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High-performance sequences are generating increasingly comprehensive 

catalogs of crop genetic variation. To make optimal use of this vast 

collection of data for research purposes, a robust and reproducible 

analytical pipeline discipline is required that is capable of accurately 

detecting and favoring variants. The entire genome sequencing data from 

the rice variety Nang Thom Cho Dao was analyzed using the appropriate 

bioinformatic pipeline. A total of 21 million reads with 6,6 GB of data were 

analyzed. SNPs and indels from the Nang Thom Cho Dao genome were 

found to be variable when compared to the Nipponbare reference rice 

genome. The result showed that the novel Indel of BADH2 gene in Nang 

Thom Cho Dao genome. The study will contribute valuable information to 

the development of genetic markers for rice breeding strategies using Nang 

Thom Cho Dao rice varieties. 
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1. INTRODUCTION 

In the plant world, the defining phenotype is 

frequently used to identify organisms based on their 

appearance. However, the appearance of the same 

species or sub-species cannot be distinguished, 

despite the fact that their genetic material is distinct 

and results in distinctive characteristics. The unique 

characteristics contribute to the diversity of the plant 

kingdom and contribute to the large gene pool 

available for crop improvement selection and 

breeding schemes. To differentiate the distinct 

genetic materials, genome sequencing has been 

effectively applied to numerous plant species such 

as rice (Li et al., 2014), soybean (Shimomura et al., 

2015), maize (Chandler & Brendel, 2002), cotton 

(Zhu et al., 2013), etc. useful for identifying the 

valuable traits of the crop, since the phenotypic 

observation could not be detected. 

The advantage of whole genome sequencing in 

crops by NGS (next-generation sequencing) 

technology facilitate the creation of millions of new 

markers, especially for agronomically important 

genes (Thottathil et al., 2016). Rapid sequencing 

methods will almost certainly result in the faster 

identification of single nucleotide polymorphism 

(SNP) markers that make it easier to distinguish 

allelic variants of a given trait, making them more 

useful in crop breeding (Salgotra et al., 2014). In 

order to extract a few nucleotide variations for some 

traits from GB data from the genome, a 

bioinformatic facility will be required.  
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In this study, the complete genome of the Nang 

Thom Cho Dao (NTCD) variety was analysed using 

bioinformatics methods in order to identify a 

specific allele exhibiting the NTCD variety. 

2. MATERIALS AND METHOD  

2.1. Whole-genome sequencing of Oryza sativa L. 

cv. NTCD 

NTCD seeds were obtained from Long An and kept 

at Can Tho University's gene bank. 

Undergreenhouse conditions, seedlings were grown 

in pots. Using the CTAB (cetyltrimethyl ammonium 

bromide) technique, genomic DNA was extracted 

from immature leaves (Doyle, 1991). The quantity 

and quality of genomic DNA were determined using 

a spectrophotometer and agarose gel 

electrophoresis. The full genome re-sequencing of 

the sample was performed on the Illumina HiSeq 

2000™ by Novogen (Novogen, Malaysia). The 

genomic DNA was randomly sheared into short 

fragments of approximately 350 bp. The obtained 

fragments were used to construct a library using the 

NEBNext® DNA Library Prep Kit according to the 

manufacturer's instructions. To summarize, the 

required fragments (300–500 bp in size) were PCR 

enriched using P5 and indexed P7 oligos, followed 

by dA-tailing and further ligation with the NEBNext 

adapter. Following purification and quality control, 

the resulting library is ready for sequencing. 

2.2. Genome mapping and variant calling in 

NTCD  

In general, the application of computational genetic 

variation genetic pipeline is as in Figure 1. Using 

fastp tool V0.20.0, an ultrafast FASTQ 

preprocessor, quality checking and preprocessing of 

raw paired-end reads were conducted (Cock et al., 

2010). The quality-filtered reads were mapped to the 

latest version of Os-Nipponbare-Reference-IRGSP-

1.0 (Kawahara et al., 2013) available on Ensembl 

Plants website (Bolser et al., 2016) using HISAT2 

software V2.1.0 (Keel & Snelling, 2018), SAMtools 

toolkit V1.9 totally eliminated low-mapping quality 

(MAPQ30 (Li et al., 2009). For variant detection, 

both SNPs and InDels were separately called via 

SAMtools toolkit V1.9 (Li et al., 2009) and 

VarScan. According to Li (2014), Filtering 

variations that overlap with low-complexity regions 

(LCRs) is the most successful method for 

identifying spurious heterozygotes.. The step was 

primarily masked features fall, as DUST in low-

complexity regions by using minimap toolkit V0.2 

(https://github.com/lh3/minimap) (Li, 2014).  

Figure 1. Bioinformatics analysis pipeline 

2.3.  Annotation of variants 

In this analysis, SnpEff build V4.3+T.galaxy3 

(Cingolani et al., 2012) on Galaxy UI 

(https://usegalaxy.org) was used to Build a 

reference database for functional annotation, using 

Os-Nipponbare-Reference-IRGSP-1.0 as the 

reference genome (ftp:/ftp.ensemblgenomes.org/ 

pub/plants/release-45/fasta/oryza sativa/dna/) and a 

GFF3 as the annotation file (ftp:/ftp. 

ensemblgenomes.org/pub/plants/release45/gff3/ 

Eventually, the genomic distribution of SNPs and 

InDels was estimated and identified primarily using 

the awk and sort/uniq command lines.. The Awk 

program was used to obtain the VCF file's 

chromosomal locations, then to arrange those 

positions into windows of 10 kb and finally to 

sort/uniq the positions to obtain the count of 

variations in every window of 10 kb. The result was 

then presented with the Circa software. 

3. RESULTS AND DISCUSSION  

3.1. Whole-Genome Sequencing and Mapping 

Raw reads were stored in a FASTQ file (Cock et al., 

2010). More than 21 million clean readings 

corresponding to 6.6 Gb of sequencing data have 

been produced. For the present 373,245,194 bp 

reference genome of the Nipponbare genome, 

95.81% of the NTCD sequence was mapped. The 

average depths inside the reference genome 

(without Ns) were 16.43X, and 1X coverages were 

90.25%. This result is within the defined normal 

range and may be useful in detecting and analyzing 

later variations (Petrackova et al., 2019). 

The effective sequencing data were aligned to the 

reference sequence using the HISAT2 program with 

default parameters, and mapping rate and coverage 

were calculated based on the alignment findings. 

https://github.com/lh3/minimap
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SAMTOOLS eliminated the duplicates (Li et al., 

2009).  

3.2. Annotation of SNPs in NTCD 

Single nucleotide polymorphism (SNP) refers to a 

variation in a single nucleotide that may occur at 

some specific position in the genome, including the 

transition and the transversion of a single 

nucleotide. The results of SNPs annotation are 

summarized in Table 1 using SnpEff (Galaxy 

Version 4.3+T.galaxy1). Based on the analysis for 

SNPs variation, point mutation with transition (Ts) 

type was 1,422,100, and transversion (Tv) type was 

580,530. The ratio Ts/Tv was 2,45, indicating that 

the quality of sequencing was sufficient (Wang et 

al., 2015). The variation of SNPs region showed 

highly in the intergenic region but less in UTR and 

exon (Figure 2).  

Table 1. Annotation of SNPs in NTCD 

Types Count 

3’-UTR_variant 24,075 

5’UTR premature 

start_codon_gain_variant 
2,354 

5’ prime_UTR_variant 14,847 

downstream_gene_variant 399,523 

initiator_codon_variant 5 

intergenic_region 822,479 

intron_variant 115,505 

missense_variant 31,754 

non_coding_transcript_exon_variant 5 

non_coding_transcript_variant 5 

splice_acceptor_variant 97 

splice_donor_variant 94 

splice_region_variant 3,643 

start_lost 44 

stop_gained 576 

stop_lost 270 

stop_retained_variant 73 

synonymous_variant 26,718 

upstream_gene_variant 413,965 

Total 1,856,032 

The Circos research analyzed the genomic 

organization of DNA polymorphism on all 12 

NTCD chromosomes. For each NTCD genome 

chromosome, the number of DNA polymorphisms 

(SNPs) was proportional to the chromosome's 

length (Figure 2). The amount of high-impact SNPs 

on each NTCD chromosome, however, varied. 

 

Figure 2. Distribution of SNPs in NTCD-T on 

each rice chromosome (25 M window size) 

The outermost circles indicate 12 different coloured 

rice chromosomes. The middle indicated SNPs 

polymorphism and the innermost represents SNP 

distribution in NTCD. The blue bar indicated the 

high-impact SNPs. 

3.3. Annotation of InDels in NTCD 

Table 2. Annotation of InDels in NTCD 

Types Count 

3_prime_UTR_variant 3,315 

5_prime_UTR_variant 1,747 

conservative_inframe_deletion/insertion 317 

disruptive_inframe_deletion/insertion 402 

downstream_gene_variant 42,884 

frameshift_variant 973 

intergenic_region 64,265 

intron_variant 16,036 

non_coding_transcript_variant 5 

splice_acceptor_variant 12 

splice_donor_variant 26 

splice_region_variant 438 

start_lost 19 

stop_gained 13 

stop_lost 18 

upstream_gene_variant 42,576 

Total 173,056 

Insertion and deletion (INDEL) mutations are a 

significant source of genomic diversity. InDel refers 

to the insertion or deletion of ≤ 50 bp sequences in 

the DNA (Table 2). The genome-wide diversity of 

INDELs (with <50bp) was almost tenfold lower 

than that of SNPs. The number of InDels in the 

exonic region was 50-fold lower than the number of 

SNPs. The result was also observed in the Great Tit 

genomic variation (Barton & Zeng, 2019). In total, 
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173,056 InDels were detected in NTCD when 

compared with the reference genome. The NTCD 

genome contained a deletion of the BADH2 gene, a 

previously undetected Indel (supplement table). 

 

Figure 3. NTDC whole genome InDels 

variations 

From outer to inner, rice chromosome, middle 

polymorphic, innermost InDel distribution. The blue bar 

indicated high impact InDels. 

Genome-wide mapping of the circus diagram 

presented InDels density in 12 chromosomes of the 

NTCD genome (Figure 3). The number of InDels 

was distributed unevenly across the 12 

chromosomes, with the highest (20 X 1000) on 

chromosome 3 and the fewest on chromosome 2. (12 

X 1000).   

4. CONCLUSIONS 

In this study, bioinformatics as tools have been 

attempted to examine the variability in the NTCD 

genome when compared with the Nipponbarre 

reference genome. The novel Indel was detected in 

the NTCD genome. Our results  will help develop 

valuable DNA markers for rice breeding programs, 

not only for Mekong delta’ rice but also for the 

world’s aromatic rice. 
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