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tract 

arning from demonstration (LfD) can enable robots to quickly obtain reference trajectory
mation. How to reproduce and generalize the skills acquired by demonstrating is a ho
 for researchers. Firstly, aiming at the drawback that many industrial robots were difficul
ontinuously and smoothly drag and demonstrate, a compliant continuous drag

onstration system based on discrete admittance model was designed. Then, in order to
 the problem of poor generalization ability of the classical dynamic movement primitive
P) on curved surface, the modified DMP contained the scaling factor and the force
ling term. Finally, the curve drawing experiments were carried out on a 6-DoF robot
rimental results show the effectiveness of our proposed learning and generalization
ework. 
words: Continuous drag demonstration; Modified DMP; Curve drawing experiments

Learning and generalization framework. 

ntroduction 

umans can adapt well to posture and strength when performing tasks in unknown
ronments. However, robots need to employ a complex set of planning algorithms for
ific tasks [1-3]. To enable robots to learn human manipulation skills, learning by
onstration (LfD) has been studied in recent years [4,5]. In the absence of kinematic models
ctory planning and assembly problems can be well solved using LfD. Human
onstration is when a human expert teaches a robot how to perform certain specialized skills
motion trajectory will be recorded and used to train the skill model [6]. Robotic
1 
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manipulators not only repeat learned skills, but are often expected to generalize to new tasks 
and situations. This requires skill models that are easy to train and adapt to new tasks and 
envi  
learn  
prop  
hand

M l 
inter  
mean  
iden  
in th . 
Alth  
func l 
traje  
inter
cons  
com

D  
imita  
nonl  
evol  
repre  
learn l 
DMP  
impr  
com  
exter  
trans

In  
dem  
carri  
A co  
impr  
com  
facto t 
and c
Jo
ur

na
l P

re
-p

ro
of

ronments. For LfD, one of the difficulties and challenges is generalization, which requires
ing skills to deal with uncertain and unknown tasks [7]. Numerous methods have been
osed, optimization-based trajectory planning methods [8], data-driven methods [9, 10], to
le trajectory generation in the above-mentioned situations [11, 12]. 
ost industrial robots only open the position servo interface instead of the torque contro
face, and do not provide the interface to obtain the dynamic parameters of robots. This
s that using the drag demonstration based on robotic dynamic compensation needs to

tify the dynamic parameters and friction model [13]. However, there are often large errors
e identification process, which will affect the performance of drag demonstration [14]
ough most industrial robots, such as UR robots, have their own drag demonstration
tion, it is difficult to drag the manipulator to follow a smooth and continuous spatia
ctory. In many cases, they can only obtain a continuous and smooth trajectory through
polation after single point teaching, which makes the demonstrating process time-
uming and laborious. Therefore, it is of great practical value to develop a continuous and
pliant demonstration scheme for industrial robots [15]. 
ynamical motion primitive (DMP) is widely used in trajectory planning of robotic arms to
te the behaviour of human tutor [16-18]. The DMP model is essentially a second-order

inear system (spring-damping system) to approximate a motion trajectory. DMP and its
utionary structure have been proposed by many researchers, and motion information is
sented by a set of nonlinear differential equations. They are widely used in imitation
ing and trajectory generalization [19, 20]. In order to solve the problems that the origina
 could not produce the right trajectories under some special cases, some researchers

oved DMP model. Some researchers combined neural network control with DMP to solve
plex tasks with special constraints, such as obstacle avoidance and interaction with the
nal environment [21-23], most of which added coupling terms based on the basic
formation system [24-26]. 
 this paper, the reference trajectory on the flat surface is obtained by continuously drag
onstration, and then the in-situ reproduction, flat and curved surface generalization are
ed out by the modified DMP model. The contributions can be summarized as follows. (1)
ntinuous drag teaching algorithm based on discrete admittance model is designed, which
oves the problem that it is difficult for Elite industrial robot to teach by dragging
pliantly and effortlessly. (2) The classical DMP model is modified by introducing scaling
r and force coupling term, which improves the generalization ability of DMP model in fla
urved surface. 
2 
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The rest of the article structure is organized as follows. In section 2, materials and methods 
were described. Discrete admittance model, original DMP and modified DMP used in this 
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r are introduced. In section 3, the experimental study is presented and then the
tiveness of the framework proposed in this paper is verified via Elite robot. Finally, in
on 4, conclusions were given to summarize the whole paper. 

aterials and Methods 

verview of the Framework 

e overall structure block diagram of the proposed learning and generalization framework
own in Figure 1. First, reference trajectories are obtained by using the method of LfD. In
part, we propose a continuous drag demonstration method based on discrete admittance
el to improve the problem that some industrial robots cannot drag compliantly and
tlessly. Then the classical DMP model is improved by adding scaling factor and force
ling term. After that, through the learning, reproducing and generalizing of the modified
 model, a new desired trajectory 𝒙𝒙𝑑𝑑 is obtained. Finally, the validity of the proposed

ework is verified by Elite robot. 

 

Figure 1: Overview of the proposed robotic learning and generalization framework. 

ontinuous Drag Demonstration Based on Discrete Admittance Model 

e Elite robot used in this paper has poor continuity for drag demonstration, so the smooth
ging effect cannot be achieved only by adjusting the internal parameters such as starting
 coefficient and friction coefficient. Therefore, we uses the open position servo interface
ite robot to design the continuous drag demonstration based on the admittance controller
e six-dimensional force acting on the drag tool is obtained from the six-dimensiona
/torque sensor, and the obtained force data needs to be compensated to eliminate the
ence of tool weight, sensor drift and installation inclination [27]. The specific force
pensation method is the same as our previous research work paper [28]. The compensated
imensional force data is then input into the designed discrete admittance model to calculate
xpected speed and position of the current robot end. The specific calculation formula is: 

𝑥̈𝑥𝑟𝑟(𝑘𝑘) = 𝑀𝑀𝑟𝑟
−1(𝑘𝑘)[𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘) − 𝐷𝐷𝑟𝑟(𝑘𝑘)𝑥̇𝑥𝑟𝑟(𝑘𝑘 − 1) − 𝐾𝐾𝑟𝑟(𝑘𝑘)(𝑥𝑥𝑟𝑟(𝑘𝑘 − 1) − 𝑥𝑥0)]       (1)

𝑥̇𝑥𝑟𝑟(𝑘𝑘) = 𝑥̈𝑥𝑟𝑟(𝑘𝑘)𝑇𝑇𝑘𝑘 + 𝑥̇𝑥𝑟𝑟(𝑘𝑘 − 1)                        (2)
3 
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𝑥𝑥𝑟𝑟(𝑘𝑘) = 𝑥̇𝑥𝑟𝑟(𝑘𝑘)𝑇𝑇𝑘𝑘 + 𝑥𝑥𝑟𝑟(𝑘𝑘 − 1)                        (3) 
where, 𝑥𝑥0 indicates the initial desired position of the robot end, 𝑥̈𝑥𝑟𝑟(𝑘𝑘), 𝑥̇𝑥𝑟𝑟(𝑘𝑘) and 𝑥𝑥𝑟𝑟(𝑘𝑘) 
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he expected acceleration, speed and position of the current robot end calculated by the
ete admittance controller, 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘) represents the six dimensional force acting on the
ging tool. 𝑇𝑇𝑘𝑘 is the control cycle, 𝑘𝑘 represents the current time step. 𝑀𝑀𝑟𝑟(𝑘𝑘), 𝐷𝐷𝑟𝑟(𝑘𝑘) and

) represent the inertia coefficient, stiffness coefficient and damping coefficient matrix of
iscrete admittance controller respectively. 

riginal and Modified Dynamic Movement Primitives 

e original DMP is usually used to represent motor skills and used to encode motion
ctories. DMP is essentially a second-order spring damping system, which can be divided
discrete and rhythmic types. In this work, we focus on the former. The DMPs model can
pressed by the following formula [29]: 

𝜏𝜏𝑣̇𝑣 = 𝑘𝑘(𝑔𝑔 − 𝑥𝑥) − 𝑑𝑑𝑑𝑑 + 𝑓𝑓(𝑠𝑠)                         (4)
𝜏𝜏𝑥̇𝑥 = 𝑣𝑣                                  (5)
𝜏𝜏𝑠̇𝑠 = −𝛼𝛼1𝑠𝑠                                (6)

e equation (4) represents a transformation system consisting of a second-order spring
ping system and a nonlinear function, x and v represent the position and velocity of the
on, respectively, k and d represent the spring constant and damping coefficient of the
m, respectively, which are artificially designed parameters, usually let k = d 2/4, g denotes
arget position of the motion, τ denotes the time scaling constant, s is the phase of the
m, determined by equation (6). It decays from the initial value 1 to 0 with time, then mode
become a stable second-order spring damping system. 𝛼𝛼1 is a positive constant, f(s) is a
inear function, which is defined as follows: 

𝑓𝑓(𝑠𝑠) =
� 𝜓𝜓𝑖𝑖⋅𝜔𝜔𝑖𝑖

𝑁𝑁
𝑖𝑖=1

� 𝜓𝜓𝑖𝑖
𝑁𝑁
𝑖𝑖=1

⋅ (𝑔𝑔 − 𝑥𝑥0)𝑠𝑠                        (7)

𝜓𝜓𝑖𝑖 = exp (−ℎ𝑖𝑖(𝑥𝑥 − 𝑐𝑐𝑖𝑖)2)                          (8)
e 𝑐𝑐𝑖𝑖 and ℎ𝑖𝑖 are the center and width of the i-th Gaussian function respectively, 𝑥𝑥0 is
nitial position, N is the number of Gaussian functions, and 𝜔𝜔𝑖𝑖 is the weight of the i-th
sian function. 
e original DMP model can translate and scale the demonstration trajectory. Nevertheless
e transformation on the spatial curved surface, the original model learns the nonlinearity

ree directions separately, which will lead to the shape distortion of the spatial curve. In
r to fully describe the position and posture of the manipulator, 6 DMPs are employed to
te positions and X-Y-Z Euler angles. Therefore, we modified the classical DMP model as
ws: 

𝜏𝜏𝑽̇𝑽 = 𝑘𝑘(𝒈𝒈 − 𝑿𝑿) − 𝑑𝑑𝑽𝑽 + 𝜶𝜶𝑓𝑓
{𝑇𝑇}𝒇𝒇(𝒔𝒔)                      (9)
4 
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𝜏𝜏𝑿̇𝑿 = 𝑽𝑽 + 𝜶𝜶𝑒𝑒𝒆𝒆(𝑿𝑿)                            (10) 
𝜏𝜏𝒔̇𝒔 = −𝛼𝛼 𝒔𝒔                                (11) 
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1

e 𝜶𝜶𝑓𝑓
{𝑇𝑇} = diag (�𝛼𝛼𝑓𝑓𝑓𝑓,𝛼𝛼𝑓𝑓𝑓𝑓,𝛼𝛼𝑓𝑓𝑓𝑓,𝛼𝛼𝑓𝑓𝑓𝑓 ,𝛼𝛼𝑓𝑓𝑓𝑓 ,𝛼𝛼𝑓𝑓𝑓𝑓�) is the transformation factor between the

ce to be generalized and the robot coordinate system, and {T} is the transformation
ix. 𝒆𝒆(𝑿𝑿) is the output error of admittance model, that is, the deviation between the curren
ion and the reference position of admittance model. 𝜶𝜶𝑒𝑒 is adjustment constant matrix

[𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝛼𝛼,𝛽𝛽, 𝛾𝛾]T and 𝑽𝑽 = [𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦, 𝑣𝑣𝑧𝑧,𝜔𝜔𝛼𝛼 ,𝜔𝜔𝛽𝛽 ,𝜔𝜔𝛾𝛾]T are state variables of the system. In

aper, we uses a supervised learning method called locally weighted regression algorithm
R) to determine the model parameters ω [30]. 

tability and Convergence of the Modified DMP 

e stability and convergence of the modified DMP are proved [31]. The modified DMP
e written as the following equation: 

𝜏𝜏2𝑥̈𝑥 =  𝑘𝑘 �𝑔𝑔 + 𝛼𝛼𝑓𝑓𝑓𝑓+𝜏𝜏𝛼𝛼𝑒𝑒𝑒̇𝑒(𝑥𝑥)+𝑑𝑑𝛼𝛼𝑒𝑒𝑒𝑒(𝑥𝑥)

𝑘𝑘
− 𝑥𝑥� − 𝑑𝑑𝑑𝑑𝑥̇𝑥 = 𝑘𝑘(𝑢𝑢 − 𝑥𝑥) − 𝑑𝑑𝑑𝑑𝑥̇𝑥         (12)

e u is a time-variant input to the linear spring-damper system. Then the Laplace transform
rformed on (12): 

𝐺𝐺(𝑠𝑠) = 𝑥𝑥(𝑠𝑠)
𝑢𝑢(𝑠𝑠)

= 𝑘𝑘
𝜏𝜏2𝑠𝑠2+𝑑𝑑𝑑𝑑𝑑𝑑+𝑘𝑘

                          (13)

e basis of Routh criterion, the condition for the bound input bound output (BIBO) stability
second-order system is 𝑘𝑘 > 0 and 𝑑𝑑 > 0. When time t approaches infinity, 𝛼𝛼𝑒𝑒𝑒𝑒(𝑥𝑥)
es 0. And the variable s approaches 0, the function f disappears and no longer works. The
formation system of the modified DMP develops into a linear second-order system. The
 variable x converges to g with time t to infinity. 

xperiment and Analysis 

 this section, the improved continuous drag demonstration method based on admittance
el was tested by a 6-DOF Elite-EC66 robot as shown in Figure 2, and the generalization
rmance of the improved DMP and the original DMP in the flat and curved surface will be

pared respectively. The ATI Mini45 Force/Torque sensor was mounted on the end of the
ipulator through the connecting flange to sense the interacting force between the end-
tor and the environment in real time. The pen fixing tool made by 3D printing was used
 the marking pen and was also used as a handle during drag demonstration. A clamping
ion was designed at the end of the pen fixing tool, and the marking pens of different colors
 stably fixed through the coupling device. The force sensor and the upper computer
municated by the UDP protocol, whose sampling rate and control rate were 100 Hz and 50
espectively. 
5 
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Figure 2: Experimental platform based on Elite robot. 

ontinuous Drag Demonstration 

 order to verify the effectiveness of the improved drag demonstration method, we
emented the following comparative experiments. Before the drag teaching, a standard sine
e was given on the experimental plane as the reference trajectory, as shown by the red
e in the Figure 3a. At first, the proposed drag method was used. The program was run in
emote mode of Elite robot. The discrete admittance model parameters were set as follows
 diag [ 0.5, 0.5, 0.5, 0.5, 0.5, 0.5 ]; Dr = diag [ 0.1, 0.1, 0.8, 10, 10, 10 ]; Kr = diag [ 0.02
, 0.02, 0.9, 0.9, 0.9 ]. Then the operator held the black handle of the pen fixing tool and
rmed drag teaching along the reference track, as shown by the black curve in the Figure
t the second step, the self-contained drag teaching function of Elite robot was used as a

rast. In the Elite teaching mode, the built-in parameters were set as follows: the forward
everse friction coefficients of each shaft were 5 %, and the starting coefficient were 10 %
operator pressed the teaching button at the end of the manipulator to drag teaching, as
n by the blue curve in the Figure 3f. During the demonstration process, trajectory

dinates under the two drag methods were recorded respectively, and the spatial curve was
n in Figure 4. 
6 
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ure 3. Comparative experiment process between continuous demonstration based on discrete admittance 

model and built-in drag demonstration of Elite robot. 

 
Figure 4. Spatial curves of different demonstration methods. 

mbining Figure 3 and Figure 4, it can be clearly seen that our drag demonstration method
d on the discrete admittance model has a good performance. Even if the built-in parameters
 as friction coefficient are adjusted to the most compliant state, there are still problems
 as jamming and overshooting under the drag teaching function of Elite. So those problems
 bring a lot of burden to human tutor and make it difficult to follow the reference trajectory
rately. Our method, on the other hand, can follow the target curve compliantly, coherently
ccurately. 

rawing Task on Different Surface 

 this section, the effectiveness of our modified DMP algorithm was verified. We performed
eproduction and generalization of the demonstration trajectory on flat and curved surfaces
ctively. In order to better reflect the advantages of our algorithm, the original DMP

rithm was also used for comparative experiments. 
7 
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3.2.1 Reproducing and Generalizing on Flat Surface 
We still used the sine curve as our teaching reference trajectory. The pose information data 
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e reference trajectory were input into the modified DMP and the original DMP model for
ing. The parameters were set as: d=20, k=202/4, τ=0.5, N=80. First, the trajectory was
duced between the start point and the end point of the reference trajectory, that is, the two
 models were reproduced without changing the start point (-551.030, 131.399, -17.560)
nd point(-660.021, 130.034, -17.538). The effect was shown in Figure 5 and Figure 6. As
seen from the trajectory curves, two methods were both able to basically complete the
duction of the given reference trajectory. From the details, the peak position of the origina
 reproduced trajectory in the Y direction presented an amplitude attenuation of 2 mm
ad, the modified DMP can basically keep the original amplitude of the demonstration
e. We used the wave height to characterize the amplitude of the curve, that is, the vertica
nce between the peak point and the trough point. The wave heights of the three curves
 shown in Table 1. 

  

(a) (b) (c) 

ure 5. Reproducing trajectory in X, Y and Z direction at the original start and end point. (a) Reproducing 

ectory in X direction. (b) Reproducing trajectory in Y direction. (c) Reproducing trajectory in Z direction. 

  
(a) (b) 

ure 6. Spatial curves reproduced on the flat surface and its actual experimental effect. (a) Spatial curves 

reproduced on the flat surface. (b) Actual experimental effect via Elite robot. 

 

 

8 
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Table 1. Wave heights of three curves during reproduction. 

Trajectory Demonstration Original DMP Modified DMP 

In  
verif t 
and  
traje . 
As w  
gene l 
DMP  
incre t 
almo  
Tabl

 

F

traj

Fig
 Jo
ur

na
l P

re
-p

ro
of

Wave height (mm) 49.979 47.669 49.161 

 another set of experiments, we changed the start point and end point, in which case we
ied the generalization ability of the DMP model for translating and scaling. The new star
end coordinates are (-701.698, 132.420, -17.538) and (-807.597, 129.739, -17.518). The
ctory curves after generalization via the two methods are shown in Figure 7 and Figure 8
as seen from the trajectory curves, two methods were both able to basically complete the
ralization of the given reference trajectory on the flat surface. However, for the origina
, the amplitude attenuation in the Y direction at the peak of the curve still existed and
ased to 4mm. For the modified DMP algorithm, the original amplitude was still kep
st unchanged. The wave heights of the three curves during generalization were shown in
e 2. 

  

(a) (b) (c) 

igure 7. Generalizing trajectory in X, Y and Z direction at the new start and end point. (a) Generalizing 

ectory in X direction. (b) Generalizing trajectory in Y direction. (c) Generalizing trajectory in Z direction. 

 
 

(a) (b) 

ure 8. Spatial curves generalized on the flat surface and its actual experimental effect. (a) Spatial curves 

generalized on the flat surface. (b) Actual experimental effect via Elite robot. 

 

 

9 
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Table 2. Wave heights of three curves during generalization. 

Trajectory Demonstration Original DMP Modified DMP 
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Wave height (mm) 49.979 45.725 49.158 

 general, the above two groups of reproduction and generalization experiments showed
the two DMPs were both able to realize the trajectory reproduction and simple
ralization on the flat surface. However, the modified DMP algorithm showed better
rmance in terms of maintaining the shape and amplitude of the demonstration trajectory.

 Generalizations on Curved Surface 
 this part, we tested the generalization ability of the modified DMP model on the curved
ce. We also used the flat surface teaching trace of the previous two groups of experiments
e reference trajectory, and then generalized it to the side curved surface of the experimenta
h. The three-dimensional size information of the test bench model used was known. The
start and end coordinates on the curved surface were (-551.698, -37.580, -28.765) and (-
597, -43.254, -32.265), respectively. The spatial trajectory curves after generalization via

o DMP models were shown in Figure 9 (a), and the actual task effect was shown in Figure
. 

 

 

(a) (b) 

Figure 9. Spatial curves generalized on the curved surface and its actual task effect. (a) Spatial curves 

generalized on the curved surface. (b) Actual task effect via Elite robot. 

gure 9 (a) showed that the modified DMP were able to realize curved surface
ralization. The generalized trajectory was still similar to the sinusoidal curve and
rately fit on the target curved surface. However, when inputting a new start point and end
t on the given curved surface into the original DMP, it still generalized according to the
e where the Z coordinate was located, and failed to fit the target curved surface, as shown
e green curve in Figure 9 (a). The surface drawing task was a failure at last. At the same
10 
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time, as was shown from the actual task effect figure 9 (b) that the modified DMP algorithm 
successfully completed the curved surface generalization task. 
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onclusions 

 this paper, a robotic learning and generalization framework for curved surface was
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1）The demonstration framework based on discrete admittance model

is proposed to solve the problem that some industrial robots are

difficult to continuously and compliantly drag teaching.

2）The skill reproduction and generalization are carried out through

the method of dynamical motion primitive (DMP). By considering

the  force  information  of  the  contact  surface,  the  original  DMP

model is improved to improve its generalization ability.

3） Through the curve drawing experiment on the Elite robot platform,

the generalization of skills from plane to curved surface is realized,

which proves the effectiveness of the modified DMP.
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