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We explore the forces and conservation laws that govern the motion of a hockey puck that slides

without friction on a smooth, rotating, self-gravitating spheroid. The earth’s oblate spheroidal shape

(apart from small-scale surface features) is determined by balancing the gravitational forces that hold

it together against the centrifugal forces that try to tear it apart. The earth achieves this shape when the

apparent gravitational force on the puck, defined as the vector sum of the gravitational and centrifugal

forces, is perpendicular to the earth’s surface at every point on the surface. Thus, the earth’s spheroidal

deformations neutralize the centrifugal and gravitational forces on the puck, leaving only the Coriolis

force to govern its motion. Motion on the spheroid therefore differs profoundly from motion on a

rotating sphere, for which the centrifugal force plays a key role. Kinetic energy conservation reflects

this difference: On a stably rotating spheroid, the kinetic energy is conserved in the rotating frame,

whereas on a rotating sphere, it is conserved in the inertial frame. We derive these results and

illustrate them using CorioVis software for visualizing the motion of a puck on the earth’s spheroidal

surface. VC 2021 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/10.0004801

I. INTRODUCTION

In 1679, Sir Isaac Newton and Robert Hooke discussed
the possibility that the horizontal deflection of falling objects
could serve as proof of the Earth’s rotation; this possibility
was confirmed in an 1803 measurement that agreed with cal-
culations by Gauss and Laplace.1 In 1835, Gaspard Gustave
Coriolis showed that the total inertial force in a rotating
frame is the sum of two forces, the centrifugal force and a
“deflective force” that is now known as the Coriolis force.1,2

Despite its long history of study, the Coriolis force is a
continuing source of confusion, including errors by Richard
Feynman and Max Born.3–10 The Coriolis deflection can
seem downright mysterious, as anyone who has played catch
with a ball on a merry-go-round can attest.11 Students of
intermediate (upper-division) classical mechanics learn how
to transform Newton’s second law into a uniformly rotating
frame mathematically,12 but they often cannot interpret the
mathematics, appreciate the physical origins of the Coriolis
and centrifugal forces, or relate them to motion as seen by an
observer in the inertial frame.13,14

Understanding of three-dimensional latitude-dependent
inertial forces for motion on a rotating planet can be particu-
larly difficult to achieve,15 despite the importance of these
forces in meteorology,16,17 oceanography,18 ballistics,19 and
sniping.20 Adding to the challenge is the lack of physical
demonstrations of inertial forces for motion on a rotating
sphere or spheroid.15

To explain why the Coriolis force deflects objects to
the right in the northern hemisphere and to the left in the
southern hemisphere, authors often rely on Hadley’s
principle.7,16,21–25 Hadley’s principle is pervasive, because
it correctly predicts the direction of the Coriolis deflection
for northbound and southbound motion. But Hadley’s prin-
ciple accounts for only half of the Coriolis deflection,
includes only one of the two mechanisms responsible for
this deflection, and violates conservation of angular
momentum.3

To understand Hadley’s principle, let us consider the
motion of a puck that is projected directly northward from a
north latitude as seen by an earthbound observer in the rotat-
ing frame (Fig. 1(a)). An inertial observer considers the puck
to have two components of velocity, the northward compo-
nent just discussed and an eastward component that is equal
to the earth’s eastward tangential velocity of rotation at that
latitude (Fig. 1(d)). Hadley’s principle incorrectly treats this
eastward component as constant as the puck moves north,
and explains Coriolis deflections by comparing the local tan-
gential velocity of the earth’s surface, which decreases as the
puck moves north, with this eastward component, assumed
constant.7,21,22 The puck’s eastward velocity therefore out-
strips the earth’s local tangential velocity, and the puck expe-
riences a Coriolis deflection to the right as seen by an
observer in the rotating frame.

The problem is that this eastward component of velocity is
not constant; conservation of axial angular momentum
demands that this component, as measured by an inertial
observer, vary inversely with the distance from the earth’s
rotation axis. As the puck moves north, its distance from the
earth’s axis decreases and its eastward velocity increases.
This increase accounts for the other half of the Coriolis
deflection.

Many authors, some of them apparently unfamiliar with
Hadley’s principle, treat this eastward component of velocity
as constant as an object moves toward a pole along the
earth’s surface,23–25 or as an object drops vertically.6,29–31

Such treatments violate conservation of axial angular
momentum. The physics and meteorology literatures are rid-
dled with such errors.3,5,7,8 For both horizontal and vertical
motion, conservation of axial angular momentum is needed
to correctly account for Coriolis deflections.32–34

McIntyre15,35 considers the motion of a puck on the sur-
face of a uniform, spherical, frictionless, rotating earth, and
he correctly applies the conservation of angular momentum.
As he explains, such motion is eminently simple as viewed
by an observer in the inertial frame; the puck executes
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uniform circular motion in a great circle around the center of
the rotating sphere, visiting both the northern and southern
hemispheres equally (Fig. 1(e)). As seen by an observer in
the rotating frame, the puck’s motion is complicated by two
inertial forces, the Coriolis force and the centrifugal force
(Fig. 1(b)).

The earth is not spherical, and motion on its surface differs
profoundly from motion on a sphere. To see why, consider
the motion of a puck that is released from rest on the surface
of a frictionless spherical earth by an earthbound observer in
the rotating frame. As seen by this observer, the puck experi-
ences an unbalanced centrifugal force that drives it toward
the equator. As viewed by an inertial observer, this puck has
an initial eastward velocity that matches the local tangential
velocity of the surface of the earth. This velocity causes the
puck to drift toward the equator as the puck begins to exe-
cute a great circle around the center of the earth.

Pucks that are released from rest by earthbound observers
on frictionless horizontal surfaces do not drift toward the
equator, but instead remain at rest because the apparent grav-
itational force, defined as the vector sum of the gravitational
and centrifugal forces, is everywhere perpendicular to the
earth’s spheroidal surface (ignoring small-scale surface

features).3 Thus, the earth’s spheroidal deformations neutral-
ize the centrifugal and gravitational forces on objects on its
surface, and a puck that is released from rest in the rotating
frame remains at rest. The earth’s stable spheroidal shape is
given by balancing the gravitational forces that hold it
together against the centrifugal forces that try to tear it
apart.36

Now let us consider the motion of a puck on the friction-
less surface of this stably rotating spheroid. As seen by a
rotating observer, the Coriolis force alone governs the
motion of the puck, which executes “inertial oscillations”
that confine it to the vicinity of its initial latitude
(Fig. 1(c)).14,37–40 Inertial oscillations have been observed in
ocean currents1 and in the atmosphere.41,42 Unlike the great
circles executed on the sphere (Fig. 1(e)), these oscillations
do not generally visit both hemispheres. Clearly, motion on a
stably rotating spheroid (Figs. 1(c) and 1(f)) is vastly differ-
ent from motion on a sphere (Figs. 1(b) and 1(e)).

How can the motions on spherical and spheroidal earths
be so different when the earth is so very nearly spherical?
The earth’s spheroidal deformations are small enough to be
difficult to see in photographs and scale drawings, yet they
are crucial to the understanding of motion on its surface. In

Fig. 1. CorioVis snapshots of one cycle of the periodic motion of a puck that slides without friction on a sphere and a stably rotating spheroid whose volumes,

angular speeds of rotation, and flattening (for the spheroid) match the earth’s. As viewed in the rotating frame, the puck is projected northward from latitude

40� at 50 m/s, a speed that is comparable to the fastest measured ice hockey slapshot (a) (Refs. 26 and 27). As viewed in the inertial frame, the puck’s initial

velocity is 360 m/s toward the northeast, including a large eastward component due to the earth’s rotation (d). On the sphere (CorioVis (Ref. 28) Demo 1), the

motion resulting from these initial conditions has period 31 h and consists of zigzag motion at a variable speed in the rotating frame (b) and motion on a great

circle at a constant speed of 360 m/s in the inertial frame (e). On the spheroid (CorioVis (Ref. 28) Demo 2), the motion resulting from these initial conditions

has period 19 h and consists of clockwise inertial oscillations at a constant speed of 50 m/s in the rotating frame (c) and incomplete orbits at a variable speed in

the inertial frame (f). Blue arrows that point eastward and northward represent velocity components in these directions, and red arrows that point in the direc-

tion of motion represent velocity vectors.
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the geodesy literature, the relative difference between the
equatorial radius a and the polar radius b of the earth is
called the flattening,

f ¼ a� b

a
¼ 0:003353; (1)

with the numerical value corresponding to the reference
spheroid that is used in terrestrial cartography, geodesy, sat-
ellite navigation, and the global positioning system
(GPS).43–45 This reference flattening is small because of the
earth’s long sidereal period of rotation43–46

s ¼ 23:93 h: (2)

The study of the effect of rotation on flattening dates back to
Sir Isaac Newton, who proposed the value f ¼ 1=230
¼ 0:0043 in his Principia.47 The outlines of the earth’s sur-
face in Figs. 1(c) and 1(f) are ellipses with flattening given in
Eq. (1), whereas the outlines in Figs. 1(b) and 1(e) are
circles. The 0.3% difference between these outlines is virtu-
ally impossible to see, being comparable to the line width of
these figures.

The earth’s small flattening belies its crucial role for
motion on the earth’s surface, and encourages the conclusion
that such motion can be well approximated by motion on a
rotating sphere. This conclusion is false. Why? Because the
centrifugal force plays a role for motion on a rotating sphere
and does not play a role for motion on a stably rotating
spheroid, whose spheroidal deformations neutralize the cen-
trifugal and gravitational forces. The Coriolis force applies
for both shapes, and its influence for motion on the earth’s
surface can be well approximated by treating the earth as a
sphere. It is the unbalanced influence of the centrifugal force
for motion on a rotating sphere that is responsible for the
vast differences between this motion and motion on stably
rotating spheroid. Kinetic energy conservation reflects this
influence: On a stably rotating spheroid, the kinetic energy is
conserved in the rotating frame, whereas on a rotating
sphere, it is conserved in the inertial frame (Sec. VI).

To illustrate, we consider the forces on a 0.16-kg puck just
after it is launched northward from latitude 40� at 50 m/s in
the rotating frame (Fig. 1). For a rotating sphere, the gravita-
tional and normal forces are vertical and therefore play no
role in the puck’s motion, which is governed in the rotating
frame by a 7:5� 10�4 N eastward Coriolis force and a 2:7
� 10�3 N southward component of the centrifugal force,
which dominates the motion (Fig. 1(b)).48 For a stably rotat-
ing spheroid, the gravitational force is no longer vertical and
the puck experiences the 7:5� 10�4 N eastward Coriolis
force, the 2:7� 10�3 N southward component of the centrif-
ugal force, and a 2:7� 10�3 N northward component of the
gravitational force, which neutralizes the centrifugal force
and leaves only the Coriolis force to govern the motion (Fig.
1(c)).48 That the horizontal components of the gravitational
and centrifugal forces cancel is no accident; it is an outcome
of the balance achieved between the gravitational and cen-
trifugal forces on a stably rotating spheroid. The large cen-
trifugal force is unbalanced for the rotating sphere and is
responsible for the vast differences between the motions on
the two shapes.

Does the motion of a puck on a stably rotating spheroid
replicate the motion of a puck on a non-rotating sphere in
the limit of small angular speeds of rotation and small

flattening? Yes, as long as the angular speed and the flatten-
ing obey a relationship (Sec. IV) for a stably rotating planet
in hydrostatic equilibrium. This relationship predicts that a
non-rotating planet is spherical. Consider a sequence of plan-
ets starting with the earth, with decreasing angular speeds
and decreasing flattening that obey this relationship. At every
stage in this sequence, the spheroidal deformations neutralize
the centrifugal and gravitational forces, and motion on the
planet’s surface is governed by the Coriolis force. Being pro-
portional to the earth’s angular speed of rotation, the Coriolis
force weakens with decreasing angular speed and vanishes in
the limit of a non-rotating spherical planet, for which the
inertial and rotating frames merge. For the 50 m/s northward
launch of Fig. 1(c), as the earth’s angular speed and flatten-
ing decrease, the clockwise inertial oscillations increase in
amplitude until, for a non-rotating spherical planet, these
oscillations are replaced by motion on a great circle that
passes through both poles. Such great circles characterize
motion on a sphere.15

Thus, a key to understanding why motion on a stably
rotating spheroid differs fundamentally from motion on a
rotating sphere is the realization that a rotating sphere is not
in hydrostatic equilibrium, whereas a non-rotating sphere is
in equilibrium.

Previous studies of motion on the spheroidal earth apply
only for small flattening and assume that the earth rotates at
its stable angular speed.38,49–53 We call this the weakly sphe-
roidal approximation.54 To assist students in visualizing the
effects of spheroidal deformations, we consider arbitrary flat-
tening and arbitrary angular speeds of rotation.

Early in its history, the earth had a larger angular speed of
rotation and therefore a larger flattening. Computer models
indicate that following the astronomical impact that is
thought to have created the moon, the earth’s period was
about 2 h.55 This period has increased with time because
lunar tidal forces convert spin angular momentum of the
earth into orbital angular momentum of the moon.13,56

Faster-rotating planets have larger flattening than the
earth. Haumea, discovered in 2004, is the third-largest dwarf
planet in the solar system after Eris and Pluto.57,58 It has flat-
tening f � 0:5 and rotation period s ¼ 3:9 h, the smallest of
any known body in the solar system larger than 100 km.59–61

Less extreme examples include five trans-Neptunian objects
with rotation periods between 6 and 13 h.62

The purpose of this paper is to demonstrate the importance
of the earth’s spheroidal deformations for the motion of a
puck on its surface, assumed smooth and frictionless. We
accomplish this by discussing the applicable forces and con-
servation laws, illustrated with puck trajectories on spherical
and spheroidal earths. Our approach is accessible to students
of introductory physics and intermediate classical
mechanics.

These illustrations rely on CorioVis, our feature-rich web-
based interactive visualization software that enables students
to explore the motion of a puck on an earth with arbitrary
spheroidal eccentricity and arbitrary angular speed of rota-
tion, from both the inertial and rotating frames of refer-
ence.28,54 We offer this software freely to the physics and
earth science communities to improve understanding of
motion on the earth’s surface.

Contributions of this paper include: (a) general treatment
of motion on the spheroidal earth, (b) discussion of the role
of the centrifugal force in shaping the earth and in motion on
its surface, (c) consideration of conservation principles for
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planets of arbitrary eccentricity that rotate at, above, and
below their stable angular speeds, (d) proofs that kinetic
energy is conserved in the inertial frame on a sphere and
conserved in the rotating frame on a stably rotating spheroid,
and (e) CorioVis illustrations that demonstrate the difference
between motion on spherical and spheroidal earths.

The remainder of this paper is organized as follows: We
review the geodetic coordinates for motion on a spheroid
(Sec. II), express the Coriolis and centrifugal forces using
these coordinates (Sec. III), discuss the role of the apparent
gravitational force in shaping the earth (Sec. IV), prove that
the axial angular momentum is conserved in the inertial
frame (Sec. V), consider the conservation of kinetic energy
in the inertial and rotating frames (Sec. VI), discuss puck tra-
jectories on spherical and spheroidal earths (Sec. VII), and
present brief conclusions (Sec. VIII) and acknowledgments.

See the supplementary material48 for step-by-step details
of mathematical derivations and numerical calculations in
this manuscript. See also the video abstract of this manu-
script.63 Elsewhere, we derive coordinate transformations
and geodetic unit vectors, model the stable angular speed of
earth-like planets of arbitrary eccentricity, and present
details of the development of CorioVis software.54

II. COORDINATES

We use geodetic coordinates ðh;/Þ to describe the motion
of a puck on the earth’s spheroidal surface, with the geodetic
latitude h defined as the angle between the normal direction
and the equatorial plane, with h measured northward from
the equator. The longitude / is measured eastward from the
prime meridian.45,64 The equatorial radius a is assumed to be
independent of /, and the shape is an ellipsoid of revolution,
called a spheroid. The geodetic latitude h is more convenient
mathematically than the geocentric latitude h0, defined as the
angle between the line to the earth’s center and the equatorial
plane (Fig. 2). When used without qualification, the term
“latitude” refers to the geodetic latitude h, which is used for
GPS coordinates and cartography.65

We now summarize a coordinate transformation and unit
vectors that are derived elsewhere.54 Expressed using
Cartesian unit vectors x̂; ŷ, and ẑ that rotate with the earth,
the position of the puck obeys

r ¼ q cos / x̂ þ q sin / ŷ þ zẑ; (3)

where

q ¼ a cos hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin2h
p (4)

is the puck’s distance from the rotation axis,

z ¼ a 1� e2ð Þsin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin2h
p (5)

is its position measured northward from the equatorial plane,
and

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2
p

a
(6)

is the spheroidal eccentricity. Equation (1) yields a relation-
ship between this eccentricity and the flattening

e2 ¼ 1� ð1� f Þ2: (7)

For spheres with f ¼ e ¼ 0, geodetic coordinates reduce to
spherical coordinates.

As seen by an observer in the rotating frame, the unit vec-
tors x̂; ŷ, and ẑ are stationary and point toward specific,
unchanging geographical locations on the earth’s surface,
with x̂ marking the intersection of the prime meridian and
the equator, located off the west coast of Africa, ŷ marking
the / ¼ 90� east latitude position on the equator, located in
the Indian Ocean, and ẑ marking the north pole and defining
the earth’s rotation axis.

The unit vector

q̂ ¼ cos / x̂ þ sin / ŷ (8a)

points from the rotation axis toward the puck and enables us
to define convenient local unit vectors

/̂ ¼ �sin / x̂ þ cos / ŷ; (8b)

ĥ ¼ �sin h q̂ þ cos h ẑ; (8c)

Fig. 2. Geodetic coordinates used to specify points on the surface of the

earth, treated as an spheroid with equatorial radius a and polar radius b. As

viewed by an observer in the rotating frame, the unit vectors x̂; ŷ, and ẑ are

stationary, with x̂ and ŷ marking specific geographical points on the equator

and ẑ marking the north pole. Shown for a point on the surface are its posi-

tion vector r, its geodetic latitude h, its geocentric latitude h0, its longitude

/, and its distance q from the axis of rotation, with orthogonal unit vectors

/̂; ĥ, and n̂, respectively, pointing east, north, and up, and with q̂ pointing

away from the axis of rotation. Frame (b) shows the ðq; zÞ plane of the spher-

oid, with /̂ directed into the page.
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n̂ ¼ cos h q̂ þ sin h ẑ: (8d)

These three vectors form a right-handed local geodetic coor-
dinate system and, respectively, point horizontally east, hori-
zontally north, and vertically up (Fig. 2).

III. DYNAMICS

In this section, we transform Newton’s second law into
the rotating frame to show the dynamical origins of the
Coriolis and centrifugal forces,12 and we express these forces
using geodetic coordinates.

As seen by an observer in an inertial frame S0, looking
down from space upon the rotating spheroidal earth, a puck
of mass m that slides without friction along its surface satis-
fies Newton’s second law,

m
d2r

dt2

� �
S0

¼ Fg þ Fn; (9)

where

Fg ¼ mg (10)

is the gravitational force on the puck, g is the gravitational
acceleration,

Fn ¼ �Fnn̂ (11)

is the normal force on the puck, r is its position, and
ðd2r=dt2ÞS0

is its acceleration as seen by an observer in the
inertial frame.

We also consider the puck’s motion as seen by an observer
in a non-inertial frame S that rotates relative to the inertial
frame with the earth’s angular velocity

X ¼ Xẑ; (12)

where the angular speed

X ¼ 2p
s

(13)

follows from the earth’s sidereal period s of Eq. (2).
To transform Eq. (9) into the rotating frame, we need12

dQ

dt

� �
S0

¼ dQ

dt

� �
S

þX�Q; (14)

where ðdQ=dtÞS0
and ðdQ=dtÞS are the time rates of change

of a vector Q as observed in the inertial and rotating frames.
Setting Q ¼ r in Eq. (14) gives a relationship between the
velocities measured by the two observers

dr

dt

� �
S0

¼ dr

dt

� �
S

þX� r; (15)

where

X� r ¼ Xq/̂ (16)

is the eastward tangential velocity of the earth’s rotation,
obtained from Eqs. (3), (8b), and (12).48

Equations (3)–(5) and (8) give the puck velocity in the
rotating frame (in which x̂; ŷ, and ẑ are stationary)48

dr

dt

� �
S

¼ v/ /̂ þ vh ĥ; (17)

where

v/ ¼ q
d/
dt

� �
S

; (18a)

vh ¼ R
dh
dt

� �
S

(18b)

are the associated eastward and northward components of
velocity, and

R ¼ 1� e2ð Þa
1� e2 sin2hð Þ3=2

(19)

is the meridional radius of curvature at latitude h, measured
along a line of longitude.66

Inserting Eqs. (16) and (17) into Eq. (15) gives the veloc-
ity in the inertial frame

dr

dt

� �
S0

¼ Xqþ v/ð Þ/̂ þ vhĥ; (20)

which includes the eastward tangential velocity Xq/̂ of the
earth’s rotation.

Differentiating Eq. (15) and applying Eq. (14) give a rela-
tionship between the accelerations measured by observers in
the two frames

d2r

dt2

� �
S0

¼ d

dt

� �
S0

dr

dt

� �
S

þX� r

" #
(21a)

¼ d

dt

� �
S

þX�
" #

dr

dt

� �
S

þX� r

" #
(21b)

¼ d2r

dt2

� �
S
þ 2X� dr

dt

� �
S

þX� ðX� rÞ:

(21c)

Inserting Eq. (21c) into Eq. (9) gives a modified form of
Newton’s second law that applies in the rotating frame

m
d2r

dt2

� �
S
¼ Fg þ Fn þ Fcor þ Fcen; (22)

where the Coriolis force

Fcor ¼ �2mX� dr

dt

� �
S

(23)

and the centrifugal force

Fcen ¼ �mX� ðX� rÞ (24)

are “inertial” forces that apply only in the rotating frame.
These inertial forces augment the normal and gravitational
forces that also apply in the inertial frame.
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The Coriolis force is perpendicular to the plane formed by
the angular velocity X of the earth and the velocity ðdr=dtÞS
of the puck as seen by an observer in the rotating frame, and
applies only to objects that move relative to this observer.
This force can be separated into horizontal and vertical com-
ponents by combining Eqs. (8c) and (8d) to give48

q̂ ¼ �sin h ĥ þ cos h n̂ (25)

and by invoking Eqs. (8), (12), (17), and (23),48

Fcor ¼ 2mX vh sin h /̂ þ v/ q̂
� �

(26a)

¼ 2mX sin h vh/̂ � v/ĥ
� �

þ 2mXv/ cos h n̂ (26b)

¼ 2mX sin h
dr

dt

� �
S

� n̂ þ 2mXv/ cos h n̂: (26c)

The horizontal component of the Coriolis force (tangent to
the earth’s surface) is given by the first term on the right side
of Eq. (26c). This component vanishes at the equator ðh ¼ 0Þ
and increases in magnitude with increasing jhj. This compo-
nent is perpendicular to the velocity, acting to the right in the
northern hemisphere ðh > 0Þ and to the left in the southern
hemisphere ðh < 0Þ. The vertical component of the Coriolis
force (perpendicular to the earth’s surface) is given by the
second term on the right side of Eq. (26c), and is strongest
near the equator.

As discussed in Sec. I, for northward motion in the rotat-
ing frame, Hadley’s principle accounts for only half of the
Coriolis deflection for a spherical earth.3 To show this for
the spheroidal earth, we consider a puck of mass m that is
launched directly northward from a north latitude h0 with
velocity [Eq. (17)]

dr

dt

� �
S

¼ v0ĥ; (27)

as seen by an observer in the rotating frame. As seen by an
observer in the inertial frame, the puck’s initial velocity has
two components, the northward component v0 and an east-
ward component Xq0 that matches the earth’s local tangen-
tial velocity, where q0 is the initial distance from the earth’s
rotation axis given by inserting h ¼ h0 into Eq. (4).

Hadley’s principle assumes the puck’s eastward velocity
Xq0 to be constant as it moves northward, as seen by an
observer in the inertial frame, in violation of conservation of
angular momentum. In the rotating frame, the associated
time-dependent eastward velocity is the difference

v/ ¼ Xq0 � Xq (28)

between the puck’s eastward velocity Xq0 in the inertial
frame, assumed constant, and the earth’s local tangential
velocity Xq, which decreases as the puck moves northward.
As seen by an observer in the rotating frame, the associated
eastward component of force is

F/ ¼ m
dv/

dt

� �
S

(29a)

¼ m
dv/

dh
dh
dt

� �
S

: (29b)

Applying Eqs. (4), (18b), (19), and (28) and evaluating Eq.
(29b) at the initial time give48

F/0 ¼ mXv0 sin h0: (30)

This is half of the associated initial eastward Coriolis force
obtained from Eq. (26b),

/̂ � Fcor0 ¼ 2mXv0 sin h0: (31)

Thus, Hadley’s principle accounts for only half of the
Coriolis deflection on a spheroid.

This result can be traced to the transformation of
Newton’s second law into the rotating frame. For a north-
ward launch in the rotating frame given in Eq. (27), the ini-
tial eastward component of velocity in the inertial frame is
given by the term X� r in Eq. (15). Hadley’s principle
ignores the time dependence of this component, which
amounts to ignoring the outer product of the expansion of
Eq. (21b). The factors of 2 in Eqs. (21c) and (23) accordingly
disappear, implying that Hadley’s principle accounts for
only half of the Coriolis deflection.

The centrifugal force applies in the rotating frame for both
stationary and moving objects. Equations (8a), (8b), (12),
(16), and (24) show that this force is directed away from the
earth’s rotation axis, according to48

Fcen ¼ mX2qq̂: (32)

Inserting Eq. (25) into Eq. (32) resolves the centrifugal force
into horizontal and vertical components,

Fcen ¼ �mX2q sin h ĥ þ mX2q cos h n̂: (33)

Thus, except at the poles (q¼ 0) and the equator (h¼ 0), the
horizontal component of the centrifugal force drives the
puck toward the equator.

IV. APPARENT GRAVITATIONAL FORCE

The gravitational and centrifugal forces do not depend on
velocity, so it is natural to consider their vector sum

F0g ¼ Fg þ Fcen; (34)

called the apparent gravitational force. This force plays a
key role in the formation of planets. Planets can be treated as
rotating self-gravitating fluid bodies that find their stable
equilibrium shapes by balancing the gravitational forces that
hold them together against the centrifugal forces that try to
tear them apart.36 For the hydrostatic equilibrium thus
achieved, F0g is perpendicular to the surface at every point
on the surface.3 Otherwise, the component of this force that
is tangential to the surface will redistribute the mass of the
body until this condition is achieved, in the same way that
charges redistribute on the surface of a conductor in response
to an applied electric field until the electric field just outside
of the surface is normal to the surface.

Stable hydrostatic equilibrium establishes a relationship
between the stable angular speed X ¼ ~X of a rotating self-
gravitating fluid body and its eccentricity e. Elsewhere,54 we
model earth-like planets of arbitrary eccentricity e as MacLaurin
spheroids of uniform mass density qm ¼ 7097 kg/m3 and stable
angular speed ~XðeÞ given by67–71
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~X
2ðeÞ

2pGqm

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

e3
3� 2e2ð Þ sin�1e� 3

e2
1� e2ð Þ; (35)

where G is the universal gravitational constant. This model
is consistent with the values

e ¼ 0:08182; (36a)

~XðeÞ ¼ 7:292� 10�5rad=s (36b)

obtained from Eqs. (1), (2), (7), and (13) for the earth’s refer-
ence spheroid.43

We generally consider stably rotating planets with angular
speeds X ¼ ~XðeÞ that coincide with their equilibrium eccen-
tricities e. But we also find it helpful to consider X 6¼ ~XðeÞ.
For this purpose, we freeze the earth into a rigid undeform-
able body of eccentricity e and consider the consequences of
changing its angular speed.

On a stably rotating planet, the northward component of
the apparent gravitational force must vanish. Accordingly,
Eq. (34) gives

ĥ � ~F0g ¼ ĥ � Fg þ ~Fcen

� �
¼ 0; (37)

where ~Fcen and ~F
0
g are the centrifugal and apparent gravita-

tional forces on the stably rotating planet. (The gravitational
force Fg does not depend on the rotation rate.) Combining
Eq. (37) with Eqs. (10) and (33) for a stably rotating planet
determines the northward component of the gravitational
acceleration48

ĥ � g ¼ ~X
2
q sin h; (38)

which vanishes at the poles and the equator. Accordingly,
the gravitational acceleration can be written as

g ¼ �gon̂ þ ~X
2
q sin h ĥ; (39)

where the first term on the right side points downward (per-
pendicular to the earth’s surface), and the second term points
horizontally toward the nearest pole. The magnitude go of
the downward gravitational acceleration plays no role in the
frictionless motion of a puck on the earth’s surface, and we
make no attempt to calculate it.

Inserting Eqs. (10), (33), and (39) into Eq. (34) gives the
apparent gravitational force on a puck that moves on the sur-
face of a planet that rotates at an arbitrary angular speed X,48

F0g ¼ m �go þ X2q cos h
� �

n̂ þ mq sin hð~X2 � X2Þĥ:
(40)

This force is perpendicular to the surface for a stably rotating
planet with X ¼ ~XðeÞ.

Let us consider a puck that is released from rest on the
smooth frictionless surface of the rotating earth, as seen by
an observer in the rotating frame, with the puck released any-
where except the equator or the poles. Because the puck’s
initial velocity is zero, the initial Coriolis force on the puck
is zero, and it will experience a net force given by [Eqs. (22)
and (34)]

m
d2r

dt2

� �
S
¼ Fg0 þ Fn; (41)

with F0g given in Eq. (40) and Fn given in Eq. (11). If the
earth rotates at its stable angular speed X ¼ ~XðeÞ, the appar-
ent gravitational force F0g is perpendicular to the earth’s sur-
face at every point on this surface, and the puck remains at
rest. If X > ~XðeÞ; F0g has a horizontal component that drives
the puck toward the equator. If X < ~XðeÞ; F0g has a horizon-
tal component that drives the puck toward the nearest pole.
Thus, in order for a puck to remain at rest anywhere on the
earth’s surface, the earth must rotate at its stable angular
speed.

As seen by an observer in the inertial frame, Fg and Fn are
the only two forces acting on a puck that slides without fric-
tion on its surface. On a spherical earth with e¼ 0, both
forces are perpendicular to this surface and neither does any
work on the puck (Fig. 3(a)), so the puck moves in uniform
circular motion in a great circle around the earth’s center.15

The earth spins underneath the puck but has no effect what-
soever on its motion.

A puck that is released from rest by an observer in the
rotating frame on this spherical earth experiences no initial
Coriolis force, but does experience a centrifugal force that
drives it toward the equator (Fig. 3(b)). This force tilts the
apparent gravitational force away from the normal direction
(Fig. 3(c)) and causes the puck to oscillate around the equa-
tor. As seen by an observer in the inertial frame, the puck
has initial eastward velocity that matches the earth’s local
tangential velocity, and executes uniform circular motion in
a great circle.

As seen by an observer in the rotating frame, a puck that
is released from rest on the frictionless surface of a stably
rotating spheroidal planet remains at rest. This is because the
gravitational and centrifugal forces conspire to distribute the
mass in such a way that the apparent gravitational force is
perpendicular to its spheroidal surface (Fig. 3(f)). As seen by
this rotating observer, the motion of a puck on the surface of
such a planet is governed solely by the Coriolis force, which
does no work on the puck because it is always perpendicular
to its motion (Fig. 3(f)). The Coriolis force vanishes for a
puck that is released from rest on this surface in the rotating
frame, so this puck remains at rest.

V. ANGULAR MOMENTUM

In this section, we show that the axial angular momentum
of a puck sliding along the frictionless surface of a smooth
spheroidal earth is conserved in the inertial frame of refer-
ence, whether or not the earth rotates at its stable angular
speed. This principle is crucial to the understanding of
motion on the earth’s surface, yet many treatments of such
motion violate it (Sec. I).

In the inertial frame, the angular momentum of a particle
of mass m is defined as

Lð ÞS0
¼ mr� dr

dt

� �
S0

: (42)

The axial ðẑÞ component of this angular momentum is

Lzð ÞS0
¼ mẑ � r� dr

dt

� �
S0

" #
: (43)

As seen by an inertial observer, its time rate of change is48
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d

dt
Lzð ÞS0

¼ mẑ � r� d2r

dt2

� �
S0

" #
(44a)

¼ m
d2r

dt2

� �
S0

� ẑ � rð Þ (44b)

¼ Fg þ Fnð Þ � q/̂; (44c)

where we have permuted the triple product in the second
equality and we have used Eqs. (3), (8b), and (9) in the third.
According to Eqs. (10), (11), and (39), Fg and Fn are in the
(q, z) plane and are therefore perpendicular to /̂. Hence both
scalar products vanish in Eq. (44c), and48

d

dt
Lzð ÞS0

¼ 0: (45)

Thus, axial angular momentum is conserved in the inertial
frame for motion on a frictionless spheroid, regardless of
whether its angular speed of rotation matches its stable
angular speed. This result follows from Newton’s second
law for rotations [Eqs. (44)] and the fact that the torques
exerted on the puck by the gravitational and normal forces
have no components in the axial direction. The only require-
ment for this conservation principle is that the earth’s mass
be distributed symmetrically throughout the volume of a
spheroid, with the normal and gravitational forces perpendic-
ular to the eastward direction everywhere on its surface.

Permuting the triple product in Eq. (43) and invoking Eqs.
(3), (8a), and (20) yield a convenient form for this conserved
quantity48

Lzð ÞS0
¼ mq Xqþ v/ð Þ ¼ constant; (46)

where the quantity in parentheses is the eastward component
of the puck velocity as seen by an observer in the inertial
frame [Eq. (20)]. This eastward component is not constant,
as assumed in Hadley’s principle, but varies inversely with
the distance q from the earth’s rotation axis.

VI. KINETIC ENERGY

In this section, we consider the kinetic energy of a puck
sliding on the frictionless surface of the spheroidal earth, as
seen by an observer in the rotating frame. This kinetic energy
is given by

Tð ÞS ¼
1

2
m

dr

dt

� �2

S

; (47)

and its time rate of change by

d

dt
ðTÞS ¼ m

dr

dt

� �
S

� d2r

dt2

� �
S

(48a)

¼ Fg0 þ Fn þ Fcorð Þ �
dr

dt

� �
S

; (48b)

Fig. 3. Free-body diagrams showing the forces acting on a puck that slides without friction on a rotating spherical earth (a)–(c) and a stably rotating spheroidal

earth ((d)–(f), with exaggerated flattening), as seen by observers in the inertial (a) and (d) and rotating (b), (c), (e), and (f) frames. Shown are the gravitational

and normal forces Fg and Fn that apply in both frames; the Coriolis and centrifugal forces Fcor and Fcen that apply only in the rotating frame; and the apparent

gravitational force, F0g ¼ Fg þ Fcen, which replaces Fg and Fcen in panels (c) and (f). The gravitational force Fg is normal to the surface of the sphere (a) and

(b) and the apparent gravitational force F0g is normal to the surface of the stably rotating spheroid (f). The dotted line is normal to the spheroid. The Coriolis

force is zero for a stationary puck and is shown in a direction that corresponds to westward motion of the puck (directed out of the plane of the figure).
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where we have used Eqs. (22) and (34).
We now consider the three scalar products on the right

side of Eq. (48b). The first can be rewritten using Eqs. (17)
and (40),48

Fg0 �
dr

dt

� �
S

¼ mð~X2 � X2Þqvh sin h: (49)

The second vanishes through Eqs. (11) and (17), because the
vectors are perpendicular48

Fn �
dr

dt

� �
S

¼ 0: (50)

The third satisfies48

Fcor �
dr

dt

� �
S

¼ �2m X� dr

dt

� �
S

" #
� dr

dt

� �
S

(51a)

¼ �2m
dr

dt

� �
S

� dr

dt

� �
S

" #
�X (51b)

¼ 0; (51c)

where we have inserted Eq. (23), and we have permuted the
triple product.

Combining these results with Eq. (48b) gives the time rate
of change of the kinetic energy of a puck that moves without
friction on the surface of a spheroidal earth, as seen by an
observer in the rotating frame

d

dt
ðTÞS ¼ mð~X2 � X2Þqvh sin h: (52)

Consequently, for spheroidal earths that rotate at the stable
angular speed X ¼ ~X, the puck’s kinetic energy is conserved
in the rotating frame. This result follows from the work-
energy theorem written in the rotating frame [Eq. (48b)]: At
the stable angular speed, the apparent gravitational force, the
normal force, and the Coriolis force are all perpendicular to
the puck’s velocity, hence none of these forces does work on
the puck, and its kinetic energy is conserved. Equations (17)
and (47) allow us to write this conserved quantity as48

Tð ÞS ¼
1

2
m v2

/ þ v2
h

� �
: (53)

In summary, as viewed by an observer in the rotating frame,
four forces act on a puck that slides without friction on the
surface of a rotating planet: The gravitational force, the nor-
mal force, the Coriolis force, and the centrifugal force. If the
planet is perfectly spheroidal and is rotating at its stable angu-
lar speed, then the vector sum of the gravitational and centrif-
ugal forces, called the apparent gravitational force, is
perpendicular to the planet’s surface. Defining the apparent
gravitational force reduces the number of forces acting on the
puck to three: The apparent gravitational force, the normal
force, and the Coriolis force. The apparent gravitational force
and the normal force do no work on the puck, and do not
change its speed, because they are directed perpendicular to
its velocity. These forces do not deflect the puck, because they
are directed perpendicular to the planet’s surface, on which
the puck is constrained to move. The Coriolis force does no

work on the puck, and does not change its speed, because this
force is directed perpendicular to the puck’s velocity. But the
horizontal component of the Coriolis force does deflect the
puck. The gravitational force and the centrifugal force each do
work on the puck as it moves about on the earth’s surface, but
the work done by the one exactly cancels the work done by
the other, and the vector sum of these forces plays no role in
the motion of the puck.

A similar argument shows that kinetic energy is conserved
in the inertial frame for motion on a frictionless rotating
spherical earth, regardless of its angular speed. The corre-
sponding conserved quantity48

Tð ÞS0
¼ 1

2
m Xqþ v/ð Þ2 þ v2

h

h i
(54)

involves the square of the velocity in the inertial frame,
given in Eq. (20). Evaluating the time derivative of this
quantity in the inertial frame and applying Newton’s second
law in the inertial frame [Eq. (9)] yields two scalar products
with the puck velocity in the inertial frame, both of which
are zero because the normal and gravitational forces are per-
pendicular to the surface, hence this energy is conserved. In
contrast with Eq. (53), Eq. (54) includes the earth’s large tan-
gential speed Xq.

The kinetic energy in the inertial frame must be con-
served for frictionless motion on a spherical earth. This is
because regardless of the initial position of the puck,
regardless of the initial horizontal velocity of the puck (as
long as it’s not large enough to send the puck into orbit),
and regardless of the angular speed of rotation of the earth,
the puck executes uniform circular motion in great circles
around the center of the earth as seen by an inertial
observer, and the puck’s kinetic energy in the inertial frame
is therefore conserved.

This result can be confirmed using Eqs. (53) and (54),

Tð ÞS0
¼ Tð ÞS þ

m

2
X2q2 þ 2Xqv/

� �
; (55)

taking the time derivative of this result

d

dt
ðTÞS0

¼ d

dt
ðTÞS þ

m

2

d

dt
X2q2 þ 2Xqv/

� �
; (56)

inserting Eq. (52), setting e ¼ ~X ¼ 0, and comparing with
the time derivative of Eq. (46) with e¼ 0, giving48

d

dt
ðTÞS0

¼ X
d

dt
Lzð ÞS0

¼ 0: (57)

Because ðLzÞS0
is a constant of the motion, ðTÞS0

is a constant
of the motion, and the kinetic energy of a puck on the surface
of a spherical earth is conserved in the inertial frame, regard-
less of the earth’s angular speed.

This confirmation emphasizes the generality of Eqs. (46),
(52), and (53), which govern motion on the frictionless surfa-
ces of both spheroidal and spherical earths, whether or not
they rotate at their stable angular speeds. These equations
are used for our CorioVis software28 because they reduce the
system of coupled second-order differential equations result-
ing from Newton’s second law to a system of coupled first-
order differential equations, which are simpler to solve.
CorioVis software is client-side and written in JAVASCRIPT, so
it is available publicly for inspection.28 Details of CorioVis
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design, implementation, and validation are discussed
elsewhere.54

VII. TRAJECTORIES

In this section, we use CorioVis visualization software to
illustrate the importance of the earth’s spheroidal deforma-
tions for motion on its surface,28,54 for two sets of initial con-
ditions. For illustrations on the spheroidal earth, we use
flattening given in Eq. (1). For all illustrations, we use the
earth’s sidereal period of rotation given in Eq. (2) and the
earth’s reference equatorial radius of43–45

a ¼ 6378:137 km: (58)

A. Launch from the northern hemisphere

Figure 1 describes the motion of a puck launched off the
coast of Portugal at latitude h ¼ 40� and longitude
/ ¼ �10�, with initial northward velocity of magnitude
50 m/s as seen by an observer in the rotating frame
(Fig. 1(a)). In the inertial frame, the puck’s initial velocity
includes a 356 m/s eastward component that matches the
earth’s local tangential velocity, giving the puck an initial
velocity of 359 m/s toward the northeast (Fig. 1(d)). We
now consider the subsequent motion of the puck on spheri-
cal and spheroidal earths, as seen in CorioVis28 Demos 1
and 2.

Figure 1(b) shows the first 31-h cycle of motion of the
puck on a spherical earth, as seen by an observer in the rotat-
ing frame. The puck travels from its initial latitude to its
northernmost latitude of h ¼ 40:7�, proceeds to its southern-
most latitude of h ¼ �40:7

�
in Argentina, and completes its

first cycle in western United States, 9000 km to the west of
its initial position. The centrifugal force drives the puck
toward the equator, producing a maximum puck speed of
303 m/s at equatorial crossings and a minimum speed of 7 m/s
at the latitude extremes. The Coriolis force produces deflec-
tions to the right in the northern hemisphere and to the left in
the southern hemisphere, which account for the puck’s west-
ward motion.

Figure 1(e) shows the first 31-h cycle of motion of the
puck on a spherical earth, as seen by an observer in the iner-
tial frame. The puck travels in a great circle around the cen-
ter of the earth at a constant speed of 359 m/s, reflecting
conservation of kinetic energy in the inertial frame (Sec. VI).
During this time, the frictionless earth completes 1.3 rota-
tions that have no effect on the motion of the puck.

Figure 1(c) shows the first 19-h cycle of motion of the
puck on a stably rotating spheroidal earth, as seen by an
observer in the rotating frame. The puck executes clockwise
inertial circles between latitudes 44� and 35� at a constant
speed of v¼ 50 m/s, reflecting conservation of kinetic energy
in the rotating frame (Sec. VI). The puck completes its first
cycle, a clockwise tour of Spain and Portugal, 170 km to the
west of its initial position. Because spheroidal deformations
neutralize the centrifugal and gravitational forces, the only
pertinent force is the Coriolis force. According to Eq. (26c),
the horizontal component of this force is perpendicular to the
velocity, and has magnitude 2mXv sin jhj. Setting this com-
ponent equal to the product of the mass m and the centripetal
acceleration v2=rc gives the latitude-dependent radius of
curvature14

rc ¼
v

2X sin jhj : (59)

As can be seen in the inset of Fig. 1(c), rc is smallest at
h ¼ 44�, where the puck moves east, and largest at h ¼ 35�,
where the puck moves west. The puck therefore spends more
time moving west than moving east, which accounts for its
westward drift.38

Figure 1(f) shows the first 19-h cycle of motion of the
puck on a stably rotating spheroidal earth, as seen by an
observer in the inertial frame. The puck makes an incomplete
orbit around the earth at a speed that varies between 330 m/s
and 380 m/s, while the earth makes 0.8 rotations.

B. Launch from the equator

Figure 4 describes the motion of a puck launched from the
equator off the west coast of Africa at latitude h ¼ 0� and
longitude / ¼ �15�, with initial velocity components 40 m/s
westward and 30 m/s northward, giving the puck an initial
velocity of 50 m/s toward the northwest, as seen in the rotat-
ing frame (Fig. 4(a)). In the inertial frame, the puck’s initial
velocity includes a 465 m/s eastward component that
matches the earth’s local tangential velocity, giving the puck
an initial velocity of 426 m/s toward the northeast
(Fig. 4(d)). We now consider the subsequent motion of the
puck on spherical and spheroidal earths, as seen in
CorioVis28 Demos 3 and 4.

Figure 4(b) shows the first 26-h cycle of motion of the
puck on a spherical earth, as seen in the rotating frame. The
puck oscillates sinusoidally between latitudes 64� at a vari-
able speed and completes its first cycle off the coast of
Brazil, 3700 km to the west of its initial position.
Throughout the cycle, the centrifugal and Coriolis forces
oppose each other, with the centrifugal force driving the
puck toward the equator and the Coriolis force driving it
away, and with the centrifugal force dominating.

Figure 4(e) shows the first 26-h cycle of motion of the puck
on a spherical earth, as seen in the inertial frame. The puck
travels in a great circle at a constant speed of 426 m/s, reflect-
ing conservation of kinetic energy in this frame (Sec. VI),
while the frictionless earth completes 1.1 rotations.

Figure 4(c) shows the first 85-h cycle of motion of the
puck on a stably rotating spheroidal earth, as seen in the
rotating frame. The puck executes inertial loops between lat-
itudes 625� at a constant speed of 50 m/s, reflecting conser-
vation of kinetic energy in this frame (Sec. VI). The puck
completes its first cycle 2100 km to the west of its initial
position. The only pertinent force in the rotating frame is the
Coriolis force, which drives clockwise loops in the northern
hemisphere and counterclockwise loops in the southern
hemisphere. The small horizontal components of the Coriolis
force near the equator are responsible for the puck’s large
excursions from the equator and its long period of motion
[Eq. (26c)].

Figure 4(f) shows the first 85-h cycle of motion of the
puck on a stably rotating spheroidal earth, as seen in the iner-
tial frame. The puck makes multiple orbits at a variable
speed while the earth makes 3.5 rotations (Fig. 4(f)).

VIII. CONCLUSIONS

When viewed in the rotating frame, a puck that moves on
the surface of a rotating sphere is subject to the centrifugal
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force. The spheroidal deformations of a stable rotating spher-
oid neutralize the centrifugal and gravitational forces, so that
motion on its surface bears little resemblance to motion on a
sphere. Despite the basic nature of these facts and their well-
known roles in meteorology and oceanography, these facts
seem to be less appreciated in the physics community. This
paper is designed to increase this appreciation.

Figures 1 and 4 demonstrate the importance of the earth’s
spheroidal deformations for two sets of initial conditions.
These illustrations constitute a small subset of the wide range
of possible trajectories for motion on the earth’s spheroidal
surface.38,49–53

The axial angular momentum of a puck that moves on the
surface of a smooth spheroidal planet is conserved in the
inertial frame (Sec. V), and its kinetic energy is conserved in
the rotating frame as long as the planet rotates at its stable
angular speed (Sec. VI). These conservation principles form
the mathematical basis for CorioVis, our robust simulation
and visualization software, which we offer freely to the earth
science and physical science communities.28

We plan to use CorioVis to develop instructional materials
to improve understanding of the origins of the earth’s sphe-
roidal deformations and the role of these deformations for
motion on its surface. For this purpose, instead of using the
earth’s eccentricity (Figs. 1 and 4), we plan to use

exaggerated eccentricities e � 0:5 to enable students to see
the earth’s spheroidal deformations and to appreciate their
role in the motion. CorioVis displays the spheroidal shape of
the earth for any eccentricity (mapping the continents and
graticule onto this spheroid) and is well suited for this educa-
tional purpose, especially since it also enables explorations
for angular rotation speeds that are greater than, equal to,
and less than the stable angular speed. We expect CorioVis
to be useful in educating a broad spectrum of students and in
dispelling long-held misconceptions about motion on the
earth’s surface.

Motion on planets whose angular speeds do not match
their stable angular speeds, that is, motion on planets that are
not in hydrostatic equilibrium, may be of interest to plane-
tary scientists.54 Following large collisional events, some
dwarf planets may lack sufficient heat to recover hydrostatic
equilibrium.62 The moon’s shape departs from hydrostatic
equilibrium thanks in part to its gravitational interactions
with the earth.72 CorioVis may offer insights on the motion
of dust or fluids on such bodies.
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