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Motivation and objectives

• Mathematical models predicting pipeline decompression 
and the fluid discharge flow are in the heart of Qualitative 
Risk Assessment (QRA) predicting consequences of pipeline 
failure:

 Significant cooling and dry ice formation during venting and 
accidental failure of CO2 transport pipelines

 Low-temperature induced brittle fracture upon accidental failure of 
ethylene and CO2 transport pipeline 

 Safety assessment of hydrogen transport pipelines and facilities –
with increasing demand for H2 transport
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• Pipeline transportation of industrial gases is mature technology. 
• Due to hazardous nature of transported fluids and high operating pressures, 

safety of pipeline transportation is of serious concern.



Motivation and objectives

• Models have been developed in the past:

- Homogeneous Equilibrium Mixture (HEM) and multi-fluid/ 
multiphase models for transient flow of compressible fluids 
in pipelines 

- Fluid properties calculation methods (EoS, interpolation 
tables) for single and multi-phase flows
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• The accuracy and computational efficiency of the physical properties 
models is critical for the pipeline decompression flow simulations



7

Governing equations for transient flow in a pipeline:
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𝜕𝑡
+
𝜕𝜌𝑢

𝜕𝑥
= −𝑆𝑜

𝜕𝜌𝑢
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= −
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− 2𝑓𝑤

𝜌𝑢2
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𝜕𝜌𝑒𝑡𝑜𝑡
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𝜌𝑢3

𝐷
+
4𝑞𝑤
𝐷

− ℎ𝑡𝑜𝑡,𝑜𝑆𝑜

where  𝜌, 𝑢, 𝑒𝑡𝑜𝑡 and 𝑝 are respectively the mixture density, velocity, total energy and pressure, 
𝑢𝑜, ℎ𝑡𝑜𝑡,𝑜 and 𝑆𝑜 are respectively the velocity, stagnation enthalpy and the mass flux source 
term associated with the local discharge flow.

Physical properties involved
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Discharge flow model – choked (critical) flow:

𝑠𝑜 = 𝑠𝑢𝑝

ℎ𝑜 +
𝑢𝑜
2

2
= ℎ𝑡𝑜𝑡,𝑢𝑝

𝑢𝑜 = 𝑐𝑠,𝑜

𝑆𝑜 =
𝐶𝑑 𝜌𝑜𝑢𝑜𝐴𝑜
𝐴 ∙ Δ𝑥
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where  𝐶𝑑 is the local discharge coefficient for the rupture, Δ𝑥 is the cell width,  
𝐴 is the pipe cross-sectional area, 𝑠 is the entropy and the index "𝑢𝑝" refers to 
stagnation conditions in the flow.

Δ𝑥

Physical properties involved
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Density-energy flash calculations are performed 
as part of solution of the conservation equations 
describing the flow inside the pipe:

𝑝, 𝑇, 𝑥 = 𝑓(𝜌, 𝑒)

𝑐𝑠, 𝜌 = 𝑓(𝑠, 𝐻)

Stagnation enthalpy – entropy  flash 
calculations to obtain properties of choked 
(critical) flow:
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Physical Properties:

• Density
• Heat Capacity
• Speed of sound
• Joule-Thomson 

effect
• Phase equilibrium
• Viscosity
• Diffusivity
• Thermal 

conductivity

Mathematical model of 
pipeline flow:
• Mass conservation
• Momentum 

conservation
• Energy conservation
• Viscous friction
• Heat transfer
• Interphase H&M 

transfer
• Fluid/structure 

interaction

Physical properties involved



Equation of state models
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• Peng – Robinson (PR) EoS: 

• Perturbed Chain – Statistical Association Fluid Theory (PC-SAFT) EoS:

P =
R𝑇

𝑣 − 𝑏
−

𝑎(𝑇)

𝑣 𝑣 + 𝑏 + 𝑏(𝑣 − 𝑏)
Easy to implement, 
computationally efficient 

𝑎 T, ρ = 𝑎ideal T, ρ + 𝑎hard−sphere T, ρ +

𝑎dispersion T, ρ + 𝑎chain T, ρ + 𝑎association(T, ρ)

Highly-accurate, but can be 
computationally demanding 



Equation of state models
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• To speed-up the properties calculations, interpolation tables can 
be used instead of EoS, provided that the interpolation method 
is:

- accurate and robust, and

- suits the pipe flow and discharge flow models



Objectives

• To develop the physical properties interpolation method for use in 
the pipeline decompression flow simulations

• To apply the method for calculation of physical properties of real 
fluids

• To evaluate the accuracy and computational efficiency of the 
interpolation method
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Physical properties inverse interpolation
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Pipe flow model equations:

𝑝, 𝑇, 𝑥, … = 𝑓(𝜌, 𝑒)
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Physical properties inverse interpolation
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In this work the inverse interpolation method is 
applied for the entropy - stagnation enthalpy 
flash calculations

Critical discharge flow model:

𝑠𝑜 = 𝑠𝑢𝑝

ℎ𝑜 +
𝑐𝑠,𝑜
2

2
= ℎ𝑡𝑜𝑡,𝑢𝑝

ℎ𝑡𝑜𝑡,𝑜
∗

𝑝, 𝑇, 𝜌, 𝑥, … = 𝑓(𝑠, ℎ𝑡𝑜𝑡)
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Entropy

P
re

s
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u
re

Temperature

Step 2: Interpolation 
(inverse mapping)

Step 1: Construct the interpolant data 
using EoS (direct mapping) with 𝑇, 𝑝

as independent variables

𝑇, 𝑝

𝑠, ℎ𝑡𝑜𝑡
∗



Physical properties of homogeneous vapour-liquid mixture
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Where x is the vapour mass fraction, 
a is the vapour volume fraction.
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The speed of sound in saturated VLE mixture of ethylene, 
predicted using the homogeneous frozen mixture model.
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)𝜌 = 𝜌𝑣𝛼 + 𝜌𝑙(1 − 𝛼

The speed of sound in a two-phase 
homogeneous frozen mixture (Wood, 1930):



Physical properties inverse interpolation method
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Step 1: Direct mapping:  Use EoS to 
obtain the interpolant data on 𝑻, 𝒑 :

• internal energy (𝑒), 
• density (𝜌), 
• mass fraction (𝑥), 
• entropy (𝑠), and 
• the total sonic enthalpy ℎ𝑡𝑜𝑡

∗ :

Step 2: Use the interpolant data to fit 
Akima splines for the inverse
interpolation, e.g.: 𝑝 𝜌, 𝑒 and 𝑇 𝜌, 𝑒 .
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Step 2: Interpolation

(inverse mapping)

Step 1: Constructing interpolant data 
using EoS (direct mapping )

𝑝
ℎ𝑡𝑜𝑡
∗

𝜌

𝑇
𝑠

𝑒𝑇, 𝑝

𝜌, 𝑒

Step 0: Construct the 𝑻, 𝒑 grid by seeding non-uniformly points along isotherms in the 𝑇 − 𝑝 domain.

ℎ𝑡𝑜𝑡
∗ = ℎ +

𝑐𝑠
2

2
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Density-energy (r- e) interpolant data – Ethylene
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(htot- s) interpolant data – Ethylene
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Density-energy (r- e) phase diagram – CO2
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The accuracy of the interpolation method
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The accuracy of the inverse 
interpolation method is assessed by 
comparing the original input data 
𝜌𝑜, 𝑒𝑜 used for the inverse 

mapping with the 𝜌, 𝑒 data 
returned by EoS based on the 
interpolation results 𝑇, 𝑝 :
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The accuracy of the interpolation method (ethylene)
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%𝐴𝐴𝑅𝐷 =
100

𝑛
෍

𝑖=1

𝑛
𝜙𝑖 − 𝜙𝑖

𝑜

𝜙𝑖
𝑜

Relative errors of density predictions by the PC-SAFT based on the interpolated 
p-T data, and with the accuracy of PC-SAFT EoS [Nikolaidis et al, 2018).

The accuracy of the PC-SAFT EoS
(Nikolaidis, et al 2018):
• the saturated vapour :  2.37%, 
• the saturated liquid:  0.42%, 
• the supercritical fluid:  1.24%.

where 𝜙𝑖
𝑜 and  𝜙𝑖 are respectively the reference value and the 

interpolated property at a point 𝑖, and 𝑛 is the number of points in 
the thermodynamic phase region.

The interpolation method’ errors are the order 
of magnitude smaller than the accuracy of EoS.



The computational runtime (ethylene)
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𝜏𝐶𝑃𝑈 =
1

𝑁𝑟𝑒𝑓
෍

𝑖=1

𝑁𝑟𝑒𝑓

𝜏𝑖

where 𝜏𝑖 is the CPU time spent 
on interpolation at a point 𝑖

Average computational runtimes (𝜏𝐶𝑃𝑈) spent on the 
interpolation of density and using directly the PC-SAFT EoS.

The proposed interpolation method can 
speed up the property calculations, 
compared to using directly the PC-SAFT 
EoS, when using less than 80,000 
interpolant points 
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 Constructed ℎ𝑡𝑜𝑡
∗ − 𝑠 phase diagrams for the inverse 

interpolation flash calculations of critical (choked) flow

 Developed methodology for assessment of accuracy & 
computational efficiency of interpolation tables

 Demonstrated the methods for ethylene

 Ongoing work: validation against pipeline decompression data 
for ethylene and applying the method to carbon dioxide 
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Conclusions and next steps
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