
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

12-2022

Design of Environment Aware Planning Heuristics for Complex Design of Environment Aware Planning Heuristics for Complex

Navigation Objectives Navigation Objectives

Carter D. Bailey
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons, and the Robotics Commons

Recommended Citation Recommended Citation
Bailey, Carter D., "Design of Environment Aware Planning Heuristics for Complex Navigation Objectives"
(2022). All Graduate Theses and Dissertations. 8657.
https://digitalcommons.usu.edu/etd/8657

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F8657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.usu.edu%2Fetd%2F8657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8657?utm_source=digitalcommons.usu.edu%2Fetd%2F8657&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

DESIGN OF ENVIRONMENT AWARE PLANNING HEURISTICS FOR COMPLEX

NAVIGATION OBJECTIVES

by

Carter D. Bailey

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Mario Y. Harper, Ph.D. Shuhan Yuan, Ph.D.
Major Professor Committee Member

Steve Petruzza, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2022

ii

Copyright © Carter D. Bailey 2022

All Rights Reserved

iii

ABSTRACT

Design of Environment Aware Planning Heuristics for Complex Navigation Objectives

by

Carter D. Bailey, Master of Science

Utah State University, 2022

Major Professor: Mario Y. Harper, Ph.D.
Department: Computer Science

Heuristic methods are valued in many modern AI algorithms and decision-making archi-

tectures due to their ability to drastically reduce computation time. Particularly in robotics,

path planning heuristics are widely leveraged to aid in navigation and exploration. As the

robotic platform explores and navigates, information about the world can and should be

used to augment and update heuristic functions to guide solutions. Complex heuristics that

can account for environmental factors, robot capabilities, and desired actions provide opti-

mal results with little wasted exploration, but are computationally expensive. This thesis

demonstrates results of research into simplifying heuristics that maintains the performance

improvements from complicated heuristics.

The research presented is validated on two complex robotic tasks: stealth planning and

energy efficient planning. The stealth heuristic was created to inform a planner and allow a

ground robot to navigate unknown environments in a less visible manner. Due to the highly

uncertain nature of the world (where unknown observers exist) this heuristic implemented

was instrumental to enabling the first high-uncertainty stealth planner. Heuristic guidance

is further explored for use in energy efficient planning, where a machine learning approach

iv

is used to generate a heuristic measure. This thesis demonstrates effective learned heuris-

tics that simplify convergence time and accounts for the complexities of environment. A

reduction of 60% in required time for planning was realized.

(46 pages)

v

PUBLIC ABSTRACT

Design of Environment Aware Planning Heuristics for Complex Navigation Objectives

Carter D. Bailey

A heuristic is the simplified approximations that helps guide a planner in deducing the best

way to move forward. Heuristics are valued in many modern AI algorithms and decision-

making architectures due to their ability to drastically reduce computation time. Partic-

ularly in robotics, path planning heuristics are widely leveraged to aid in navigation and

exploration. As the robotic platform explores and navigates, information about the world

can and should be used to augment and update the heuristic to guide solutions. Complex

heuristics that can account for environmental factors, robot capabilities, and desired actions

provide optimal results with little wasted exploration, but are computationally expensive.

This thesis demonstrates results of research into simplifying heuristics that maintains the

performance improvements from complicated heuristics.

The research presented is validated on two complex robotic tasks: stealth planning and

energy efficient planning. The stealth heuristic was created to inform a planner and allow a

ground robot to navigate unknown environments in a less visible manner. Due to the highly

uncertain nature of the world (where unknown observers exist) this heuristic implemented

was instrumental to enabling the first high-uncertainty stealth planner. Heuristic guidance

is further explored for use in energy efficient planning, where a machine learning approach

is used to generate a heuristic measure. This thesis demonstrates effective learned heuris-

tics that simplify convergence time and accounts for the complexities of environment. A

reduction of 60% in required compute time for planning was found.

vi

To my lovely wife and parents

vii

ACKNOWLEDGMENTS

I would like to thank Dr. Mario Harper for all the time he spent mentoring me. With-

out him this thesis would have never happened.

Carter D. Bailey

viii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

ACKNOWLEDGMENTS . vii

LIST OF TABLES . ix

LIST OF FIGURES . x

ACRONYMS . xii

1 Introduction . 1
1.1 Heuristic Algorithms . 1
1.2 Motion Planning and Heuristics . 1
1.3 Drawbacks and Difficulties Heuristic Design 2

2 Improving Real-Time Energy-Efficient Trajectory Planning Via Machine Learning 3
2.1 Understanding Energy Constraints in Planning 3
2.2 Core Concepts of Heuristic Approaches . 4
2.3 Machine Learning Solutions . 6

2.3.1 Gaining Data From SBMPO . 6
2.3.2 Training With Data From SBMPO and Multiple Maps 9

2.4 Improvements from Machine Learning Integration 10
2.5 Key Insights . 14
REFERENCES . 15

3 Stealth Centric A* (SCA*): Bio-Inspired Navigation for Ground Robots 18
3.1 Stealth In Robotics . 18
3.2 Core Concepts of Stealth . 20
3.3 Stealth Centric A* Design . 21
3.4 Simulation Tests . 22
3.5 SCA* Results . 26
3.6 Key Insights . 29
3.7 Acknowledgment . 30
REFERENCES . 31

4 Conclusion: Improved Heuristic Generation . 33

ix

LIST OF TABLES

Table Page

2.1 Sample of data from the training set . 7

2.2 Accuracy scores of the ML-heuristic integrated SBMPO 10

2.3 Comparison of time, cost, and node expansion 13

3.1 Danger metric averaged over 6 maps for each Heuristic Function 27

x

LIST OF FIGURES

Figure Page

2.1 Legged system used for validating energy efficient navigation tasks. Unstruc-
tured terrain navigation poses unique constraints and requires rapid planning
as new information becomes available. 4

2.2 SBMPO core components. SBMPO is comprised of three major components:
A sampler that determines what control input is explored, model-specific
functions, and an optimizer based on a A*-type algorithm. 6

2.3 Energy profile of simulated legged robot. As velocity increases and turns
become tighter, the expended energy per step is several times more than for
straight-line motion. Increased energy consumption stems from tight turns
requiring increased motor torque from all 12 leg motors, particularly the hip
which is not generally actuated in forward motion. 7

2.4 On the straight facing path, the cost is 1198.53 J. On the path where the
heading angle is oriented away from the goal the cost is 6365.66 J. 8

2.5 Example of obstacle regions used for the machine learning to know where
obstacles are. Onboard lidar can sufficiently cover a 360 degrees field of view. 8

2.6 Comparison of exploration space. Node expansion for SBMPO and the three
highest scoring models showing the path chosen and the node expansion to
find the path. 11

2.7 Another example of the ML-heuristics expanding less than SBMPO. 12

2.8 Node expansions compared across different ML heuristic functions. Average
expansions are appreciably lower for the ridge regressor. Other algorithms
span a wider range of expansion costs, often similar in performance to SBMPO. 13

3.1 An example of a biologically inspired stealth aware path compared to a dis-
tance optimal path. The robot in the image is hard to see due to the addi-
tional foliage providing cover. Prey favor paths with greater occlusion at the
cost of limited visibility and slower map-building. 19

3.2 System architecture of the SCARS framework. This communication protocol
allows simple realtime data transfer between the SCARS and the planner. . 22

xi

3.3 Example of the SCARS ray cast being used for realtime calculation of ob-
server visibility during a simulation run. The robot (denoted with a red line)
is currently visible to two observers with an additional six unable to see the
robot. 24

3.4 Tree displaying the simulation methods. A total of 9000 simulations are run
with each map scenario testing all three heuristic methods. Each heuristic
method tests a random placement of n observers (2,4,6,8,10). Only a single
branch is fully extended in this illustration. 25

3.5 Comparisons of map scenarios. The maps show that the Line of Sight (LoS)
heuristic generally has the lowest amount of distance seen by observers. Prox-
imity and distance tend to be closer in performance to each other. The dis-
tance heuristic outperforms the proximity on map 6 where the proximity
heuristic navigates close to obstacles that face an open area, exposing the
robot to multiple observers. 26

3.6 Examples of the different heuristic paths. The distance path (in red) tends to
move through open areas while the proximity (green) and line of sight (blue)
avoid regions without occlusion. 28

3.7 Heat maps showing the observer visibility regions. The distance path (in red)
navigates in largely dense observer areas as open areas are easier to observe.
The proximity (green) and line of sight (blue) avoid these regions to a greater
extent than the distance heuristic method. 29

xii

ACRONYMS

RRT Rapidly-Exploring Random Tree

ML-Heuristic Machine Learned Heuristic

SBMPO Sampling Based Model Predictive Optimization

GBM Gradient Boosted Machine

MLP Multi-Layer Perceptron

RMSE Root Mean Square Error

RF Random Forest

SCA* Stealth Centric A*

ROS Robot Operating System

SCARS Stealth Centric Autonomous Robot Simulator

DBSCAN Density-Based Spatial Clustering of Applications with Noise

CHAPTER 1

Introduction

1.1 Heuristic Algorithms

Heuristic methods are useful in guiding many forms of complex decision-making al-

gorithms, and is one of the necessary components behind most efficient planners used in

modern robotics. Heuristics operate by guiding planning search towards regions estimated

to be close to an optima. Without heuristic guidance, many planning and scheduling algo-

rithms fail to converge or expends significant amounts of time to compute a solution. In

many cases, simple Heuristic measures are useful for simplifying search space while main-

taining optimal guarantees.

In robotic motion planning, two common heuristic methods are the A* and RRT plan-

ners. Variations of these planners are illustrated with a brief explanation on their differences.

1.2 Motion Planning and Heuristics

The A* planner is traditionally a grid based planner that uses a breadth first search

coupled with a directional heuristic to expand nodes closer towards the goal. A* is a

modified breadth first search algorithm that is deterministic, and always converges to the

most efficient solution irrespective of initial conditions if the Heuristic function is admissible

(a conservative estimate of the optimal solution). This algorithm is relatively fast, but can

scale poorly in high dimensions.

RRT based planners operate by randomly placing nodes and building connections be-

tween them. Node connections are created with each iteration of planning with more nodes

spawned and connections explored. This planner is anytime in nature, being able to con-

verge to a solution relatively quickly, however optimal guarantees are asymptotic. RRT

based planners become more optimal as the compute time increases, as further explorations

2

examine nodes which lower the cost of the best discovered solution. Common variations

of RRT-type planners smooths paths as they are typically inefficient due to randomness in

node generation.

1.3 Drawbacks and Difficulties Heuristic Design

While heuristics are crucial in guiding path planners they tend to be situation specific

which causes them to be brittle, unscalable, and difficult to transfer. This difficulty in

making general heuristics stems largely from the criteria of optimization changing and

constraints placed by the situation. The heuristic designed for simple scenarios cannot

handle changes (environment, problem) and often does not help improve computation time

or loses its optimal guarantee.

Creating a global heuristic that works in all environments has proven nearly intractable,

and research is focused on ways to increase the performance of heuristics. Recent work uses

multiple heuristics that alternate based on the scenarios and objectives being planned. This

enables the heuristic to be relatively resilient to environment changes.

This thesis will discuss new heuristics created to enable more robust and generalized

planning. The second chapter discusses work that creates a machine learned heuristic

(ml-heuristic). This ml-heuristic was found to lower the cost of computation for a complex

energy-optimal robot path planner by 60% from traditional Heuristic methods, dramatically

improving convergence times. The third chapter discusses the creation of a stealth focused

heuristic. This heuristic guesses locations of potential observers in an unknown map (and

updates as exploration reveals more knowledge) to help ground robots reach a goal location

in a stealth-like manner. This heuristic was shown to reduce time in the line of sight of

unknown observers in simulation by 37%.

3

CHAPTER 2

Improving Real-Time Energy-Efficient Trajectory Planning Via Machine Learning

2.1 Understanding Energy Constraints in Planning

Realtime energy optimal planning is improved through a lightweight machine learning-

based heuristic function. This heuristic function efficiently guides planners while being

aware of analytical physics models to honor constraints. Being lightweight, these functions

do not require deep learning or significant data collection to train.

Energy-efficient trajectory planning must consider additional complexities compared

to standard distance-optimal or time-optimal planners, causing them to be slower in con-

vergence [1]. Power models evaluated during planning can be cumbersome as they must

consider system kinematics and dynamics. This planning modality is important to im-

proving the operating capacity of robots by extending their active mission time and avoids

unstable maneuver’s (such as sharp turns and difficult terrains). Designing an efficient

machine-learning based heuristic function that accounts for vehicle models and environ-

ment significantly improves the planning speed needed for online energy efficient planning.

This machine learned heuristic (ML-heuristic) is trained on total energy cost of energy

optimal trajectories as computed by an optimal A*-type kinodynamic planner. Several

candidate algorithms were trained for use as a heuristic function: Light GBM, Random

Forest, Multi-Layer Perceptron, and a Ridge Regressor. Training data for these algorithms

were generated from randomly spawned start and goal poses along with an obstacle field.

Improvement in planning time and computational complexity was compared between

these machine learned heuristic functions and the original energy efficient path planner on

several validation scenarios. The simplest algorithm (ridge regressor) outperformed in our

key metrics: low evaluation latency (resulting in faster compute time) and accuracy, result-

ing in expanding 63% less nodes during planning than our baseline kinodynamic planner.

4

This research provides three contributions to the trajectory planning and robotics re-

search fields. First, this paper explores various learning algorithms for real-time planning

and compares how they perform on simulated maps. Second, it was found that specific ma-

chine algorithms lend itself well to estimating heuristics as they require little data. Third,

the obstacle map information can be compressed into simple vectors which are beneficial

features for the heuristic learning. We demonstrate work on a dynamically constrained

legged robot (via simulation).

2.2 Core Concepts of Heuristic Approaches

Heuristic functions have served to simplify search problems and find solutions for po-

tentially intractable problems. Heuristic or guidance functions underpin much of modern

planning algorithms as they guide exploration to speed up convergence, most families of

planners (A* and RRT*) utilize heuristics. Particularly for A* type algorithms, having

an admissible heuristic guarantees the optimal solution will be found, potentially at the

expense of some wasted computation [2]. Ongoing development of more efficient admissible

heuristic functions have improved task and motion planning, computer security [3], and

sequential logic problems [4].

Fig. 2.1: Legged system used for validating energy efficient navigation tasks. Unstructured
terrain navigation poses unique constraints and requires rapid planning as new information
becomes available.

5

Efficient heuristic functions must be able to guide the search as close as possible to

the optimal path, without incurring significant computational overhead. Particularly when

planning for dynamically constrained legged vehicles (Figure 1) online, a search must com-

plete and return an actionable plan before footfall. In practice, analytically accounting

for a robot’s motion constraints, environment, obstacles, and payload/power constraints is

difficult to construct and computationally expensive to evaluate.

Well-engineered heuristic functions that integrate dynamic models result in reduced

convergence time, while adding valuable insight into robot performance. Heuristic designers

use various techniques such as caching data, genetic algorithms, or self-education (evaluating

feedback) [5–8], to improve performance and mediate these issues. Other researchers have

shown that implementing a machine learned heuristic into their program increases the

speed of convergence [9] and explored robot construction and design through the aid of

a heuristic [10].

While engineering better heuristic functions are exceptionally useful in simplifying com-

putational loads, there are drawbacks to its use. Primarily, well-engineered heuristics are

not portable as they are often tailored for a specific problem and use case. Second, they can

be challenging to design and implement as models need to be derived and tuned, particularly

for energy-based planning. [11,12]

Recent frameworks have combined heuristic functions with neural networks or ma-

chine learning tools to augment search functions and alleviate some of the drawbacks that

heuristic functions usually have [13, 14]. Other advances in learned-heuristic approaches

take advantage of iterative learning, effectively reducing the complexity of high-state space

planning [7], guiding A* graph search with neural networks [15], and explicitly modeling

heuristic functions based on deep learning [16].

As various techniques to mediate heuristics’ have improved, popular heuristic-based

search algorithms, such as A* have increased its convergence speed. Improved heuristic

design allows a heuristic to reflect the true cost-to-goal accurately [17] and with reduced

computation time. Collecting data for training newer machine-learning based approaches

6

can however be time consuming and suffer from the simulation-reality gap. This is partic-

ularly true in real-world systems that do not possess high-fidelity simulations.

We are interested in applying learned heuristic methods to the problem of energy-

efficient navigation with vehicles that are dynamically constrained. This method of planning

necessitates understanding of vehicle dynamics (power models) where approximations of

traversal costs are difficult to quantify due to the kinodynamic complexity. Data collection

on real energy consumption is collected via simulation, and optimal paths to generate

training data are done through a sampling-based A* type algorithm.

2.3 Machine Learning Solutions

2.3.1 Gaining Data From SBMPO

We choose to employ a kinodynamic planner called Sampling Based Model Predictive

Optimization (SBMPO) [11] to collect the training data. SBMPO was chosen for its ease

of use with legged and dexterous mobility robots, and its demonstrated energy efficient

planning capabilities on both legged and wheeled ground robots.

Fig. 2.2: SBMPO core components. SBMPO is comprised of three major components: A
sampler that determines what control input is explored, model-specific functions, and an
optimizer based on a A*-type algorithm.

SBMPO has three primary components (shown in Figure 2) and works with a variety

7

Table 2.1: Sample of data from the training set

of dynamic holonomic or non-holonomic robot models, either linear or nonlinear. These

models may be derived from first principles or learned, and can also be non-invertible as

SBMPO samples the input (i.e., control) space directly, alleviating the cumbersome need

for local connection planners or inverse kinematics.

A core tenant of SBMPO is flexibility in optimality criteria such as minimum distance,

minimum time, or minimum energy; the latter relies on the use of power models derived from

system dynamics coupled with electrical models of the actuators. Generated trajectories

do not rely on smoothing and post processing stages to ensure that system dynamics are

followed as control inputs are considered directly. This algorithm shares the same optimality

and completeness guarantees of A*, with a heuristic function enabling rapid computational

convergence where it is both informative and admissible.

Fig. 2.3: Energy profile of simulated legged robot. As velocity increases and turns become
tighter, the expended energy per step is several times more than for straight-line motion.
Increased energy consumption stems from tight turns requiring increased motor torque from
all 12 leg motors, particularly the hip which is not generally actuated in forward motion.

Energy models of this type of robot follow a near quadratic relationship [11] between

8

turn radius and power as shown in Figure 3. Sampled turn radii begin with a straight-line

motion (turn radius of 1000m is used to approximate) and extend to tight turns of 0.6415m

as the safest extreme maneuver. Power consumption increases dramatically with increased

turn radii, as motors must respond with higher torque to complete maneuvers.

Fig. 2.4: On the straight facing path, the cost is 1198.53 J. On the path where the heading
angle is oriented away from the goal the cost is 6365.66 J.

Consideration of energy optimality also complicates heuristic function design. As shown

in Figure 4, a simple near-straight line path can be approximated well by an admissible

heuristic, resulting in rapid convergence with little exploration burden. For many non-

holonomic vehicles, the orientation matters tremendously as turns induce higher energy

consumption, thus, orienting 180 degrees away from the goal pose can cause expended

energy to increase by a factor of 6 and increase computation time by a factor of 1000.

Fig. 2.5: Example of obstacle regions used for the machine learning to know where obstacles
are. Onboard lidar can sufficiently cover a 360 degrees field of view.

9

While using a convolutional neural network to take advantage of state-of-the-art com-

puter vision aids in processing the world (particularly of lidar points), this increases the

burden of online training and evaluation, and fails to capture distance relationships relative

to the robot accurately [18, 19]. We opted for a simpler, novel feature reduction technique

which accounts for all obstacles as 1-meter wide circular objects in specified regions respec-

tive to the robot and goal position.

Eight regions are defined by different sections of a robot’s field of view (Figure 2.5).

Regions 1-3 corresponds to the corridor directly between the robot and the goal, region 4-7

corresponds to a wider area around the central corridor, and region 8 represents a circle of

minimum turn radius directly in front of the robot. All these regions (excepting region 8)

are 1 meter wide and expand to form a rectangle of finite length.

Every region reports its obstacle count which is used by the machine learning rather

than the explicit coordinates and size of an obstacle. Thus, obstacle count in the corridors

defined by R1-R3, being directly between the robot and the goal, has a higher impact to the

machine learning. Obstacle count in R4-R7 respectively has greater impact in predicting

energy costs if the initial heading angle is oriented towards them. Another area found to

inform the machine learning was R8 as immediate obstacles will necessitate a higher energy

maneuver to avoid. Thus, rather than using a machine learning processing technique, the

obstacle map was simplified into a 1D vector of obstacle counts by region. An example of

this simplification can be seen in Table 2.1 in columns R1-R8.

2.3.2 Training With Data From SBMPO and Multiple Maps

SBMPO was run on many randomized scenarios to obtain training data for real energy

requirements to complete a navigation task. To collect this data 40,000 individual start and

goal poses were randomly generated for 13 distinct maps, resulting in a total dataset pool

of 520,000 optimal trajectories. Optimality was guaranteed during data collection by using

the base admissible energy heuristic used in SBMPO.

Training features were comprised of start pose (robot x position, y position, and ori-

entation), goal pose, the angular difference between start orientation and goal (Diff Angle),

10

Table 2.2: Accuracy scores of the ML-heuristic integrated SBMPO

Ridge Regressor Random Forest Light GBM MLP

Score 50.69% 84.85% 46.25% 87.28%

Euclidean distance to goal (Est. Dist), and obstacle count by region vector [R1-R8]. A

sample of a typical feature set is shown in Table 1.

We limited the suite of machine learning algorithms to those with low latency (speed

of evaluation) and/or high human interpretability, these are critical factors in autonomous

systems. Specifically, we compare the Light GBM (Gradient Boosted Machine), Random

Forest, Ridge Regressor, and the Multi-Layer Perceptron (MLP) [20–23] in both training

accuracy, computation (based on nodes expanded), and resulting energy of optimized tra-

jectory.

The ML-heuristics parameters were tuned based on RMSE accuracy. Due to the dif-

ferences in ML algorithms employed, the number and type of parameters are different, we

list these as follows rather than tabulating due to formatting concerns. Ridge Regressor:

alpha=5; Random Forest: estimators=100; Light GBM: leaves=31, estimators=20, learning

rate=0.05; MLP: hidden layer sizes=(30,30), random state=1, max iteration=300

Accuracy of the models (Table 2.2) ranged from 50.7% to 87.3%. The new heuristic

functions were integrated into SBMPO and compared against the baseline heuristic function

they were trained from. The ML-heuristics were run on new scenarios with randomized

start and goal locations to test the robustness of the new ML-heuristic SBMPO compared

to SBMPO.

2.4 Improvements from Machine Learning Integration

Resulting explorations and computed trajectories are shown in Figures 2.6, 2.7, the

ridge regressor computed quicker and had the lowest exploration cost of all tested ML-

11

heuristics. Even though the ridge regressor computed the quickest it converged to a subop-

timal trajectory which increased traversal costs by 5%.

Fig. 2.6: Comparison of exploration space. Node expansion for SBMPO and the three
highest scoring models showing the path chosen and the node expansion to find the path.

Results of integrated tests (Figure 2.6) shows that the ridge regressor heuristic was

able to compute a trajectory to the goal with only 37% of explored nodes of SBMPO. The

convergence took 36% of the baseline time and came at a slightly increased energy cost of

4.5%. SBMPO’s average time of convergence (on a desktop computer) for a long-distance

plan in a complex obstacle field was 5.1 seconds. Utilizing a ridge regressor heuristic function

decreases convergence to 1.7 seconds on average. This improvement in convergence speed

allows for more replanning as a robot is traversing it’s environment, key for navigating in

dynamic scenes.

Even though the ridge regressor had the lowest learning rate compared to all the

machine learned models it outperformed all the other models in our three key metrics. We

believe this is largely due to difficulty in overfitting the ridge regressor as well as its lack

of capacity to learn more than general trends, allowing it to generalize better than its peer

algorithms.

12

The simplifications engineered to reduce data complexity caused some issues for the

other ML-heuristics. Both the neural network (MLP) and forest based (RF, LGBM) ma-

chine learning algorithms fared much worse than expected in validation runs. These vali-

dations were an entirely new obstacle map, and it was immediately apparent that the sim-

plifications were not sufficient to represent the real complexities of unknown environments

well. These larger capacity algorithms will likely do better with less data simplification.

Fig. 2.7: Another example of the ML-heuristics expanding less than SBMPO.

The ridge regressor ML-heuristic expanded dramatically less nodes than SBMPO over-

all (Table III). Light GBM and MLP also generally expanded less nodes than SBMPO

while maintaining a very similar cost to goal as SBMPO. All the ML-heuristics outper-

formed SBMPO in computing time as it alleviated some computational complexity of the

standard model, but the ridge regressor’s consistency with outperforming SBMPO in all

regards allowed it to be the best ML-heuristic overall, as visualized in Figure 2.8.

We note that at times, MLP would expand nodes very quickly to find the goal location

beating all other ML-heuristics. This leads us to believe that if given a more significant

amount of data MLP would be able to outperform the ridge regressor. Our research being

13

Table 2.3: Comparison of time, cost, and node expansion

Percentage Nodes Percentage Cost Percentage Time

SBMPO 100 100 100

RF 119.357 117.946 72.766

MLP 111.321 128.754 56.770

RIDGE 36.840 104.562 36.393

Light GBM 99.488 105.434 92.434

Fig. 2.8: Node expansions compared across different ML heuristic functions. Average ex-
pansions are appreciably lower for the ridge regressor. Other algorithms span a wider range
of expansion costs, often similar in performance to SBMPO.

focused on creating a ML-heuristic with a low needs may impact the usefulness of MLP as

it typically requires more data to train.

Additionally, we wish to state that this method no longer guarantees the optimal

solution. As can be seen in the trajectory Figures 2.6, 2.7 and comparison Table III, the

heuristic is no longer admissible and costs generally increase by a small percentage. Users

of this method must consider if the computational gains in convergence time are worth the

trade-off in optimality.

The comparison of the ML-heuristics (Figure 2.8) explored in this research shows the

improvement in performance from a simple ridge regressor which is consistently lower in

expansions than any other method. Other algorithms perform similarly to SBMPO and

perhaps learned too closely to emulate the original algorithm.

14

2.5 Key Insights

This research demonstrates the value of machine learned heuristics in improving per-

formance of planning tasks. This is particularly true in cases where non-trivial optimization

is required, as in the case of energy efficient planning.

Within the span of machine learning approaches, simple algorithms like the ridge re-

gressor is sufficient to improve the computation time of finding a solution. This is primarily

due to the significant reduction of nodes expanded during a search, while keeping eval-

uation costs low. Our approach improves on the basic admissible heuristic by reducing

computation time to 34% for an average planning task. This method particularly is useful

for complex obstacle fields and kinodynamically constrained vehicles.

The approach described in this research is general and applicable for any heuristics-

based planner. It is particularly beneficial in situations requiring reduced planning time

such as navigation in dynamic scenes which require frequent replanning. In particular, this

research is crucial for high-speed legged systems which moves in a discrete nature (due to

actions limited to brief moments of footfall) by allowing optimal trajectories to be computed

before next footfall.

Acknowledgment

We would like to thank the NSF ASPIRE ERC (1941524) for help in supporting parts

of this research.

15

REFERENCES

[1] S. Liu and D. Sun, “Minimizing energy consumption of wheeled mobile robots via

optimal motion planning,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2,

pp. 401–411, 2013.

[2] M. Toussaint, “Logic-geometric programming: An optimization-based approach to

combined task and motion planning,” in Twenty-Fourth International Joint Conference

on Artificial Intelligence, 2015.

[3] D. J. Sanok Jr, “An analysis of how antivirus methodologies are utilized in protect-

ing computers from malicious code,” in Proceedings of the 2nd annual conference on

Information security curriculum development, 2005, pp. 142–144.

[4] R. E. Korf, “Recent progress in the design and analysis of admissible heuristic func-

tions,” in International Symposium on Abstraction, Reformulation, and Approxima-

tion. Springer, 2000, pp. 45–55.

[5] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic approaches in robot

path planning: A survey,” Robotics and Autonomous Systems, vol. 86, pp. 13–28, 2016.

[6] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion planning for

quadrotors using linear quadratic minimum time control,” in 2017 IEEE/RSJ inter-

national conference on intelligent robots and systems (IROS). IEEE, 2017, pp. 2872–

2879.

[7] S. J. Arfaee, S. Zilles, and R. C. Holte, “Learning heuristic functions for large state

spaces,” Artificial Intelligence, vol. 175, no. 16-17, pp. 2075–2098, 2011.

[8] Y. F. Yiu, J. Du, and R. Mahapatra, “Evolutionary heuristic a* search: Heuristic func-

tion optimization via genetic algorithm,” in 2018 IEEE First International Conference

on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE, 2018, pp. 25–32.

16

[9] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion planning networks:

Bridging the gap between learning-based and classical motion planners,” IEEE Trans-

actions on Robotics, vol. 37, no. 1, pp. 48–66, 2020.

[10] S. Ha, S. Coros, A. Alspach, J. M. Bern, J. Kim, and K. Yamane, “Computational

design of robotic devices from high-level motion specifications,” IEEE Transactions on

Robotics, vol. 34, no. 5, pp. 1240–1251, 2018.

[11] M. Y. Harper, J. V. Nicholson, E. G. Collins, J. Pusey, and J. E. Clark, “Energy

efficient navigation for running legged robots,” in 2019 International Conference on

Robotics and Automation (ICRA). IEEE, 2019, pp. 6770–6776.

[12] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. G. Lee, “Energy-efficient motion planning for

mobile robots,” in IEEE International Conference on Robotics and Automation, 2004.

Proceedings. ICRA’04. 2004, vol. 5. IEEE, 2004, pp. 4344–4349.

[13] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning a-star,” Artificial Intelli-

gence, vol. 155, no. 1-2, pp. 93–146, 2004.

[14] B. M. Reese and E. G. Collins Jr, “A graph search and neural network approach to

adaptive nonlinear model predictive control,” Engineering Applications of Artificial

Intelligence, vol. 55, pp. 250–268, 2016.

[15] R. Yonetani, T. Taniai, M. Barekatain, M. Nishimura, and A. Kanezaki, “Path planning

using neural a* search,” in International Conference on Machine Learning. PMLR,

2021, pp. 12 029–12 039.

[16] T. Takahashi, H. Sun, D. Tian, and Y. Wang, “Learning heuristic functions for mobile

robot path planning using deep neural networks,” in Proceedings of the International

Conference on Automated Planning and Scheduling, vol. 29, 2019, pp. 764–772.

[17] A. Koubaa, H. Bennaceur, I. Chaari, S. Trigui, A. Ammar, M.-F. Sriti, M. Alajlan,

O. Cheikhrouhou, and Y. Javed, “Background on artificial intelligence algorithms for

17

global path planning,” in Robot Path Planning and Cooperation. Springer, 2018, pp.

13–51.

[18] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint

arXiv:1804.02767, 2018.

[19] D. C. Duro, S. E. Franklin, and M. G. Dubé, “A comparison of pixel-based and object-

based image analysis with selected machine learning algorithms for the classification

of agricultural landscapes using spot-5 hrg imagery,” Remote sensing of environment,

vol. 118, pp. 259–272, 2012.

[20] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Light-

gbm: A highly efficient gradient boosting decision tree,” Advances in neural informa-

tion processing systems, vol. 30, pp. 3146–3154, 2017.

[21] H. Taud and J. Mas, “Multilayer perceptron (mlp),” in Geomatic Approaches for Mod-

eling Land Change Scenarios. Springer, 2018, pp. 451–455.

[22] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25, no. 2, pp.

197–227, 2016.

[23] A. E. Hoerl, R. W. Kannard, and K. F. Baldwin, “Ridge regression: some simulations,”

Communications in Statistics-Theory and Methods, vol. 4, no. 2, pp. 105–123, 1975.

18

CHAPTER 3

Stealth Centric A* (SCA*): Bio-Inspired Navigation for Ground Robots

3.1 Stealth In Robotics

Intelligent navigation is a critical aspect in advancing the autonomy of robots, partic-

ularly ground robots that operate in unstructured environments. Ground robot navigation

and guidance have increasingly adopted strategies inspired by nature, such as the navigation

of bats, ants, bees, and large foragers [1,2]. Although the robotics community has benefited

greatly from studying biological systems to help guide navigation strategies, particularly

for swarm-based systems, additional insights can be gained to develop stealth-based ground

motion.

Animals, particularly those predominantly preyed upon, have demonstrated an en-

hanced ability to navigate through complex environments, pursue resources, and stay rela-

tively safe. An example is a rabbit foraging, where the rabbit must navigate many unknown

dangers during exploration to obtain food while avoiding aerial or land-based predators. To

protect itself, the rabbit minimizes the time spent in open areas with a clear line of sight

to potential predators and maximizes the time spent near foliage and large obstacles capa-

ble of providing cover [3, 4]. This project aims to emulate these characteristics inside of a

stealth-aware planner for a ground robot.

Designing and testing a planner that avoids regions of observer line of sight was accom-

plished through a new simulation software built in Unity. This was chosen due to the efficient

ray casting capabilities built into the Unity engine. The environment was connected with

a novel stealth-focused planner and tested on multiple environment configurations (Figure

3.1). In the simulation software, random obstacles and observers are generated, placed

throughout the map, and a start and goal position is defined. The ground robot used in the

simulation is equipped with a Lidar, camera, and pose data, with easy portability to ROS

19

for efficient sim-to-hardware transfer.

Fig. 3.1: An example of a biologically inspired stealth aware path compared to a distance
optimal path. The robot in the image is hard to see due to the additional foliage providing
cover. Prey favor paths with greater occlusion at the cost of limited visibility and slower
map-building.

An A-Star based planner was implemented with multiple heuristic functions designed to

emulate a biological systems preference for high-cover regions. The first heuristic function

provides a baseline using a standard minimum-distance measure. The second heuristic

function balances the distance measure with a line of sight metric. This line of sight metric

randomly generates observers from the robots field of view and penalizes regions where

the robot is visible. These observers exist only as guesses in the planner as the robot is

not certain if and where any observers might be. The third heuristic function attempts

to balance minimum-distance with proximity to the nearest obstacle, causing the robot

to move near obstacles. These heuristic functions are assessed by comparing the distance

traveled while being observed by randomly placed sensors.

Simulation experiments were conducted in multiple environment and observer configu-

rations. The results show that the line-of-sight heuristic function significantly reduced the

total visibility to observers compared to both other methods. Performance improved by

20

nearly 10 meters difference in traversal under detection.

3.2 Core Concepts of Stealth

Stealth-aware planning has several applications, many of which stem from defense-

driven needs (surveillance, pursuit and interception, stealthy navigation, and target follow-

ing), but they also serve purposes in civilian situations (law enforcement, animal tracking,

and efficient autonomous delivery). Significant attention has been directed to stealth naviga-

tion for Unmanned Aerial Vehicles (UAVs) [5–8] which avoids known observer installations

or minimizes exposure to ground-based or aerial systems.

Avoiding capture or visibility on ground robots is less developed. Work has been

demonstrated on ground robots to monitor the behavior of an intruder on a predetermined

map. The ground system follows a hostile actor while avoiding detection with the objective

of maintaining surveillance. [9]. Additionally, research has been conducted into situations

where the map and observers are known to the planner, and an optimal route that avoids

detection is constructed [10]

Additional research has been conducted on scenarios where observers are known, but

a map is not made available to a planner on run-time [11]. Similarly, extended work on a

multi-agent system detected intruders without a map when starting a search. This planner

does not construct a map internally, only navigating given its immediate environment [12]

and is able to locate hidden intruders relatively quickly, however, the agents themselves

are not concerned with stealth. Several other research projects have set out to accomplish

stealth-aware motion [13], but none explicitly attempts to navigate in a stealthy manner

in highly uncertain environments with unknown hostile actors.

This research focuses on aspects of these prior works, with added complexity as neither

map nor observer information is available. The robot is also unaware of when its motion

is within the view of an observer. The construction of a predicted danger map or biasing

towards obstacles is built with the robot’s guesses as to where an observer might be (if an

observer exists). This is to emulate real-world situations in unstructured environments as

autonomous systems never truly know where potential danger may be.

21

3.3 Stealth Centric A* Design

Stealth Centric A-Star (SCA*) is based on the A-Star planner [14] with modifications

to return a stealth-aware route while dynamically updating and replanning based on new

environmental data from sensor feeds. A priority queue is implemented that sorts based on

stealth heuristics at each node.

To provide optimal stealth functionality, two stealth-aware heuristic functions were

implemented in the SCA*. These two methods (obstacle proximity and line of sight) are

compared against each other and a distance-minimizing standard A* algorithm to bench-

mark performance.

Obstacle Proximity Heuristic

The obstacle proximity heuristic function calculates the distance between the nearest

obstacle and the expanded node. This calculated distance is passed into a step function

which multiplies by a scalar based on obstacle proximity as seen in equation 3.1. This step

function induces exploration near obstacles by shifting the priority queue to favor regions of

close obstacle proximity. This heuristic function causes the robot to stay out of the line of

sight of many observers by effectively maximizing time near occlusions. While this method

effectively reduces the distance traveled under observation, it does not directly consider

stealth.

F (x) =



distance ∗ 0.1 if x < 0.5

distance ∗ 0.3 if x < 0.75

distance ∗ 0.5 if x < 1.0

distance ∗ 0.7 if x < 1.25

distance ∗ 0.9 if x < 1.5

distance if x ≥ 1.5

(3.1)

Line of Sight Heuristic

The line of sight based heuristic similarly does not receive a map or true observer

22

positions. This method generates virtual observers throughout the global map based on its

observable space. We note that this observer generation can potentially place them in an

obstacle that has not yet been discovered by the robot’s sensors. The observer generator

segments the world into squares of 3m and places an observer in the center if the location

is not occupied. After generating all observers, a line of sight collision detection based on

ray casting checks if a node is visible to an observer.

The priority queue updates nodes (based on equation 3.2) where distance, observer

count, and a constant scalar (LosConstant) are utilized. By modifying the LosConstant,

the simulated observers’ influence on the overall cost can be adjusted. This method directly

considers stealth aspects, but remains unaware of if and where any real observers might be.

This method can account for the influence of multiple obstacles acting as potential points

of occlusion.

F (x) = distance+ (LosConstant ∗ObserverCount) (3.2)

3.4 Simulation Tests

Fig. 3.2: System architecture of the SCARS framework. This communication protocol
allows simple realtime data transfer between the SCARS and the planner.

There are excellent 3D software simulators for ground robotics that were compared

prior to the construction of the Stealth Centric Autonomous Robot Simulator (SCARS).

Of the notable open-source simulators, Webots was an option considered but did not have

23

the scripting and ray cast capabilities required for quick calculation of observer visibility.

Mujoco has necessary ray cast capabilities, but lacks an editable environment in runtime,

requiring XML edits that would not allow for the dynamic placement of observers. Isaac Sim

has detailed physics simulations for robotics, but does not include the desired multi-object

ray cast ability. Gazebo provides great integration with ROS, but lacked environment editor

abilities possible with Unity. The SCARS framework was ultimately built on the Unity

platform as it provided all the scripting and ray casting abilities we desired, along with

methods to generate observers in runtime. Development time is also lower as new testing

environments could be procedurally generated. Additionally, Unity is cross-platform and

easier to distribute as software, allowing easier extension for continued research.

The SCARS and the planner communicate via a centralized websocket server which

allows for asynchronous communication. The websocket is used to update the planner and

SCARS through realtime subscription to specific data feeds, e.g. Lidar (See Figure 3.2).

The current state of the robot is published by SCARS to the planner, and visualizations are

constantly updated to reflect movement and action commands. This architecture allows our

planner to be easily ported to a physical robot as we mirror ROS-style commands, all sensor

feeds are similarly designed to be ROS compatible with topics built in line with hardware

integration in mind.

Sensor Simulation

Within SCARS, a realistic Lidar scanner was built based on emulating the ROS Laser-

Scan message. This virtual Lidar uses a ray scan to check for obstacles, similar to a physical

sensor. On each frame, the simulation publishes collected data to update the central server

with its current sensor state. On each planning cycle, the current Lidar feed and location

data are used to generate an obstacle point map. The Lidar locations were translated into

global space for the robot and SCARS to visualize.

Camera feeds are published as a base-64 string easily parsed into a ROS camera mes-

sage. The base Unity camera object was used to generate this realtime feed. While this

camera object was created, for the purposes of this research, the camera object is not

24

Fig. 3.3: Example of the SCARS ray cast being used for realtime calculation of observer
visibility during a simulation run. The robot (denoted with a red line) is currently visible
to two observers with an additional six unable to see the robot.

utilized. We note that all of the sensor objects are provided as a usable Unity asset.

Map Generation and Collision Detection

As the planner has no a priori knowledge of the map, sensor data from the virtual

Lidar is processed to update the world representation during navigation. Lidar data does

not provide information on the depth of an obstacle, leaving the full determination of

obstacle geometry in doubt.

To remedy this issue, a Density-Based spatial clustering of applications with noise

(DBSCAN) was used. DBSCAN leverages relative proximal locations to discover clusters of

arbitrary shapes efficiently and effectively. [15] [16] This clustering algorithm was utilized on

Lidar points to create obstacle regions. This greatly simplified the simulation and reduced

the computational load of collision detection.

The DBSCAN requires two parameters, an ϵ and the threshold (minimum number of

25

Fig. 3.4: Tree displaying the simulation methods. A total of 9000 simulations are run
with each map scenario testing all three heuristic methods. Each heuristic method tests a
random placement of n observers (2,4,6,8,10). Only a single branch is fully extended in this
illustration.

points needed to be considered as a cluster). The ϵ was defined as 1.25 meters as this

allowed the larger obstacles to be reconciled as one single object. The minimum threshold

value chosen was 2, to limit the stored Lidar points to every .1 meters saving memory and

improving computation speed. This collection of points is then created into an obstacle

with a collision box represented by a polygon, which enables rapid collision detection.

Collision detection between nodes is determined using the Separated Axis Theorem.

This method projects obstacles down to a new axis, if the projections do not overlap on any

projected axis, the obstacles do not overlap [17]. Additionally, the polygon representation

of obstacles is two-dimensional, decreasing the algorithmic complexity.

Motion Prediction

Upon receiving a location from SCARS, the planner maps a route from the current

position to the goal. However, the transmitted location and actual position has differences

due to the constant motion of the robot. The simulated robot does not stop for replanning

26

Fig. 3.5: Comparisons of map scenarios. The maps show that the Line of Sight (LoS)
heuristic generally has the lowest amount of distance seen by observers. Proximity and
distance tend to be closer in performance to each other. The distance heuristic outperforms
the proximity on map 6 where the proximity heuristic navigates close to obstacles that face
an open area, exposing the robot to multiple observers.

and maintains motion along its active plan if there isn’t an obstacle preventing navigation.

The planner accounts for the previous heading, position, walking speed, goal, and elapsed

time since the last plan and current position. Using these parameters, an estimate of the

robot’s new position is derived. Thus, a motion prediction estimate was created to recognize

the difference and reconcile new plans generated on updated map data.

3.5 SCA* Results

The SCARS framework generated a total of 9000 simulations under different circum-

stances. Each heuristic function (distance, obstacle proximity, and line of sight) was tested

an equal amount on six general scenarios with varying numbers of randomly placed observers

(see figure 3.4).

Each heuristic method was tested with many configurations of hidden observers. We

randomly generated 100 sets of observers throughout the map in scenarios where the sets

27

Table 3.1: Danger metric averaged over 6 maps for each Heuristic Function

Heuristic Function 2
Observers

4
Observers

6
Observers

8
Observers

10
Observers

Line Of Sight 13.6213m 23.37036m 32.7000m 41.2731m 50.6259m

Obstacle Proximity 17.0520m 30.7108m 44.0932m 57.7072m 71.5252m

Distance Only 18.2929m 33.4865m 49.4729m 65.1997m 80.5068m

were 2, 4, 6, 8, or 10 observers. The hidden observers were not placed in obstacles or

too close to them. Placement was restricted to regions sufficiently removed (2.5 meter

radius) from obstacles to prevent situations where observers’ viewscape only included an

obstacle. We generated the average observer visibility region as the robot moved through

the randomized environments.

danger =

n∑
i=1

observedDistancen (3.3)

Where n is the observer id.

A measure of stealth was computed by comparing the distance traveled while being

visible to an observer. The total visible distance measure may be large as it is the summation

of all traversed distance under each observer’s field of view (see equation 3.3).

The results of the 9000 runs can be seen in table 3.1. The table illustrates the total

distance traveled within the view of all unknown observers. The simulations are not aware of

how many observers there are, or their locations and field of view. As the number of hidden

observers increases, the line of sight heuristic method changes from a 25.58% to 37.12%

improvement over the baseline distance planner. While the obstacle proximity heuristic

method outperformed the distance planner (going from 6.79% to 11.16% improvement),

performance was not as high as the line of sight heuristic. This is likely due to not expressly

considering stealth which reduced the effectiveness of avoiding open areas.

General scenarios (by map) are illustrated in Figure 3.5 with each subgraph showing

the average observed distance by the number of observers. We note that in some cases (map

4), the distance optimal baseline does perform reasonably well in a few situations. This is

28

Fig. 3.6: Examples of the different heuristic paths. The distance path (in red) tends to
move through open areas while the proximity (green) and line of sight (blue) avoid regions
without occlusion.

due to the nature of the obstacle placement where the distance-baseline planner happened to

move through tighter obstacle areas and reached a goal state much faster (thus reducing the

total distance observed) compared with other methods. These differences were mitigated

as the number of observers increased.

Differences in planned paths (as shown in Figure 3.6) indicate the impact of the various

heuristic functions. As evidenced in map 1, the distance-based baseline traverses through

an open region, while the other methods gravitate towards occlusions. In both maps 2 and

3, similar performance differences between the methods are still evident.

Heat maps were generated to illustrate where the total visible distance is greatest,

with a gradient from green (invisible to observers) moving to red (locations most visible to

observers). As seen in Figure 3.7, randomly positioned observers have greater visibility over

open areas, which the stealth heuristic approaches avoid. Map 1 again shows the relative

safety of both the obstacle proximity and line of sight approaches. Conversely, the distance

path moves through the open area, in full view of multiple hidden observers. Heat maps

29

Fig. 3.7: Heat maps showing the observer visibility regions. The distance path (in red)
navigates in largely dense observer areas as open areas are easier to observe. The proximity
(green) and line of sight (blue) avoid these regions to a greater extent than the distance
heuristic method.

allow for simple representation of areas less desirable from a stealth perspective and is useful

for demonstrating planner stealth performance.

3.6 Key Insights

We present a novel bio-inspired motion planning algorithm that avoids areas with little

to no cover. This algorithm is developed theoretically and tested in a newly developed

simulation software: Stealth Centric Autonomous Robot Simulator (SCARS). A legged

robot is implemented and used in SCARS for validation experiments. The development of

a line of sight cost produces a path that avoids detection from unknown observers more

than other methods compared.

The SCARS framework developed custom perceptive sensors, flexible procedurally gen-

erated global maps, and efficient collision detection for complex geometry obstacles. A

planner easily connects to SCARS and artifacts developed can be quickly ported into ROS

for physical hardware tests. The SCARS framework is provided for public use and is open

30

source.

3.7 Acknowledgment

We would like to thank the NSF ASPIRE ERC (1941524) for supporting this research.

31

REFERENCES

[1] A. G. Roy and P. Rakshit, “Motion planning of non-holonomic wheeled robots using

modified bat algorithm,” in Nature-inspired algorithms for big data frameworks. IGI

Global, 2019, pp. 94–123.

[2] A. K. Kashyap and A. Pandey, “Different nature-inspired techniques applied for motion

planning of wheeled robot: a critical review,” Int. J. Adv. Robot. Autom, vol. 3, no. 2,

pp. 1–10, 2018.

[3] F. M. Jaksic and R. C. Soriguer, “Predation upon the european rabbit (oryctolagus

cuniculus) in mediterranean habitats of chile and spain: a comparative analysis,” The

Journal of Animal Ecology, pp. 269–281, 1981.

[4] F. M. Jaksic, “Predation upon small mammals in shrublands and grasslands of southern

south america: ecological correlates and presumable consequences,” Revista Chilena de

Historia Natural, vol. 59, no. 209.22, 1986.

[5] Z. Zhang, J. Wu, J. Dai, and C. He, “A novel real-time penetration path planning

algorithm for stealth uav in 3d complex dynamic environment,” IEEE Access, vol. 8,

pp. 122 757–122 771, 2020.

[6] X. Li, H. Huang, and A. V. Savkin, “Autonomous navigation of an aerial drone to ob-

serve a group of wild animals with reduced visual disturbance,” IEEE Systems Journal,

vol. 16, no. 2, pp. 3339–3348, 2022.

[7] F. W. Moore, “Radar cross-section reduction via route planning and intelligent con-

trol,” IEEE Transactions on Control Systems Technology, vol. 10, no. 5, pp. 696–700,

2002.

[8] T. Inanc, M. K. Muezzinoglu, K. Misovec, and R. M. Murray, “Framework for low-

observable trajectory generation in presence of multiple radars,” Journal of guidance,

control, and dynamics, vol. 31, no. 6, pp. 1740–1749, 2008.

32

[9] J. Park, J. S. Choi, J. Kim, S.-H. Ji, and B. H. Lee, “Long-term stealth navigation in a

security zone where the movement of the invader is monitored,” International Journal

of Control, Automation and Systems, vol. 8, no. 3, pp. 604–614, 2010.

[10] R. Geraerts, E. Schager et al., “Stealth-based path planning using corridor maps,” in

Computer animation and social agents, 2010.

[11] S. Ravela, R. Weiss, B. Draper, B. Pinette, A. Hanson, and E. Riseman, “Stealth

navigation: Planning and behaviors,” in Proceedings of ARPA Image Understanding

Workshop, vol. 10931100, 1994.

[12] A. Kolling and S. Carpin, “Multi-robot pursuit-evasion without maps,” in 2010 IEEE

International Conference on Robotics and Automation, 2010, pp. 3045–3051.

[13] M. Al Marzouqi and R. A. Jarvis, “Robotic covert path planning: A survey,” in 2011

IEEE 5th international conference on robotics, automation and mechatronics (RAM).

IEEE, 2011, pp. 77–82.

[14] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determina-

tion of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics,

vol. 4, no. 2, pp. 100–107, 1968.

[15] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for dis-

covering clusters in large spatial databases with noise.” in kdd, vol. 96, no. 34, 1996,

pp. 226–231.

[16] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan revisited, revisited:

why and how you should (still) use dbscan,” ACM Transactions on Database Systems

(TODS), vol. 42, no. 3, pp. 1–21, 2017.

[17] J. Huynh, “Separating axis theorem for oriented bounding boxes,” URL: jkh. me/-

files/tutorials/Separating% 20Axis% 20Theorem% 20for% 20Oriented% 20Bounding%

20Boxes. pdf, 2009.

33

CHAPTER 4

Conclusion: Improved Heuristic Generation

This thesis represents the work accomplished in creating more robust and faster Heuris-

tic functions useful for the robot planning community. Learning generalizable Heuristic

functions often benefits from simple ML approaches that find general trends, similar to the

simple hand-made heuristics used in many algorithms today. In particular, the ridge regres-

sor ml-heuristic model lowered computation time by 67% compared to the basic analytical

heuristic as compared in the SBMPO planning algorithm. This speedup allows SBMPO

to be used on more complex maps and converges to solutions quicker with less compute

resources. With the lowering of computational requirements, smaller robots with limited

power payloads are now able to run planners such as SBMPO effectively to create energy

efficient plans.

A general trend was in performance improvements generally for simple machine-learning

models. The ridge regressor does not take long to train compared to other ensembles of

ML algorithms used in the field and tested, and data requirements are much lower. Per-

haps more importantly, the evaluation time costs only a few FLOPs and thus did not

impact the convergence speed of the algorithm. Conversely, the performance gains from

using deep learning and other parameter intensive ML approach often resulted in longer

total convergence time. As machine learning becomes more prevalent in heuristic design,

using simple models to quickly create efficient ml-heuristics will be beneficial for practical

implementation.

As heuristics were refined, the focus shifted to a Heuristic designed for stealth traversal.

The novel stealth planning algorithm outperformed a basic Dijkstra’s path planner when in

terms of time observed by hidden observers. The developed stealth heuristic reduced time in

the line of sight of hidden observers by over 35%. This reduction of time under observation

is key in situations where the enemy could spot a robot, the new Heuristic approach is

34

crucial for ground robots performing critical stealth-based missions. Designing a heuristic

estimate where the function directly predicts possibilities it is not aware of was key to the

success of the algorithm. There is still much refinement required for stealth planning and

work is ongoing in this line of research.

	Design of Environment Aware Planning Heuristics for Complex Navigation Objectives
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	Introduction
	Heuristic Algorithms
	Motion Planning and Heuristics
	Drawbacks and Difficulties Heuristic Design

	Improving Real-Time Energy-Efficient Trajectory Planning Via Machine Learning
	Understanding Energy Constraints in Planning
	Core Concepts of Heuristic Approaches
	Machine Learning Solutions
	Gaining Data From SBMPO
	Training With Data From SBMPO and Multiple Maps

	Improvements from Machine Learning Integration
	Key Insights
	REFERENCES

	Stealth Centric A* (SCA*): Bio-Inspired Navigation for Ground Robots
	Stealth In Robotics
	Core Concepts of Stealth
	Stealth Centric A* Design
	Simulation Tests
	SCA* Results
	Key Insights
	Acknowledgment
	REFERENCES

	Conclusion: Improved Heuristic Generation

