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Purpose: The purpose of this study is to present a biomathematical model based on the dynamics of
cell populations to predict the tolerability/intolerability of mucosal toxicity in head-and-neck radio-
therapy.
Methods and Materials: Our model is based on the dynamics of proliferative and functional cell
populations in irradiated mucosa, and incorporates the three As: Accelerated proliferation, loss of
Asymmetric proliferation, and Abortive divisions. The model consists of a set of delay differential
equations, and tolerability is based on the depletion of functional cells during treatment. We calculate
the sensitivity (sen) and specificity (spe) of the model in a dataset of 108 radiotherapy schedules, and
compare the results with those obtained with three phenomenological classification models, two
based on a biologically effective dose (BED) function describing the tolerability boundary (Fowler
and Fenwick) and one based on an equivalent dose in 2 Gy fractions (EQD2) boundary (Strigari). We
also perform a machine learning-like cross-validation of all the models, splitting the database in two,
one for training and one for validation.
Results: When fitting our model to the whole dataset, we obtain predictive values (sen + spe) up to
1.824. The predictive value of our model is very similar to that of the phenomenological models of
Fowler (1.785), Fenwick (1.806), and Strigari (1.774). When performing a k = 2 cross-validation, the
specificity and sensitivity in the validation dataset decrease for all models, from ~1.82 to ~1.55–1.63.
For Fowler, the worsening is higher, down to 1.49.
Conclusions: Our model has proved useful to predict the tolerability/intolerability of a dataset of
108 schedules. As the model is more mechanistic than other available models, it could prove helpful
when designing unconventional dose fractionations, schedules not covered by datasets to which phe-
nomenological models of toxicity have been fitted. © 2021 The Authors. Medical Physics published
by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine [https://
doi.org/10.1002/mp.14834]
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1. INTRODUCTION

Many clinical trials have tested nonconventional schedules to
improve tumor control probability in head-and-neck cancer,
including acceleration, dose escalation, or gaps.1 Intolerable
mucosal toxicity is a limiting factor in dose escalation and/or
treatment shortening in head-and-neck cancer.2–4 Finding the
boundary separating tolerable and intolerable schedules is of
particular interest, especially when aiming at designing novel
unconventional fractionation schedules.

Mathematical models have been employed to tackle this
problem. Kaanders et al.5 initially explored this issue, and by
plotting the total dose vs the treatment time, they found that
intolerable schedules tend to deliver larger doses over shorter

times. Fowler et al.6 used the linear-quadratic model to inves-
tigate the tolerable/intolerable boundary, and proposed a
boundary between tolerable and intolerable schedules based
on the biologically effective dose (BED). Fenwick et al.7

developed that model using delay differential equations to
obtain a novel BED vs treatment time formula that resulted in
better separation of tolerable and intolerable schedules. Stri-
gari et al.8 tackled this problem by employing the LKB for-
mulation of normal tissue complication probability (NTCP).
With their model, they achieved values of sensitivity/speci-
ficity similar to Ref. [7] while at the same time predicting the
level of severe mucositis NTCP of those schedules. More
recently, machine learning techniques have been used to pre-
dict patientwise the probability of severe mucosal toxicity.9–11
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All models mentioned above are phenomenological.
Mechanistic models can add to our understanding of the pro-
cesses involved in response to radiotherapy, and may prove
especially useful when designing unconventional dose frac-
tionations. In this work, we present a more mechanistic
approach to the problem, based on the three A’s of acceler-
ated proliferation:12 loss of asymmetry, accelerated prolifera-
tion, and abortive divisions. We rely on the compartment
model of cell population dynamics in mucosa presented in
Ref. [13], which has been extended to multiple fractions,
including incomplete repair between fractions, and we link
tolerability/intolerability of a given schedule to the numbers
of cells in the mucosa. Systems of differential equations have
previously been used to model dynamics of cell populations
in normal tissues, including, for example, toxicity14 and can-
cer induction,15 tumor reoxygenation,16 or response to molec-
ular radiotherapy.17,18 We validate our model in an extended
dataset of tolerability/intolerability of head-and-neck sched-
ules, building upon those provided in Refs. [7,8], and adding
some additional schedules.

2. METHODS AND MATERIALS

2.A. Model of dynamics of cell populations

The model presented in Ref. [13] for single fraction irradi-
ation has been extended to multiple fractions. We refer the
reader to that publication for a detailed presentation and
study of the model’s description of cell dynamics in preclini-
cal data of cell. We initially assume two compartments of
cells: proliferative cells (SC) and fully differentiated, nonpro-
liferative, functional cells (FC). Proliferation is controlled by
the fraction of proliferating cells, p; the division time, τ; and
the asymmetry factor AF (the fraction of SCs arising from a
cell division, in equilibrium, each division will produce one
SC and one FC, and AF = 0.5). Irradiation will generate a
new compartment of cells, containing SCs that have been
lethally damaged by radiation and are doomed. Cells in this
compartment still carry some proliferative capacity (abortive
divisions), but will eventually die and disappear with a death
rate, γA. FCs are nonproliferative and insensitive to radiation,
but are lost due to natural turnover (rate μ). A graphical
sketch of the model is presented in Fig. 1.

The set of delay differential equations describing the evo-
lution of these three populations of cells during a radiother-
apy treatment is as follows:

dS tð Þ
dt

¼ 2p t� τð Þ
τ

S t� τð Þe�γSτ 1�AF t� τð Þ½ �

�p tð Þ
τ

S tð Þ� 1�SF tð Þð ÞS tð Þδ t� tDf gð Þ
(1)

dSA tð Þ
dt

¼ 2p t� τð Þ
τ

SA t� τð Þe�γAτ 1�AF t� τð Þ½ �

�p tð Þ
τ

SA tð Þþ 1�SF tð Þð ÞS tð Þδ t� tDf gð Þ
(2)

dF tð Þ
dt

¼ 2p t� τð ÞAF t� τð Þ
τ

e�γSτS t� τð Þþ e�γAτSA t� τð Þ½ ��μF tð Þ
(3)

γA and γS are the death rate of abortive and undamaged stem
cells, respectively. The term SF(t) is the surviving fraction of
irradiated cells, and accounts for the transfer of cells from the
healthy compartment, S, to the doomed compartment, SA,
when a radiation fraction is applied. d(t) is the applied dose
at time t, which is zero when t is not in {tD}, the vector of
irradiation times. The delivery of each fraction is considered
to be instantaneous, hence the formal introduction of the
Dirac delta function in the equations. If time between frac-
tions is low, as can happen in schedules with multiple frac-
tions per day, incomplete repair of sublethal damage may
need to be considered. Therefore, the surviving fraction has
been modeled with the linear-quadratic (LQ) model with
incomplete repair correction.19,20 The surviving fraction of
cells following the k-th radiation fraction is given by:

logSFk ¼�αdk�βd2k �2βdk ∑
k�1

p¼1
dp

Yk�1

q¼p

θq (4)

θq ¼ exp �νΔtq
� �

;Δtq ¼ tqþ1� tq (5)

α and β are the LQ parameters characterizing cell radiosensi-
tivity, and ν is the repair rate of sublethal damage.

AF and p describe the asymmetry factor and proliferative
fraction via:

AF tð Þ¼ S tð ÞþSA tð Þ
S0

(6)

p tð Þ¼max p0, 1� 1�p0ð Þ F tð Þ
F0

� �� �
(7)

where S0 and F0 are numbers of proliferative and functional
cells in the steady state. According to this functional form,
when an external perturbation (radiation) kills a substantial
fraction of proliferative cells, the remaining proliferative cells
will adapt and try to recover by decreasing AF (loss of asym-
metry). This shortage of proliferative cells will lead to a
shortage of functional cells because tissue turnover cannot be
compensated. Loss of functional cells will trigger an increase
in the fraction of proliferative cells undergoing division (ac-
celerated proliferation). In Eq. (7), p0 is the steady prolifera-
tion fraction, which can be determined from the steady-state
condition (dF/dt = 0) to be p0 = μτF0/(S0 exp(−γSτ)).

2.B. Intolerable/Tolerable mucositis model

We formulate simple binary criteria that assign a tolerable/
intolerable classification to a given schedule according to the
population of functional cells. Our tolerability criteria rely on
the requirement that functional cells maintain the functional-
ity of the tissue, and their elimination may trigger toxicity,
while proliferating cells contribute to maintain intended cell
densities. While toxicity is a complex phenomenon, which
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depends on more factors than the number of cells, in rapidly
turning over tissues, the number of cells is bound to play an
important role.21–23

We have investigated two simple criteria (Fig. 1): First, we
consider a schedule to be intolerable if the number of func-
tional cells falls below a given threshold (Fth), relative to the
steady-state population of cells (Criterion 1):

Criterion1 ¼
intolerable, if F ≤ Fth

tolerable, otherwise

�
(8)

Second, we consider that if the number of functional cells
remains below the threshold longer than a time tth, the sched-
ule will be intolerable (Criterion 2):

Criterion2 ¼
intolerable, if F ≤ Fthfor a length time t ≥ tth

tolerable, otherwise

�

(9)

2.C. Comparison with other classification models

Our model has been compared with three phenomenologi-
cal models presented in Refs. [6–8], which we will refer to as
Fowler, Fenwick, and Strigari. These models are based on a
BED boundary between tolerable/intolerable schedules, and
they are presented in detail in an appendix.

2.D. Experimental dataset

We have tested our model on an extended dataset cata-
loging the tolerability/intolerability of radiation mucositis
induced by different head-and-neck radiotherapy schedules,
which builds upon schedules provided in Refs. [6–8] while
also adding some further schedules. As in our model, we need
not only total dose, dose per fraction, and treatment time but
also the time of delivery of each fraction, we have reviewed
each original article to find the necessary data. If times of dose

delivery could easily be inferred from available data, such
schedules were incorporated to the dataset, otherwise they
were left out. In many cases, elements of the radiation sched-
ule such as duration, gaps, and doses varied among the studied
population, and we considered median values if reported. For
accelerated schedules delivering several doses per day, a sepa-
ration of 6 h between doses given in the same day was consid-
ered when not explicitly stated in the reference.

Some very low dose, tolerable schedules used in Refs. [6–
8] were left out of the analysis, because in these cases, tolera-
bility is not an issue. These schedules typically correspond to
the first part of gap treatments, when toxicity is evaluated and
treatment continued if acceptable (schedules 77–84 in table
A.1.1 in Ref. [7]). Nonetheless, they are included in the dataset
available as Supplementary Materials in Openoffice spread-
sheet format in order to provide the most complete picture.

In some cases, the tolerability of a schedule is disputable.
There are four such schedules in our dataset (table A.1.2. in
Ref. [7]). These schedules are reported as “disputable” in our
dataset, but for fitting purposes, we have considered K11
(“Program is not doable outside the experimental protocol”)
and F31 (“ . . . may necessitate lowering the dose . . . ”) as
intolerable, and K41/F8 (“Acute toxicity does not represent a
major obstacle”) and F28 (“Toxicity is high but manageable”)
as tolerable.

The dataset contains data for 108 radiotherapy schedules
(plus eight additional tolerable schedules that correspond to the
first part of gap treatments that have not been used in the analy-
sis, as discussed above), of which 15 were deemed intolerable
(13.9%), a fraction similar to that reported in Ref. [7] (84
schedules, 13 intolerable, 15.5%), and Ref. [8] (107 schedules).

2.E. Numerical implementation, optimization, and
parameters

The set of differential equations is coded in Matlab (The
Mathworks Inc.) and solved by employing an Euler method,24

FIG. 1. Sketch of the model of cell dynamics of stem cells (S), abortive cells (SA), and functional cells (F) (left), and the criteria for toxicity evaluation (right).
[Color figure can be viewed at wileyonlinelibrary.com]
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with a time step of 1 h. The classification models presented
in Refs. [6–8] were also implemented. A simulated annealing
algorithm13,25 was implemented for the optimization problem
(model fitting to the experimental dataset). This methodology
seems appropriate for the problem under study, where
gradient-descent methods may be suboptimal due to local
minima/maxima, and closed-form solutions do not exist (or
are unknown). The objective function, C, to be maximized is
defined as the sum of sensitivity (sen) and specificity (spe),

C¼ senþ spe (10)

where the sensitivity is defined as the number of true posi-
tives (TP) over positive cases (P), and the specificity as the
number of true negatives (TN) over negative cases (N):

sen¼ TP
P

spe¼ TN
N

(11)

Positives are defined as intolerable schedules, and TP as
schedules correctly classified as intolerable, while negatives
are defined as tolerable schedules, and TN as schedules cor-
rectly classified as tolerable. We use such an objective func-
tion in order to give equal weight to tolerable and intolerable
schedules, even if the number of intolerable schedules in the
dataset is much lower than the number of tolerable ones.
Other optimization criteria, like minimizing the number of
misclassifications (either tolerable or intolerable), would not
be convenient as they would undervalue the importance of
correct classification of intolerable schedules.

We have fixed the values of α/β = 10 Gy (as typically
done for mucositis12), and the incomplete repair parameter,
T1/2 = 3.2 h as in Ref. [7,26] (ν = log(2)/T1/2 = 0.2166 h−1).
The BED model of Fowler has three free-fitting parameters,
αTd, Tk, and BED0, while the BED model of Fenwick and
TD50-model have two free parameters each, BED0 and Tc,
and TD50(0) and Δ, respectively. These free parameters have
been fitted to maximize the cost function C defined in the
previous section. The number of free parameters in our model
is larger, six to seven parameters, namely, α, τ, γA (we take
γS = 0), μ, the fraction of functional cells, fF (the percentage
of proliferating cells is fS = 1−fF), and Fth and tth (the param-
eters of the tolerability model). In order to reduce the number
of free parameters in our model, we have fixed α = 0.1 Gy−1

and τ = 48 h. These parameters have not been as frequently
studied experimentally or used in models, especially in clini-
cal studies. Our approach has been to set round values within
ranges reported in the literature. For the proliferation time τ,
Dörr and colleagues have reported values ranging from
~1 day to ~4 days (12,27 and references therein). We have
picked a value in this range, 2 days. This value would also
approximately match the proliferation needed to counter a
turnover time of 4 days (in the range reported for those tis-
sues) if ~50% of the cells are proliferative and p0 = 0.5.
Regarding the value of α, analysis of animal studies13,27

shows very low values of α (~0.02–0.05 Gy−1), yet values
typically reported in clonogenic studies tend to be higher,

~0.2–0.3 Gy−1. Therefore, we have opted for selecting a rela-
tively low value for α, yet not as low as some reported values.

2.F. Model validation, parameter stability, and
cross-validation

First, we have investigated the performance of our model
(with two classification criteria) and models reported in Refs.
[6–8] (Eqs. A1–A4) on the whole dataset. Several optimiza-
tions were run in order to avoid convergence to local maxima.
Once best-fitting parameters were obtained, the stability of
the solution around those parameters was evaluated, in order
to provide an estimation of the uncertainties of best-fitting
parameters. Random perturbations were applied to the set of
best-fitting parameters, the value of the objective function
evaluated, and the combination of parameters saved if the
value of the objective function did not change (until reaching
100 combinations). The dispersion of parameters was then
analyzed.

Secondly, we investigated the cross-validation of all the
models studied: the performance of the model, with optimal
parameters obtained in a training dataset, on an independent
validation dataset. In order to do so, and due to the lack of
several large datasets, we have used the methodology of strat-
ified k-fold cross-validation28: Our dataset has been split in
two datasets (k = 2), training and validation; each schedule is
randomly included in one or another dataset (50% probabil-
ity); model parameters are optimized in the training dataset;
and the model with those same parameters is used on the vali-
dation dataset, and the sensitivity and specificity are calcu-
lated; this procedure is repeated 20 times (with different
training/validation datasets) to check the consistency of the
results. Due to the relatively low number of intolerable sched-
ules, the generation of the training/validation datasets was
stratified, imposing a constraint of at least five intolerable
schedules in every training/validation dataset.

3. RESULTS

3.A. Parameter optimization and validation: whole
dataset

We have investigated the performance of the models under
study on the whole dataset. In Table I, we present sets of
best-fitting parameters (that maximize the cost function), as
well as achieved values of sensitivity and specificity, for
every single model.

We have observed through multiple optimizations that our
models present maxima clustered around two different sets of
parameters for Criterion 1 and Criterion 2: The first configu-
ration corresponds to rapidly disappearing abortive cells
(γA ~ 0.04 h−1, corresponding to a half-life of ~17 h) and
very low values of Fth to trigger intolerability (~2 × 10−3);
the second cluster is associated with longer lived abortive
cells (γA ~ 0.007 h−1, corresponding to a half-life ~100 h)
and much higher values of Fth (~0.6). The turnover rate of
functional cells μ is in the 0.005–0.011 h−1 range, which
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yields half-lives for such cells of ~60–140 h, within the range
of typically reported 4 days.21

Classification criterion 1 can reach sensitivity and speci-
ficity values of 93.3% and 83.9%, respectively (C = 1.772),
while criterion 2, which incorporates an extra free parameter
can improve the value of the cost function to C = 1.824.

In Fig. 2, we show the evolution of the population of
cells during treatment for three representative types of
schedules in our database, a conventional 35 × 2 Gy-
7 weeks schedule, an accelerated 68 × 1.2 Gy-2 fracs/day
schedule, and an accelerated + gap schedule. The depletion
during treatment and subsequent repopulation of the prolif-
erative and functional compartments can be qualitatively
appreciated, together with the appearance and elimination
of doomed cells after some abortive divisions. In Fig. 3,
we present histograms of the populations of functional
cells, split in tolerable and intolerable schedules (classifica-
tion criterion 1).

The predictive value of our models is similar to that of
models presented in Refs. [6–8] (Table I). When using the
Fowler model (Eq. A1) to analyze the whole dataset, we
obtain sensitivity and specificity values of 100% and 78.5%
(C = 1.785); with Fenwick model (Eq. A2), we obtain sensi-
tivity and specificity values of 100% and 80.6% (C = 1.806);
and with the Strigari model (Eq. A4), 100.0% and 77.4%
(C = 1.774), respectively. In Fig. 4, we show the tolerability/
intolerability boundary obtained with Fowler, Fenwick, and
Strigari models.

In Fig. 5, we present a study of the uncertainties of the
best-fitting parameters and stability of the solution under
perturbations of parameters, as described in Section 2.6.
The figure shows correlations between different parameters,
with different values leading to the same value of the
objective function. In general, the maxima of the objective
function found with the optimization algorithm (reported in
Table I) are stable under relative perturbations of ~0.2–1%
for Fowler, Fenwick, and Strigari, ~1–2% for classification
criterion 1. The best solution obtained with criterion 2,
which is the best solution among all models, is extremely
sensitive to perturbations of parameters, and variations
<0.02% for any parameter other than tth lead to a worsen-
ing of the solution.

TABLE I. Optimal parameters, and sensitivity and specificity values when
applying our model (classification criterion 1 and criterion 2) and Fenwick,
Strigari, and Fowler models to the whole dataset.

Optimal parameters

Criterion
1

Criterion
2

Fenwick
Ref. [7]

Strigari
Ref. [8]

Fowler
Ref. [6]

α 0.1 Gy-1* 0.1 Gy-1* BED0 /
TD50(0)

64.25 48.67 67.38

τ 48 h* 48 h* Tc / Δ 45.60 d 84.44 d 19.44 d

T1/
2

3.2 h* 3.2 h* T1/2 3.2 h* 3.2 h* 3.2 h*

α/
β

10 Gy* 10 Gy* α/β 10 Gy* 10 Gy 10 Gy*

γA 0.044 h−1 0.006 h−1 αTd – – 0.677 d
Gy-1

p0 0.685 0.200 – – – –
fS 0.437 0.417 – – – –
Fth 0.002 0.682 – – – –
tth – 246 h – – – –

Sensitivity and Specificity

Criterion
1

Criterion
2

Fenwick Ref.
[7]

Strigari Ref.
[8]

Fowler Ref.
[6]

sen 0.933 0.867 1.000 1.000 1.000

spe 0.839 0.957 0.806 0.774 0.785

C 1.772 1.824 1.806 1.774 1.785

The symbol * indicates that the parameter value has been fixed and it is not part
of the optimization. These sets of parameters are those used in Figs. 2–4.
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FIG. 2. Dynamics of populations of cells vs time for three different treatments in our dataset: a conventional 35 × 2 Gy-7 weeks treatment (solid blue line), an
accelerated 68 × 1.2 Gy-2 fracs/day treatment (dashed red line), and an accelerated + gap treatment, 42 × 1.6 Gy-2 fracs/day-15 days gap after 12 fractions
(dash-dot black line). The three panels show healthy proliferative cells (left), doomed proliferative cells (center), and functional cells (right). These results have
been obtained with parameters presented in Table I (criterion 1). [Color figure can be viewed at wileyonlinelibrary.com]
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3.B. Cross-validation

When we performed a cross-calibration of by splitting the
dataset in two sets, one for training and one for validation, the
specificity and sensitivity in the validation dataset were lower
than in the training dataset for all models, and this was particu-
larly the case for Fowler model. In Table II, we report mean
values and standard deviation for 20 cross-validations (with
different randomly generated training/validation datasets).

Average sensitivity and specificity values are 95–99% and
83–87%, respectively, for the training dataset, falling to 72–
84% and 79–83% for the validation dataset for all models
except Fowler’s, with large standard variations (up to 20%)
for sensitivity in the validation dataset. C-values (sen + spe)
decrease from ~1.82 for the training datasets to ~1.55–1.63
for the validation datasets. The performance of Fowler model
in the validation datasets is notably less good, with sensitivity
and specificity values around 68% and 81%, respectively,
and C ~ 1.49.

4. DISCUSSION

Mucosal toxicity is a limiting factor in dose escalation
and/or treatment shortening in head-and-neck cancer. Predict-
ing the tolerability or intolerability of a given radiotherapy
schedule can help the design of novel radiotherapy treat-
ments, aiming at maximizing tumor control while keeping
toxicity under control. Different mathematical models have
been introduced to tackle this issue. In this work, we present
a novel model, based on population dynamics of cells, which
is more mechanistic than other purely phenomenological
models. Our model has been used to classify tolerable/intol-
erable schedules in a dataset comprising 108 schedules, and
its performance has been compared with three classification
models based on BED and EQD2, developed by Fowler
et al.,6 Fenwick et al.,7 and Strigari et al.8

Remarkably, our models can match the predictive power
of classical phenomenological models. After an optimization
aiming at maximizing the sum of sensitivity and specificity
on the whole dataset, we have obtained similar values of
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FIG. 3. Histogram of the relative minimum number of functional cells for each of the 108 schedules in our dataset, split in intolerables (a) and tolerables (b). The
thick lines in both panels represent the threshold Fth of tolerability. These results have been obtained with model parameters presented in Table I (criterion 1).
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sensitivity and specificity for our models (sen = 93.3%,
spe = 83.9%, criterion 1; sen = 93.3%, spe = 88.2%, crite-
rion 2) and the other three models under study (sen =
100.0% and spe = 77.4%, Fowler; sen = 100.0% and spe =
80.6%, Fenwick; and sen = 100.0% and spe = 77.4%, Stri-
gari). The values of the objective function, C = sen+spe, are
very similar for the five models studied: 1.772 (criterion 1),
1.824 (criterion 2), 1.785 (Fowler), 1.806 (Fenwick), and
1.774 (Strigari).

Sensitivity and specificity are always overrated when the
model is evaluated on the dataset used to optimize its perfor-
mance. But, after performing a cross-validation of our model,
in which the model is trained on half of the dataset (on aver-
age), and validated on the other half, we have found reason-
able values of sensitivity and specificity on the validation
dataset (around 80% and 82% for criterion 1). This demon-
strates that the good performance of the model is not due to
overfitting in the (training) dataset, as predictive power is still
good in a different dataset, and shows that the model is reli-
able for the classification of tolerable/intolerable schedules.

Interestingly, results are somewhat worse with criterion 2 in
the validation dataset, which may be caused by the extra free
parameter causing overfitting in the training dataset. The
same cross-validation procedure was applied to Strigari, Fen-
wick, and Fowler models. The first two models also maintain
fair predictive power when applied to the validation dataset.
However, Fowler model had limited success in correctly clas-
sifying intolerable schedules in the validation dataset (sen ~
68%). This limitation may result from both the rather small
number of intolerable schedules in the dataset, which can
cause the training and validation cohorts to contain very dif-
ferent information about intolerable schedules, and the
greater degree of flexibility of the Fowler model, which has
three separate parameters controlling the baseline tolerable
BED, the rate at which this increases with schedule duration
and the critical duration beyond which the increase begins,
compared to only two parameters in the models of Fenwick
and Strigari.

Like the models to which it has been compared, our model
aims at separating populationwise tolerable and intolerable
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TABLE II. Results of the cross-validation: The model is trained with the training dataset, aiming at maximizing C = sensitivity +specificity, and then applied to
the validation dataset. Results are presented for 20 runs by reporting means and standard deviations. Criterion 1 and Criterion 2 refer to the two different classifi-
cation criteria presented in this work, while Fowler, Fenwick, and Strigari refer to models presented in Refs. [6–8].

Training dataset Validation dataset

Specificity Sensitivity C Specificity Sensitivity C

Criterion 1 0.857 � 0.059 0.961 � 0.063 1.818 � 0.078 0.825 � 0.064 0.798 � 0.135 1.622 � 0.108

Criterion 2 0.871 � 0.070 0.950 � 0.076 1.821 � 0.078 0.830 � 0.083 0.723 � 0.142 1.553 � 0.137

Fenwick 0.827 � 0.064 0.993 � 0.032 1.819 � 0.056 0.806 � 0.057 0.822 � 0.209 1.628 � 0.187

Strigari 0.828 � 0.057 0.988 � 0.036 1.817 � 0.064 0.787 � 0.069 0.836 � 0.190 1.621 � 0.168

Fowler 0.859 � 0.067 0.959 � 0.074 1.818 � 0.072 0.814 � 0.072 0.668 � 0.230 1.492 � 0.206
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schedules. While this is important, for example, when design-
ing new fractionations, certainly the optimal approach would
be to develop methods that would allow to predict the risk of
intolerable toxicity of each individual patient, based on their
dose distribution, via NTCP approaches or patient-based
machine-learning methodologies. However, our model poten-
tially permits some individualization by linking model
parameters such as radiosensitivity and proliferation capacity,
cell turnover to genetic profiling.29,30

A limitation of our model arises from its compartment
model nature: The model does not include spatial dimen-
sions, and therefore cannot directly account for dose–volume
or dose–area effects, including repopulation by cell migra-
tion from undamaged tissue. This limitation does not allow
to incorporate into the model complex individualized dose
distributions in mucosa, as can be done in some NTCP-
based methods.9,10 Spatial dimensions could be added to the
model, transforming it in a spatiotemporal model. Such
model would be a more accurate representation of the
mucosa, but also rather more complex. With the good
results obtained with the current method, it is doubtful that
such spatiotemporal models would improve obtained sensi-
tivity/specificity, but it is an issue worth investigating, as a
model of that kind would allow to simulate the effect of
dose distribution heterogeneities on the response of the
mucosa. Certainly, the added complexity of such a model
would probably only be worthwhile if it was used to fit data
including spatial information.

Our model relies on the underlying description of fraction-
ation effects provided by the LQ model. The validity of the
LQ model has been questioned, especially when delivering
large radiation doses, and some alternatives have been sug-
gested.31,32 Those models could be easily implemented in our
model, but given that highly hypofractionated schedules are
rarely used for head-and-neck radiotherapy, using the LQ
model seems to be well reasonable.

An interesting approach would be to develop and apply a
similar model to chemo-irradiation treatments, which have
been investigated by Meade et al.33 using the models pre-
sented in Refs. [6–8]. In our model, chemotherapy could be
introduced through a new term of cell death in the prolifera-
tive compartment, thereby limiting repopulation of both the
proliferative and functional compartments.

In general, the success of phenomenological models (in
particular Fenwick and Strigari models) in predicting the tol-
erability of different radiotherapy schedules in head-and-neck
cancer (including cross-calibration), and their simplicity,
should make them preferable over complex mechanistic mod-
els in the clinic. However, mechanistic models can still use-
fully add to our understanding of toxicity, and may assist
with the design of unconventional dose fractionations.

5. CONCLUSIONS

Our model has proved useful to predict the tolerability/in-
tolerability different radiotherapy schedules on a dataset of
108 schedules, achieving sensitivity/specificity values similar

to those obtained using other models (Fowler, Fenwick, and
Strigari).

Mechanistic models can clarify our understanding of the
processes involved in the response to radiotherapy, and our
approach may prove helpful when designing unconventional
dose fractionations delivering differing doses per week/day,
the tolerability of such schedules not being described by the
datasets to which phenomenological models of toxicity have
been fitted. However, Fenwick and Strigari models can clas-
sify tolerable/intolerable schedules as well as the more mech-
anistically based models presented in this work, and their
relative simplicity may facilitate their use in the clinic.
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APPENDIX A

CLASSIFICATION MODELS OF FOWLER,
FENWICK, AND STRIGARI

A.1. Fowler

In Ref. [6], the boundary between tolerable/intolerable
radiotherapy schedules was modeled with a simple hockey
stick BED function:

BEDboundary Tð Þ¼BED0þ log 2ð Þ T�Tkð Þ
αTp

(A1)

where Tk is the accelerated proliferation kick-off time, and Tp
is the doubling time of stem cells in the mucosa.

A.2. Fenwick

In Ref. [7], the boundary between tolerable/intolerable
radiotherapy schedules was modeled with a piecewise func-
tion:

BEDboundary Tð Þ¼
BED0

T
Tc

� �
=sin

T
Tc

� �
, if T ≤ Tc

BED0
T
Tc

� �
, if T>Tc

8>>><
>>>:

(A2)

In the above equations, T is the treatment time (in days),
including the first day of treatment, and the argument of the
sine term is expressed in radians. If the BED of a given
schedule is above the boundary, it is classified as intolerable,
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while if it is below the boundary, it is classified as tolerable.
The BED of each schedule is computed including incomplete
repair, as in Ref. [7]:

BED¼ ∑
n

i¼1
diþβ

α
∑
n

i¼1
d2i þ

2β
α

∑
n�1

i¼1
∑
n

j¼iþ1
did j�0:5

∑
j�1

k¼i
Δtk=T1=2

(A3)

Here, Δtk is the time between fraction k and k + 1, and T1/2 is
the repair half-time.

A.3. Strigari

In Ref. [8], the authors used a TD50 boundary, in units of
EQD2, equivalent dose in 2 Gy fractions.

TD50 Tð Þ¼ TD50 0ð Þexp T�5ð Þ=Δð Þ (A4)

where T is again the treatment time, and TD50(0) and Δ are
fitting parameters. If the EQD2 of a given schedule is below
the boundary, it is classified as tolerable; otherwise, it is
intolerable. The EQD2 is computed from the BED as
EQD2 = BED/(1 + 2/(α/β)), and also includes the effect of
incomplete repair.
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Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Data S1: Dataset containing detailed information of the
schedules analyzed in this study.

Medical Physics, 48 (7), July 2021

4084 Pardo-Montero et al.: Mucosal toxicity in H&N radiotherapy 4084

 24734209, 2021, 7, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.14834 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [06/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



https://aapm.onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3Ada5a7f6a-0bb7-45c1-b531-72a50631ac86&url=https%3A%2F%2Fevents.bizzabo.com%2F441879&pubDoi=10.1002/mp.14834&viewOrigin=offlinePdf

