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Abstract: Background: Residents of a large area in the Veneto Region (Northeastern Italy) were
exposed to drinking water contaminated by perfluoroalkyl substances (PFAS) for decades. While
exposure to PFAS has been consistently associated with elevated serum lipids, combined exposures to
multiple PFASs have been poorly investigated. Utilising different statistical approaches, we examine
the association between chemical mixtures and lipid parameters. Methods: Cross-sectional data from
the regional health surveillance program (34,633 individuals aged 20-64 years) were used to examine
the combined effects of PFAS mixture (Perfluorooctanoic acid (PFOA), perfluorooctane sulfonate
(PFOS), perfluorononanoic acid (PFNA) and perfluorohexane sulfonate (PFHxS)) on total cholesterol
(TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C).
Weighted Quantile Sum (WQS) regression, Quantile-based G-computation (Q-Gcomp) and Bayesian
Kernel Machine Regression (BKMR) were used based on their ability to handle highly correlated
chemicals. Results: We observed that each quartile increase in the WQS index was associated with
an increase in the levels of TC (f3: 4.09, 95% CI: 3.47-4.71), HDL-C ($3: 1.13, 95% CI: 0.92-1.33) and
LDL-C (f3: 3.14, 95% CI: 2.65-3.63). Q-Gcomp estimated that a quartile increase in the PFAS mixture
was associated with increased TC ({: 4.04, 95% CI 3.5-4.58), HDL-C ({: 1.07, 95% CI 20.87-1.27) and
LDL-C (: 2.71, 95% CI 2.23-3.19). In the BKMR analysis, the effect of PFAS mixture on serum lipids
increased significantly when their concentrations were at their 75th percentiles or above, compared
to those at their 50th percentile. All methods revealed a major contribution of PFOS and PFNA,
although the main exposure was due to PFOA. We found suggestive evidence that associations varied
when stratified by gender. Conclusions: The PFAS mixture was positively associated with lipid
parameters, regardless of the applied method. Very similar results obtained from the three methods
may be attributed to the linear positive association with the outcomes and no interaction between
each PFAS.

Keywords: perfluoroalkyl substances; lipid; cholesterol; contaminated water; combined exposure;
mixture; WQS; G-computation; BKMR

1. Introduction

Per- and polyfluoroalkyl substances (PFAS), a large class of organic chemicals, have
been extensively used in industrial and commercial products throughout the 20th and 21st
centuries due to their unique physical and chemical characteristics [1]. Most PFASs are
highly persistent in the environment, can bioaccumulate in human bodies and, as a result of
widespread use, many PFASs are now defined as persistent environmental pollutants [2,3].
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While exposure appears to have declined in the general population, nearly every human
has detectable concentrations of some of these chemicals [4]. Legacy long-chain PFASs
have long elimination half-lives in human serum on the order of years [e.g., >2.1 years for
perfluorooctanoic acid (PFOA), >3.3 years for perfluorooctane sulfonate (PFOS), >4.7 years
for perfluorohexane sulfonic acid (PFHxS) and >2.5 years for perfluorononanoic acid
(PENA)] [5].

Given the extensive bioaccumulation and persistence of PFAS, numerous epidemio-
logical studies have found PFAS exposure to be associated with various adverse health
outcomes, including increased cholesterol levels, immune system dysregulation and tox-
icity, liver and kidney disease, thyroid hormones disruption, developmental effects in
children and reproductive effects [6]. A considerable number of epidemiological studies,
including our previous work [7], conducted both on highly exposed populations as well as
populations with background exposure, showed that exposure to individual PFASs, mainly
PFOA and PFOS, is associated with altered lipid profiles [6]. However, only a few studies
have examined the association between PFAS mixtures and lipid outcomes [8-11], taking
into account the totality of chemical exposures simultaneously, which upon acting together
may have additive, synergistic, antagonistic or potentiating effects [12]. All the above-
mentioned studies referred to small communities (hundreds of subjects) with background
levels of exposure.

Hence, the main objective of the present study was to address this research gap,
examining the associations between exposure to a mixture of four PFASs, namely, PFOA,
PFOS, PENA and PFHXS, and serum lipid profile among a large sample of more than
34,000 highly exposed community residents in Italy. Residents of a large area in the Veneto
Region (Northeastern Italy) were exposed to high concentrations of PFAS, particularly
PFOA, via contaminated drinking water stemming from activities of a manufacturing
plant since the late 1960s [13]. In response to the public concern, a health surveillance
program was established to evaluate the relationship between PFAS and different health
outcomes [7,14-16].

Given that no statistical mixture method is considered the gold standard [17], both
Weighted Quantile Sum (WQS) regression, Quantile-based G-computation (Q-Gcomp) and
Bayesian kernel machine regression (BKMR) were used and compared based on their ability
to handle highly correlated measurements of PFAS to identify the impact of a mixture of
chemicals on lipid parameters.

2. Materials and Methods
2.1. Participants and Study Design

A health surveillance program was launched in the Veneto Region, Italy, in January
2017 as a free, population-based screening program offered by the regional Health Service to
the residents of 30 municipalities who were exposed to PFAS via contaminated drinking wa-
ter for several decades until 2013, when waterworks were supplied with granular activated
carbon filters leading to an abrupt reduction of PFAS concentrations (for more information
please see [13]). The eligible group, which consisted of more than 100,000 residents born
between 1951 and 2014, was invited to participate in the health survey through the Regional
Health Registry and invitation letters were mailed to them. As part of the study, partici-
pants completed an interview questionnaire assessing socio-demographic characteristics,
personal health history, lifestyle habits, and self-reported height and weight. Non-fasting
blood samples were obtained for the convenience of the participants throughout the course
of the day when they visited the clinic.

The current study’s population is a subset of the surveillance program target popula-
tion aged 20-64 years at recruitment (n = 36,517 subjects, participation rate 61%). Owing
to the fact that blood lipid levels may change during pregnancy, and because pregnancy
can modify PFAS exposure, distribution or excretion, pregnant women (n = 394) were
excluded from the analysis. Additionally, individuals who admitted to using statins and
other cholesterol lowering medications, fibrates or red rice (a naturally occurring statin)



Int. |. Environ. Res. Public Health 2022, 19, 12421 3of 14

were also excluded (n = 1325). Finally, 165 participants (less than 0.5%) who had missing
data on the selected covariates were excluded, leaving a total of 34,633 subjects for analyses
(Figure S1).

2.2. PFAS Quantification

Serum concentrations of twelve PFASs were quantified by using high-performance
liquid chromatography—-tandem mass spectrometry (HPLC-MS/MS) [Prominence UFLC
XR 20 (Shimadzu) coupled to API 4000TM LC-MS/MS System (Sciex)]: perfluorooctane-
sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS),
perfluorononanoic acid (PFNA), perfluoroheptanoic acid (PFHpA), perfluorobutanesul-
fonic acid (PFBS), perfluorohexanoic acid (PFHxA), perfluorobutanoic acid (PFBA), per-
fluoropentanoic acid (PFPeA), perfluorodecanoic acid (PFDeA), perfluoroundecanoic acid
(PFUnA) and perfluorododecanoic acid (PFDoA). Additional information regarding PFAS
measurement is provided elsewhere [13].

The analytical method has been validated according to the UNI CEI EN ISO/IEC
17,025 regulation, and laboratory analyses included low- and high-concentration pooled
quality control materials, standards, reagent blanks and study samples. The measuring
range of the method was 0.5-500 ng/mL. The Repeatability of the method given as RSD
of determined concentrations was below 10% for all measured PFAS at different levels
and the accuracy of the method was between 80 and 120%. Limit of detection (LOD) for
all PFAS was as low as 0.1 ng/mL and limit of quantification (LOQ) was 0.5 ng/mL [13].
Concentrations below the LOQ were imputed by dividing the LOQ by the square root
of 2 prior to statistical analysis. PFASs detected in greater than 50% of participants were
included in the main analyses, namely, PFOA (99.86%), PFOS (99.74%), PFHXS (96.89%)
and PFNA (52.93%). The excluded PFASs were all detected in less than 20% of participants
(Table S1).

2.3. Outcome Assessment

The assessments of lipid markers, including total cholesterol (TC), high-density
lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), were
performed in three laboratories within the hotspots (contaminated municipalities as Arzig-
nano, San Bonifacio and Legnago). The level of total cholesterol and HDL-C were measured
by a direct enzymatic colorimetric test and units were recorded in mg/dL. When the levels
of triglycerides were less than 400 mg/dL, the Friedewald equation was used to calculate
the level of LDL-C. An external quality assurance program is consistently followed by the
three laboratories.

2.4. Covariates

A directed acyclic graph (DAG) was used to identify sociodemographic, lifestyle
and medical history data that could potentially bias observational associations of PFAS
exposures with lipid profile [7], including age, body mass index (BMI) and time-lag between
the enrolment and the beginning of the study as continuous variables, and smoking (non-
smokers, current or former smoker), alcohol consumption (0, 1-2, 3-6, 7+ alcohol units per
week), country of birth, education level, laboratory in charge of the analyses of serum lipids,
and dietary habits (tertiles or quartiles of meat, fish/seafood, milk/yogurt, cheese, eggs,
bread/pasta/cereals, sweets/snacks/sweet beverages and fruits/vegetables consumption)
as categorical covariates. Additional details regarding the covariate and confounders
selection have been described elsewhere [7].

2.5. Statistical Analysis

The serum concentrations of PFAS are expressed as geometric mean (GM), arithmetic
mean (standard deviation, SD) and percentiles in total and stratified by gender (male,
female). Serum PFAS levels were natural log-transformed to achieve a normal distribution
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and to improve the model fit. Spearman’s rank correlation (p) was calculated to evaluate
pair-wise correlations between the PFASs.

Building upon our previous research [7], we ran single-chemical linear regression
models using generalized additive models (GAMs), to examine independent associations
between each PFAS and each lipid parameter and corroborate results on a population with
a wider age range than the one previously analysed (20-64 years old instead of 20-39 years
old). We also assessed the effect of the sum of all 12 measured PFASs on cholesterol levels
(XPFAS), including those with detection rates below 50%. We modelled the chemical
exposures as natural log-transformed (In-PFAS) continuous variables. An interaction term
between sex and In-PFAS linear coefficient was also added to the models. We further
categorized serum PFAS concentrations into quartiles. The established set of covariates
was fully accounted for in all of the models (age, BMI, time-lag between the enrolment
and the beginning of the study, sex, smoking habits, country of birth, alcohol consumption,
education level, laboratory in charge of the analyses of serum lipids and reported food
consumption).

PFAS Mixtures

We estimated effects of the mixture of four PFASs on lipids profile outcomes using three
approaches: WQS regression, Q-Gcomp regression and BKMR. The main characteristics of
the selected methods are listed in Table S2.

WQS regression summarizes the overall exposure to the mixture by creating a weighted
linear index of correlated predictors that are weighted according to their strength of associ-
ation with the outcome of interest. A detailed description of WQS regression can be found
in Carrico et al. [18].

Prior to analysis, we split the dataset randomly into two subsets, a training set (40%)
for estimating the weights in an ensemble step averaging results across bootstrap samples
(100 bootstrap samples) and a validation set (the remaining 60%) estimating the coefficient
mapped to the mixture, conditionally on the estimated weights.

We scored PFAS in quartiles and used a threshold of 0.25 (1/p, where p represents the
number of exposure variables) for weights, as a guide to determine which PFASs have the
most contribution to the overall mixture effect (chemicals of concern), as well as to discuss
qualitatively their contributions in relation to each other. WQS regression assumes linear
exposure—outcome associations across quantiles of each exposure and focuses inference on
a single direction at a time with constrained optimization of the beta parameter. Effects can
be estimated for both directions individually by conducting separate analyses, but in our
case we constrained the analyses to positive direction.

We next applied a quantile G-computation (Q-Gcomp) approach, a recent extension
to the WQS regression introduced as a generalization of the classical G-computation ap-
proach, where the regression is performed using quantized exposures. Further details on
methodology can be found in Keil et al. [19]. Similar to WQS, the G-computation param-
eter quantifies the expected change in the outcome, given a one quantile increase in all
exposures simultaneously, adjusted for the available confounders. The exposure to four
PFASs is considered as an index that represents their joint value, after transforming them in
“scores” taking on discrete values (quartiles, mirrorwise to WQS). This method shares the
directional homogeneity assumption of WQS regression without any constraints of positive
weights, redefining them to be both negative or positive; weights can be interpreted as the
partial effect due to a specific exposure. G-computation can also overcome the linearity as-
sumption of WQS by including polynomial terms for exposures, which makes it a valuable
tool for identifying mixture with harmful constituents on a health outcome of interest [19],
bringing certain advantages over traditional WQS. We defined as chemicals of concern
PFAS contributing to the overall mixture effect with a positive weight that exceeded the
threshold of 1/p (where p, in contrast with WQS, varied depending on the number of
PFASs with estimated positive weight in each stratum).
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We also assessed PFAS mixture association using BKMR analysis, which is able to
elucidate the relation between PFAS and lipid profile allowing exposures to relate non-
linearly and non-additively with the outcomes [20-22]. The core of the BKMR model is
kernel machine regression (KMR), also called Gaussian process regression, which combines
Bayesian and statistical learning methods to iteratively regress the exposure-response
function using a Gaussian kernel function [23]. Overall mixture effects were displayed
taking the mean value of the outcome when all four PFAS concentrations were at the 75th
percentile compared to the mean value of the outcome when concentrations were at the
50th percentile, to makes results more readily comparable with the previous methods [20].
Further details on post-estimation visualizations and statistics from BKMR analyses can be
found in Bobb et al. [20]. BKMR can also be used as a variable selection tool, identifying
exposure variables that are important to the overall effect of the exposure mixture by
estimating posterior inclusion probabilities (PIPs). Like WQS and Q-Gcomp weights, PIPs
can be used to identify the importance of individual exposure variables to the overall
mixture effect. However, unlike the other mixture model techniques weights, PIPs are not
constrained to sum to 1.

Further, we assessed heterogeneity in effects by gender using sex-specific models for
all lipid outcomes.

All analyses were fully adjusted for the established set of covariates described in the
previous section.

Analyses were performed using the statistical and R [24]. We employed “gWQS” [25],
“qgcomp” [19] and “bkmr” [20] packages to conduct WQS, Quantile G-computation and
BKMR with R, respectively. Results with p-values < 0.05 were considered statistically
significant.

3. Results

The study population comprised 18,320 (52.9%) females and 16,313 (47.1%) males, with
a mean age of 39.95 years (SD 10.98, range 20-64). General characteristics of participants
are reported in Table S3. Table 1 provides descriptive statistics on serum concentration of
PFAS and lipid parameters.

Serum levels of PFOA, PFOS, PFHxXS and PFNA were on average and maximum values
higher in males than females (p-value < 0.05). Among the four PFASs, PFOA levels were
much higher (GM 32.76 ng/mL), followed by PFOS, PFHxS and PFNA (GMs 4, 3.86 and
0.5 ng/mL, respectively). As for lipid profile, the median serum concentration for TC,
HDL-C and LDL-C were 187, 58 and 107 mg/dL, respectively. Levels of LDL were generally
higher among males than females, and HDL-C was higher in females (p-value < 0.05).

There were significant correlations among the four PFASs (Table S4). The correlation
between PFOA and PFHXS was the strongest (p = 0.90), whereas that between PFOS and
the other two PFASs was less significant (p = 0.68 with PFNA, p = 0.65 with PFHxS and
p = 0.60 with PFOA).

In the single PFAS models, each In-increase in PFAS was associated with an increase of
1.83 mg/dL (CI1.51-2.15) in TC for PFOA, 5.14 mg/dL (CI 4.56-5.72) for PFOS, 1.74 mg/dL
(CI1.36-2.13) for PFHxS and 6.61 mg/dL for PENA (CI 5.72-7.51) (Table S5). Increases
in PFAS were also associated with higher HDL-C and LDL-C levels, especially for PFOS
and PFNA. The sum of PFAS effects (XPFAS) was similar to those of PFOA, given its
concentration accounted for the majority of the total serum concentration. These trends
were confirmed when exposures were considered as categorical (based on quartiles of
exposure) (Table S6). Gender significantly modified the association between all four PFASs

and HDL-C, whereas the interaction terms for TC and LDL-C were significant only for
PFOA and PFHXS (Table S5).
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Table 1. Distributions of serum PFASs concentrations (ng/mL) and serum lipids concentrations (mg/dL) in the study population (n = 34,633), stratified by gender.

Males Females Total

Mean (SD) GM Min-Max Median (Q1-Q3) <LOQ Mean (SD) GM Min-Max Median (Q1-Q3) <LOQ Mean (SD) GM Min-Max Median (Q1-Q3) <LOQ
PFAS
PFOA 90.5 (100.4) 52.7 0.4-2723.3 60.7 (26.0-120.7) 0.05% 39.2 (47.05) 21.5 0.4-1090.0 24.1 (9.7-51.5) 0.22% 63.7 (81.1) 32.8 0.4-2723.3 37.0 (14.6-82.3) 0.14%
PFOS 6.2 (4.7) 5.1 0.4-142.0 5.10 (3.4-7.5) 0.13% 4.0 (3.49) 32 0.4-124.0 3.2(2.24.9) 0.37% 5.0 (4.2) 4.0 0.4-142.0 4.0 (2.6-6.2) 0.26%
PFHxS 10.2 (9.8) 6.6 0.4-162.0 7.40 (3.4-13.8) 0.64% 3.7 (3.88) 2.4 0.4-71.0 2.5 (1.2-4.8) 5.31% 6.7 (7.9) 39 0.4-162.0 4.0 (1.8-8.8) 3.11%
PFNA 0.6 (0.6) 0.6 0.4-59.8 0.50 (0.4-0.7) 33.03% 0.5 (0.32) 0.5 0.4-12.3 0.4 (0.4-0.6) 59.57% 0.6 (0.5) 0.5 0.4-59.8 0.5 (0.4-0.7) 47.07%
Outcome
TC 191.0 (38.3) 70-487 188 (164-215) 188.3 (36.2) 83-450 185 (163-211) 189.6 (37.2) 70-487 187 (163-213)
HDL-C 52.8 (12.4) 15-138 52 (44-60) 64.6 (14.5) 22-144 63 (55-73) 59.1 (14.7) 15-144 58 (48-68)
LDL-C 114.4 (34.5) 0-420 112 (91-136) 106.2 (31.5) 0-342 103 (84-125) 110.0 (33.2) 0-420 107 (87-131)

Note: total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C).
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When assessing mixture effects, in the WQS regression models, a one-quartile increase
in PFAS mixture was associated with 4.09 mg/dL (95% CI: 3.47—4.71) higher TC after
adjusting for all covariates (Table 2).

Table 2. Associations between WQS regression index and serum lipids (mg/dL). WQS estimates *
and 95% confidence intervals for the change in TC, HDL-C and LDL-C, stratified by gender. WQS
regression model weights of each PFAS component, for each outcome.

Weights
Outcome B [95% CI]
PFOA PFOS PFHxS PFNA
TC 3.63 [2.88; 4.39] 0 0.67 0 0.33
Males HDL-C 0.7 [0.46; 0.95] 0 0.75 0 0.25
LDL-C 3.46 [2.70; 4.22] 0 0.39 0 0.61
TC 4.61 [3.54; 5.67] 0.18 0.31 0 0.52
Females HDL-C 1.61[1.25;1.97] 0.29 0.37 0.03 0.31
LDL-C 2.57 [1.89; 3.24] 0.03 0.63 0.01 0.33
TC 4.09 [3.47; 4.71] 0.14 0.43 0 0.43
Total HDL-C 1.13 [0.92; 1.33] 0.12 0.65 0 0.23
LDL-C 3.14 [2.65; 3.63] 0.02 0.61 0 0.37

Note: 3 represents the increase of cholesterol level associated with a quartile increase in the WQS index. In bold:
weights that exceed the case of uniform weights (>1/p = 0.25). * adjusted by age, BMI, time-lag between the
enrolment and the beginning of the study and categorical covariates including sex, smoking habits, country of
birth, alcohol consumption, education level, laboratory in charge of the analyses of serum lipids and reported
food consumption (in tertiles or quartiles of fruit/vegetables, milk/yogurt, cheese, meat, sweet/snacks/sweet
beverage, eggs, fish, bread /pasta/cereals per week).

A quartile increase in the WQS index was associated with an increase in the HDL-C
level of 1.13 mg/dL (95% CI: 0.92-1.33). Finally, for each quartile increase in the WQS index,
the concentration of LDL-C increased 3.14 mg/dL (95% CI: 2.65-3.63). We identified PFOS
and PFNA as contributing the most to the weighted quantile sum index for TC (Table 2).
PFOS showed the highest weight for both HDL-C (0.65) and LDL-C (0.61), indicating its
high contribution in driving the observed association with these outcomes, while PFOA
and PFHXS had the lowest weights for all outcomes (Table 2). PFOA was identified as a
chemical of concern only regarding the association with HDL-C in females (weight: 0.29,
Table 2).

Applying Q-Gcomp approach, a one quartile increase in PFAS mixture was associated
with 4.04 mg/dL (95% CI: 3.5; 4.58) increase in TC, 1.07 mg/dL increase (95% CI: 0.87; 1.27)
in HDL-C and 2.71 mg/dL (95% CI: 2.23; 3.19) in LDL-C (Table 3).

Both PFOS and PFNA were identified as chemicals of concern when studying the asso-
ciation with TC, while for HDL-C and LDL-C only PFOS exceeded the set threshold. PFOS
and PFNA were always weighted positively, among both males and females, suggesting
that these compounds are more important drivers of the overall association compared to
PFOA and PFHxS (Table 3).

Results from BKMR were displayed as differences in serum lipids levels and 95%
confidence intervals when the four PFAS concentrations were at their 75th percentile
compared to their medians (Table 4).
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Table 3. Associations between Quantile G-computation regression index and serum lipids (mg/dL).
Quantile G-computation estimates * and 95% confidence intervals for the change in TC, HDL-C
and LDL-C, stratified by sex. Q-Gcomp regression model weights of each PFAS component, for
each outcome.

Weights
Outcome P [95% CI] - -
Direction Effect PFOA PFOS PFHxS PFNA
pos 4.56 0.01 0.59 0.40
TC 3.14 [2.39; 3.9]
neg —1.42 1.00
0s 0.84 0.60 0.40
Males HDL-C 0.56 [0.30; 0.81] P
neg —0.28 0.26 0.74
pos 4.00 0.63 0.37
LDL-C 2.35[1.67; 3.03]
neg —1.65 0.49 0.51
pos 529 0.28 0.35 0.37
TC 4.82 [3.56; 6.08]
neg —0.46 1.00
Femal pos 1.94 0.35 0.39 0.26
emales HDL-C 1.58 [1.05; 2.12]
neg —0.35 1.00
pos 2.83 0.12 0.57 0.31
LDL-C 2.59 [1.51; 3.68]
neg —0.23 1.00
pos 4.74 0.16 0.44 0.40
TC 4.04 [3.50; 4.58]
neg -0.70 1.00
Total pos 1.29 0.28 0.45 0.26
ota HDL-C 1.07 [0.87; 1.27]
neg —0.22 1.00
pos 3.29 0.57 0.43
LDL-C 2.71[2.23; 3.19]
neg —0.58 0.48 0.52

Note: 1 represents the increase of cholesterol level associated with a quartile increase within the overall mixture,
according to quantile G-computation. In bold: weights that exceed the case of uniform positive weights (>1/p,
where p represents the number of chemicals with positive weights in each group). * adjusted by age, BMI,
time-lag between the enrolment and the beginning of the study, and categorical covariates including sex, smoking
habits, country of birth, alcohol consumption, education level, laboratory in charge of the analyses of serum
lipids and reported food consumption (in tertiles or quartiles of fruit/vegetables, milk/yogurt, cheese, meat,
sweet/snacks/sweet beverage, eggs, fish, bread /pasta/cereals per week).

Table 4. BKMR estimates * and 95% confidence intervals for the change in TC, HDL-C and LDL-C,
stratified by sex.

Outcome 550-75 (95% CI)

TC 2.34[1.61; 3.07]

Males HDL-C 0.49 [0.33; 0.66]
LDL-C 1.35[0.75; 1.95]

TC 4.25[3.30; 5.20]

Females HDL-C 1.36 [0.88; 1.84]
LDL-C 1.82 [0.85; 2.79]

TC 2.77 [1.80; 3.74]

Total HDL-C 0.57[0.42; 0.72]
LDL-C 2.08 [1.15; 3.02]

Note: 557> represents the increase of cholesterol level associated with a quartile increase within the overall effect
when PFAS mixtures were at their 75th percentiles compared to their median, according to BKMR. * adjusted by
age, BMI, time-lag between the enrolment and the beginning of the study, and categorical covariates including
sex, smoking habits, country of birth, alcohol consumption, education level, laboratory in charge of the analyses
of serum lipids and reported food consumption (in tertiles or quartiles of fruit/vegetables, milk/yogurt, cheese,
meat, sweet/snacks/sweet beverage, eggs, fish, bread /pasta/cereals per week).
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The combined effects of the PFAS mixture were associated with increases in all lipid
parameters (for TC 2.77 mg/dL with 95% CI: 1.8-3.74; for HDL-C 0.57 mg/dL with 95% CI:
0.42-0.72; and for LDL-C 2.08 mg/dL with 95% CI: 1.15-3.02), and effects were always
stronger in females (Table 4). The effects of PFAS mixture on TC, HDL-C and LDL-C dis-
played linear dose-response relationships overall and in both males and females (Figure S2,
Table S7).

PFNA and PFOS had the highest PIPs when studying the association with TC and
LDL-C (1 and 1 for both lipid outcomes, respectively), making them the most important
group in the mixture, which was in line with the results from WQS and Q-Gcomp approach
(Table S8). PFHXS also emerged as an important chemical compound in the association with
LDL-C (PIP equal to 1), whereas for HDL-C the PFAS that contributes most in explaining
the relationship with the response is PFOS (PIP equal to 1). We further investigated the
interactions between a certain PFAS and each lipid parameter when other exposures were
fixed at their 50th percentile. No significant changes in the association with TC, HDL-C
and LDL-C were found, suggesting no interactions.

4. Discussion

The aim of this study was to assess individual and combined effects of exposure to four
PFASs on serum lipid profile in more than 34,000 highly exposed adults aged >20 years
in the Veneto Region, Italy, using different statistical approaches recently developed to
specifically quantify the summed mixture effect as well as the contribution of each com-
pound within the mixture. All the selected methods possess strengths and limitations, so
it is of interest to compare these approaches in the context of the PFAS-lipids association
(Table S2). When the aim is to distinguish the relative importance of components, weighted
quantile-based approaches are the most appropriate, as they provide relative weights for
each chemical. Not knowing the dose-response function shapes, or the biological mecha-
nism, is a reason for making as few assumptions as possible, leaning towards the use of
Q-Gcomp and BKMR. All models (WQS, Q-Gcomp and BKMR analysis) suggested that
higher concentrations of mixtures of four PFASs are strongly associated with serum lipids
parameters. TC and LDL-C were more strongly associated with exposure to the mixture of
PFASs than HDL-C, confirming results from single chemical methods.

Consensus in the results we obtained through different methods can be attributed
to the fact that exposure-outcome curves were generally monotonic and lacked high
synergistic effect between individual PFASs. In addition, BKMR analyses supported the
associations observed in the linear regression models, suggesting the absence of non-linear
associations or interaction effects.

Although the literature on the effect of a single PFAS and lipids is substantial, few
studies have examined the combined effects of exposure to PFAS mixtures and lipid
outcomes. Similar to the results of the current study, Fan et al. [9] observed a mixture
of higher serum PFAS concentrations (PFNA, PFHxS, PFOA and PFOS) associated with
higher HDL-C, LDL-C and TC levels in a population of 1067 adults aged >20 years with
background levels of exposure using both WQS and BKMR analysis. WQS index was
significantly correlated with the levels of HDL-C (b: 2.03, 95% CI: 0.74-3.32), LDL-C (b: 4.16,
95% CI: 1.07-7.24) and TC (b: 6.54, 95% CI: 3.00-10.1). In the BKMR analysis, the effect of
PFAS on serum lipids increased significantly when the concentrations of the PFAS were
at their 60th percentiles or above compared to those at their 50th percentile. In this study,
PFHXS had the greatest impact on HDL-C level, and PFNA had the greatest impact on
LDL-C and TC levels, the latter being consistent with our findings in the present study.

Alongitudinal study conducted on 306 mother/child pairs from the Shanghai-Minhang
Birth Cohort Study [11] drew different conclusions when investigating the effects of prena-
tal exposure to individual PFASs and PFAS mixtures on cord lipid concentrations using
BKMR model. BKMR revealed inverse associations between the mixture of eight PFASs and
cord serum lipid concentrations (TC, TG, HDL-C and LDL-C), showing that In-transformed
TC concentrations of exposure to the 75th percentile of the mixture were 0.11 units (95%
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CI: —0.21; —0.01) lower than the 25th percentile exposure. This generally supported
the observed association of individual PFAS exposure (mainly long-chain PFASs (PFNA,
PFDA, FFUdA and PFIrDA)) on cord plasma levels of lipid parameters in multiple linear
regression models [11].

Significantly positive associations were observed between mixtures of PFAS and TC
and LDL-C in a case-control study consisting of 304 participants in China, half of which
were diagnosed with type 2 diabetes using Q-Gcomp. However, the associations failed
to reach significance after adjustment for covariates (age, sex and BMI). In the relations
between PFAS and TC, PFUnDA had the greatest positive contribution to the mixture effect
on TC, followed by 6:2 CI-PFESA, PFOA and PFNA, whereas PFDA, PFHxS and PFOS
showed negative contributions [26].

In another cross-sectional study on 102 young adults with 82% overweight or obese
participants, no association was found for PFAS exposure with serum concentrations of
cholesterol and triglycerides using BKMR model [8].

Some aspects of our results deserve to be underlined. First, BKMR, Q-Gcomp and WQS
regression identified PFOS and PFNA as the most important contributors in the observed
associations of PFAS exposure with all three lipid parameters, though the main exposure in
this population was to PFOA (with a median concentration about 23 times higher than the
PFOA serum concentration in the Veneto citizens with only background exposures (1.64
ng/mL)) [27]. While PFOS'’s strong effect on lipids has been seen in previous studies [7,28],
PENA relevancy in the studied associations was rarely highlighted. The latter already
emerged from single-pollutant modelling, emphasizing the greater effect of PFNA despite
having remarkably lower changes in concentration than other PFAS.

To the best of our knowledge, we are the first to have assessed the overall association
between lipid profile outcomes and PFAS mixture stratified by gender. When stratified
by gender in mixture models, the results were in accord with the findings of several other
studies using single-pollutant models [7,28-30]. Results confirmed a stronger association
between overall PFAS mixtures and HDL-C in females, while the association with LDL-C
was the strongest in males. PFOA’s major role in describing the association with HDL-C in
females emerged consistently, being identified as chemical of concern in both WQS and
Q-Gcomp. Compared with men, women at pre-menopause have lower LDL-C levels and
higher HDL-C levels [31], indicative of the role that estrogens play in the regulation of the
metabolism through receptor modification [32]. This metabolic pattern typical of women
could explain the different effect of PFAS on lipids according to sex. Given the apparent
impact of PFAS exposure on metabolic health outcomes, future studies are warranted to
explore potential sex-specific association between serum-PFAS concentrations and lipid
profiles and to explore causal links.

While there is large body of epidemiological studies linking individual PFAS exposure
to increased blood lipid levels, mechanistic toxicity studies on individual PFASs, other
than PFOA and PFOS, as well as studies that utilize mixtures of PFASs, are limited [33,34].
To date, it is evident that PFOA and to a lesser extent PFOS activate PPAR«, both its
murine and human version, and the observed lipid alterations may depend to a certain
extent on the PPAR«-signaling pathway. The stronger association of PFOS and PFNA with
total cholesterol and LDL-cholesterol has also been reported in experimental data where
serum PFOS and PFNA showed a higher potency based on liver effects than PFOA and
PFHXS [35].

Among experimental in vitro studies considering a series of PFASs in cultured cells,
PFNA was the most potent activator of human and mouse PPAR-« [36], which could
explain why its greater contribution than other PFASs emerged using different approaches.
PFNA relevancy can be explained by the limited range of variation including a longer
persistence in the body and, potentially, a greater intrinsic toxicological power of this PFAS
compare to the other PFASs [37]. Recent studies suggest that the positive associations
observed in epidemiological studies between PFAS and circulating cholesterol may be more
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related to impacts on cholesterol metabolism and transport than on endogenous cholesterol
formation [34].

The present study has several strengths. First, the relatively large sample size, which
allowed us to assess these complex relationships while controlling for multiple potential
confounding factors and stratifying by sex. To our knowledge, this is the second largest
study in a highly exposed population [28].

Second, applying statistical methods to assess mixture exposure along with conven-
tional linear regression enabled us to examine both individual and combined effects of
the exposure to multiple PFASs, accounting for moderately to highly correlated PFAS
concentrations; thus, the potential bias by co-exposed PFASs may be less of a concern in
our results. The WQS regression identifies the most important factors with higher accuracy,
sensitivity and specificity than single pollutant analyses. However, it is not possible to
simultaneously account for any differences in the directions of the associations. Therefore,
we introduced quantile G-computation to avoid any a priori constraints on the directional-
ity of the associations. Additionally, the BKMR allowed us to estimate the effect of PFAS
mixture without any linearity assumption on the dose-response relationships. Overall, the
application of multiple approaches, each with different strengths and limitations, produced
consistent results and greatly reduced the chance of false discovery.

Third, through the identification of the chemicals of concern, it was possible to distin-
guish which PFASs were the most important contributors in the observed associations with
serum lipids. However, due to the high correlations between some of the PFAS pairs, the
difficulty for distinguishing their independent biological effects remains.

There are some potential limitations to the present study that mainly refer to the study
design and are reported in the previous paper [7]. Mainly, our study was cross-sectional,
limiting our ability to determine temporality of exposures in relation to the outcomes, but
this is potentially offset by the relatively long half-lives of the investigated PFASs in blood.
While we were able to assess potential confounding by numerous socio-demographic
factors, we cannot rule out potential residual confounding from uncontrolled factors. In
addition, the associations of exposure to PFASs with serum lipid profiles may be affected
by other chemicals which correlated with PFAS exposure, thus we could not exclude the
potential effects of other chemicals co-occurring with PFAS exposure in our study.

5. Conclusions

In this large study, we found that PFAS exposure, especially PFOS and PFNA ex-
posures, has a significant association with serum lipid parameters in the highly exposed
adult population of the Veneto Region, Italy. The mixture of the four PFASs with higher
concentrations in blood samples was positively associated with TC, HDL-C and LDL-C,
whether applying WQS, Q-Gcomp or BKMR modelling. These results suggest that the
evaluation of multichemical exposure could better characterize their real toxicity compared
with single-chemical exposure assessment, due to the fact that PFASs occur as mixtures
in the environment. Given the ubiquitous nature of PFASs, more effort is needed in fu-
ture studies to understand the potential effects of their exposure in potentially vulnerable
population subgroups.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph191912421/s1, Figure S1: Flow-chart of study population;
Table S1: Distributions of serum PFASs concentrations (ng/mL) excluded from the main analy-
ses in the study population (n = 34,633); Table S2: Principal characteristics of recently developed
statistical methods used for mixture analysis; Table S3: Distributions of covariates in the study pop-
ulation (n = 34,633); Table S4: Spearman correlation matrix of serum PFAS in the study population
(n = 34,633), stratified by gender; Table S5: Association between PFAS (In ng/mL) and Serum Lipids
(mg/dL) from GAM models, stratified by gender and adjusted by several covariates: 3 coefficients
for In-transformed PFAS and 95% Confidence Intervals (CI); Table S6: Association between PFAS
(In ng/mL) and Serum Lipids (mg/dL) from GAM models adjusted by several covariates, 3 coef-
ficients for PFAS quartiles and 95% Confidence Intervals (CI); Figure S2: The overall effect of the
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PFAS mixture on serum lipid profiles (95% ClIs), estimated using BKMR modeling; Table S7: The
overall effect of the PFAS mixture on serum lipid profiles (95% Cls), estimated using BKMR modeling;
Table S8: Posterior inclusion probability of each PFAS, stratified by gender.
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