulate gyrus is a distinct imaging feature.13 Several 
studies10-12 have found that the earliest hypometabolic (F18 
FDG-PET) region in AD was the posterior cingulate cortex 
which showed more significantly decreased metabolism 
than the mesial temporal structure.
	 Additional study revealed that there was decreased 
FA coupled with increased diffusivity (MD) in cingulum 
fiber which connects the hippocampus and posterior 
cingulate gyrus reflecting axonal loss or demyelinating 
process.16,21-25 Moreover, Salat D et al., revealed that diffusion 
measurement was related to indices of disease severity 
and cognitive disability and specifically associated with 
episodic memory impairment. These findings represented 
a potential clinical role for DTI to index white matter 
degeneration and track AD symptoms.26

	 Several previous studies26-29,31,33 have widely used 
post-processing analysis software consisting of FSL for 
DTI analysis at posterior cingulate gyrus.  All of these 
studies supported association of abnormal DTI value at 
posterior cingulate cortex with early AD. In our study, there 
was decreased FA with increased mean diffusivity (MD), 
axial and radial diffusivity in AD patients compared with 
control subjects. However, only MD, axial diffusivity and 
RD were significantly statistically different between the 
two groups. Our result was consistent with the studies by 
Yoshiura et al., Nakata, et al., and Fellgiebel, et al., which 
found that increased mean, axial and radial diffusivity 
in posterior cingulate correlated with AD. 
	 Yoshiura T et al.,14 found that mean axial and radial 
diffusivity, but not FA, in the posterior cingulate white 
matter correlated with MMSE which reflect progression 
of AD-related histopathological changes. Fellgiebel A et al.,15 
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found significantly decreased FA and increased MD at 
posterior cingulate white matter in AD compared to 
normal controls. Nakata Y et al.,27 found that MD in 
the posterior cingulum significantly correlated with 
the MMSE score. However, no significant correlation 
was seen between FA and MMSE score. The measuring 
methods were probably different in detail in each study, 
such as the method of ROI measurement, and also DTI 
scanning protocol that probably effected the measurement 
of DTI values.
	 For correlation with pathophysiology of disease, 
explanation of the association of increased diffusivity, 
hypometabolism and atrophy at posterior cingulate gyrus 
in AD patients was established. MD is a measurement of 
translational diffusion which increases in the presence of 
tissue damage.30 Therefore, MD is expected to increase 
at the posterior cingulate gyrus in AD patients which 
indicates pathology in limbic system contributing to 
memory loss.
	 In addition, the dissociation between radial diffusivity 
and axial diffusivity was concordant with the previous study 
by Song SK et al.,31-32 which pointed out that significantly 
increased radial diffusivity reflected myelin injury in AD. 
However, increased axial diffusivity was not consistent 
with axonal injury in AD.
	 In the aspect of FA, there was no significant difference 
between AD patients and normal control subjects in our 
study. The FA demonstrated directionality of diffusion 
and in the white matter, high FA can be found in highly 
organized tissue with parallel structure. Damage to white 
matter disrupts the organized structure leading to a 
decrease in FA. Three decreased FA regions involving 
medial temporal lobe, temporal lobe proper, and posterior 
cingulate gyrus were reported to be relatively consistent 
with AD.30  
	 FA in our study was not significantly lower in the 
AD group which was similar to a study by Yoshiura 
et al. This can be contributed to rotationally variant 
during three orthogonal directions measurement of 
FA.  Therefore, the relative orientation of the patient’s 
head concerning the fixed geometry of the MR imaging 
system gradients can affect FA parameters.14

	 A Study by Nakata et al., in 2008 using tract-specific 
analysis of posterior cingulate fiber tracts showed significant 
lower FA in AD patients.28  However, another study by 
Nakata et al., in 200927 showed no significant correlation 
between FA and MMSE which used MMSE as an indicator 
of disease progression in AD. His conclusion suggested 
that MD in the posterior cingulum is a more sensitive 
indicator of progression of AD than FA at the posterior 
cingulum and hippocampal volume.

	 All of the aforementioned studies reflected the 
variability of FA and implied that FA is not a reproducible 
parameter. Thus, factors that can alter FA values are 
detectable by DTI technique such as parameter, ROI 
placement,26,33 voxel size and number of collinear gradients. 
 
Limitations of our study
1. Abnormal DTI findings could be related to other 
pathology such as dementia other than AD and/or 
cerebral vascular disease due to non specific in nature 
of DTI metrics.
2. Mean age at scanning of control group were lower 
than the AD group. The age-related degeneration of 
white matter may affect the DTI parameters.

CONCLUSION
         The microstructural change at the posterior cingulate 
gyrus demonstrated by DTI parameters including MD,  
AD and RD were significantly different between AD 
patients and normal control subjects. Our findings 
suggested that DTI parameters including MD, AD and 
RD at posterior cingulate gyrus are non-invasive markers 
of AD pathology. Therefore, these are probably helpful 
for early diagnosis, evaluation, and follow-up of AD 
patients to correlate with clinical findings. For further 
studies, advanced imaging techniques that can differentiate 
between AD and mild cognitive impairment (MCI) will 
be helpful in clinical practice.
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