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Abstract

Due to changes in the environment and errors that occurred during skill initialization, the robot's operational skills should 
be modified to adapt to new tasks. As such, skills learned by the methods with fixed features, such as the classical 
Dynamical Movement Primitive (DMP), are difficult to use when the using cases are significantly different from the 
demonstrations. In this work, we propose an incremental robot skill learning and generalization framework including an 
incremental DMP (IDMP) for robot trajectory learning and an adaptive neural network (NN) control method, which are 
incrementally updated to enable robots to adapt to new cases. IDMP uses multi-mapping feature vectors to rebuild the 
forcing function of DMP, which are extended based on the original feature vector. In order to maintain the original skills 
and represent skill changes in a new task, the new feature vector consists of three parts with different usages. Therefore, 
the trajectories are gradually changed by expanding the feature and weight vectors, and all transition states are also easily 
recovered. Then, an adaptive NN controller with performance constraints is proposed to compensate dynamics errors and 
changed trajectories after using the IDMP. The new controller is also incrementally updated and can accumulate and reuse 
the learned knowledge to improve the learning efficiency. Compared with other methods, the proposed framework 
achieves higher tracking accuracy, realizes incremental skill learning and modification, achieves multiple stylistic skills, 
and is used for obstacle avoidance with different heights, which are verified in three comparative experiments. 

Keywords: Incremental skill learning and generalization; Learning from demonstration; Dynamic movement primitive(DMP); Adaptive 
neural network (NN) control; Multiple stylistic skill generalization

1. Introduction

     In recent decades, learning from demonstrations (LfD), a technique that develops strategies from example 
states to action mappings [1], has attracted considerable attention along with the development of robotics and 
AI technologies. A recent survey on LfD concluded that current limitations of LfD include representation of 
complex behaviours, reliance on labelled data, and suboptimal and inappropriate demonstrators [2]. To solve 
this problem, this paper proposes an incremental skill learning and generalization framework to enable robots 
to modify simple initial actions to complex cases. This method is based on motion primitive (MP) technology, 
in which a long-term complex motion is divided into multiple sub-actions. Then, the sub-actions are extracted 
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into MPs and finally these MPs are reprogrammed and generalised to fit a new task  [2].

The MP can be presented in many forms, e.g. Kernelized Movement Primitive (KMP) [3], Compliant 
Movement Primitive (CMP) [4] and Dynamical Movement Primitive (DMP) [5]. DMP was proposed by 
Ijspeert et al [6], [7] and then improved by many researchers. In addition to the classical DMP, there are a 
number of improved methods such as discrete DMP, periodic DMP, etc., and some scholars combined DMP 
with reinforcement learning (RL)  [8], [9], deep learning [10], life-long learning and various control methods 
[11]-[13] to expand the scope of DMP. DMP has a very concise expressions that is a second-order function 
with only three variables and a forcing function. And the applications of DMP contain trajectory tracking in 
Euclidean space [14], EMGs signal prediction [21], force control in a contact manipulation [22], motion and 
state monitoring [23] and special tasks such as obstacle avoidance [15], [17], cooperative manipulations [16], 
[24] and multi-modal skill learning. 

The limitation of the classical DMP is that once the skills are learned, the characteristics expressed by the 
forcing function are fixed. Even though some variables, e.g. position, velocity, can be generalized in space 
and time by modifying the starts, goals and scaling factors. Some improvements of DMP in [15]-[17], [24] are 
made by adding additional terms for obstacle avoidance and cooperative manipulation. However, the terms 
are specially designed by using time-related variables such as position, angle, and velocity, etc., which cannot 
be generalized in phase space, like ‘s’ in the forcing function. If operational requirements keep changing, the 
newly learned skills and added terms should update, which costs a lot of time and increases the complexity of 
computation. Reinforcement learning is used to achieve DMP-based incremental skill learning. For example, 
Matteo et al. proposed an incremental point-to-point motions learning method based on a dynamical system. 
For a new demonstration, the original dynamical system will be redesigned to approach the new task [25]. 
Lemme et al. proposed a bootstrapping cycle to build a suitable primitive library [26]. In this library, the old 
primitives are refined and new ones are added, while the unused ones are deleted. Yuan et al. [6] and Li et al. 
[9] followed the similar technique and updated weights by integrating probability-weighted RL to realize skill 
modification. Wang and Wu et al. [27], [29] proposed DMP plus (DMP+) method to realize efficient skill 
modifications by using truncated kernels and local biases to achieve two contributions. One is preserving the 
desirable properties of the original skill and achieving lower mean square errors (MSEs). The other is the 
reusability of existing primitives, which can reduce human fatigue in imitation learning and correcting errors 
in demonstration without requiring further demonstration. Compared with RL-based methods, DMP+ requires 
less computation and retains the original features, which is used as a benchmark method for comparison in 
this method.

Figure.1 Diagram of trajectory and force dual-incremental robot skill learning and generalization 
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The combination of DMP and robot control is another topic that attracts much attention. Schaal et al., [6], 
[31], proposed a framework for motor control combining DMP. In our previous research, we combined DMP 
and adaptive NN control [21], admittance control [33], and neural networks [34]-[37] for robot control. In this 
paper, inspired by DMP+, we propose a novel incremental skill learning and generalization method called 
incremental DMP (IDMP). The forcing function of IDMP can be incrementally updated by adding new 
features and weights to track new trajectories. Considering uncertain dynamics parameters and state tracking 
limitations, an adaptive NN controller is designed, in which the NN term is also incrementally updated and 
can accumulate and reuse the learned knowledge to improve the learning efficiency. System stability are 
ensured by building a barrier Lyapunov function (BLF). The proposed framework is shown in Figure. 1: First, 
an old trajectory is expressed by DMP with a forcing function . After linear transformation of the feature  f s

vector, we can obtain the incremental term to compose a IDMP function to achieve a new trajectory , k Nx
which is then transferred by an inverse kinematic solver to obtain the joint information as the input of the 
control part. The real-time joint tracking errors are applied to create a virtual controller by BLF. We consider 
dynamics uncertainties and contact force estimation errors and use adaptive control term to estimate and 
compensate the errors based on incremental adaptive NN control to ensure system stability. 

Compared to DMP-based trajectory planning and various control methods, the proposed framework offers 
three advantages:

a) Skill incremental learning and original skill preservation 

Similar to DMP+ and Acnmp [39], the old skills can be preserved during the gradual adaptation process to 
new situations, so they can be easily recovered for the old situations. The difference in the computation from 
DMP+ is the skill adaptation is realized by adding new linear transformations of the existing kernels rather 
than changing kernels, which gives the forcing function with a stronger nonlinear adaptability and makes it 
more suitable for the dynamic skill learning process without adding new kernels.

b) High-accuracy trajectory tracking and multi-style skill transformation 

According to the board learning in [20], the preliminary NN can achieve better performance after inserting 
additional extension nodes, which have a similar function as the linear transformations of IDMP .Therefore, 
we use IDMP to improve trajectory tracking performance and realize multi-style skill transformation. Multi-
style skill transformation suits the situation that the original skill is ambiguous and leads to different styles in 
motion sequence [38]. An example, like the following second experiment, is a letter recognized as an ‘a’ first, 
and it is probably a ‘u’ or a ‘v’ after confirmation. We show the skill transformation process from one shape 
to multi-stylistic shapes based on the same original and extended features, but with different weights.

c) Adaptive NN control with constraints on the transient tracking errors

After renewing trajectory using IDMP, robot system controller should be improved to minimize tracking 
errors to the updated trajectory. Additionally, the controller should process the uncertain dynamics parameters, 
force estimation errors, and limitations on the transient state errors. In this paper, we proposed an adaptive NN 
and BLF-based controller, where the NN nonlinear fitting part can increase the number of neurons and update 
the weights, so that it can accumulate and reuse the learned weights to improve the learning efficiency. 

The reminder of the paper is organized as follows: Section II briefly introduces DMP. In Section III, we 
present the details of IDMP and extend it to the multi-style skill learning. In Section IV, we propose the new 
adaptive NN controller with constraints on transient tracking errors. In Section V, three experiments are 
conducted to verify the above advantages. Section VI provides a final conclusion.
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2. Related work to dynamical movement primitive 

The DMP model proposed by Ijspeert et al., [6], [7] is 
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Considering different skills expressed by DMP have the same expression as in (1), and the main difference 
focuses on the forcing function , we can update the to realize skill incremental learning.  f s  f s
Following the idea of board learning system (BLS) [20], an efficient incremental learning system without the 
need for deep architecture, incremental learning algorithm has a promising performance in calculation 
accuracy and learning speed. Especially, with the increase of the enhancement nodes, the network can 
approach a nonlinear function with any accuracy, which inspires us to build an incremental updating forcing 
function that the vectors  and can be extended to change the learned skills and fit new trajectories.  ( )s

The main challenge is how to reshape  and to enable the new added features and extended terms to  ( )s
satisfy the properties of DMP. For example, in (2), the feature variables  are normalized and , 1, 2,...,i i m 
satisfy

 (7)
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If we set an extended function as and  as the modified term to , they will , 1, 2,...,j j m  ˆ i , 1, 2,...,i i n 
be normalized and satisfy:  
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3. Incremental Dynamical Movement Primitive

3.1. Basic Incremental Dynamical Movement Primitive

Similar to (1), we define a new skill expressed by DMP in (10) that is different from the skills learned from 
the original demonstration. Given new position  and velocity , the new skill is expressed as  Nx Nv
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, (10)
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Figure.2 Diagram of incremental dynamical movement primitive
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where ,if and ,if . ( ) 1kq s   1,k n ( ) 0kq s   1,k n n m  
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Then in (16) is further expressed as k

. (18)
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where  is the weight of  and  is the weight of . 1 2, ,...,C c c c
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3.2. Incremental Dynamical Movement Primitive for multiple stylistic skill generalization 

IDMP can be applied to generalize multiple stylistic skills when the initial learning skill is not accurate and 
there are several possible generalization solutions. Considering that all the possible skills are generated based 
on common initialized features, it is better to allow these skills to share the same features but with different 
weights. We first assume that the position and velocity terms in the multiple demonstrations are and  N

ix ,N
iv

 and the variables are  and  in the initial demonstration. By using (1), we can get an initial 1,2,...,i m ix iv
skill  and  as well as the common feature nodes  and the forcing function  in the standard ix iv ( )s  f s

DMP.  The next step is to compute the common extended terms and the multiple sets of  and  for ( )j s C U
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different trajectories simultaneously. 
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Using (29), we can get group vectors of the weight set  to express  stylistic skills. The m ,C U
i i    m

detailed calculation procedure is realized by the pseudo code shown in Algorithm 1, for single and multiple 
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stylistic incremental skill learning.
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Remark 3: Since the IDMP-based multi-skill learning are based on the common features, the learned multiple 
skill can be transformed between each other by only changing the weight vectors. For example, we set the 
common state vector for two stylistic skills as and weight vectors    ( )= ( ) 1 1 ( ) 1 1 ( )

TN cs s s s         

are  and for two skills with the same length separately. The transformation 1 1 1

TN C U       2 2 2

TN C U      
of the two skills can be realized by linear interpolation [30] as 

 ,  (30)

     

   
 

0

1 2

( )

= 1

N N N N N

N N

TN N N

N N N

v K g x Dv g x f s

x v

f s s







   

     

 


 


 





where is an adaptive factor to enable to change from   to  .  0,1  N 1
N 2

N

4. Incremental Adaptive Neural Network Control

 The trajectory is replanned using IDMP method in the Section above. However, as the trajectory changes, 
the controller's setpoints and performance limits also need to be changed. In this Section, we will propose an 
new incremental adaptive NN control method to accumulate and reuse the learned skill, considering the 
limitations of tracking errors and robot dynamics estimation errors.

4.1. System dynamics model and control objectives

The dynamic model of robot system is expressed in a Lagrange-Euler form as 

(31)     , eM q q C q q q G q       

where  is the simplification of  at time  and represents the joint information of robot arm, nq R ( )q t t R

 is the inertia matrix,  is the Coriolis and centrifugal torque matrix, and  is   n nM q R   , n nC q q R  nG R

the gravitational torque. The control torques is and is a torques calculated by  , and  is  e ( )T
e e eJ q F  eF

forces exerted by the environment, and is a Jacobian matrix. Setting the position of the end effector is ( )T
eJ q

, then the relationship of and is ,where  is a function for joint x q x            ,x t q t x t J q t q t    *

and position transformation and is a Jacobian matrix for robot system. The desired value of is set   J q t x

as , which is achieved by using traditional DMP or I-DMP. Using , we can calculate and set the dx dx dq
tracking error of  to as . The desired tracking performance is to enable  to keep within the q dq de q q  e
predesigned performance , where and are constants and is usually set as an  1 2( ) ( )k v t e t k v t   1k 2k ( )v t
exponential decaying performance function.

The dynamics system satisfies the following properties and assumptions:
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Property 1: The matrices  in (31) is skew -symmetric.    ,M q C q q 

4.2. Incremental Adaptive Neural Network control

In order to realize the predesigned performance, the system controller is designed as 

(32)          ˆ,d d d d
eM q C q q G zK q g Sq             

where ,and is a factor calculated in the following equation, is a positive constant factor, and dq Le   L K

 and  represents the estimations of  and  separately. Usually, the estimation error term ˆˆ ( )T
e e eJ q F  êF e eF

 is coupled with uncertainties and disturbances [34],[35] to achieve a complex term  ˆ=e e e    , ,, , eY e eq q  

 , where ,  and  are the = eM C G           dM M q M q     , ,d dC C q q C q q       dG G q G q 

uncertain terms caused by joint tracking errors ,  represents the estimation error of the contact torque. e

is an incremental neural networks term with an expression of  , where is an  ( )g S z    ( ) ˆ T zg S z W S Ŵ

estimated weight vector and  represents a vector consisted of multiple Gaussian functions. We use  S z

to approach the error term that is expressed by the compositions of  ( )g S z      *, ,, , e
TY zWe eq q S z  

the desired weight vector and , where is the approximation error of the neural network with *TW  S z  z

the limitation of , .   *z  * 0 

Taking  (32) into (31), we have

  (33)
           

    
3 ˆ, ,d d d d

e eM

z

q M q q C q q C q q q K q G q

G q Sg

             



     

According to definition of , we have  and take it into (33), then  dq Le Le     
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To realize the predesigned performance and ensure the system stability, we set  as the velocity-q   
level tracking error to the virtual control term  and build the following barrier Lyaponov function as 

(35)
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q i i
i i

k v t k v t
V V V h h M q

k v t e e k v t
 

 

   
        
       

 

where  and are the items in the rest of (35), and is defined as  2
1
2

TV M q  1V ih
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(36)
1 0
0 0i

e
h

e


  

It is obvious that and the time derivative of is expressed as0qV  qV

(37)
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According to the definition of , we have , then , then  = + = +dq Le e q   = +e Le q  
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(38)
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Following the inequality and , 
 

 
 

22
2

2 22 2
2 2

( )
ln

( ) ( )

k v te
k v t e k v t e

 
   
     

 
 

22
1

2 22 2
1 1

( )
ln

( ) ( )

k v te
e k v t e k v t

 
   
   

(39) can be expressed as 
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Then (38) can be simplified as 

(41)
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According to (34)，we have  . Following Property         , , , ,, e zM Y q qq C q q K e e Sg          

1,  (41) can be simplified as 
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According to the definition of , we have  and , then ih
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Then the updating rate of the weight vector  is Ŵ

(44)  tˆ + anh ˆ
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where is a large positive matrix, is a hyperbolic tangent function and is positive factor. s W    tanh * sK

We further create a quadratic term  and the time derivative of  is 1 0T
smV W W  

mV
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(45)
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Therefore for the hybrid Lyapunov function , the time derivative is expressed as = 0q mV V V 
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Following the Young’s inequality and definition of , we can obtain the following inequality [18]s

(47)1 tanhT
sF uW u  


  

Thus (46) can be further deduced by expressing the weights by the extended matrices as  * * * T
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Considering the completed expression of is , then (48) can V  2
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(50)         0 exp 0 expV t V t V t   
  

 
       

 

Since the terms  , and are bounded and  is bounded, then is bounded  z 
2

* T

s oriK W W  
     V t

and converged along with the time. This completes the proof.
Remark 4: In our previous research [18] and [33], we proposed a combining framework of trajectory learning 
and board learning-based control to approximate the unknown dynamics of the robot. The improvements of 
this proposed method are building a new Lyapunov function and creating a new weight estimation function 
(44) based on the trajectory learned by IDMP. Therefore, the controller is designed with a specific parameters 
as in the definition of .  L 

5. Experiments

We will verify the three contributions shown in the Introduction through three following experiments.

5.1. Experiment 1: Accurate trajectory approaching

In this experiment, we aim to verify the improvement of trajectory tracking accuracy by IDMP, compared 
with other DMP-based methods. We prepare a handwriting letter ‘A’ in blue in Figure. 3 and use the standard 
DMP, DMP+ proposed by Wang and Wu et al. in [29], and IDMP in this paper to track this trajectory with the 
same kernels.

First we choose 5 kernels for the forcing function for all DMP-based methods. The 5 initial kernels are 
chosen with random centres and widths of the radial basis functions for all three methods. The initial learning 
results of DMP in Figure 3(a) show a not good tracking effect. 
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                  (a) DMP, kernel=5                                       (b) DMP+, kernel=5                                      (c) IDMP, kernel=5
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                 (d) DMP, kernel=20                                      (e) DMP+, kernel=20                                     (f) IDMP, kernel=20

Figure 3. Handwritting trajectory learning by using standard DMP, DMP+ and IDMP with different kernals

With DMP+, the 5 kernels are modified and the mean squared error (MSE) in tracking the demonstrated 
trajectory is significantly reduced (see Fig.1(b)). IDMP can extend the feature vector  by adding new ( )s
transformation terms   of the 5 original kernels in (11), so that the trajectory tracking performance is ( )j s
further improved (see Fig.1(c)). 

We further expand the number of initial kernels in three methods from 5 to 20 and the simulation results are 
shown in Figure.3 (d) to (f). The tracking performances of all methods are significantly better than those with 
5 kernels. The MSEs to the original trajectory of IDMP are much lower than the results of the previous two 
cases and the trajectory almost coincides with the demonstration, which benefits from the increasing number 
of the extended features and certifies that IDMP has the best trajectory tracking accuracy among the three 
methods. But, it also shows that the tracking errors are still partially affected by the initial number of kernels. 

5.2. Experiment 2:Multi-style skill learning and transformation

The second experiment is to examine multi-style skill learning, modification, and transformation. As shown 
in Figure 4, we retrofitted a PHANTOM Desktop haptic device and fixed a pen at the end of the effector. The 
demonstrator operates the haptic device to write letters and the device records trajectories of the end tip. The 
trajectories are processed (e.g., alignment and filtering) and then used for handwriting style learning and 
transformation under the control of the incremental adaptive NNcontroller in (32) . 
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Figure 4.  Experimental setup

As shown in Figure. 5 (a), we write five letters ‘a’, ‘z’, ‘l’, ‘k’ and ‘w’ with similar size and same start and 
end. The letter ’a’ is selected as the initial writing style and the others are provided as the writing styles after 
skill modification and transformation. After matching and resampling the demonstrated trajectories, we use 
the method described in Algorithm 1 to learn stylistic letters and realize skill modification and transformation 
from ‘a’ to other letters. The processes for the skill transformations are presented in Figure 6.

(a) human demonstrations

(b) robot drawing results

Figure 5.  Human demonstrations of handwritting and robot drawing results after multi-style skill learning 

The initial trajectory ‘a’ is coloured red, marked with a red square in the centre of Figure 6, and learned 
with the standard DMP. The targeted manuscripts are presented with black squares in the four corners. The 
transformation starts at centre ‘a’ to approach the handwritings in the corners, performing every 5 incremental 
steps. In this way, the shapes near the centre are more similar to ‘a’ . With the extension of feature vector and 
weight vector, the learned trajectories are gradually changed from ‘a’ to other stylistic letters. After adding 30 
extended feature kernels, the modified letters are clearly distinguishable from each other , resulting in the 
letters in the corners of Figure. 6. For some letters, such as ‘z’ and ‘k’, the modified letters from ‘a’ have been 
similar to the final trajectories. While, others, such as ‘w’ and ‘l’, are changed gradually to the desired states. 
Since the common features are determined by all the stylistic letters, the trained trajectories that are closest to 
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the corner demonstrations still have some differences that can be considered as compromise results. The skill 
transformation between different stylistic actions is realized by using (30) to change weight vectors. Finally, 
we utilize the haptic device as an actuator and use  adaptive NN control method to draw the learning results, 
as shown in Figure 5(b).
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Figure 6. Incremental learning process from the letter ‘a’ to multilple syles of handwrittings:’w’,’z’,’k’and’l’

5.3. Experiment 3: Dual-incremental skill learning and control for crossing different-height obstacles

The third experiment is also conducted with the haptic device PHANTOM Desktop and a height-adjustable 
obstacle to illustrate incremental skill learning process and its application of obstacle avoidance in practice. 
As shown in Figure 7, humans hold the joystick to cross the obstacle and put the pen tip to touch the intended 
target point. The current obstacle is consists of three 2cm 2cm 2cm cubes, each of which can be added and 
removed to change the height of the obstacle. On the top of the cubes, we add a 2cm 8cm 0.2cm lip. On the 
base plane, we set one start point and nine target points on the two sides of the obstacle. The central point on 
the right side is used for human demonstration and the other points, which are 2cm away from each other, are 
used for skill generalization.  

Figure 7. Experimental setup for obstacle avoidance

After collecting data from demonstrations (gray lines in Figure. 8 (a)), we use DMP to learn an initial skill 
of crossing an obstacle with a height of 1 block (red line in Figure. 8 (a)). In our previous work [21], [28], the 
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demonstrations for the height-adjustable obstacle are divided into several phases and the final positions of the 
internal phases are changed according to the heights of the new obstacles. In this paper, we use the IDMP to 
realize skill modification. As shown in Figure. 8 (b), the deep green and dark blue lines are the final learning 
results for crossing two and three blocks. The lines with gradient colours from red to green and from green to 
blue show the learning process with the increase of extended features, according to the diagram in Algorithm 
1. Figure. 8 (b) also verifies the convergence of the learning results such that the degrees of curve changes are 
decreasing until they approach the final learning results. After gaining the ability to overcome the obstacles of 
different heights, we can generalize them to achieve different goals by changing factor  in (25). g

In Figure. 8 (c) and Figure. 8 (d), the green lines show the learning effect for different obstacles and the red 
lines are the generalized trajectories of the robot end to achieve different goals.  

Using the adaptive NN controller in (32), the joystick works as an actuator to follow the generalized skills 
with limited tracking errors. Figure. 9 (a) shows human demonstrations process. Figure. 9 (b) and Figure. 9 (c) 
show the joystick movement to reach the predefined goals without conflicting with obstacles. 
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Figure 8. Skill incremental learning and generalization based on IDMP and adaptive NN-based control method (a) Demonstrations and skill 
learning based on DMP (gray lines are trajectories of demonstrations and the red line is the learned skill) (b) Incremental learning process 
for different learning skills (red line is the crossing skill for 1 block height, green line is the crossing skill for 2-block height, and blue line is 
for the height of 3 blocks, and the thin lines between the different skills represent the transformation of the skills) (c) Generalization of the 
skill for the 2-block height (green line shows the skill learning and red lines represent the skill generalizations) (d) Generalization of the 
skill for the height of 3 blocks (green line shows the skill learning and red lines show the skill generalization).



23

(a) Skill demonstrations

(b) Robot crosses 2-block height obstacle avoidance autonomously

(c) Robot crosses 3-block height obstacle avoidance autonomously

Figure 9. Skill generalization and control for height-adjustable obstacle avoidance based on human demonstations

5.4. Discussion

The three experiments verify three properties of the incremental trajectory and force learning framework 
for robots proposed in the Introduction. Experiment 1 shows the advantage of IDMP in terms of accuracy, 
compared to DMP+ and standard DMP and can realize life-long skill learning to some extent. Experiment 2 
shows the versatility of IDMP in generalizing and transforming skills into multiple styles. The incremental 
adaptive controller ensures system stability and keeps trajectory tracking errors within performance limits. 
Experiment 3 shows applications of the proposed framework in obstacle avoidance. Moreover, the properties 
can be used in combination to achieve other goals. For example, we can first generalize the original skill to 
multi-style skills, and then further refine the details of a specific style. Since the old features and weights are 
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contained in the vectors, we can easily perform skill transformation from one to another or transformation 
between different skills as Remark 3 shown, and ensure the smoothness of the transformation by choosing an 
appropriate . But, since IDMP is calculated based on the elements of the original DMP skills, the proposed 
method is still limited by the original learning outcomes. 

6. Conclusion 

In this paper, we propose a new framework for incremental trajectory and force learning and generalization 
to modify initially learned skills due to the environmental changes and inaccurate initialization. The trajectory 
learning part is based on the IDMP, and the controller uses adaptive NN control method to reduce the cost and 
improve the efficiency of learning. Three experiments are taken to verify the effectiveness and advantages of 
the proposed framework in accurate trajectory tracking, multi-stylistic trajectory tracking and application in 
obstacle avoidance. Compared to other DMP-based methods, this framework achieves better performance in 
robot trajectory tracking and greater flexibility in skill modification and transformation. 
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Network Control

Abstract

Due to changes in the environment and errors that occurred during skill initialization, the robot's operational 
skills should be modified to adapt to new tasks. As such, skills learned by the methods with fixed features, 
such as the classical Dynamical Movement Primitive (DMP), are difficult to use when the using cases are 
significantly different from the demonstrations. In this work, we propose an incremental robot skill learning 
and generalization framework including an incremental DMP (IDMP) for robot trajectory learning and an 
adaptive neural network (NN) control method, which are incrementally updated to enable robots to adapt to 
new cases. IDMP uses multi-mapping feature vectors to rebuild the forcing function of DMP, which are 
extended based on the original feature vector. In order to maintain the original skills and represent skill 
changes in a new task, the new feature vector consists of three parts with different usages. Therefore, the 
trajectories are gradually changed by expanding the feature and weight vectors, and all transition states are 
also easily recovered. Then, an adaptive NN controller with performance constraints is proposed to 
compensate dynamics errors and changed trajectories after using the IDMP. The new controller is also 
incrementally updated and can accumulate and reuse the learned knowledge to improve the learning 
efficiency. Compared with other methods, the proposed framework achieves higher tracking accuracy, 
realizes incremental skill learning and modification, achieves multiple stylistic skills, and is used for obstacle 
avoidance with different heights, which are verified in three comparative experiments.
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