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INTRODUCTION
Intratympanic steroid injections are commonly used for

the treatment of ear diseases. During this treatment, an ex-
pert Ear, Nose Throat (ENT) clinician deliver the drug by
viewing through a large microscope that provides a close-
up view of the anatomical landmarks on the middle ear. A
steady hand and swift response to any patient movement
is required to avoid improper placement of the needle.
To assist the clinician during this treatment, a fluidic soft
robot is proposed in [1] that can steer inside a lumen for
providing steady guidance for the drug delivery. For robust
visual guidance, stable anatomical landmarks (tympanic
membrane, malleus, umbo) segmentation is required.

The current method [1] uses a clinical data pixel-wise
annotated for the segmentation model training, which
does not generalise to the phantom ear data currently
use for the in-lab validation of the soft robot. The
clinical data is taken from a high-resolution optical
microscope from a fixed camera perspective with diffuse,
even lighting. While the phantom images are recorded
on a miniature digital camera endoscopically, from
multiple perspectives and often with uneven, highly local
illumination. The phantom is 3d-printed from patient
scans [2] and coated with a pigmented silicone rubber
(Dragon Skin™ 30, Smooth-On Inc., Easton, PA, US)
to create a skin-like surface texture. Transparent silicone
rubber is employed to create a membrane to resemble the
tympanic membrane. Whilst being close to real patient
anatomy, the phantom exhibits visual differences in terms
of the coloring of the tissues and tympanic membrane,
the translucence of the tympanic membrane as well as the
overall visibility of the middle ear structure. This means
that labelled clinical data and the previously labelled
phantom data are not representative of the images that
will be passed to the model during deployment (Fig. 1).

Due to the difference in training and deployment data,
model predictions can be both inaccurate (incorrectly
identifying the structures of the tympanic membrane) and
unstable (predictions are discontinuous and noisy). Both
are serious challenges for using such models as part of a
robot control system – especially, the lack of prediction
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Fig. 1: Target domain (top) source domain (bottom)

stability. In this work, we perform intra-domain adaptation
to learn a generalised model that provides stable and
consistent segmentation on unseen phantom data.

MATERIALS AND METHODS
We propose using three segmentation models with

DeeplabV3+ [3] architecture and three different back-
bones. We use transfer learning, initialising the models
with ImageNet weights, and high amounts of data aug-
mentation while using training techniques that encourage
reduced convergence times for domain adaptation. These
models are ensembled, with the output taking predictions
of the composed logits for each class; taking advantage of
each model whilst filtering out uncorroborated predictions.
This results in both the stable and generalised predictions
on unseen phantom data. Our approach takes advantage of
smaller models’ ability to learn smaller class features in
fewer epochs and larger encoder’s ability to output more
stable predictions over a wider array of novel inputs.
Transfer Learning and Learning rate schemes: To
compensate for the limited amount of labelled data and the
need for the model to generalise to out of domain images,
we used encoders pre-trained on Imagenet. To preserve
useful, generalisable pattern and shape identifying convo-
lutions shallower in the network, we utilise discriminative
learning rates throughout the training - training shallower
layers at a lower learning rate and deeper layers at a higher
learning rate to increase the performance of the task
specific segmentation. We also utilise scheduled learning
rates – specifically the fit one cycle [4] which has been
shown to both improve model performance and reducing
convergence time. This approach increases the learning
rate of the model for the first 30% of the total epochs; the
learning rate is then annealed, returning to its original base
value at the end of the training. Additionally, momentum is
also adjusted to help with regularisation and ameliorate the
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Fig. 2: Visual results showing unseen phantom input images and the model output when using ResNet50, ResNet101,
ResNet101 as backbones for DeepLabV3+ [3] and the ensemble of all these models.

TABLE I: Qualitative comparison of different models
using mean intersection over union (IoU) and F1 score.

Architecture Encoder IoU F1 score
DeepLabV3+ ResNet50 0.8323 0.9085
DeepLabV3+ ResNet101 0.8277 0.9057
DeepLabV3+ ResNet152 0.8322 0.9084

Ensemble (proposed) ResNet50/101 0.8353 0.9089

effects of the higher learning rate. Following the inverse
of the learning rate schedule, momentum is reduced to
its minimum value at 30% of total epochs, returning to
its original value at the end of training. Learning rates
were set using the learning rate finder approach [4].

Starting with a very low initial learning rate many
batches are drawn, the loss calculated and recorded then
optimised. With each mini batch the learning rate is
incrementally increased until the loss explodes. This pro-
cess allows us to efficiently and quickly estimate optimal
learning rates without having to conduct large, slow and
computationally expensive hyperparameter sweeps.
Data Augmentation: Data augmentation is an important
part in stabilising and generalising model predictions. To
help the model generalise to the unseen Phantom data we
augment the data across three categories: image position
(dihedral flips, rotation) perspective (warping, zooming)
and lighting (brightness, saturation) Additionally, we also
employed random resize crop which has been shown to
both assist with generalisation and model performance.
Ensemble of Models: The ensemble mask prediction was
created by composing the three models logits’ for each
class; The sum of the logits were taken, averaged and
then passed through a threshold to create the ensemble’s
class prediction. For the malleus and umbo layers, the
magnitude of the negative logits were reduced by 50% for
the ResNet152 and ResNet101 encoders and 80% for the
ResNet50 - This helps to reduce the effect of large negative
logits from an unsure model cancelling out correct predic-
tions. This is particularly necessary for small class features

that can be easily obscured by false negative logits; con-
versely, the Tympanic membrane Benefits from taking the
sum of (un-reduced) logits helping to stabilise boundary
edges, especially with directional or off axis lighting.
RESULTS, DISCUSSION AND CONCLUSIONS

We observe from qualitative comparison that the en-
sembled model’s prediction are both more stable and more
robust even on off axis out of domain sequential images
(videos). However, the improvement reported in Table I is
marginal which is mainly because limited labelled data
was available for the quantitative analysis that didnot
capture variabilities that are observed in sequential data.
Ensembling model of different backbone sizes creates
outputs that have significantly more stable anatomical
landmarks - specifically with the umbo which often is
either not predicted (Fig. 2 (b), (c), (g)) or predicted in
multiple locations (Fig. 2(d)). This can cause problems If
the landmark is used As part of a positioning or typing
system. Ensembling multiple different models has several
advantages over alternative methods such as test time aug-
mentation which while can effectively stabilise predictions
severe off axis or novel lighting can insufficiently cause
smaller, more marginal class features to be lost. However,
increase in predictive power comes at the cost of greater
prediction latency memory requirements.
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