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Abstract. Ever since lightweight cryptography emerged as one of the trending topics
in symmetric key cryptography, optimizing the implementation cost of MDS matrices
has been in the center of attention. In this direction, various metrics like d-XOR,
s-XOR and g-XOR have been proposed to mimic the hardware cost. Consequently,
efforts also have been made to search for the optimal MDS matrices for dimensions
relevant to cryptographic applications according to these metrics. However, finding
the optimal MDS matrix in terms of hardware cost still remains an unsolved problem.
In this paper, we settle the question of the optimal 4×4 MDS matrices over GL(n,F2)
under the recently proposed metric sequential XOR count based on words (sw-XOR).
We prove that the sw-XOR of such matrices is at least 8n + 3, and the bound is tight
as matrices with sw-XOR cost 35 and 67 for the values of n = 4 and 8, respectively,
were already known. Moreover, the lower bound for these values of n matches with
the known lower bounds according to s-XOR and g-XOR metrics.
Keywords: Lightweight cryptography · Diffusion layer · MDS matrix · Hardware
implementation · XOR cost

1 Introduction
Catering to the need of securing the IoT networks that comprise of small embedded devices,
the so called lightweight cryptography has emerged. Research on lightweight cryptography
received further boost when NIST announced the call for standardization of lightweight
authenticated encryption with associated data [LWC18]. Lightweight cryptography is
based on symmetric key, and such a design basically targets to optimize one of the following
performance metrics: hardware cost, software efficiency, latency and energy.

One of the classical models for designing a block cipher is the Substitution Permutation
Network (SPN), and notably the Advanced Encryption Standard (AES ) [DR02] was also
based on this design principle. SPN has a nonlinear component and a linear component.
The nonlinear component is built by S-boxes that basically provides the confusion property,
that is, making the relation between the key and the ciphertext very much complex. On
the other hand, the linear component can be represented as a matrix that is called diffusion
matrix; it basically diffuses the plaintext throughout the ciphertext.

One approach to design lightweight SPNs would be to apply lightweight S-boxes and
lightweight diffusion matrices. There have been different approaches for constructing
lightweight S-boxes, for instance, GIFT [BPP+17] has an extremely lightweight 4× 4 S-box,
Sycon[MSST22] has a lightweight 5 × 5 S-box, and [CDL15] showed a way to construct
lightweight S-boxes using Feistel and MISTY structures.

When it comes to choosing diffusion matrices, it is often preferred to choose MDS
matrices as these matrices provide the optimal diffusion. For example, the MixColumns
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operation in AES uses a 4 × 4 MDS matrix over F28 . However, in MIDORI [BBI+15], a
non-MDS matrix was chosen as the designers aimed to make an energy efficient block
cipher. The construction of MDS matrices with low hardware footprint is an active area
of research and many such constructions can be found in [SKOP15, BKL16, SS16a, LS16,
LW16, SS16b, LW17, JPST17, SS17, DL18]

Even after so many years of effort, the key question of finding the MDS matrices for
dimensions relevant to cryptographic designs with the minimal implementation cost is
still unsolved. The general problem which is to minimize the number of linear operations
necessary to compute a set of linear functions is termed as Shortest Linear Program (SLP)
problem, and it is known to be NP-hard [BMP08]. However, heuristic algorithms have been
proposed to optimize the implementation of binary matrices [Paa97, BMP08, Ber09, BP10].
There have also been many other notions proposed to capture the hardware cost of a
matrix, and according to those cost metrics MDS matrices have been analyzed.

There are generally three metrics discussed in the literature: d-XOR, s-XOR, and
g-XOR. The direct XOR or d-XOR count is basically the number of 1’s in the binary
matrix (see [KPPY14, LW16]). In [ZWZZ16], the authors proposed an approach to find
efficient implementation of MDS matrices using graph-theoretical model and transfer the
main problem to the shortest path problem in graph theory. It was also shown that
the optimal implementation of an MDS matrix depends upon the minimum number of
additive elementary matrices (known as Type III) that appear in its decomposition. It
was then reformulated in [JPST17, BKL16] as sequential XOR or s-XOR to estimate the
implementation cost. Also, a graph-based meet-in-the-middle (MITM) search algorithm to
find efficient implementation of MDS matrices called LIGHTER was developed in [JPST17].
However, the problem with these graph-theoretical tools is that they do not scale well.
Note that, s-XOR uses in-place replace operations without using any extra registers. Then
it was observed in [KLSW17] that by allowing extra registers to save intermediate values,
one may get a better estimate for the XOR cost. This is known as g-XOR and it is linked
with the Shortest Linear Program (SLP). A series of works have considered the problem
of finding efficient implementations of MDS matrices with respect to either s-XOR or
g-XOR [KLSW17, DL18, XZL+20, YZW21].

In designing lightweight MDS matrices, most of the early works concentrated on
constructing MDS matrices with entries in a finite field F2n or GL(n,F2) such that the
entries are efficiently implemented. Most practical purposes, the entries considered are
binary matrices of small orders like 4 or 8. Due to the smaller size of the entries, many
ad-hoc techniques were used to search for efficient MDS matrices. This is often called local
optimization. In another direction, to reduce the hardware area requirements, considering
serial implementations, specially structured MDS matrices such as circulant (e.g., [LW16]),
Toeplitz (e.g., [SS16b]) or recursive MDS matrices (e.g., [GPP11, KPSV21]) were studied
extensively. Many of those ad-hoc search techniques locally optimize the entries of some
specially structured MDS matrices.

In [KSV19], a method was presented to exhaustively search for various types of
MDS matrices over GL(4,F2), and they provided MDS matrices locally optimized with
respect to d-XOR and s-XOR metrics. Similarly, there have been many works such
as [LW16, LWL18, ZWS18, DL18, XZL+20, YZW21] that considered MDS matrices over
the general linear group GL(n,F2), and many such works considered global optimization.

In [DL18], a direct construction of lightweight MDS matrix was shown. The construction
starts with an identity matrix over F2[α] and in every step a linear operation is applied.
They considered linear operations which are XOR : x ← x + y, COPY : x ← y and
Multiplication : x ← αx, where x, y,∈ Fn

2 and α is a non-singular matrix of order n.
After each of these operations, the newly obtained matrix is checked for MDS property.
This way, the authors were able to produce 4× 4 MDS matrices over the ring F2[α]. When
they instantiated α with the 4 × 4 binary matrix A4 which is the companion matrix of
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X4 + X + 1, they obtained an MDS matrix with XOR cost 35, and with the 8× 8 matrix
A8 which is the companion matrix of X8 + X + 1, they obtained an MDS matrix XOR cost
67. These matrices still hold the record for their respective dimensions. In [XZL+20], the
authors reduced the problem of optimizing implementations of matrices to the problem of
optimizing matrix decomposition. As a result, they were able to find the implementation of
the MDS matrix of AES with s-XOR cost 92, which performs equally well as the previous
best result under g-XOR metric [Max19]. Later, [YZW21] improved the efficiency of the
heuristic algorithm of [XZL+20] which enables them to search for lightweight involutory
MDS matrices in a larger space with the computation remains in a reasonable range.

Our Contributions
The construction of lightweight MDS matrices proposed in [DL18] showed a minimal
approach, that can ensure achieving MDS matrices which are of low cost. This approach
was taken up by [WLTZ21] that extended it by treating the linear operations as the
multiplications by the three types of elementary matrices. It is well-known that any
non-singular matrix over F2n can be decomposed as a product of elementary matrices.
Analogously, elementary block matrices can be considered for the case of block matrices.
Considering such block-wise decompositions, a new metric called sequential XOR count
based on words (sw-XOR) was introduced in [WLTZ21] to estimate the hardware cost.
This can be viewed as a restricted version of the sequential XOR count (s-XOR) which
is defined considering elementary matrix decomposition over F2. In [DL18], the authors
obtained 3× 3 and 4× 4 MDS matrices over GL(n,F2) with XOR cost 5n + 1 and 8n + 3
respectively. However, establishing the lower bounds seems to be a hard problem. The
g-XOR metric gives the optimal implementation in terms of XOR gate count, but it
does not have a nice mathematical structure as compared to sw-XOR or s-XOR metrics.
In [WLTZ21], the authors introduced the concept of path. The path of a matrix is an
ordered list of elementary (block) matrices of Type III that appear in a special form of the
matrix decomposition. As we see later, the sw-XOR of a matrix mainly depends on the
number of Type III elementary (block) matrices, i.e., the number of elements in a path
of the matrix. The authors then considered short paths to search for MDS matrices over
F2n . Due to the commutativity of multiplication over finite fields, the authors identified
potential paths that can give MDS matrices treating entries as elements of a boolean
polynomial ring. After a huge search effort, the best 4 × 4 MDS matrix over F2n they
obtained was with sw-XOR cost 8n + 3 over F2n for n = 4, 8, which did not improve the
state of the art. Then the authors extended the search techniques to the case of general
linear group GL(n,F2). However, the complexity of their search techniques for finding an
MDS matrix with sw-XOR cost equal to 8n + 2 is prohibitively high. In fact, as reported
in [WLTZ21], the size of the search space is ≥ 243 even for the case of n = 4. Apparently,
the search problem in the domain of block matrices over GL(n,F2) looks huge and appears
difficult to exhaust.

In this process, the authors of [WLTZ21] also made some initial observations on the
equivalence of paths. In this paper, we first rephrase some of the basic results presented
in [WLTZ21] by including Type I elementary block matrices. This brings more clarity
on the connection between matrices and their path. We then formalize the notion of
equivalence of paths in a much broader sense of preserving MDS property. As a result, we
are able to group the paths into (extended) equivalence classes. This significantly reduces
the effort required to search for potential paths. In fact, we will show that it is enough
to verify a set of representative paths whether they can generate MDS matrices or not.
By symbolic computation, treating the entries of matrices as elements in a free algebra,
we show that there are exactly two paths that can generate MDS matrices. We then
analyze the sw-XOR cost of the matrices generated by these two paths by applying suitable
transformations. Finally, we show that there is no 4× 4 MDS matrix over GL(n,F2) with
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sw-XOR cost equal to 8n+2. We also show that, to find 4×4 MDS matrices with sw-XOR
cost equal to 8n + 3, it is enough to consider the two paths that are given in this paper.
We have also verified that the lower bound for the sw-XOR cost of 3× 3 MDS matrices
over GL(n,F2) is 5n + 1.

The rest of paper is organized as follows. In Section 2, we present some basic results on
block matrix decomposition as a product of elementary block matrices. Then we discuss
some properties of MDS matrices. Next, we discuss various XOR count metrics used to
estimate the cost of hardware implementations. In Section 2.4, we first present a framework
that simplifies the search for low cost MDS matrices. We then present our main result
establishing the lower bound. Section 4 concludes the paper.

2 Background
2.1 Notation
Firstly, we introduce some basic notations used throughout the paper.

F2 the finite field with two elements 0 and 1.
Fq the finite field containing q elements with char(Fq) = 2.
Mn =M(n,F2) the ring of n× n matrices over F2.
M(n,Fq) the ring of n× n matrices over Fq.
GL(n,Fq) the group of non-singular n× n matrices over Fq.
Pn the group of n× n permutation matrices over F2.
M(n, m) the ring of m×m block matrices over Mn =M(n,F2).
D(n, m) the group of m×m block diagonal matrices over GL(n,F2).
P(n, m) the group of m×m block permutation matrices in M(n, m).
In,m the identity matrix in M(n, m).
In the identity matrix in Mn.

Observe that the elements ofM(n, m), D(n, m) and P(n, m) can be viewed as mn×mn
binary matrices. Note also that the matrices in D(n, m) and P(n, m) are non-singular.
For M ∈ M(n, m), the (i, j)-th entry of the block matrix M is denoted by M [i, j]
for 1 ≤ i, j ≤ m. We denote a matrix D ∈ D(n, m) with Diag(A1, . . . , Am), where
Ai ∈ GL(n,F2), 1 ≤ i ≤ m, are the diagonal entries of D, i.e., D[i, i] = Ai. The zero
matrix/vector is denoted by 0 with suitable size. Note that the transpose of a block matrix
M ∈M(n, m) denoted by MT is the usual transpose considering M as an mn×mn binary
matrix, i.e., MT [i, j] = M [j, i]T .

Since matrix multiplication is not commutative in general, we would like to stress that
the product notation represents the following:

l∏
i=1

Mi = Ml · · ·M2M1.

2.2 Elementary Block Matrices
There are three types of elementary row or column operations. An elementary matrix
is a square matrix that has been obtained by performing an elementary row or column
operation on an identity matrix. Left multiplication (pre-multiplication) by an elementary
matrix represents elementary row operation, while right multiplication (post-multiplication)
represents elementary column operation. We consider block-wise elementary row or column
operations, and so the corresponding matrices are called elementary block matrices.

Definition 1. There are three types of elementary block matrices.



270 On the Lower Bound of Cost of MDS Matrices

Type I: E(i, j) is the matrix obtained by interchanging the i-th and the j-th rows of
In,m;

Type II: Ei(A) is the matrix obtained by multiplying the i-th row of In,m with A,
where A ∈ GL(n,F2).

Type III: Ei,j(B) is the matrix obtained by replacing the i-th row of In,m with the
sum of its i-th row and B times its j-th row, where B ∈Mn.

Similarly, one can easily see the definition of elementary matrices over any field. Note
that we often call the matrices A, B in the above definition as coefficients and i, j ∈ N as
indices. We first discuss some basic results on the decomposition of block matrices as a
product of elementary block matrices. It is to be noted that, though the definition of
Type III elementary block matrices allow the coefficient matrix B ∈Mn, our interest is in
the decompositions of the form in which the coefficient matrices of Type III elementary
block matrices are restricted to non-singular matrices, i.e., B ∈ GL(n,F2). Observe that
the product of two Type III elementary block matrices in M(n, m) satisfies

Ei,j(B1)Ei,j(B2) = Ei,j(B1 + B2), (1)

where B1, B2 ∈Mn. The sum B1 + B2 can be a singular matrix for some B1, B2 ∈ GL(n,F2).
It is well-known that any non-singular matrix can be decomposed as a product of elementary
matrices [Mey00, Theorem 3.9.3]. It is in fact valid for the case of elementary block matrices
as well.

Lemma 1. [WLTZ21, Corollary 1] Any non-singular block matrix in M(n, m) can be
decomposed as a product of elementary block matrices of Type I, Type II and Type III with
non-singular coefficient matrices.

The proof given in [WLTZ21, Appendix A.1] misses a case and so we present a complete
proof in Appendix A. It is easy to see the following result.

Lemma 2. A block permutation matrix P ∈ P(n, m) can be expressed as a product of
elementary block matrices of Type I and vice versa. A block diagonal matrix D ∈ D(n, m)
can be expressed as a product of elementary block matrices of Type II and vice versa.

The following result is useful in reordering the elementary block matrices in a decom-
position.

Lemma 3. Let fi,j(x) =


i x = j

j x = i

x x ̸= i, j

, where x, i, j ∈ N. Then we have

1. E(i, j)Ek(A) = Ek′(A)E(i, j), where k′ = fi,j(k).

2. E(i, j)Ek,l(B) = Ek′,l′(B)E(i, j), where k′ = fi,j(k) and l′ = fi,j(l)

By Lemma 2, we can see that a block permutation matrix can be decomposed as a
product of Type I elementary block matrices and so we get the following result. Let σ be a
permutation over {1, 2, . . . , m}. Let M ∈M(n, m) be a block matrix with rows r1, . . . , rm.
Let Pσ ∈ P(n, m) denote the block permutation matrix which permutes the rows of M
when it is left-multiplied by Pσ, i.e, the rows of the matrix PσM are rσ(1), . . . , rσ(m).

Corollary 1. Let Pσ ∈ P(n, m) be a block permutation matrix corresponding to a permu-
tation σ over {1, 2, . . . , m}. Then we have

1. PσDiag(A1, . . . , Am)P −1
σ = Diag(Aσ(1), . . . , Aσ(m)).
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2. PσEk,l(B)P −1
σ = Eσ(k),σ(l)(B).

Remark 1. Observe that the group of block permutation matrices P(n, m) acts by conju-
gation on the set of block diagonal matrices D(n, m) and also on the set of elementary
block matrices of Type III in M(n, m). Observe that for any i, j ∈ {1, 2, . . . , m} such that
i ≠ j, by choosing σ such that σ(k) = i and σ(l) = j, the conjugation by Pσ on Ek,l(B)
gives Ei,j(B) = PσEk,l(B)P −1

σ .
Note that, given a decomposition, by applying Lemma 3, one can move the Type I

elementary block matrices to the left/right, and in this rearrangement, only the indices
of Type II and Type III elementary block matrices are appropriately modified but the
coefficients remain the same. Thus we get the following result.

Lemma 4. [WLTZ21, Corollary 2] Any non-singular block matrix M ∈M(n, m) can be
decomposed as a product of a block permutation matrix and elementary block matrices of
Type II and Type III with non-singular coefficient matrices.

Therefore, for any non-singular block matrix M ∈M(n, m), it can be decomposed as

M = P
( m∏

k=1
Ek(Ak,l)

)
Eil,jl

(Bl) · · ·
( m∏

k=1
Ek(Ak,1)

)
Ei1,j1(B1)

( m∏
k=1

Ek(Ak,0)
)
, (2)

where P ∈ P(n, m) and Ak,t’s and Bt’s are in GL(n,F2).
Remark 2. Block permutation matrix is not part of the decomposition in [WLTZ21,
Corollary 2] as it can be replaced with a product of appropriate Type III elementary block
matrices by applying E(i, j) = Ei,j(In)Ej,i(In)Ei,j(In).

Observe that the product of elementary block matrices of Type II is a non-singular
block diagonal matrix, and therefore the identity (2) can be rewritten in the following
form.

Lemma 5. [WLTZ21, Proposition 2] Any non-singular block matrix M ∈M(n, m) can
be decomposed as a product of a block permutation matrix, block diagonal matrices and
elementary block matrices of Type III with non-singular coefficient matrices. Specifically,

M = PDlEil,jl
(Bl) · · ·D1Ei1,j1(B1)D0, (3)

where P ∈ P(n, m), Dt =
∏m

k=1Ek(Ak,t) ∈ D(n, m) with Ak,t ∈ Gl(n,F2) for 0 ≤ t ≤ l,
and Eit,jt(Bt) is an elementary block matrix of Type III with Bt ∈ GL(n,F2) for 1 ≤ t ≤ l.

It is easy to see the following result on the inverse of elementary block matrices.

Lemma 6. Let A ∈ GL(n,F2) and B ∈ Mn. The Type I and Type III elementary block
matrices are involutory, i.e., E(i, j)−1 = E(i, j) and Ei,j(B)−1 = Ei,j(B). In the case of
Type II elementary block matrices, we have Ei(A)−1 = Ei(A−1).

As a consequence of the above result, the inverse of the matrix M in (3) can be given
by

M−1 = D−1
0 Ei1,j1(B1) · · ·D−1

l−1Eil,jl
(Bl)D−1

l P −1. (4)

Also, the transpose of the matrix M in (3) can be given by

MT = DT
0 Ej1,i1(BT

1 ) · · ·DT
l−1Ejl,il

(BT
l )DT

l P T . (5)

We can use the following result to move the Type II matrices to the left/right in a
given decomposition.
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Lemma 7. Let A ∈ GL(n,F2) and B ∈Mn. Then, the multiplication of Type II and Type
III elementary block matrices satisfies the following.

Ek(A)Ei,j(B) =


Ei,j(B)Ek(A), k ̸= i, j;
Ei,j(AB)Ek(A), k = i;
Ei,j(BA−1)Ek(A), k = j.

(6)

Remark 3. Note that, given a decomposition as in (3), in reordering (moving to the
left/right) the diagonal matrices, the coefficients of the Type III matrices are modified
appropriately, but there is no change in the row/column indices of the Type III elementary
block matrices.

As a consequence of the above lemma, we get the following result.

Lemma 8. [WLTZ21, Proposition 2](Split elementary form) Any non-singular block
matrix M ∈ M(n, m) can be decomposed as a product of a block permutation matrix, a
block diagonal matrix and elementary block matrices of Type III with non-singular coefficient
matrices. Specifically,

M = PDEil,jl
(B′

l) · · ·Ei1,j1(B′
1), (7)

where P ∈ P(n, m), D ∈ D(n, m) and Eit,jt
(B′

t) is an elementary block matrix of Type III
with B′

t ∈ GL(n,F2) for 1 ≤ t ≤ l.

2.3 MDS Matrices and the Cost of their Hardware Implementation
In early studies, mainly MDS matrices over a finite field Fq were considered. In hardware
implementation, one has to implement field element multiplication considering its corre-
sponding binary matrix by choosing a basis of Fq over F2. As a generalization and also
hoping to get efficient matrices, many of the later works considered block matrices.

Definition 2. An m×m block matrix M ∈M(n, m) is MDS if and only if all its square
block submatrices are non-singular.

Given an MDS block matrix, the following transformations preserve the MDS property.

Fact 2.1. Let M ∈M(n, m), P1, P2 ∈ P(n, m) and D1, D2 ∈ D(n, m). If M is MDS then
M−1, MT , P1MP2 and D1MD2 are also MDS.

The hardware cost or simply cost of any binary matrix is the number of (2-input) XOR
gates required in its implementation. There are mainly three metrics introduced in the
literature to estimate the hardware cost of a binary matrix: Direct XOR count (d-XOR),
Sequential XOR count(s-XOR) and generalized XOR or slp-XOR count (g-XOR).

Definition 3. [KPPY14] [Direct XOR count (d-XOR)] Let M ∈Mn be a matrix over F2
of order n. The Hamming weight of M , denoted by ωH(M), is the number of 1’s in the
matrix M . The direct XOR count or d-XOR of M , denoted by Cd(M), is ωH(M)− n.

Definition 4. [JPST17] [Sequential XOR count (s-XOR)] Given a non-singular matrix
M ∈ GL(n,F2) of order n over F2, the sequential XOR count or s-XOR of M , denoted by
Cs(M), is the smallest integer t such that the matrix M can be decomposed as

M = P

t∏
k=1

Ck,

where P is a permutation matrix over F2 and Ck is an elementary matrix of Type III over
F2 for 1 ≤ k ≤ t.
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Given an input vector x = (x1, . . . , xn) ∈ Fn
2 , Mx can be obtained by iteratively

computing xk = Ckxk−1 and finally Pxt, where x0 = x. Since Ck is an elementary
matrix of Type III over F2, we can interpret Ckx as xi ← xi ⊕ xj for some i, j such
that 1 ≤ i ̸= j ≤ n. This can be viewed as an in-place replacement operation. So the
sequential xor count is the number of bit-wise XORs in a sequential program limited to
in-place operations without extra registers. Then the generalized XOR count is proposed
by allowing additional registers (to trade-off some XOR operations). This is linked with a
Shortest Linear straight-line Program (SLP). For this reason, the generalized XOR count
is often called slp XOR count (see also [BMP08, KLSW17])

Definition 5. [XZL+20] [Generalized XOR count (g-XOR)] Let M ∈ Mn be a matrix
over F2 of order n and x = (x1, . . . , xn) be an input vector over F2. Each element of Mx is
a linear expression on the n inputs x1, . . . , xn, and so it can be obtained by a sequence of
XOR operations. If required, new variables can also be added by considering xk = xi ⊕ xj

for 1 ≤ i, j < k and k = n + 1, . . . , n + t. The n outputs (entries of Mx) are a subset of
xi’s. The generalized XOR count or g-XOR of M , denoted by Cg(M), is defined as the
minimum number of XOR operations required to completely compute the n outputs.

One can define d-XOR or g-XOR for rectangular binary matrices in a similar manner,
where as the s-XOR is defined only for non-singular binary matrices. Also, observe that
the d-XOR or the s-XOR of a matrix is always greater than or equal to its g-XOR. But
the additional registers used to store the intermediate values in g-XOR is not accounted
for in the comparison.

Now we present some transformations of an MDS matrix which preserve XOR costs.
These can easily be seen from the above definitions (see also [BKL16, Lemma 1]).

Proposition 1. Let M ∈ GL(n,F2) and P, Q ∈ Pn. Then

(i) Cd(M) = Cd(PMQ); (ii) Cs(M) = Cs(PMQ); (iii) Cg(M) = Cg(PMQ).

As mentioned earlier any non-singular binary matrix M ∈ GL(n,F2) can be decomposed
as a product of elementary matrices over F2. Then similar to the identities (4) and (5),
given a decomposition of M , one can get decompositions of M−1 and MT and they consist
of the same number of Type III elementary matrices as the given one. Therefore we get
the following result (see also [BKL16, Corollary 1]).

Proposition 2. Let M ∈ GL(n,F2). Then

Cs(M) = Cs(M−1) = Cs(MT ).

In general, the matrices M and MT are not permutation equivalent, but as discussed
above, their s-XOR costs are equal, i.e., Cs(M) = Cs(MT ). This answers the question
posed in [YZW21, Section 6].

2.4 Sequential XOR Count Based on Words
Recently, considering matrix decomposition as a product of elementary block matrices,
a new XOR count metric called sequential XOR count based on words was proposed
in [WLTZ21]. Let M ∈M(n, m) be a non-singular block matrix of order m over Mn. By
Lemma 1, the matrix M can be decomposed as a product of elementary block matrices
Type I, Type II and Type III with non-singular coefficient matrices. Suppose that

M =
t∏

k=1
Gk,
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where Gk is an elementary block matrix for 1 ≤ k ≤ t. As discussed in the definition
of s-XOR, the matrix M can be implemented by iteratively applying Gk on the input
vector for 1 ≤ k ≤ t. In this way, the sequential XOR count based on words (sw-XOR) is
defined as the sum of s-XOR costs of the elementary block matrices in a decomposition of
the matrix M which gives the minimum. Note that we consider elementary block matrix
decompositions where the coefficient matrices of Type III elementary block matrices are
non-singular only, otherwise the minimum will be the same as the s-XOR cost. With this
restriction, we first discuss s-XOR costs of elementary block matrices.

Proposition 3. [WLTZ21, Proposition 7] Let G be an elementary block matrix inM(n, m).
Then the s-XOR cost of G (considering it as an mn×mn binary matrix) is as given below.

1. If G = E(i, j) is an elementary block matrix of Type I, then Cs(G) = 0;

2. If G = Ei(A) is an elementary block matrix of Type II for some A ∈ GL(n,F2), then
Cs(G) = Cs(A);

3. If G = Ei,j(B) is an elementary block matrix of Type III for some B ∈ GL(n,F2),
then {

Cs(G) = n + Cs(B) if Cs(B) is either 0 or 1;
n + 1 ≤ Cs(G) ≤ ωH(B) otherwise.

(8)

Remark 4. Clearly, for any block permutation matrix P ∈ P(n, m), we have Cs(P ) = 0.
By the above proposition, it is clear that the s-XOR cost of a Type II elementary
block matrix depends only on the coefficient. Also, the s-XOR of a block diagonal matrix
D = Diag(A1, . . . , Am) ∈ D(n, m) is given by Cs(D) =

∑m
k=1 Cs(Ak). By Corollary 1, we can

see that there exists a permutation matrix P ∈ P(n, m) such that Ei′,j′(B) = PEi,j(B)P −1

for two Type III matrices Ei,j(B), Ei′,j′(B) inM(n, m). So by Proposition 1, the s-XOR of
both the Type III matrices must be the same. Therefore the s-XOR cost of an elementary
block matrix depends only on the coefficient but not on the indices.

By the above proposition we have

n ≤ Cs(Ei,j(B)) ≤ ωH(B) = n + Cd(B), (9)

where B ∈ GL(n,F2).

Definition 6 (Sequential XOR count based on words). Let M ∈ M(n, m) be a non-
singular block matrix of order m over Mn. The sequential XOR count based on words or
sw-XOR of M , denoted by Csw(M), is given by

Csw(M) = min
{ t∑

k=1
Cs(Gk) : M =

t∏
k=1

Gk

}
,

where the coefficient matrices of Type III elementary block matrices are non-singular.

Since the s-XOR of Type I elementary block matrices is 0, for any decomposition of the
matrix M , the contribution of such matrices is 0 in the sum above. As noted in Remark 4,
the s-XOR of Type II or Type III matrices does not depend on the indices. Then by
the discussion leading to Lemma 4, we can also express the sw-XOR of a block matrix
M ∈M(n, m) as follows:

Csw(M) = min
{ t′∑

k=1
Cs(G′

k) : M = P

t′∏
k=1

G′
k

}
,

where G′
k, 1 ≤ k ≤ t′, is an elementary block matrix of either Type II or Type III with

non-singular coefficient matrix. So it is the minimum over all the decompositions of the
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block matrix M of the form given in (2). It may be possible to get a better estimate of the
XOR cost of the matrix M by replacing Cs(G′

k) with Cg(G′
k) in the above sum. Observe

that Cs(Ei(P)) = Cs(P) = 0 for P ∈ Pn. Therefore we get the following result.

Corollary 2. Let P ∈ P(n, m) and D ∈ D(n, m) be a block diagonal matrix such that the
diagonal blocks are permutation matrices in Pn. Then Csw(P ) = Csw(D) = Csw(PD) = 0.

We now present some transformations of a block matrix which preserve sw-XOR cost
similar to Propositions 1 and 2.

Proposition 4. Let M ∈M(n, m) be a non-singular block matrix. Let P1, P2 ∈ P(n, m)
and D1, D2 ∈ D(n, m) be block diagonal matrices such that the diagonal blocks of D1, D2
are permutation matrices in Pn. Then Csw(M) = Csw(P1MP2) = Csw(D1MD2).

Proposition 5. Let M ∈M(n, m) be a non-singular block matrix. Then

Csw(M) = Csw(M−1) = Csw(MT ).

As mentioned in Proposition 8, a non-singular block matrix can be decomposed as a
product of a block permutation matrix, a block diagonal matrix and elementary block
matrices of Type III with non-singular coefficient matrices. Considering the part of a
decomposition which consists of only elementary block matrices of Type III with non-
singular coefficient matrices, the authors in [WLTZ21] introduced the concept of a path.
Using this, the authors established that any 4× 4 matrix with a path consisting of less
than 8 Type III matrices cannot be MDS. By symbolic computation, they analyze paths of
length 8 to identify potential paths that can generate MDS matrices. They first analyzed
paths considering matrices over finite fields. It was shown that there cannot be an MDS
matrix of order 4 over a finite field F2n with sw-XOR cost less than 8n + 3. In the case of
finite fields, they have also shown that the lower bound is tight by exhibiting matrices for
n = 4 and 8. Then they analyzed paths considering the block matrices over GL(n,F2).
As the search space is huge, they could not verify this case even for n = 4. The authors
also made some initial observations on the equivalence of paths. In the next section, we
formalize the notion of equivalence of paths in a broader sense. Using this notion, we form
(extended) equivalence classes. The main advantage of our approach is that the search for
low cost MDS matrices can be restricted to a smaller domain of paths. We also discuss
suitable tools to manage the symbolic expressions in a free algebra over F2. We have also
considered the case of 3× 3 matrices over GL(n,F2). The lower bound on the sw-XOR
cost of 3× 3 MDS matrices over GL(n,F2) is 5n + 1.

3 Settling the Lower Bound of sw-XOR
In this section, we first define a path which is an ordered list of elementary block matrices
of Type III (ignoring the coefficients). We say a block matrix belongs to some path if
it has a decomposition in which the Type III matrices appear in the same order (from
the right) as in the path. We then define an equivalence of paths. We join together a
few equivalence classes and define extended equivalence classes (loosely speaking, which
preserve MDS property). Next we search for potential paths that generate MDS matrices
in the case of 4× 4 block matrices. Finally, we show that the lower bound on the sw-XOR
cost of MDS matrices in M(n, 4) is 8n + 3.

Definition 7. A path of length l overM(n, m) is an ordered list B = (Ei1,j1(·), . . . , Eil,jl
(·))

of l elementary block matrices of Type III ignoring the coefficients. Let MB denote the
set of matrices that can be generated by a path B = (Ei1,j1(·), . . . , Eil,jl

(·)), and they are
given by

M = PDEil,jl
(Bl) · · ·Ei2,j2(B2)Ei1,j1(B1)Q, (10)
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where P, Q ∈ P(n, m), D ∈ D(n, m) and Bk ∈Mn for 1 ≤ k ≤ l. For simplicity, we omit
(·) and write B = (Ei1,j1 , . . . , Eil,jl

). For this reason, the path B can be viewed as an
ordered list of tuples [(i1, j1), (i2, j2), . . . , (il, jl)] such that 1 ≤ ik ̸= jk ≤ m for 1 ≤ k ≤ l.

From the discussion leading to Lemma 8, considering the other direction, we can see
that the matrix M ∈MB given in (10) can also be expressed as

M = PDlEil,jl
(B′

l)Dl−1 · · ·D1Ei1,j1(B′
1)D0Q ∈MB, (11)

for Dk ∈ D(n, m), 0 ≤ k ≤ l, such that D =
∏l

k=0 Dk and suitable B′
k ∈Mn for 1 ≤ k ≤ l.

Note that the matrix decomposition form given in the identity (11) is used to analyze the
sw-XOR cost of M ∈ MB considering B′

k ∈ GL(n,F2). For other purposes, we use the
matrix decomposition form given in the identity (10). Note also that for a matrix M ∈MB,
the path corresponding to a decomposition of M with optimal sw-XOR implementation
may be different from B.

Next we see that there are many paths that generate the same set of matrices. We
illustrate these ideas through examples. Let B = (Ei1,j1 , . . . , Eil,jl

) be a path of length
l over M(n, m) and suppose that is = is+1 and js = js+1 for some 1 ≤ s < l, i.e., the
adjacent pair of s-th and (s + 1)-th elements of the path B are the same. Then these two
elements can be merged into one by using the identity (1). We can then see by (10) that
the path B′ = (Ei1,j1 , . . . , Eis−1,js−1 , Eis+1,js+1 , . . . , Eil,jl

) of length (l − 1) also generates
the same set of matrices.

Example 1. Let B1 = (E2,1, E1,2, E1,2, E3,4, E1,3, E1,2, E2,1) be a path of length 7 over
M(n, 4). Then by the identity (10), a matrix M ∈MB1 is of the form

M = PDE2,1(B7)E1,2(B6)E1,3(B5)E3,4(B4)E1,2(B3)E1,2(B2)E2,1(B1)Q,

where P, Q ∈ P(n, 4), D ∈ D(n, 4) and Bt ∈ Mn for 1 ≤ t ≤ 7. By the identity (1), we
have E1,2(B3)E1,2(B2) = E1,2(B3 + B2). So we get

M = PDE2,1(B7)E1,2(B6)E1,3(B5)E3,4(B4)E1,2(B3 + B2)E2,1(B1)Q.

Let B2 = (E2,1, E1,2, E3,4, E1,3, E1,2, E2,1) be the path of length 6 obtained by removing
the second element from B1. Clearly, we can see that if M ∈MB1 then M ∈MB2 and
vice versa.

It is easy to see the following result on the commutativity of elementary block matrices
of Type III. The proof is given in Appendix B.

Lemma 9. Let B, B′ ∈ Mn. We have Ei,j(B)Ei′,j′(B′) = Ei′,j′(B′)Ei,j(B) if i ≠ j′ and
j ̸= i′ holds true.

Let B = (Ei1,j1 , . . . , Eil,jl
) be a path of length l over M(n, m) and suppose that

is ̸= js+1 and js ̸= is+1 for some 1 ≤ s < l, i.e., the adjacent pair of s-th and (s + 1)-
th elements of the path B commute. Then by Definition 7 we can see that the path
B̂ = (Ei1,j1 , . . . , Eis−1,js−1 , Eis+1,js+1 , Eis,js

, Eis+2,js+2 , . . . , Eil,jl
) obtained by altering the

order of that adjacent pair in B also generates the same set of matrices. We call such an
exchange of elements in the path B a valid exchange on the path B.

Example 2. Let us consider the path B2 given in Example 1. By Lemma 9, we have
E3,4(B4)E1,2(B3 + B2) = E1,2(B3 + B2)E3,4(B4). So we get

M = PDE2,1(B7)E1,2(B6)E1,3(B5)E1,2(B3 + B2)E3,4(B4)E2,1(B1)Q.

Let B3 = (E2,1, E3,4, E1,2, E1,3, E1,2, E2,1) be the path of length 6 obtained by reordering
the second and third elements of B2. Clearly, we can see that if M ∈MB2 then M ∈MB3

and vice versa.
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There can be several adjacent pairs of elements in a path B where the elements in each
pair commute with each other. Thus there can be many valid exchanges possible on a
path. Also, after applying a valid exchange on a path B, this in turn can give rise to a
new valid exchange(s) on the path obtained. So one can iteratively apply a sequence of
valid exchanges on a path B, and the paths obtained after each iteration/valid exchange
generate the same set of matrices as the path B generates. It may happen that, after a
sequence of valid exchanges, the same element appears at adjacent positions. In that case,
these two positions can be merged as discussed earlier. Thus we get the following result.

Proposition 6. Let B = (Ei1,j1 , . . . , Eil,jl
) be a path of length l over M(n, m). Suppose

that is = it and js = jt for some 1 ≤ s < t ≤ l. Also, suppose that ik ̸= js and jk ̸= is for
all k, s < k < t. Then the path B′ = (Ei1,j1 , . . . , Eis−1,js−1 , Eis+1,js+1 , . . . , Eil,jl

) generates
the same set of matrices as the path B generates, and it is of length (l − 1). Similarly, a
path B′′ obtained by placing Eit,jt at any position from s-th to (t − 1)-th positions and
without changing the order of the other elements in B′ also generates the same set of
matrices.

Proof. We have is = it and js = jt. Also, by Lemma 9, we have Eis,js(B)Eik,jk
(B′) =

Eik,jk
(B′)Eis,js(B) for any B, B′ ∈Mn and s < k < t. Therefore, Eis,js can be moved right

by a sequence of valid exchanges and similarly Eis,js
can be moved left. From the above

discussion, Eis,js
and Eit,jt

can be merged since they are the same. Hence the result.

If the path B of length l satisfies the condition given in the above proposition, then we
get a path B′ of length (l − 1) and it also generates the same set of matrices. In such a
case, we say that the path B can be shortened, and the shortened paths also generate the
set of matrices.

Example 3. Let us consider the path B3 given in Example 2. By Lemma 9, we have
E1,2(B6)E1,3(B5) = E1,3(B5)E1,2(B6). Also E1,2(B6)E1,2(B3 + B2) = E1,2(B6 + B3 + B2). So
we get

M = PDE2,1(B7)E1,3(B5)E1,2(B6 + B3 + B2)E3,4(B4)E2,1(B1)Q.

Let B4 = (E2,1, E3,4, E1,2, E1,3, E2,1) be the path of length 5 obtained by shortening B3.
Clearly, we can see that if M ∈MB3 then M ∈MB4 and vice versa. Moreover, based on
the commutativity of Type III matrices as stated in Lemma 9, we can also see that the
following four paths can be obtained by iteratively applying valid exchanges on B4, and
they also generate the same set of matrices as the path B4 generates.

B5 = (E3,4, E2,1, E1,2, E1,3, E2,1) B6 = (E2,1, E1,2, E3,4, E1,3, E2,1)
B7 = (E2,1, E3,4, E1,3, E1,2, E2,1) B8 = (E3,4, E2,1, E1,3, E1,2, E2,1)

Next we extend the action of the group of block permutation matrices P(n, m) on the
set of elementary block matrices of Type III (see Remark 1) to the set of paths of length l
over M(n, m). In this way, we can get some more paths which generate the same set of
matrices. Let B = (Ei1,j1 , . . . , Eil,jl

) be a path of length l overM(n, m). Let Pσ ∈ P(n, m)
be a block permutation matrix corresponding to a permutation σ over {1, 2, . . . , m}. Then
by Corollary 1 we have Eσ(it),σ(jt)(B) = PσEit,jt(B)P −1

σ for 1 ≤ t ≤ l. Now consider

Bσ = PσBP −1
σ = (Eσ(i1),σ(j1), . . . , Eσ(il),σ(jl)).

It is easy to verify that P(n, m) acts by conjugation on the set of paths of length l. We say
that the path Bσ is a conjugate of the path B. Then by the identity (10) and Corollary 1,
we can see that the path Bσ also generates the same set of matrices as the path B generates.

Example 4. Let us consider the paths Bt, 4 ≤ t ≤ 8, of length 5 over M(n, 4) mentioned
in Example 3. Any conjugate of the path Bt also generates the same set of matrices as
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the path Bt generates. Observe that there are 4! = 24 conjugates for each path Bt, and
any such path generates the same set of matrices. In this way, we see that there are 120
distinct paths which are of length 5 and generate the same set of matrices as the path B4
generates.

Let R ∈ P(n, m). Observe that if two Type III elementary block matrices Ei,j(B) and
Ei′,j′(B′) commute then their conjugates REi,j(B)R−1 and REi′,j′(B′)R−1 also commute.
If B̂ is the path obtained by applying a valid exchange on a path B. Then the conjugate
RB̂R−1 of B̂ is the same as the path obtained by applying the corresponding valid exchange
on the conjugate path RBR−1 of B. In other words, these two transformations can be
applied on a path in any order. Based on the discussion above, next we define an equivalence
of two paths.

Definition 8. Suppose that B and B′ are two paths of the same length over M(n, m).
Then the path B is said to be equivalent to the path B′ if it is a conjugate of a path
obtained by iteratively applying valid exchanges (altering the order of an adjacent and
commuting pair of elements) on the path B′.

Remark 5. Consider the path B4 = (E2,1, E3,4, E1,2, E1,3, E2,1) given in Example 3. As
discussed in Example 4, there are 120 paths in the equivalence class of B4. Note that
though MBi

= MB4 for i = 1, 2, 3 as discussed in Examples 1-3, but they are not equivalent
to B4 as the lengths are different.
Remark 6. Suppose that the paths B and B′ are equivalent. From the discussion prior to
Definition 8, we can see that if B can be shortened by applying Proposition 6, then the
path B′ can also be shortened accordingly.

Based on the discussion in this section, we can get the following result.

Theorem 1. Let B and B′ be two paths of the same length overM(n, m). If B is equivalent
to B′ then MB = MB′ .

We denote the set of all paths in the equivalence class of a path B over M(n, m) by
ECB. Now, we present an algorithm to generate ECB given a path B of length l over
M(n, m).

Algorithm 1 Generating Paths in an Equivalence Class
Input : A path B of length l over M(n, m)
Output : The set of all paths in the equivalence class ECB of B

1: Generate all possible paths by applying valid exchanges on the path B; Iteratively
apply this process on the paths obtained until no new path can be obtained; Let E be
set of all such paths.

2: ECB = {RB′R−1 : B′ ∈ E, R ∈ P(n, m)}.

By Fact 2.1, if M ∈M(n, m) is MDS then M−1, MT and (M−1)T are also MDS. Next
we see paths that generate either M−1 or MT or (M−1)T if M ∈ MB for some path
B = (Ei1,j1 , Ei2,j2 , . . . , Eil,jl

) of length l over M(n, m). We define

Rev(B) = (Eil,jl
, . . . , Ei2,j2 , Ei1,j1)

as the path obtained by reversing the order of the elements in B. Similarly, we define

Irc(B) = (Ej1,i1 , Ej2,i2 , . . . , Ejl,il
)

as the path obtained by interchanging the row and column indices of the elements in
B (without changing the order of the elements in B). From the discussion above and
Definition 8, we have the following observations.
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1. B′ ∈ ECB if and only if Rev(B′) ∈ ECRev(B);

2. B′ ∈ ECB if and only if Irc(B′) ∈ ECIrc(B);

3. Irc(Rev(B)) = Rev(Irc(B)) = (Ejl,il
, . . . , Ej2,i2 , Ej1,i1).

According to the identity (10), a matrix M ∈MB generated by the path B is of the form

M = PDEil,jl
(Bl) · · ·Ei1,j1(B1)Q,

where P, Q ∈ P(n, m), D ∈ D(n, m) and Bt ∈Mn for 1 ≤ t ≤ l. Then we have
1. M−1 = Q−1Ei1,j1(B1) · · ·Eil,jl

(Bl)D−1P −1;

2. MT = QT Ej1,i1(BT
1 ) · · ·Ejl,il

(BT
l )DT P T ;

3. (MT )−1 = P (DT )−1Ejl,il
(BT

l ) · · ·Ej1,i1(BT
1 )Q.

Now one can easily see that
1. M ∈MB if and only if M−1 ∈MRev(B).

2. M ∈MB if and only if MT ∈MIrc(Rev(B)).

3. M ∈MB if and only if (M−1)T = (MT )−1 ∈MIrc(B).
Consequently, we get the following results.

1. For B1 ∈ ECB and B2 ∈ ECRev(B), we have M ∈MB1 if and only if M−1 ∈MB2 .

2. For B1 ∈ ECB and B2 ∈ ECIrc(Rev(B)), we have M ∈MB1 if and only if MT ∈MB2 .

3. For B1 ∈ ECB and B2 ∈ ECIrc(B), we have M ∈MB1 if and only if (M−1)T ∈MB2 .
Now we extend the equivalence class of B by joining together the equivalence classes of

B, Rev(B), Irc(B) and Rev(Irc(B)).
Definition 9. Let B = (Ei1,j1 , Ei2,j2 , . . . , Eil,jl

) be a path of length l overM(n, m). Then
the extended equivalence class containing the path B is given by

EECB = ECB ∪ECRev(B) ∪ECIrc(B) ∪ECRev(Irc(B)).

From the discussion above, we get the following result.
Theorem 2. Let B = (Ei1,j1 , Ei2,j2 , . . . , Eil,jl

) be a path of length l over M(n, m). If
B1,B2 ∈ EECB then at least one of the following is true.

1. M ∈MB1 if and only if M ∈MB2 .

2. M ∈MB1 if and only if M−1 ∈MB2 .

3. M ∈MB1 if and only if MT ∈MB2 .

4. M ∈MB1 if and only if (MT )−1 ∈MB2 .
Now observe that if M ∈ MB1 is MDS then M , MT and (MT )−1 are also MDS by

Fact 2.1. Moreover, by Proposition 5, we have

Csw(M) = Csw(M−1) = Csw(MT ) = Csw((MT )−1).

Therefore we get the following result.
Theorem 3. Let B = (Ei1,j1 , Ei2,j2 , . . . , Eil,jl

) be a path of length l over M(n, m). Let
B1,B2 ∈ EECB be two paths in the extended equivalence class of B. If M1 ∈MB1 is MDS
then there exists an MDS matrix M2 ∈MB2 such that Csw(M1) = Csw(M2)

By using the tools developed above, next we show that the lower bound on the sw-XOR
of 4× 4 block matrices over Mn is 8n + 3.
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3.1 The case of 4 × 4 block matrices
We consider the case of m = 4, i.e., the ring M(n, 4) of 4× 4 block matrices over Mn. It
has been shown in [WLTZ21, Section 5] that if a path over M(n, 4) can generate an MDS
matrix then its length must be at least 8. They have also shown that the lower bound on
the sw-XOR cost of 4× 4 matrices over a finite field Fq (i.e, M(4,Fq)) is 8n + 3, and they
have established that this bound is tight by exhibiting matrices for n = 4, 8. But it is not
known whether the same is true for the case of block matrices in M(n, 4). Based on the
ideas discussed above, we below establish that the lower bound on sw-XOR cost is in fact
8n + 3 even for block matrices in M(n, 4) and show that there does not exist an MDS
matrix in M(n, 4) with sw-XOR cost equal to 8n + 2. We first present some useful results.
The following result can be used to verify the non-singularity of 2× 2 block submatrices.

Proposition 7. [Mey00, p. 475] Let S = (Sij) be a 2 × 2 block matrix such that the
block entries Sij are non-singular. Then S is non-singular if and only if the matrices
S22 + S21S−1

11 S12, S11 + S12S−1
22 S21, S12 + S11S−1

21 S22 and S21 + S22S−1
12 S11 are non-singular.

We first present a method to search for potential paths that can generate (low cost)
MDS matrices. In fact, we will show that for the case of m = 4, it is enough to consider
two paths to perform the cost analysis to establish the lower bound.

Let B = (Ei1,j1 , Ei2,j2 , . . . , Eil,jl
) be a path of length l over M(n, m). A matrix

M ∈MB generated by the path B is given by

M = PDEil,jl
(Bl) · · ·Ei1,j1(B1)Q,

where P, Q ∈ P(n, m), D ∈ D(n, m) and Bt ∈Mn for 1 ≤ t ≤ l. Then by Fact 2.1 we can
see that if M is MDS then M ′ = Eil,jl

(Bl) · · ·Ei1,j1(B1) is also MDS. Also observe that
M ′ ∈MB and it is a product of only Type III elementary block matrices of B. So we have
the following result.

Proposition 8. If a path B = (Ei1,j1 , . . . , Eil,jl
) can generate MDS matrices then there

exist B1, B2, . . . , Bl ∈ Mn such that the matrix M = Eil,jl
(Bl) · · ·Ei2,j2(B2)Ei1,j1(B1) is

MDS.

If a path B can generate MDS matrices then by Definition 9 and Theorem 2 we can
see that each path in the extended equivalence class of B can generate MDS matrices. So
it is enough to verify one path (a representative path) in each extended equivalence class
whether it can generate MDS matrices. In fact, we can see by Proposition 8 that it is
enough to verify matrices which are products of only elementary block matrices of Type
III generated by the representative paths.

As shown in [WLTZ21, Section 5], the length of a path over M(n, 4) must be at least
8 if it can generate MDS matrices. Note also that it is true even with singular coefficient
matrices for Type III elementary block matrices, though they have only considered non-
singular coefficient matrices. By using the ideas presented above, we were also able to
verify quickly that the same is true. Suppose M ∈M(n, 4) is MDS and it is not generated
by a path of length 8. That means the length of the shortest path that can generate M is
at least 9. So the sw-XOR cost of M is greater than 9n. For n ≥ 3, we have 9n ≥ 8n + 3.
Therefore it is enough to consider paths of length 8 to find potential paths that can
generate MDS matrices with sw-XOR cost less than 8n + 3. As there are 12 different
elementary block matrices of Type III over M(n, 4) (ignoring the coefficients), we can
form 128 different paths of length 8 over M(n, 4). To find potential paths, we follow an
elimination process, and it can be divided into several steps as described in Algorithm 2.
First, note that a path of length 8 cannot generate MDS matrices if it can be shortened by
applying Proposition 6. So we can eliminate all such paths. Note also that if a path can be
shortened, then any path in its extended equivalence class can also be shortened. We then



Ayineedi Venkateswarlu and Abhishek Kesarwani and Sumanta Sarkar 281

identify a set of representative paths of the extended equivalence classes of paths of length
8 (that cannot be shortened) over M(n, 4). We then find potential paths by symbolically
verifying MDS property of the matrices generated by the representative paths considering
the form given in Proposition 8.

Algorithm 2 Finding Potential Paths of Length 8 over M(n, 4)
Input: Set of all paths of length 8 over M(n, 4)
Output: The set of potential paths of length 8 that can generate MDS matrices

1: From the set of all paths, eliminate all those paths of length 8 that can be shortened
by applying Proposition 6.

2: Group the remaining paths into extended equivalence classes using Algorithm 1. Let
R be a set of representative paths of the extended equivalence classes.

3: For each representative path B = (Ei1,j1 , . . . , Ei8,j8) ∈ R, by symbolic computation
(treating the coefficient matrices as variables) we verify the impossibility of generating
MDS matrices by B.

(i) Consider
M = Ei8,j8(B8) · · ·Ei2,j2(B2)Ei1,j1(B1)

and its inverse
M−1 = Ei1,j1(B1)Ei2,j2(B2) · · ·Ei8,j8(B8).

The entries of M and M−1 are from the free algebra on 8 indeterminates B1, . . . , B8
over F2 which is a noncommutative ring. After simplifying, if any of the entries of
M or M−1 is zero then that particular block entry will always be the zero matrix
for any choice of the matrices in Mn for the variables B1, B2, . . . , B8. In that case,
the path B cannot generate MDS matrices. If all the entries of both M and M−1

are nonzero then proceed with testing 2× 2 submatrices of M and M−1.
(ii) For each 2 × 2 submatrix of M , we verify any of the four expressions as given

in Proposition 7 is zero or not in the cases where the inverses can be canceled
out symbolically. Similarly, we verify 2 × 2 submatrices of M−1. If any of the
expressions is zero, then for any choice of the matrices in Mn for the variables
B1, B2, . . . , B8, the corresponding 2× 2 will be singular, and so the path cannot
generate MDS matrices.

4: Output the set of all paths that survive the elimination process.

We have performed the search using Algorithm 2. We see that out of the 128 =
429, 981, 696 paths of length 8 overM(n, 4), the number of paths remain after the first step
is 147, 122, 868. The other paths are eliminated in the first step as they can be shortened.
From these 147, 122, 868 paths, we can form 121, 499 extended equivalence classes. Taking
a set of representative paths of these extended equivalence classes, only 236 paths remain
after Step 3-(i). We finally see that exactly two paths (in the set of representative paths of
the extended equivalence classes) remain after Step 3-(ii). So, out of the 128 paths of length
8 over M(n, 4), only paths that can generate MDS matrices are from these two extended
equivalence classes. We see that each extended equivalence class contains 192 paths, and
so there are exactly 394 distinct paths of length 8 over M(n, 4) that can generate MDS
matrices. We consider the following representatives of the extended equivalences classes:

B1 : E1,2 E3,4 E2,3 E3,1 E4,2 E1,4 E2,1 E4,3;

B2 : E1,2 E3,4 E2,3 E4,1 E1,2 E3,4 E2,3 E4,1.

Fig 1: Representative Paths of the Extended Equivalence Classes over M(n, 4)
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It was established in [WLTZ21] that there does not exist an MDS matrix in M(n, 4)
with sw-XOR cost 8n + 1 and there exist MDS matrices in M(n, 4) with sw-XOR cost
8n + 3 for some values of n. But it is not known whether there exists an MDS matrix with
sw-XOR cost 8n + 2, and the authors could not verify this even for the case of n = 4 as
the search space is huge. Suppose that if there exists an MDS matrix M with sw-XOR
cost 8n + 2, then it must be generated by a path of length 8 over M(n, 4), and this path
must be in the extended equivalence class of either B1 or B2 given in Fig 1. Therefore,
by Theorem 3, we must have a matrix M ′ in either MB1 or MB2 which is MDS and the
sw-XOR cost of M ′ is equal to 8n + 2. Below we show that there does not exist such a
matrix and hence the lower bound on the sw-XOR cost of MDS matrices in M(n, m) is
8n + 3. The following well-known facts on permutation matrices are useful in our proof.

Fact 3.1. The sum of two permutation matrices over fields of characteristic 2 is singular.
The product of two permutation matrices is also a permutation matrix. The inverse of a
permutation matrix is a permutation matrix. Moreover, P −1 = P T for P ∈ P(n, m).

The main result of the paper is as follows.

Theorem 4. Let B1 and B2 be the paths mentioned in Fig 1. There is no matrix M in
either MB1 or MB2 such that M is MDS and the sw-XOR cost of M is equal to 8n + 2.

Proof. We will first consider the path B1 and establish that there cannot be an MDS
matrix M generated by B1 such that the sw-XOR cost of M is 8n + 2.

Case – Path B1:
For simplicity, we consider the path B1 to be the ordered list of tuples of row/column
indices

B1 = [(1, 2), (3, 4), (2, 3), (3, 1), (4, 2), (1, 4), (2, 1), (4, 3)].

As we are interested in finding an MDS matrix in MB1 with the least sw-XOR cost, by
Fact 2.1 and Proposition 4, it is enough to consider a matrix M ∈ MB1 in the format
given below (with l = 8 and D0, D8, P and Q are all equal to the identity matrix in (11)).

M = E4,3(B8)D7E2,1(B7)D6E1,4(B6)D5E4,2(B5)D4E3,1(B4)D3E2,3(B3)D2E3,4(B2)D1E1,2(B1),

where Dk =
∏4

j=1 Dkj is a diagonal matrix with Dkj = Ej(Akj). Denote the set of variables
or coefficient matrices appearing in the above decomposition by

VM = {A11, . . . , A14, A21, . . . , A24, A31, . . . , A74, B1, . . . , B8}.

Our aim is to know whether there exists a choice for the coefficient matrices, i.e., VM ⊆
GL(n,F2) such that the matrix M is MDS and the sw-XOR cost of M is equal to 8n + 2.
We show that there is no such choice by symbolically verifying MDS property using Fact 3.1.
First, observe that the sw-XOR cost of the matrix M satisfies

Csw(M) =
7∑

k=1

4∑
j=1
Cs(Ej(Akj)) +

8∑
k=1,(ik,jk)∈B1

Cs(Eik,jk
(Bi))

≤ 8n +
7∑

k=1

4∑
j=1
Cs(Akj) +

8∑
k=1
Cd(Bi),

where the inequality is due to the identity (9). By Proposition 3, it is clear that the
sw-XOR cost of M is equal to 8n + 2 only if VM contains at most two non-permutation
matrices and all others are permutation matrices. Next we show that with such a choice
of coefficient matrices the matrix M cannot be MDS.
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Observe that Ei,j(B) is involutory and so the inverse of M can be given by

M−1 = E1,2(B1)C1E3,4(B2)C2E2,3(B3)C3E3,1(B4)C4E4,2(B5)C5E1,4(B6)C6E2,1(B7)C7E4,3(B8),

where Ck =
∏4

j=1 Ej(A−1
kj ) is the inverse of Dk for k = 1, . . . , 7.

We use SageMath software for symbolic computation. The elements of the matrix M
are symbolic expressions in the free algebra over F2 with generating set VM . Now consider
the expression of the element M [1, 4] of M in terms of the coefficient matrices

M [1, 4] = A11 A21 B3 A34 A44 A54 A64 A74 + A11 A21 B3 A34 B4 A42 A52 B6 A63 B7 A74

= A11 A21 B3 A34
(
A44 A54 A64 + B4 A42 A52 B6 A63 B7

)
A74

As all the coefficient matrices in VM are non-singular, the block entry M [1, 4] is non-singular
if and only if

M14 =
(
A44 A54 A64 + B4 A42 A52 B6 A63 B7

)
is non-singular. By Fact 3.1, the matrix M14 will be singular if all the matrices appearing
in the expression M14 are permutation matrices. So at least one of the coefficient matrices
appearing in the expression M14 must be a non-permutation matrix for M [1, 4] to be
non-singular. In other words, it is necessary that at least one of the elements in the set

S14 = {A44, A54, A64, B4, A42, A52, B6, A63, B7}

is a non-permutation matrix in GL(n,F2). Also, we have 4 more elements in M which are
also sum of two monomials.

M [1, 2] = A11 A21 A31 A41 A51 A61 A71 B8 + A11 A21 B3 A34 B4 A42 A52 A62 A72

= A11 A21
(
A31 A41 A51 A61 A71 B8 + B3 A34 B4 A42 A52 A62 A72

)
M [2, 3] = A12 A22 A32 A42 A52 B6 A63 A73 + A12 B2 A21 B3 A34 B4 A42 A52 B6 A63 A73

= A12
(
A22 A32 + A12 B2 A21 B3 A34 B4

)
A42 A52 B6 A63 A73

M [4, 2] = A14 A24 A34 B4 A42 A52 A62 A72 + B1 A13 A23 A33 A43 B5 A51 A61 A71 B8

=
(
A14 A24 A34 B4 A42 A52 A62 A72 + B1 A13 A23 A33 A43 B5 A51 A61 A71 B8

)
M [4, 3] = B1 A13 A23 A33 A43 A53 A63 A73 + A14 A24 A34 B4 A42 A52 B6 A63 A73

=
(
B1 A13 A23 A33 A43 A53 + A14 A24 A34 B4 A42 A52 B6

)
A63 A73

Similarly, in the inverse matrix M−1 we have the following 5 elements which are also
sum of two monomials. Let Ckj = A−1

kj .

M−1[1, 4] = C71 C61 C51 C41 C31 B3 C24 C14 + B8 C72 C62 B6 C53 B5 C41 C31 B3 C24 C14

=
(
C71 C61 C51 + B8 C72 C62 B6 C53 B5

)
C41 C31 B3 C24 C14

M−1[2, 1] = C72 C62 C52 C42 C32 C22 B2 C11 + C72 C62 B6 C53 B5 C41 C31 C21 C11

= C72 C62
(
C52 C42 C32 C22 B2 + B6 C53 B5 C41 C31 C21

)
C11

M−1[2, 3] = C72 C62 B6 C53 C43 C33 C23 C13 + C72 C62 B6 C53 B5 C41 C31 B3 C24 C14 B1

= C72 C62 B6 C53
(
C43 C33 C23 C13 + B5 C41 C31 B3 C24 C14 B1

)
M−1[3, 1] = C73 C63 C53 B5 C41 C31 C21 C11 + C73 B7 C64 C54 C44 B4 C32 C22 B2 C11

= C73
(
C63 C53 B5 C41 C31 C21 + B7 C64 C54 C44 B4 C32 C22 B2

)
C11

M−1[3, 4] = C73 B7 C64 C54 C44 C34 C24 C14 + C73 C63 C53 B5 C41 C31 B3 C24 C14

= C73
(
B7 C64 C54 C44 C34 + C63 C53 B5 C41 C31 B3

)
C24 C14
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If M is MDS then M−1 is also MDS, so all the elements of M and M−1 are non-singular.
By the same argument as discussed above, it is necessary that at least one of the elements
appearing in the expressions/sums in brackets above must be a non-permutation matrix.
As the inverse of a permutation matrix is also a permutation matrix, we can see that either
both Aij and Cij = A−1

ij are permutation matrices or both are non-permutation matrices.
By Fact 3.1 at least one of the matrices in T14 = {A71, A61, A51, B8, A72, A62, B6, A53, B5} must
be a non-permutation matrix for M−1[1, 4] to be non-singular. In this sense (that is the
variable Cij is replaced with A−1

ij ), observe that there is no single element that appears
in all the above expressions/sums in brackets, and there is exactly one pair of elements,
namely {B4, B5}, such that at least one of them appears in all those expressions/sums in
brackets. So if Csw(M) = 8n + 2 and all the block entries of M and M−1 are non-singular,
then we must have B4 and B5 to be (non-singular) non-permutation matrices and all other
coefficient matrices in VM must be permutation matrices. Assume that the elements of
VM satisfy this property. Now we will show that even with such a choice of matrices the
matrix M cannot be MDS. For this purpose, we consider the following transformation of
the matrix M which preserves the MDS property. We then verify the non-singularity of
2× 2 block submatrices of the matrix M̂ obtained.

M̂ = T −1
8 MT1 = T −1

8

(
Ei8,j8(B8)

( 7∏
k=1

Dk Eik,jk
(Bk)

))
T1

=
(
T −1

8 Ei8,j8(B8)T8
)( 7∏

k=1
(T −1

k+1DkTk)(T −1
k Eik,jk

(Bk)Tk)
)

,

where Tk = Diag(Tk1, Tk2, Tk3, Tk4)’s are block diagonal matrices and the diagonal blocks
Tkl ∈ Pn are permutation matrices for 1 ≤ l ≤ 4. First, note that if M is MDS then M̂ is
also MDS. Now observe that Akj ’s are permutation matrices, and so for any choice of T1, by
choosing Tk+1 = DkTk we get (T −1

k+1DkTk) = In,m for 1 ≤ k ≤ 7. With such a choice and
setting Hk = T−1

kik
BkTkjk

for k = 1, . . . , 8, by Lemma 7 we get T −1
k Eik,jk

(Bk)Tk = Eik,jk
(Hk).

Consequently,

M̂ = (T −1
8 Ei8,j8(B8)T8)

( 7∏
k=1

(T −1
k Eik,jk

(Bk)Tk)
)

=
( 8∏

k=1
Eik,jk

(Hk)
)
.

By our assumption, we have B4 and B5 are non-permutation matrices and the other
matrices in {B1, B2, B3, B6, B7, B8} are permutation matrices. Observe that Cd(Hk) = Cd(Bk)
for 1 ≤ k ≤ 8 since Tkt, 1 ≤ t ≤ 4, are permutation matrices. Therefore, the matrices H4
and H5 are non-permutation matrices and Hk, k ∈ {1, 2, 3, 6, 7, 8}, are permutation matrices.
Now consider the following 2× 2 submatrix of M̂

S =
(

M̂ [1, 2] M̂ [1, 4]
M̂ [2, 2] M̂ [2, 4]

)
Observe that if M is MDS then M̂ is also MDS, and so all the block submatrices of M̂ are
also non-singular. By Proposition 7, if S is non-singular then

S = M̂ [2, 4] + M̂ [2, 2](M̂ [1, 2])−1M̂ [1, 4]

is non-singular. Simplifying the expression of S, we get

S = (H2 H3 + H6 H7 + H2 H3 H4 H6 H7) + (1 + H2 H8 + H2 H3 H4)(H8 + H3 H4)−1(H3 + H3 H4 H6 H7)
= (H2 H3 + H6 H7 + H2 H3 H4 H6 H7) +

(
(H8 + H3 H4)−1 + H2

)
(H3 + H3 H4 H6 H7)

= H6 H7 + (H8 + H3 H4)−1(H3 + H3 H4 H6 H7)
= (H8 + H3 H4)−1(

(H8 + H3 H4) H6 H7 + (H3 + H3 H4 H6 H7)
)

= (H8 + H3 H4)−1(H8 H6 H7 + H3).
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The matrices H3, H6, H7 and H8 are permutation matrices since B3, B6, B7 and B8 are per-
mutation matrices. So the matrix S cannot be non-singular as (H8 H6 H7 + H3) is a sum
of two permutation matrices. This implies that the matrix S cannot be non-singular.
Hence with such a choice of Hk’s the matrix M̂ cannot be MDS and so the matrix M
cannot be MDS. Therefore, there cannot be an MDS matrix M ∈ MB1 such that the
sw-XOR cost of M is equal to 8n+2. Next we consider the second path and show the same.

Case – Path B2:
For simplicity, we consider the path B2 to be the ordered list of tuples of row/column
indices

B2 = [(1, 2), (3, 4), (2, 3), (4, 1), (1, 2), (3, 4), (2, 3), (4, 1)].
As discussed in the case of path B1, it is enough to consider a matrix M ∈MB2 in the
format given below.

M = E4,1(B8)D7E2,3(B7)D6E3,4(B6)D5E1,2(B5)D4E4,1(B4)D3E2,3(B3)D2E3,4(B2)D1E1,2(B1),

where Dk =
∏4

j=1 Dkj is a diagonal matrix with Dkj = Ej(Akj). Denote the set of variables
or coefficient matrices appearing in the above decomposition by

VM = {A11, . . . , A14, A21, . . . , A24, A31, . . . , A74, B1, . . . , B8}.

Our aim is to know whether there exists a choice for the coefficient matrices, i.e., VM ⊆
GL(n,F2) such that the matrix M is MDS and the sw-XOR cost of M is equal to 8n + 2.
The proof is similar to the proof as in the case of path B1. In fact, by observing the entries
of M and the entries of its inverse M−1, we will be able to conclude that there cannot be
such a choice for the coefficient matrices.

We can see that there are 6 entries in M that are sum of two monomials. Similarly,
there 6 entries in the inverse matrix M−1 that are also sum of two monomials. The
symbolic expressions of these entries are presented in Appendix C. The block entries of M
and M−1 are non-singular if at least one of the variables/coefficient matrices appearing
in each expression/sum in brackets is a non-permutation matrix. Replacing Ckj = A−1

kj ,
observe that there is no variable that appears in all those 12 expressions in brackets (of
M and M−1). Also, there is no pair of variables/coefficient matrices such that at least
one of them appears in those 12 expressions in brackets. By the same argument as in the
case of path B1, we can see that there cannot be an MDS matrix M ∈MB2 such that the
sw-XOR cost of M is equal to 8n + 2.

4 Conclusion
We have presented an extensive study on the metric sw-XOR and proved that the minimum
possible implementation cost under this metric is 8n + 3 for 4 × 4 MDS matrices over
the general linear group GL(n,F2). We have also shown that it is, essentially, enough to
consider only two paths to search exhaustively for MDS matrices with sw-XOR cost equal
to 8n + 3. In the case of n = 4 or 8, this bound is tight and the values are 35 and 67
respectively, existence of such matrices are known due to [DL18]. Therefore, our result
puts an end to the quest for such block MDS matrices under the sw-XOR metric and thus
suggests to give a fresh look at the implementation cost of MDS matrices to be able to
cross the limit of 8n + 3.

In future, it will be interesting to find low cost implementations of the MDS matrices
that are of practical interest like AES MixColumns under the sw-XOR metric similar to
the work of [XZL+20]. Another important parameter in hardware implementation of MDS
matrices is the depth of the circuit which is not considered in our work. Establishing lower
bounds under the metrics s-XOR or g-XOR and also considering depth is an interesting
future work.
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A Proof of Lemma 1
First note that a matrix M inM(n, m) can be interpreted as an mn×mn matrix over F2.
Suppose that M is non-singular, then it is well-known that the matrix M can be decom-
posed as a product of elementary matrices over F2. Observe that the identity matrix is the
only elementary matrix of Type II over F2. Also, for elementary matrices over F2, we have
E(i, j) = Ei,j(1)Ej,i(1)Ei,j(1). Therefore, over F2, the matrix M can be decomposed as a
product of elementary matrices of Type III. Now we show that any mn×mn elementary
matrix of Type III over F2 can be written as a product of two elementary block matrices
in M(n, m). Suppose that n ≥ 2 and i = i1n + i2 and j = j1n + j2. Then there exist
B, B′ ∈ GL(n,F2) such that B + B′ = Bi2j2 , where Bi2j2 is the matrix with (i2, j2)-th en-
try is 1 and 0 elsewhere. Observe that Ei,j(1) = Ei1,j1(B)Ei1,j1(B′) by (1). Hence the result.

In the above proof, we have i ̸= j. Suppose i1 ≠ j1 and i2 = j2. In this case, we
cannot have a matrix B′ ∈ GL(n,F2) such that In + B′ = Bi2j2 as mentioned in the proof
of [WLTZ21, Corollary 1].

B Proof of Lemma 9
Let Ei,j(B) = In,m + Bi,j and Ei′,j′(B′) = In,m + B′

i′,j′ , where Bi,j (B′
i′,j′) is the matrix

with [i, j]-th ([i′, j′]-th) entry is B (B′) and all other entries are zero. Then

Ei,j(B)Ei′,j′(B′) = In,m + Bi,j + B′
i′,j′ + Bi,jB′

i′,j′ ,

Ei′,j′(B′)Ei,j(B) = In,m + Bi,j + B′
i′,j′ + B′

i′,j′Bi,j .

Now observe that

Bi,jB′
i′,j′ =

{
Fi,j′ , j = i′

0, j ̸= i′ and B′
i′,j′Bi,j =

{
Gi′,j , i = j′

0, i ̸= j′,

where Fi,j′ (Gi′,j) is the matrix with [i, j′]-th ([i′, j]-th) entry is B B′ (B′B) and all others
are zero. Therefore, if i ≠ j′ and j ̸= i′ then the last component in the above sum is the
zero matrix and hence they are equal. Hence the result.

C Symbolic Expressions of the Entries of M and M−1

We can see that there are 6 entries in M that are sum of two monomials and they are:

M [1, 2] = A11 A21 A31 B4 A42 A52 A62 A72 + A11 A21 A31 A41 A51 A61 A71 B8

= A11 A21(A31 B4 A42 A52 A62 A72 + A31 A41 A51 A61 A71 B8)
M [2, 2] = A12 A22 A32 A42 A52 A62 A72 + A12 B2 A23 B3 A34 A44 B5 A51 A61 A71 B8

= A12(A22 A32 A42 A52 A62 A72 + B2 A23 B3 A34 A44 B5 A51 A61 A71 B8)
M [2, 3] = A12 B2 A23 A33 A43 A53 A63 A73 + A12 A22 A32 A42 A52 B6 A63 A73

= A12(B2 A23 A33 A43 A53 + A22 A32 A42 A52 B6)A63 A73

M [3, 4] = A13 A23 B3 A34 A44 A54 A64 A74 + A13 A23 A33 A43 A53 A63 B7 A74

= A13 A23 (B3 A34 A44 A54 A64 + A33 A43 A53 A63 B7) A74

M [4, 1] = B1 A11 A21 A31 A41 A51 A61 A71 + A14 A24 A34 A44 B5 A51 A61 A71

= (B1 A11 A21 A31 A41 + A14 A24 A34 A44 B5)A51 A61 A71

M [4, 4] = A14 A24 A34 A44 A54 A64 A74 + B1 A11 A21 A31 B4 A42 A52 B6 A63 B7 A74

= (A14 A24 A34 A44 A54 A64 + B1 A11 A21 A31 B4 A42 A52 B6 A63 B7)A74



290 On the Lower Bound of Cost of MDS Matrices

Similarly, there 6 entries in the inverse matrix M−1 that are also sum of two monomials.
Let Ckj = A−1

kj .

M−1[1, 1] = C71 C61 C51 C41 C31 C21 C11 + B8 C72 C62 B6 C53 C43 C33 B3 C24 C14 B1

= (C71 C61 C51 C41 C31 C21 C11 + B8 C72 C62 B6 C53 C43 C33 B3 C24 C14 B1)
M−1[1, 2] = B8 C72 C62 C52 C42 C32 C22 C12 + C71 C61 C51 C41 B4 C32 C22 C12

= (B8 C72 C62 C52 C42 + C71 C61 C51 C41 B4) C32 C22 C12

M−1[2, 3] = C72 C62 B6 C53 C43 C33 C23 C13 + C72 C62 C52 C42 C32 C22 B2 C13

= C72 C62 (B6 C53 C43 C33 C23 + C52 C42 C32 C22 B2) C13

M−1[3, 3] = C73 C63 C53 C43 C33 C23 C13 + C73 B7 C64 C54 B5 C41 B4 C32 C22 B2 C13

= C73 (C63 C53 C43 C33 C23 + B7 C64 C54 B5 C41 B4 C32 C22 B2) C13

M−1[3, 4] = C73 B7 C64 C54 C44 C34 C24 C14 + C73 C63 C53 C43 C33 B3 C24 C14

= C73 (B7 C64 C54 C44 C34 + C63 C53 C43 C33 B3) C24 C14

M−1[4, 1] = C74 C64 C54 B5 C41 C31 C21 C11 + C74 C64 C54 C44 C34 C24 C14 B1

= C74 C64 C54 (B5 C41 C31 C21 C11 + C44 C34 C24 C14 B1)
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