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Abstract: In recent years, the issue of maximizing submodular functions has attracted much in-
terest from research communities. However, most submodular functions are specified in a set
function. Meanwhile, recent advancements have been studied for maximizing a diminishing return
submodular (DR-submodular) function on the integer lattice. Because plenty of publications show
that the DR-submodular function has wide applications in optimization problems such as sensor
placement impose problems, optimal budget allocation, social network, and especially machine
learning. In this research, we propose two main streaming algorithms for the problem of maxi-
mizing a monotone DR-submodular function under cardinality constraints. Our two algorithms,
which are called StrDRS1 and StrDRS2, have (1/2− ε), (1− 1/e− ε) of approximation ratios and
O( n

ε log( log B
ε ) log k), O( n

ε log B), respectively. We conducted several experiments to investigate the
performance of our algorithms based on the budget allocation problem over the bipartite influence
model, an instance of the monotone submodular function maximization problem over the integer
lattice. The experimental results indicate that our proposed algorithms not only provide solutions
with a high value of the objective function, but also outperform the state-of-the-art algorithms in
terms of both the number of queries and the running time.

Keywords: DR-submodular function; integer lattice; adaptive complexity; approximation algorithm

MSC: 03G10; 06C05; 06D99; 30E10; 65K10

1. Introduction

Submodular function maximization problems have recently received great interest in
the research community. A satisfactory explanation for this attraction is the prevalence of
optimization problems related to submodular functions in many real-world applications [1].
Prominent examples include sensor placement problems [2,3] and facility location [4] in
operational improvement, the influence maximization problem in viral marketing [5,6],
document summarization [7], experiment design [8], dictionary learning [9] in machine
learning, etc. These problems can be presented with the concept of submodularity, and
effective algorithms have been developed taking advantage of the submodular function [10].
Given a ground set E, a function f :2E → R≥0 is called submodular if for all A, B ⊆ E,

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) (1)

The submodularity of a submodular function f is equivalent to the property diminishing
return, i.e., for any A ⊆ B ⊆ E and ∀e ∈ E \ B, it holds.

f (A ∪ e)− f (A) ≥ f (B ∪ e)− f (B) (2)
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and the set function f is called monotone if

f (A) ≤ f (B) for any A ⊆ B ⊆ E (3)

The submodular function maximization problem aims to select a subset A of the
ground set E to maximize f (A).

Most existing studies of the submodular function maximization problem consider
submodular functions identified over a set function. It means that the problem has the
input as a subset of the ground set and returns an actual value. However, there are many
real-world situations in which it is crucial to know whether an element e ∈ E is selected
and how many copies of that element should be chosen. In other words, the problem
considers submodular functions over a multiset, under the name submodular function on
the integer lattice [11]. The submodularity defined on the integer lattice differs from set
functions because it does not equate to the diminishing return property. Some notable
examples include the optimal budget allocation problem [12], document summarization
and sensor placement [13], the submodular welfare problem [14], and maximization of
influence spread with partial incentives [15]. The definitions of a submodular function and
diminishing return submodular function on the integer lattice are as follows:

A function f : ZE
+ → R is a submodular function on the integer lattice if for all x, y ∈ ZE

+

f (x) + f (y) ≥ f (x∨ y) + f (x∧ y) (4)

where x∧ y and x∨ y denote the coordinate-wise min and max operations, respectively.
A function f : ZE

+ → R is called diminishing return submodular (DR-submodular), if for
all x, y ∈ ZE

+ with x ≤ y

f (x + χe)− f (x) ≥ f (y + χe)− f (y) (5)

where e ∈ E and χe denote the unit vector with coordinate e being 1 and the other elements
are 0.

The submodularity defined on the integer lattice differs from the set functions because
it does not equate to the diminishing return property. In other words, lattice submod-
ularity is weaker than DR-submodularity, i.e., a lattice submodular function may not
be a DR-submodular function, but any DR-submodular function is a lattice submodular
one [11]. Due to this cause, developing approximation algorithms is challenging; even
for a single cardinality constraint, we need a more complicated method, such as partial
enumeration [12,13]. Nevertheless, the diminishing return property of the DR-submodular
function maximization problem often plays a fundamental role in some practical problems,
such as optimizing budget allocation among channels and influencers [12], optimal budget
allocation [13], and online submodular welfare maximization [14].

There have been many approaches to solving the problem of maximizing the sub-
modular function under different constraints and contexts in the last decade. Two notable
approaches to this problem are greedy algorithms [16–19] and streaming algorithms [20–22].
Plenty of studies show that the greedy method is often used for this optimization problem
because it outputs a better result than other methods due to its “greedy” operation [16,23,24].
Understandably, the greedy method always scans data many times to find the best. How-
ever, this causes its algorithms to have a long runtime; it cannot even be applied to big
data. Contrary to the greedy method, the streaming method scans the data once. As each
element in the dataset arrives in order, the streaming algorithm must decide whether that
element is selected before the next element arrives. Thus, the result of this method may not
be as good as the result of greedy, because the elements it selects are not the best, but meet
the selection condition. However, the outstanding advantage of the streaming method is
that it runs much faster than the greedy method [25]. There are many studies that have
used the streaming method to resolve the issue of submodular function maximization.
Those studies have shown the advantages of the streaming method compared to the greedy
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method. Some prominent studies include using the streaming algorithm for maximizing
k-submodular functions under budget constraints [26], optimizing a submodular function
under noise by streaming algorithms [27], maximizing a monotone submodular function
by multi-pass streaming algorithms [20], and using fast streaming for the problem of
submodular maximization [22].

Attracted by the usefulness of the maximizing DR-submodular function on the integer
lattice issue in many practical problems, numerous studies on this problem have recently
been published. These publications consider the problem under many different constraints
and use greedy or streaming methods as the standard approach. Some prominent examples
include the use of a fast double greedy algorithm to maximize the non-monotone DR
submodular function [24], using a threshold greedy algorithm to maximize the monotone
DR submodular constraint knapsack over an integer lattice [28], combining the threshold
greedy algorithm with a partial element enumeration technique to maximize the monotone
DR submodular knapsack constraint over an integer lattice [11], using a streaming method
to maximize DR-submodular functions with d-knapsack constraints [29], using a one-pass
streaming algorithm for DR-submodular maximization with a knapsack constraint over
the integer lattice [30], and using streaming algorithms for maximizing a monotone DR-
submodular function with a cardinality constraint on the integer lattice [31].

Our contribution. In this paper, we focus on the maximization of monotone DR-submodular
function under cardinality constraint on the integer lattice (the MDRSCa problem in Definition 2).
In surveying the literature, there are two novel methods for this problem. First, Soma
et al. [11] proposed the Cardinality constraint/DR-submodular algorithm (called CaDRS),
which interpolates between the classical greedy algorithm and a truly continuous algo-
rithm. This algorithm achieves an approximation ratio of (1− 1/e− ε) in O( n

ε log B log k
ε )

complexity. Second, Zhang et al. [31] first devised a streaming algorithm based on Sieve
streaming [32]. Zhang’s method achieves an approximation ratio of (1/2− ε) in O( k

ε )

memory and O( k
ε log2 k) query complexity. Inspired by Zhang’s method [31], our study

based on the streaming method devises two improved streaming algorithms for the problem
and obtains some positive results compared to state-of-the-art algorithms. Specifically, our
main contributions are as follows.

• To resolve the MDRSCa problem, we first devise an algorithm (called StrOpt) to handle
each element by scanning the data with the assumption of a known optimal value
(OPT). We prove that StrOpt guarantees the theoretical result with an approximation
ratio of (1/2). Next, we devise a (1/4)-approximation streaming algorithm (called
Stepping-Stone algorithm), which has the procedure role to calculate the threshold
for the main algorithm. Later, based on StrOpt and Stepping-Stone algorithms, we
provide two main streaming algorithms to solve this problem. They are named
StrDRS1 and StrDRS2. Because OPT cannot be determined in actual situations, we
estimate OPT based on a conventional method by observing OPT ∈ [m, 2km] where
m = maxe∈E{ f (χe)}. Based on estimated OPT, StrDRS1, a one-pass streaming algo-
rithm, has an approximation ratio of (1/2− ε) and takes O( n

ε log( log B
ε ) log k) queries.

For StrDRS2, we first find a temporary result that satisfies the cardinality constraint by
the Stepping-Stone algorithm. Subsequently, we increase the approximation solution
ratio in StrDRS2 by finding elements that hold the threshold restriction of the above
temporary result. The StrDRS2 is a multi-pass streaming algorithm that scans O( 1

ε )
passes, takes O( n

ε log B) queries, and returns an approximation ratio of (1− 1/e− ε).
• We further investigate the performance of our algorithms by performing some experi-

ments on some datasets of practical applications. We run four algorithms, StrDRS1,
StrDRS2, CaDRS [11], and SieveStr++ [31], to compare their performance. The results
indicate that our algorithms provide solutions with a theoretically guaranteed value
of the objective function and outperform the state-of-the-art algorithm in both the
number of queries and the runtime.
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Table 1 shows how our algorithms compare theoretical properties with current state-
of-the-art algorithms for the problem of maximizing monotone DR submodular functions
with a cardinality constraint in the integer lattice.

Table 1. State-of-the-art algorithms for the problem of monotone DR-submodular function maximiza-
tion with a cardinality constraint on the integer lattice in terms of time complexity.

Reference Pass Ratio Query Complexity

CaDRS O( 1
ε log 1

ε ) 1− 1/e− ε O( n
ε log B log k

ε )

SieveStr++ 1 1/2− ε O( k
ε log2 k)

StrDRS1 1 1/2− ε O( n
ε log( log B

ε ) log k)

StrDRS2 O( 1
ε ) 1− 1/e− ε O( n

ε log B)

Organization. The structure of our paper is as follows: Section 1 introduces the develop-
ment situation of the submodular function maximization on a-set and multi-set. Primarily,
we focus on maximizing the monotone DR-submodular function on the integer lattice
under cardinality constraint and present the main contributions of our study. Section 2
reviews the related work. The definition of the problem and some notation are introduced
in Section 3. Section 4 contains our proposed algorithms and theoretical analysis. Section 5
shows the experimental results and evaluation. Finally, Section 6 concludes the paper and
future work.

2. Related Work

A considerable amount of literature has been published on the maximization of
monotone submodular functions under many different constraints over many decades.
Nemhauser et al. [33] are pioneers in studying the approximations for maximizing submod-
ular set functions in combinatorial optimization and machine learning. They proved that
the standard greedy algorithm gives a (1/2)-approximation under a matroid constraint and
a (1− 1/e)-approximation under a cardinality constraint. Their method served as a model
for further development. Later, Sviridenko [34] developed an improved greedy algorithm
for maximizing a submodular set function subject to a knapsack constraint. This algorithm
achieves a (1− 1/e)-approximation with O(n5) time complexity for a knapsack constraint.
Subsequently, Calinescu et al. [35] first devise a (1− 1/e)-approximation algorithm for
maximizing a monotone submodular function subject to a matroid constraint. This method
combines a continuous greedy algorithm and pipage rounding. The pipage rounding
rounds the approximate fractional solution of the continuous greedy approach to obtain
an integral feasible solution. Recently, Badanidiyuru et al. [36] design a (1− 1/e − ε)-
approximation algorithm with any fixed constraint ε > 0 for maximizing submodular
functions. This algorithm takes O( n

ε log n
ε ) time complexity for the cardinality constraint.

Several studies have recently begun investigating the maximization of DR-submodular
functions on the integer lattice under various constraints. Soma et al. (2014) [13] studied the
monotone DR-submodular function maximization over integer lattices under a knapsack
constraint. They proposed a simple greedy algorithm, which has an approximation ratio of
(1− 1/e) and a pseudo-polynomial time complexity. Next, Soma et al. (2018) [11] continued
to develop polynomial-time approximation algorithms for the problem of DR-submodular
function maximization under a cardinality constraint, a knapsack constraint, and a poly-
matroid constraint on the integer lattice, respectively. For the cardinality constraint, they
devised an algorithm based on the decreasing threshold greedy framework. For the poly-
matroid constraint, they developed an algorithm based on an extension of continuous
greedy algorithms. For the knapsack constraint, they used the decreasing threshold greedy
framework as the algorithm of the cardinality constraint. However this algorithm takes
its initial solution as an input, whereas the algorithm for cardinality constraints always
uses the zero vector as the initial solution. All three algorithms have polynomial time and
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achieve a (1− 1/e− ε)-approximation ratio. Besides, Some et al. (2017) [37] also studied
the problem of non-monotone DR-submodular function maximization. They proposed a
double greedy algorithm, which has 1

2+ε -approximation and O( n
ε log2 B). Subsequently,

Gu et al. (2020) [24] study the problem of maximizing the non-monotone DR-submodular
function on the bounded integer lattice. They propose a fast double greedy algorithm that
improves runtime. Their result achieves a 1/2-approximation algorithm with a O(n log B)
time complexity. Liu et al. (2021) [29] develop two streaming algorithms for maximizing
DR-submodular functions under the d-knapsack constraints. The first is a one-pass stream-

ing algorithm that achieves a ( 1−θ
1+d )-approximation with O(

log(dβ−1)
βε ) memory complexity

and O(
log(dβ−1)

ε log B) update time per element, where θ = min(α + ε, 0.5 + ε) and α, β
are the upper and lower bounds for the cost of each item in the stream. The second is
an improved streaming algorithm to reduce the memory complexity to O( d

βε ) with an
unchanged approximation ratio and query complexity. Zhang et al. (2021) [31] based on
the Sieve streaming method to develop a streaming algorithm for the problem of mono-
tone DR-submodular function under cardinality constraint on the integer lattice. This
algorithm achieves an approximation ratio of (1/2− ε) and takes O( k

ε log2 k) complexity.
This is the problem that we study in this paper. Most recently, Tan et al. (2022) [30] de-
sign an one-pass streaming algorithm for the problem of DR-submodular maximization
with a knapsack constraint over the integer lattice, called DynamicMRT, which achieves a
(1/3− ε)-approximation ratio, a memory complexity O(K log K/ε), and query complexity
O(log2 K/ε) per element for the knapsack constraint K. Meanwhile, Gong et al. (2022) [28]
consider the problem of non-negative monotone DR-submodular function maximization
over a bounded integer lattice. They present a deterministic algorithm and theoretically

reduce its runtime to a new record, O(( 1
ε

O(1/ε5)
.n log 1

cmin
log B)), (where cmin = mine∈Ec(e)

and c(.) is a cost function defined in E) with the approximate ratio of (1− 1/e−O(ε)).
All the studies mentioned above consider the problem of maximizing the submodular

function on a set function or maximizing the DR-submodular function on the integer lattice
under different constraints. Only the studies of Soma et al. in [11] and Zhang et al. in [31]
consider the problem of MDRSCa, as mentioned in the contribution section. Motivated by
these studies, we proposed two improved streaming algorithms for the MDRSCa problem.
Our algorithms achieve better than state-of-the-art methods through theoretical analysis
and experimental results.

3. Preliminaries

This section introduces the definitions of the monotone DR-submodular, MDRSCa
problem and its associated notations. Table 2 summarizes the usually used notations in
this paper.
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Table 2. Table of the usually used notations in this paper.

Notation Description

E a ground set, E = {e1, . . . , en}

n the number of elements in the ground set E.

2E the subset family of E.

A, B the arbitrary subsets of E

x, y the arbitrary vectors of ZE
+

χe the unit vector with coordinate e, e ∈ E

{x} the multiset contains elements in vector x, where each element e ∈ E can appear many times.

x(e), y(e) the coordinate value of entry e in vector x, y, where e ∈ E

‖x‖∞ the infinity norm of vector x, ‖x‖∞ := maxe∈Ex(e)

‖x‖1 the taxicab norm of vector x, ‖x‖1 := ∑e∈E x(e).

0 the vector zero whose value 0(e) = 0, ∀e ∈ E

B the upper bound vector of x, 0 ≤ x ≤ B

B B := ‖B‖∞

k the upper bound of total elements in vector x on the integer lattice ZE
+ , x(E) ≤ k

ke the number of copies of e to be considered for addition to x

k′ the number of copies of e add to x

[k] the set of {1, . . . , k}

v an optimal value of the object function, (1− ε)OPT ≤ v ≤ OPT with (ε ∈ (0, 1/2))

x∨ y the coordinate-wise maximum of x and y

(x∨ y)(e) x∨ y := max{x(e), y(e)}

x∧ y the coordinate-wise minimum of x and y

(x∧ y)(e) x∨ y := min{x(e), y(e)}

x + y sum of 2 vectors x and y, with the multiset {x + y} whose e appears (x(e) + y(e)) times.

x− y x− y = x + (−y)

f (x) the object function value of x

f (x|y) f (x|y) = f (x + y)− f (y)

3.1. Notation

For a positive integer k ∈ N, [k] denotes the set {1, . . . , k}. Given a ground set
E = {e1, . . . , en}, we denote the i-th entry of a vector x ∈ ZE

+ by x(i), and for each e ∈ E,
we define the e-th unit vector with χe(t) = 1 if t = e and χe(t) = 0 if t 6= e.

For x ∈ ZE
+, {x} denotes the multiset where the element e appears x(e) times and with

a subset A ⊆ E, x(A) = ∑e∈A x(e) and supp+(x) = {e ∈ E|x(e) > 0}. According to the
definition of the vector norm, we have ‖x‖∞ := maxe∈Ex(e) and ‖x‖1 := ∑e∈E x(e).

For two vectors x, y ∈ ZE
+, x ≤ y signifies ∀e ∈ E then x(e) ≤ y(e). Furthermore, given

x, y ∈ ZE
+, x ∨ y and x ∧ y denote the coordinate-wise maximum and minimum, respec-

tively. This means that (x ∨ y)(e) := max{x(e), y(e)} and (x ∧ y)(e) := min{x(e), y(e)}.
In addition, x + y denotes the multiset {x + y} where the element e appears (x(e) + y(e))
times. Thus, we can infer x− y = x + (−y).

3.2. Definition

For function f : ZE
+ → R+, we define f (x|y) = f (x + y)− f (y).

Definition 1 (Monotone DR-submodular function). A function f : ZE
+ → R+ is monotone

if f (x) ≤ f (y) for all x, y ∈ ZE
+ with x ≤ y and f is said to be diminishing return submodular

(DR-submodular), if

f (x + χe)− f (x) ≥ f (y + χe)− f (y) (6)
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Definition 2 (Maximization of monotone DR-submodular function under cardinality
constraint on the integer lattice—MDRSCa problem). Let B ∈ ZE

+, B = ‖B‖∞ and an
integer k > 0, we consider the DR-submodular function under cardinality constraint as follows

maximize: f (x) subject to: 0 ≤ x ≤ B, x(E) ≤ k (7)

4. Proposed Algorithm

This section presents descriptions and theoretical analysis of the algorithms we have
proposed for the MDRSCa problem, including a streaming algorithm with the assumption
that the optimal value is known (StrOpt), the Stepping-Stone algorithm and two main
streaming algorithms (StrDRS1,StrDRS2).

4.1. Streaming Algorithm with Approximation Ratio of (1/2− ε)

First, we propose StrOpt, a single-pass streaming algorithm for the MDRSCa problem
under the assumption that the optimal value of the objective function is known. Afterwards,
we use the traditional method to estimate the optimal value and devise the main one-pass
streaming algorithm called StrDRS1.

4.1.1. Algorithm with Knowing Optimal Value—StrOpt

Algorithm description. The detail of StrOpt is fully presented in Algorithm 1.

Algorithm 1: StrOpt( f , B, k, ε, v)

Input: f : ZE
+ → R+,B, k, ε, a guess of optimal value v

Output: A vector x
1: x← 0
2: foreach e ∈ E do
3: I ← {i1, i2, . . . , i|I|} : i1 < i2 . . . < i|I|} ← {dB(e)(1− ε)ie : i ∈ Z, 1 ≤

B(e)(1− ε)i ≤ B(e)}
4: Find ke ← arg min{ij − 1 : ij ∈ I, f (ijχe|x)/ij <

v
2k} by a binary search

5: k′ ← min{ke, k− ‖x‖1}
6: if k′ 6= 0 then
7: x← x + k′ · χe
8: else
9: break

10: return x

We assume that the optimal value OPT of the objective function of MDRSCa is already
known. StrOpt is created to find vector x using this OPT. Given a known optimal value
v that satisfies (1− ε)OPT ≤ v ≤ OPT for any ε ∈ (0, 1

2 ). When each element e arrives,
we find a set I, which is the set of positive integers predicted to be the number of copies
of e. Then, we use the binary search with threshold v

2k to find the minimum ke that holds
f (ke|x)/ke <

v
2k . We denote by k

′
the number of copies of e that adds the result vector x.

The value k
′

is the minimum of two values ke and the rest of elements x’ in the cardinality k.
If k

′
is equal to 0, then e is not selected in x. Otherwise, e is selected in x with k

′
copies.

Theoretical analysis. Lemma 1, Theorem 1, and their proofs demonstrate the theoretical
solution guarantee of StrOpt. On the basis of that, we devise the first main streaming
algorithm for the MDRSCa problem.

Lemma 1. We have f (keχe|x) ≥ (1− ε)ke
v
2k .
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Proof. Assume that ke = ij = dxe where x = B(e)(1− ε)i with some i ∈ I. We have
ij ≥ ij−1 + 1 and

ke − ij−1 = ij − (ij−1 + 1) = dxe − (d(1− ε)xe+ 1)

≤ dxe − (dxe+ d(−εx)e) = −d(−εx)e
= bεxc ≤ εx ≤ εke

Therefore, ij−1 ≥ (1− ε)ke. From the combination of the selection ke and the monotonicity
of f , we have the following.

f (keχe|x) ≥ f (ij−1χe|x) ≥ ij−1
v
2k
≥ (1− ε)ke

v
2k

(8)

The proof is completed.

Theorem 1. For any ε ∈ (0, 1/2) and (1 − ε)OPT ≤ v ≤ OPT, the Algorithm 1 takes
O(n log( 1

ε log B)) queries and returns a solution x satisfying f (x) ≥ (1− ε)v/2.

Proof. The Algorithm 1 scans only one time over E and each incoming element e, it takes
log |I| = O(log( 1

ε log B)) queries to find ke. The total number of required queries of the
algorithm is O(n log( 1

ε log B)).
Denote xi and kiχei as the solution at the beginning of iteration i and the additional

vector in the current solution at iteration i, respectively. We consider two following cases:

Case 1. If ‖x‖1 = k, we have k1 + k2 + . . . + kn = k thus:

f (x) =
n

∑
i=1

f (kiχei |xi) ≥
n

∑
i=1

(1− ε)ki
v
2k

=
(1− ε)v

2
(9)

Case 2. If ‖x‖1 < k, after ending the main loop, we have f (e|x) ≤ v
2k for all e ∈ {B− x}.

Therefore:

f (o)− f (x) = f (o∨ x)− f (x)

= ∑
e∈{o∨x−x}

f (χe|x)

= ∑
e∈{o−o∧x}

f (χe|x)

< ∑
e∈{o−o∧x}

v
2k
≤ v

2

where the second equality follows from the lattice identity x ∨ y − y = x − x ∧ y for
x, y ∈ ZE

+. We have f (x) ≥ OPT− v/2 ≥ v/2. The proof is completed.
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4.1.2. (1/2− ε)-Approximation Streaming Algorithm—StrDRS1 Algorithm

Algorithm description. The detail of this algorithm is fully presented in Algorithm 2.

Algorithm 2: Streaming-I algorithm (StrDRS1)

Input: f : ZE
+ → R+,B, k, ε

Output: A (1/2− ε)-approximation solution x
1: O = {(1 + ε)i|i ∈ Z+}
2: xv = 0, ∀v ∈ O, m← 0
3: foreach e ∈ E do
4: m← max{ f (χe), m}
5: O = {(1 + ε)i|i ∈ Z+, m ≤ (1 + ε)i ≤ 2km}
6: I ← {i1, i2, . . . , i|I|} : i1 < i2 . . . < i|I|} ← {dB(e)(1− ε)ie : i ∈ Z, 1 ≤

B(e)(1− ε)i ≤ B(e)}
7: for v ∈ O do
8: Find ke ← arg min{i ∈ I : f (iχe|xv) < i · v

2k} by a binary search
9: k′ ← min{ke, k− ‖xv‖1}

10: if k′ 6= 0 then
11: xv ← xv + k′ · χe
12: else
13: break

14: return arg maxxv ,v∈O f (xv)

Based on the analysis of StrOpt, and the working frame of the Sieve streaming algo-
rithm [38], we design the StrDRS1 algorithm for the MDRSCa problem with the following
main idea. We find a set of solutions xv of OPT, where v ∈ O and O is the set of values
that changes according to the maximum value of the unit standard vector on the arriving
elements. Besides, we find a set I, which contains positive integers predicted to be the
number of copies of each element e if e is selected in xv. For each solution xv, v ∈ O, the
algorithm finds ke, is the smallest value in I so that the current element e satisfies the
condition in line 8 by binary search. Then, we choose k

′
, which is the minimum value

between ke and k− ‖xv‖1. If k
′

is not equal to 0, this means that e is selected in xv with
k
′

copies. Otherwise, e is not selected in xv. In the end, the result x is xv, which makes
f (x) maximal.

Theoretical analysis. We analyze the complexity of StrDRS1, stated in Theorem 2.

Theorem 2. StrDRS1 is a single-pass streaming algorithm, has an approximation ratio of ( 1
2 − ε)

and takes O( n
ε log( log B

ε ) log k) queries.

Proof. By the definition of O, there exists an integer i such that

(1− ε)OPT ≤ OPT

1 + ε
≤ v = (1 + ε)i ≤ OPT

By applying the proof of Theorem 1, and the working frame of the Sieve streaming
algorithm in [38], we obtain:

f (xv) ≥ (1− ε)

2
v ≥ (1− ε)2

2
OPT ≥ (

1
2
− ε)OPT (10)

The proof is completed.
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4.2. Streaming Algorithm with Approximation Ratio of (1− 1/e− ε)

In this section, we introduce two more algorithms for the MDRSCa problem, including
one with the role of a stepping stone (called Stepping-Stone algorithm) and the second
main algorithm (called StrDRS2 algorithm) in our study.

4.2.1. (1/4)-Approximation Streaming Algorithm—Stepping-Stone Algorithm

Algorithm description. The detail of this algorithm is fully presented in Algorithm 3.

Algorithm 3: (1/4)-approximation algorithm (Stepping-Stone algorithm)

Input: f : ZE
+ → R+,B, k, ε

Output: A vector x
1: foreach e ∈ E do
2: I ← {i1, i2, . . . , i|I|} : i1 < i2 . . . < i|I|} ← {dB(e)(1− ε)ie : i ∈ Z, 1 ≤

B(e)(1− ε)i ≤ B(e)}
3: Find ke ← arg max{it − 1 : it ∈ I, f (χe|x + (it − 1)χe) <

f (x+ it−1χe)/k and f (χe|x+(ij− 1)χe) ≥ f (x+ ij−1χe)/k, ∀ j ≤ t− 1, j ∈ I}
4: x← x + ke · χe

5: x← last elements in x with ‖x‖1 = k
6: return x

We design the Stepping-Stone algorithm, which is a (1/4)-approximation streaming
algorithm. The Stepping-Stone algorithm differs from StrDRS1 and StrDRS2 in that it
only selects elements for exactly one solution and has an approximately constant value.
In contrast, the other two algorithms find multiple solution candidates and choose the
best candidate.

In more detail, the main idea of this algorithm differs from StrDRS1, that is, the
Stepping-Stone algorithm is a single-pass streaming algorithm and finds ke without relying
on a given v. In this way, after finding the set I as StrDRS1, for each element e, e ∈ E, ke is
the largest it − 1, it ∈ I so that it meets the conditions in line 3. Finally, the output contains
the last elements of x with ‖x‖1 = k.

Theoretical analysis. Lemmas 2–4, and Theorem 3 clarify the theoretical analysis of the
Stepping-Stone algorithm.

Lemma 2. After each iteration of the Stepping-Stone algorithm, we have f (keχe|x) ≥ (1 −
ε)ke f (x)/k.

Proof. Due to the definition of I, after each iteration of the main loop, we have it− 1 ≥ it−1.
Similarly to the proof of Lemma 2, we have ke − it−1 = it − 1− it−1 ≤ εke. By selection of
the algorithm, for 1 ≤ j < t we have

f (ij|x + ij−1χe) =

ij

∑
l=ij−1+1

f (χe|x + ij−1χe) ≥
ij

∑
l=ij−1+1

f (x + ij−1χe)/k (11)

≥ (ij − ij−1) f (x + ij−1χe)/k (12)
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Therefore:

f (keχe|x) ≥ f (it−1 · χe|x) (13)

≥
t−1

∑
j=1

(ij − ij−1) f (χe|x + ij−1 · χe) (14)

= it−1 f (x)/k ≥ (1− ε)ke f (x)/k (15)

The proof is completed.

Lemma 3. After the main loop of the Stepping-Stone algorithm, we have 2 f (x) ≥ OPT.

Proof. Denote x(e) is x right before the element e starts to proceed. We have the following.

f (o)− f (x) = f (o∨ x)− f (x) (16)

= ∑
e∈{o∨x−x}

f (χe|x) (17)

= ∑
e∈{o−o∧x}

f (χe|x) (18)

≤ ∑
e∈{o−o∧x}

f (χe|x(e)) (19)

< ∑
e∈{o−o∧x}

f (x(e))
k

≤ f (x) (20)

which implies the proof.

Lemma 4. At the end of the Stepping-Stone algorithm, we have f (x′) ≥ 1−3ε
2−3ε f (x).

Proof. If ‖x′‖1 < k, then x′ = x and Lemma 4 holds. We consider the case ‖x′‖1 = k.
Assume that supp(x) = {e1, e2, . . . , el}, xi = ∑i

j=1 x(ej) · χej , supp(x′) = {ep, ep+1, . . . , el}
and x1 = x− x′ where ej is added to x immediately after ej−1 and 1 ≤ p < l.

We further consider two cases.

Case 1. If {x1} ∩ {x′} = ∅, we have k = ∑l
i=p kep and

f (x)− f (x1) =
l

∑
i=p

f (kei χei |xi) ≥
l

∑
i=p

(1− ε)kei

f (xi)

k
(Lemma 2) (21)

≥ (1− ε)
l

∑
i=p

kei

f (x1)

k
= (1− ε) f (x1) (22)

Case 2. If {x1} ∩ {x′} = {ep}. Denote q = kep − x1(ep) and c = min{ij ∈ I : ij ≥ x1(ep)}.
We have k = q + ∑l

i=p+1 kep and ij−1 < x1(ep) ≤ c = ij. Similarly to the proof of Lemma 2,
we have c − x1(ep) ≤ εij ≤ εkep and thus c ≤ εij + x1(ep) ≤ εkep + x1(ep). Let x1

l =

x1 + lχep , then

f (qχe|x1) ≥
it−1

∑
l=c+1

f (χep |x1 + (l − 1)kep)

k
(23)

≥ (kep(1− ε)− c)
f (x1

c )

k
= (kep(1− ε)− (x1(ep) + εkep))

f (x1)

k
(24)

≥ (q− 2εkep)
f (x1)

k
(25)
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implying that f (qχe|x1) ≥ (q− 2εkep)
f (x1)

k . Therefore:

f (x)− f (x1) = f (qχe|x1) +
l

∑
i=p+1

f (kei χei |xi) (26)

≥ (q− 2εkep)
f (x1)

k
+

l

∑
i=p+1

(1− ε)kei

f (xi)

k
(Lemma 2) (27)

≥ (q +
l

∑
i=p+1

kei − 2εkep − ε
l

∑
i=p+1

kei )
f (x1)

k
(28)

≥ (k− 3εk)
f (x1)

k
= (1− 3ε) f (x1) (29)

Hence, f (x) ≥ (2− 3ε) f (x1). Combined with the fact that f (x) ≤ f (x′) + f (x1), we have
f (x′) ≥ 1−3ε

2−3ε f (x), which completes the proof.

Theorem 3. The Stepping-Stone algorithm is a single-pass streaming algorithm that takes O( n
ε log B)

and provides an approximation ratio of 1/4− 3ε/4.

Proof. The algorithm scans only one time over the ground set E and each element e, it
calculates f (χe|x + (ij − 1)χe) for all ij ∈ I to find ke. This task takes at most 1

ε log(B(e)) =
O( 1

ε log B) queries. Thus, the total number of required queries is O( 1
ε log B). For the proof

of the approximation ratio, by using Lemmas 3 and 4, we have:

f (x′) ≥ 1− 3ε

2− 3ε
f (x) ≥ 1− 3ε

2(2− 3ε)
OPT ≥ (

1
4
− 3

4
ε)OPT (30)

The proof is completed.

4.2.2. (1− 1/e− ε)-Approximation Streaming Algorithm—StrDRS2 Algorithm

Algorithm description. The detail of StrDRS2 is fully presented in Algorithm 4.

Algorithm 4: (1− 1/e− ε)-approximation algorithm (StrDRS2)

Input: f : ZE
+ → R+,B, k, ε

Output: A vector x
1: x0 ← Result of Algorithm 3, Γ← f (x0)

2: θ = (4−3ε)Γ
(1−3ε)k , x← 0

3: while θ ≥ (1− ε)Γ/(4k) do
4: foreach e ∈ E do
5: Find ke ← arg min{i− 1 : i ∈ {1, 2, . . . , B(e)}, f (iχe|x)/i < θ} by a binary

search
6: k′ ← min{ke, k− ‖x‖1}
7: if k′ 6= 0 then
8: x← x + k′ · χe
9: else

10: break

11: θ = (1− ε)θ

12: return x

We propose a (1− 1/e− ε)-approximation algorithm, called StrDRS2. It is a multi-
pass streaming algorithm and is based on the output of the Stepping-Stone algorithm
(Algorithm 3) to compute the threshold θ of f (keχe|x) of each element e. The ke of each e is
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the minimal value i, i ∈ {1, 2, . . . , B(e)}, so that f (iχe|x)/i < θ. The threshold θ decreases
(1− ε) times after each iteration.

Theoretical analysis. Lemma 5 and Theorem 4 clearly demonstrate the theoretical solution-
ability guarantee of the StrDRS2 algorithm.

Lemma 5. In the StrDRS2 algorithm, at any iteration of the outer loop, we have:

f (k′eχe|x) ≥
(1− ε)ke

k
(OPT− f (x)) (31)

Proof. For the first iteration of the outer loop, we have x = 0, and thus

f (o)− f (x) = k
OPT

k
≤ k

(4− 3ε)Γ
(1− 3ε)k

<
kθ

1− ε
≤ f (k′eχe|xi)

(1− ε)k′e
(32)

Thus, f (k′eχe|x) ≥ (1−ε)k′e
k (OPT− f (x)), Lemma 5 is valid. For the latter iterations, the

marginal gain of any element e with current vector x is less than the threshold of previous
iterations of the outer loop, i.e, f (χe|x) ≤ θ

1−ε for e ∈ {B− x}. Then,

f (o)− f (xi) ≤ f (o∨ x)− f (x) (33)

= ∑
e∈{o∨x−x}

f (χe|x) (34)

= ∑
e∈{o−o∧x}

f (χe|x) (35)

≤ k
θ

1− ε
≤ f (k′eχe|xi)

(1− ε)k′e
(36)

The proof is completed.

Theorem 4. The StrDRS2 algorithm is a multi-pass streaming algorithm that scans O( 1
ε ) passes

over the ground set, takes O( n
ε log B) queries, and returns an approximation ratio of (1− 1/e− ε).

Proof. We consider following cases:

Case 1. If ‖x‖1 < k, after the last iteration of the outer loop we have:

f (o)− f (x) ≤ f (o∨ x)− f (x) (37)

= ∑
e∈{o∨x−x}

f (χe|x) (38)

= ∑
e∈{o−o∧x}

f (χe|x) (39)

≤ kθmin ≤ k(1− ε)
Γ
4k
≤ (1− ε)

OPT

4
(40)

Hence, f (x) ≥ 3+ε
4 OPT.

Case 2. If ‖x‖1 = k. Denote xi as x after i-th update, k′ei
χei is the vector added to x at the

i-th update, and the final solution x = xl , Lemma 5 gives

f (xi+1)− f (xi) = f (k′ei+1
χei+1 |xi) ≥

(1− ε)k′ei+1

k
(OPT− f (xi)) (41)
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Rearrange the above inequality for i + 1 = l, and we have:

OPT− f (xl) ≤ (1−
(1− ε)k′el

k
)(OPT− f (xl−1)) (42)

≤ e−
(1−ε)k′el

k (OPT− f (xl−1)) (43)

. . . ≤ e−∑l
j=1

(1−ε)k′ej
k OPT (44)

e−(1−ε)OPT ≤ (
1
e
+ ε)OPT (45)

Therefore, f (x) ≥ (1− 1/e− ε)OPT, the proof is completed.

5. Experiment

We conducted experiments based on the budget allocation problem over the bipartite influ-
ence model [39]. This problem is an instance of the monotone submodular function maximization
problem over the integer lattice under a constraint [3]. As mentioned above, we consider the
problem under a cardinality constraint.

Suppose that we consider the context of the algorithmic marketing approach. The
budget allocation problem can be explained as follows. In a marketing strategy, one of
the crucial choices is deciding how much of a given budget to spend on different media,
including television, websites, newspapers, and social media, to reach as many potential
customers as possible. In other words, given a bipartite graph G(V; E), where V is a
bipartition (V1; V2) of the vertex set, V1 denotes the set of source nodes (such as ad sources),
V2 denotes the set of target nodes (such as people/customers), and E ⊆ V1 × V2 is the
edge set. Each source node v1 has a capacity Bv1 ∈ Z+, which represents the number of
available budgets of the ad source corresponding to v1. Each edge v1v2 ∈ E is associated
with a probability p(v1v2) ∈ [0; 1], which means that putting an advertisement to a slot of
v1 activated customer v2 with probability p(v1v2). Each source node v1 will be allocated
a budget x(v1) ∈ {0, 1, ..., Bv1} such that ∑v1∈V1

x(v1) ≤ k where k ∈ Z+ denotes a total
budget capacity. The object value function f , which means the expected number of target
vertices activated by x, is defined as follows [3].

f : ZV
+ → R+ as f (x) = ∑

v2∈V2

(
1− ∏

v1v2∈E
(1− p(v1v2))

x(v1)

)
(46)

All experiments are carried out to compare the performance of StrDRS1, StrDRS2,
CaDRS and SieveStr++. We evaluated the performance of each algorithm based on the
number of oracle queries, runtime, and influence f (x).

5.1. Experimental Setting

Datasets. For the exhaustive experiment, we choose two datasets of different sizes re-
garding the number of nodes and edges. They are two real networks that are bipartite,
undirected type and weighted of the KONECT (http://konect.cc) (accessed on 1 September
2022) project [40]: the network of the FilmTrust ratings project, and the NIPS is a doc-word
dataset of NIPS full papers. The weighted of the rating datasets is the rating value, and one
of the doc-word datasets is the number of occurrences of the word in the document. The
description of the datasets is presented in Table 3.

Table 3. Statistics of datasets. All datasets have the type of bipartite and undirected.

Dataset #Nodes #Edges Node Meaning (n1; n2) Edge Meaning

FilmTrust 3579 35,494 (user, film) (1508;2071) rating
NIPS 13,875 1,932,365 (doc, word) (1500;12,375) occurrence

http://konect.cc 
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Environment. We conducted our experiments on a Linux machine with Intel Xeon Gold
6154 (720) @ 3.700 GHz CPUs and 3TB RAM. Our implementation is written in Python.

Parameter Setting. We set the parameters as follows: ε = 0.1, B = 5 for all experiments.
Because FilmTrust has a small set of nodes, k ∈ {60, 70, 80, 90, 100}. Meanwhile, NIPS has
a large set of nodes and edges, so k ∈ {120, 140, 160, 180, 200}. Besides, we do a simple
preprocessing for the edge-weighted of the datasets, which refers to the probability p(v1v2).
For FilmTrust, edge weighted is the ratio of the rated value and the maximum rated value
( rated value

maximum rated value ). While, it is the ratio of the number of the word’s occurrences in the

document and the number of words in the document ( number of the word’s occurrences in the document
number of words in the document )

for NIPS.

5.2. Experimental Results

This section discusses the experimental results to clarify the benefits and drawbacks
of the algorithms through three metrics: number of oracle queries, runtime, and influence.
Two outstanding advantages of our algorithms over CaDRS and SieveStr++ are (1) our
algorithms’ runtime and the number of oracle queries are faster many times than those of CaDRS
and SieveStr++; (2) the influence of our algorithms is often smaller than that of SieveStr++
and CaDRS. However, for some datasets, the influence of StrDRS1 and StrDRS2 can be equal to or
greater than that of SieveStr++ and CaDRS if we suitably set parameters B and k for the dataset.
Figure 1 clearly shows the results achieved.
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Figure 1. The results of the experimental comparison of algorithms on the datasets.

Oracle queries and Runtime. Because most of the execution time of the algorithms is
consumed by the number of queries to compute the function f , the runtime is directly pro-
portional to the number of oracle queries. In detail, for comparing StrDRS1 to SieveStr++,
the number of oracle queries of StrDRS1 is 1.2 to 24.4 times smaller than SieveStr++; and
the runtime of StrDRS1 is 1.1 to 102.5 times faster than SieveStr++. For comparing StrDRS2
to CaDRS, the number of oracle queries of StrDRS2 is 5.1 to 6.5 times smaller than CaDRS;
and the runtime of StrDRS2 is 2.0 to 4.8 times faster than CaDRS. Especially, even if k in-
creases many times, the number of queries and runtime of StrDRS2 only increase very
small compared to the other algorithms. This cause makes it possible for us to mistake
them for constants when looking at the charts. Table 4 clearly shows the variation in the
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number of queries.

Table 4. Statistics of the number of queries.

k StrDRS1 StrDRS2 CaDRS SieveStr++

FilmTrust rating

60 7601 40,895 240,202 183,453
70 8126 40,917 247,335 198,063
80 8582 40,939 252,978 202,716
90 8933 40,957 261,258 217,947

100 9613 40,979 264,730 225,569

NIPS full papers

120 10,934 40,807 206,599 13,595
140 11,040 40,847 209,606 15,106
160 11,108 40,887 215,624 17,690
180 13,313 40,927 218,639 19,362
200 14,446 40,963 221,672 22,958

Influence. Through the analysis of experimental results, the difference in the influence
value of the algorithms is as follows. For the comparison of SieveStr++ and StrDRS1,
the influence of StrDRS1 is 1.1 to 1.2 times smaller than SieveStr++. For the comparison
of CaDRS and StrDRS2, the influence of StrDRS2 is 1.0 to 1.3 times smaller than CaDRS
for FilmTrust dataset. However, for NIPS dataset, the influence of StrDRS2 is 1.4 to 1.7
times greater than CaDRS in this parameters set. Generally, because CaDRS uses a greedy
technique, the influence of this algorithm is always at its best. As k increases, this value
of CaDRS can reach the best values. On the contrary, the remaining three algorithms use
streaming techniques, so it is difficult to achieve the same influence as CaDRS’s. However,
the difference in the influence of streaming and greedy algorithms is not too large. Espe-
cially, this gap will decrease as k increases. Thus, the time benefit of our algorithms is a
significant strength against this disparity in influence.

For the convenience of the readers, we summarize the experimental results in Table 5.

Table 5. Statistical comparison of experimental results.

StrDRS1
vs.
SieveStr++

Oracle queries StrDRS1 is 1.2 to 24.4 times smaller
than SieveStr++

Time StrDRS1 is 1.1 to 102.5 times faster
than SieveStr++

Influence StrDRS1 is 1.1 to 1.2 times smaller
than SieveStr++

StrDRS2
vs.
CaDRS

Oracle queries StrDRS2 is 5.1 to 6.5 times smaller
than CaDRS

Time StrDRS2 is 2.0 to 4.8 times faster than
CaDRS

Influence

For FilmTrust, StrDRS2 is 1.0 to 1.3
times smaller than CaDRS but

StrDRS2 is 1.4 to 1.7 times greater
than CaDRS for NIPS.

6. Conclusions and Future Work

This paper studies the maximization of monotone DR-submodular functions with a
cardinality constraint on the integer lattice. We propose two streaming algorithms that
have determined approximation ratios and significantly reduce query and time complexity
compared to state-of-the-art algorithms. We conducted some experiments to evaluate the
efficiency of our algorithms and novel algorithms for this problem. The results indicate
that our algorithms are highly scalable and outperform the compared algorithms in terms
of both runtime and number of queries, and the influence is slightly smaller.

For our future work, one direction is to study the monotone DR-submodular function
maximization problem under a polymatroid constraint and knapsack constraint. In another
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direction, we consider the maximization of the non-monotone DR-submodular function
under a cardinality constraint.
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