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Abstract
A probabilistic risk assessment framework was developed to mathematically represent the complex engineering phenom-
ena of rock bursts and gas outbursts for a heterogeneous coal seam. An innovative object-based non-conditional simulation 
approach was used to distribute lithological heterogeneity present in the coal seam to respect their geological origin. The 
changing mining conditions during longwall top coal caving mining (LTCC) were extracted from a coupled numerical model 
to provide statistically sufficient data for probabilistic analysis. The complex interdependencies among abutment stress, pore 
pressure, the volume of total gas emission and incremental energy release rate, their stochastic variations and uncertainty 
were realistically implemented in the GoldSim software, and 100,000 equally likely scenarios were simulated using the Monte 
Carlo method to determine the probability of rock bursts and gas outbursts. The results obtained from the analysis incorpo-
rate the variability in mechanical, elastic and reservoir properties of coal due to lithological heterogeneity and result in the 
probability of the occurrence of rock bursts, coal and gas outbursts, and safe mining conditions. The framework realistically 
represents the complex mining environment, is resilient and results are reliable. The framework is generic and can be suitably 
modified to be used in different underground mining scenarios, overcoming the limitations of earlier empirical indices used.
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•	 Parameters causing rockbursts and gas outbursts were linked along with their influences and interdependencies into a 
probabilistic risk assessment framework.

•	 Dynamically updated system feedback from the numerical model was fed into the framework to represent the current 
stress state in retreating mining and estimate the probability of the occurrence of rockbursts and gas outbursts.

•	 Statistically significant data were used to quantify the probability of rockbursts and gas outbursts using Monte Carlo 
simulation.

Keywords  Rock bursts · Gas outbursts · Probabilistic risk assessment · Longwall top coal caving · Monte Carlo simulation · 
GoldSim

List of Symbols
c	� Cohesion (MPa)
cr	� Residual cohesion (MPa)
dz	� Face convergence due to mining (mm)
ERR	� Energy release rate (J/m3)
ERRi	� Incremental energy release (J/m3)
ERRn−1	� Energy released at n−1th excavation step (J/m3)

ERRn	� Energy released at nth excavation step)J/m3)
G	� Shear modulus (GPa)
hblock	� Height of the coal block (m)
kh	� Horizontal permeability (m2)
kn	� Permeability at nth excavation step (m2)
kv	� Vertical permeability (m2)
K	� Bulk modulus (GPa)
lblock	� Length of the coal block (m)
mf 	� Mass of ejected coal (kg)
pg	� Gas pressure in the coal matrix (MPa)
pn−1	� Gas pressure at n−1th excavation step (MPa)
pn	� Gas pressure at nth excavation step (MPa)
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Patm	� Atmospheric pressure (Pa)
PL	� Langmuir pressure (MPa)
s	� New surface area (m2/g)
tn−1	� Time at n–1th excavation step
tn	� Time at nth excavation step
Va	� The volume of adsorbed gas (m3)
Vc	� The volume of coal ejected (m3)
Vej	� Ejection velocity (m/s)
Vfree	� The volume of free gas (m3)
Vgas	� Volume of gas in coal (m3)
VL	� Langmuir volume (m3/tonne)
Vm	� Volume of coal (m3)
w	� Specific energy of coal (J/m2)
wblock	� Width of the coal block (m)
Wadsorbed	� Adsorbed gas energy (J/m3)
Wc	� Crushing energy (J/m3)
Wfree	� Free gas energy (J/m3)
Wgas	� Total gas expansion energy (J/m3)
Wk	� Transportation energy (J/m3)
γ	� Adiabatic coefficient
σ	� Standard deviation
σc	� Unconfined compressive strength (MPa)
σn	� Normal stress (MPa)
σn	� Stress at nth excavation step (MPa)
�
n
′	� Provisional stress at nth excavation step (MPa)

σt	� Tensile strength (MPa)
σtr	� Residual tensile strength (MPa)
σzz	� Normal stress (MPa)
φ	� Porosity (%)
φc	� Cleat porosity (%)
φm	� Matrix porosity (%)
μ	� Mean
ρ	� Density of coal (kg/m3)
∅	� The angle of internal friction (o)

1  Introduction

Rockbursts and gas outbursts are complex engineering phe-
nomena having non-linear dependencies on several param-
eters. According to several multi-factor theories proposed 
and widely acknowledged by researchers, rock bursts and 
gas outbursts result from the combined effects of stress, gas 
pressure, and mechanical properties of coal (Wang and Xue 
2018; Cheng et al. 2021). They are special hazards in terms 
of their suddenness, frequent occurrences, and high conse-
quences (Liu et al. 2016; Zhou et al. 2016c; Agrawal et al. 
2021). As per the most widely accepted energy hypothesis 
for rockburst and gas outburst occurrences, the strain energy 
combined with the gas expansion energy causes violent fail-
ure (Cao et al. 2019a; Dai et al. 2019; Tu et al. 2019, 2021; 

Lei et al. 2020, 2021; Cheng et al. 2021; Xue et al. 2021). 
Despite several years of research, the complex rockburst and 
gas outburst mechanisms remain not well understood, mak-
ing them difficult to forecast accurately (Zhou et al. 2020).

Hazard forecasting can be classified into long-term and 
short term (Pu et al. 2019). Long-term forecasts are useful 
during the planning stage and early stages of development 
when limited data are available, to assess the feasibility of 
the project, make suitable design changes as well as guide 
future mining operations (Li et al. 2019). These methods 
include the use of empirical indices, traditional risk assess-
ment approaches, and predictive models to ascertain the 
likelihood of hazards at excavation sites. Short-term fore-
casting predicts the time, location, and intensity of dam-
age as the mining progresses using continuous and reliable 
field monitoring data (Pu et al. 2019; Dou et al. 2014; Liu 
et al. 2016; Tang et al. 2016; Yin et al. 2016). Short-term 
forecasting is data-intensive and needs continuously updated 
values to reliably monitor the dynamically changing mining 
conditions. Research presented here focuses on long-term 
forecasting.

Empirical indices were mostly developed based on the 
analysis of coal/rock behaviour to different confinement, 
gas pressure, and stress conditions during loading/unload-
ing experiments in a laboratory environment. These indices 
have several limitations in terms of practical application in 
the field and cannot be used in complex and dynamically 
changing environments to realistically forecast hazard poten-
tial (Li et al. 2019). Different indices may have different 
critical values that depend on the mining conditions and 
vary from one mine to another. These indices may identify 
a working face to be safe but accidents have occurred at such 
safe faces, suggesting that they may provide a false sense of 
safety (Tang et al. 2016).

Traditional risk assessment approaches include analytical 
hierarchical process, bowtie diagrams, cause-consequence 
analysis, decision analysis, event-tree analysis, fault-tree 
analysis, interval analysis, multi-risk analysis, etc. (Cosgrove 
and Hudson 2016). These approaches are based on the analy-
sis of event initiation and sequences leading to system failure 
and calculate the probability of different failure outcomes 
using logic gates. They are not suitable for dynamic systems, 
nor for those that have complex non-linear interdependen-
cies among failure processes as they may need significant 
pre-processing and still may not represent a realistic scenario 
(Goldsim 2017). They also suffer from a lack of response or 
feedback from the system, which can be detrimental in the 
case of rapidly evolving systems (Mattenberger et al. 2015; 
Goldsim 2017). In addition, traditional risk assessment 
approaches do not provide an immediate actionable result 
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(Mattenberger et al. 2015) and suffer from having statisti-
cally insufficient data (Maleki 1995).

The development of predictive coupled numerical mod-
els, representing realistic conditions leading to rockbursts 
and gas outbursts in coal mining, provides statistically suf-
ficient data overcoming the limitations of traditional risk 
assessment approaches. Researchers have proposed several 
forecasting indices based on numerical simulation analy-
sis. Using the energy analysis, Salamon (1984) proposed an 
energy release rate ( ERR ). Mitri et al. (1999) used mining-
induced strain energy density and energy storage index to 
calculate a burst potential index. Vieira and Durrheim (2002) 
advanced the concept of ERR to put forward incremental 
energy release rate ( ERRi ) during mining. Beck and Brady 
(2002) and Wiles (2006) proposed the concept of local 
energy release density ( LERD ) to reflect total energy change 
during the pillar failure process. Wiles (2002) proposed the 
local energy release rate ( LERR ) and Heal et al. (2006) pro-
posed rockburst vulnerability index ( RVI ) to forecast rock-
burst occurrences.

The numerical modelling-based indices should be used 
with caution as these were mostly developed for a site-spe-
cific scenario and do not incorporate the spatial variability 
and complexity involved in rockbursts and gas outbursts. 
Furthermore, most of the indices were developed based on 
static simulation results and cannot reasonably reflect the 
dynamic process of actual events. The geological conditions, 
rock properties, and mining design vary in different parts of 
the world, so the threshold values for these indices should 
be suitably modified to suit the geological conditions of the 
mining area. Mitri et al. (1999) found that the ERR values 
in Canadian mines were lower than that for South African 
mines experiencing rockburst problems. Most of these indi-
ces have ignored the heterogeneity occurring in geological 
formations or have over-simplified its incorporation using 
normal or Weibull distribution (Wang et al. 2017, 2019).

The time, location, intensity, and type of rock failure can 
be analysed by continuous monitoring of the high-frequency 
seismic waveform generated due to the sudden release of 
accumulated strain energy (Cook 1976; Sato and Fujii 
1988; Archibald et al. 1990; Tang 1997; Liu et al. 2016). 
Several advanced methods like active seismic tomography 
(Cao et al. 2015, 2016), electromagnetic radiation (Dou 
et al. 2014; Tang et al. 2016), and microseismic monitoring 
(Shepherd et al. 1981; Fujii et al. 1997; Flores 1998; Kabiesz 
and Makowka 2009; Lu et al. 2013; Cai et al. 2014; Calleja 
and Porter 2016; Li et al. 2016; Liu et al. 2016; Tang et al. 
2016; Yin et al. 2016; Li et al. 2019; Cao et al. 2020) are 
extensively used for rockburst and gas outburst monitoring.

Several researchers have used these monitoring data 
to predict rockburst and gas outburst occurrences (Zhang 

et al. 2014, 2013; Tang et al. 2016; Zhou et al. 2012; Mutke 
et al. 2015). Jia et al. (2015) combined acoustic emission, 
electromagnetic, and microseismic data to propose a multi-
agent approach for rockbursts prediction. Li et al. (2016) 
integrated electromagnetic radiation and microseismic data 
to predict rockbursts. Si et al. (2015a) combined microseis-
mic and seismic tomography monitoring to identify exces-
sive gas emissions occurring due to geological anomalies. 
These methods are characterised by their simple, low labour 
cost and rapid operation. However, they suffer from large 
prediction errors due to lithological heterogeneity in coal 
seams, the anti-interference performance of the signals and 
the precision of data identification (Tang et al. 2016; Pu 
et al. 2019).

Intelligent methods using machine learning approaches 
have been developed by researchers to establish evaluation 
systems of multiple indices (Zhou et al. 2011; Tang et al. 
2016). Feng and Wang (1994) pioneered the application of 
artificial intelligence to assess rockbursts and established a 
pattern recognition system to evaluate rockburst risk. Since 
then, artificial neural networks (ANN) have been widely 
used to predict rockbursts and gas outbursts in underground 
mining (Ruilin and Lowndes 2010; Tang et al. 2016; Kislov 
and Gravirov 2017; Pu et al. 2019; Dramsch 2020; Zhao 
and Chen 2020; Yin et al. 2021). Other methods include 
Bayesian networks (Li et al. 2017), classification trees, cloud 
models (Liu et al. 2013), decision trees (Liang et al. 2020; 
Wang 2021; Zhao et al. 2021), distance discriminant analy-
sis (Zhou et al. 2016a), ensemble models (Yin et al. 2021), 
fisher discriminant analysis (Zhou et al. 2011), fuzzy mod-
els (Adoko et al. 2013), general regression neural networks 
(GRNN), k-nearest neighbour (KNN), logistic regression (Li 
et al. 2015; Cai et al. 2018; Pu et al. 2019), principal com-
ponent analysis (PCA) (Cai et al. 2016), swarm optimisation 
(Pu et al. 2019), random forests (Dong et al. 2013; Zhou 
et al. 2016b; Liang et al. 2020), support vector machines 
(SVM) (Zhou et al. 2012), etc. A comprehensive list of these 
intelligent methods is available in Zhou et al. (2020).

These intelligent methods establish models using exist-
ing data (training datasets) to analyse the weight ratio of 
several factors for their quantitative calculations. With the 
change in excavation areas with different mining conditions, 
the weight ratio of various factors used to forecast rockbursts 
and gas outbursts may change (testing datasets). The lack 
of original data to represent the changed mining conditions 
makes determining the new weight ratios difficult. Further-
more, when such updated information is lacking, predic-
tions using such algorithms and mathematical formulations 
may fail. Intelligent methods present difficulties such that 
they are time-consuming, difficult to interpret, computa-
tionally extensive, and suffer from overfitting and lack of 
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transparency. These models are highly dependent on the 
training dataset quality and their outputs may be mutative 
(Zhou et al. 2020).

To overcome the limitations of approaches developed ear-
lier, and indices, this research developed coupled numeri-
cal models of a longwall top coal caving (LTCC) face by 
distributing different coal lithotypes using an object-based 
non-conditional simulation approach to respect the geologi-
cal origin of heterogeneity present in the coal seam at Coal 
Mine Velenje. The data representing the stochastic behaviour 
of abutment stress, pore pressure, the volume of total gas 
emission and incremental energy release rate were extracted 
from the coupled numerical model and fed into a proba-
bilistic risk assessment (PRA) framework to accommodate 
the uncertainty and variability occurring at each excavation 
step in the dynamically changing mining environment. This 
paper describes a PRA framework developed in GoldSim 
focused on risk occurrence rather than consequences (e.g. 
cost or other implications). The PRA framework incorpo-
rates Monte Carlo simulation to forecast the occurrence of 
rockbursts and gas outbursts and uses a retreating LTCC 
mining panel representing conditions prevalent at Coal Mine 
Velenje to illustrate its implementation.

2 � Coal Mine Velenje

The Velenje coal basin lies in a synclinal valley bounded by 
two major faults, the Sostanj and Smrekovec faults (Fig. 1). 
The lithological sequence was controlled by the movement 
of the Periadriatic fault system causing a high subsidence 
rate. The simultaneous deposition of paleo-forests, bush 
swamps, dwarf plants and vegetation by open water formed 
the heterogeneous clastic sediments more than 1000 m thick 
in the basin. Forests compacted to a lesser degree as com-
pared to dwarf plants at the same time under different depo-
sitional environments leading to the formation of different 
coal lithotypes with a varying abundance of xylites, detrites, 
and mineral matters (mostly composed of alumino-silicates 
and carbonate minerals) throughout the lignite deposit (Mar-
kic and Sachsenhofer 2010). Differential compaction led to 
the bowl shape of the coal seam as illustrated in Fig. 2a. The 
seam extends along WNW–ESE direction and is approxi-
mately 8.3 km long and 1.5–2.5 km wide, having a thick-
ness of up to 165 m at the centre and pinches out towards 
the margins (Kanduc and Pezdic 2005; Likar et al. 2012; Si 
et al. 2015b; Durucan et al. 2019).

The coal seam is mined using a combination of multi-
level mining and LTCC mining known as the Velenje Min-
ing Method (Jeromel et al. 2010; Likar et al. 2012). The coal 
deposit is divided into 10–20 m mining levels depending on 
the coal seam thickness (Fig. 2b). The bottom 3–4 m is cut 
by a shearer under hydraulic power supports and the 7–17 m 

Fig. 1   Geology of the Velenje 
coal basin and surrounding area 
(after Brezigar 1986)
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top coal is caved and recovered in front of the supports to 
allow steady face advance (Fig. 2c) (Si et al. 2015b; Cao 
et al. 2018; Durucan et al. 2019). Seam gas at Coal Mine 
Velenje is a mixture of CO2 and CH4 varying from 98% 
CO2—2% CH4 to 0% CO2—100% CH4 in different parts of 
the mine.

3 � Methodology

3.1 � Coal Seam Lithological Heterogeneity

To represent lithological heterogeneity in the coal seam, a 
three-dimensional fork-shaped solid was created with vary-
ing extent along the X-, Y- and Z- axis and lateral offset along 

(a) 

(c)  (b) 
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Fig. 2   a Velenje coal deposit, b schematic of multi-level and LTCC mining (after Si et al. 2015b) and c LTCC mining method at Coal Mine 
Velenje (after Jeromel et al. 2010)

Fig. 3   a The fork-shaped solid is considered as a heterogeneous zone in the model, and the variation in xylite percentages in the heterogeneous 
zone b 30%, c 60%, and d 90%
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the Z-axis to represent the deposition by river streams over a 
long time to form an area with different xylite distributions 
for use in the numerical models (Fig. 3). The geological 
setting dictates the use of an object variable (ellipsoids) to 
represent the lithological heterogeneity present in the coal 
seam at Coal Mine Velenje. An object-based non-conditional 
simulation was used to randomly drop ellipsoids in the solid 
structure to simulate different lithotypes. The shape of the 
ellipsoids was varied by changing the ratio of semi-major 
axes along the X-, Y- and Z- axes. The length of the ellip-
soids was varied using a Gaussian distribution. The Poisson 
point process was used to independently and randomly dis-
tribute ellipsoids in the model (Chiles and Delfiner 2012). A 
random dose was given to each ellipsoid and the summation 
rule was applied to monitor the locations where ellipsoids 
overlap each other. The overlapping locations were con-
sidered as xylite, while locations where no ellipsoids were 
present were considered as detrite. The random distribution 
facilitates mimicking different orientations, shapes and sizes 
of xylite present due to different depositional environments 
that were found by petrographic analysis by Markic and 
Sachsenhofer (2010).

3.2 � Energy Analysis

The energy hypothesis based on the strain energy, free gas 
energy, gas expansion energy, crushing energy and transpor-
tation energy was used to determine triggering conditions to 
forecast rockbursts and gas outbursts in the PRA framework.

3.2.1 � Strain Energy

The energy release rate ( ERR ) proposed by Salamon (1984) 
has been used by several researchers to evaluate rockburst 
potential in deep underground mining (Zhang et al. 2017). 
Originally developed for hard rock mines, the index has been 
widely used in coal mining in the US (Sears and Heasley 
2009). Salamon (1984) noted a good correlation between 
ERR and rockburst occurrences. ERR can be calculated as 
(Vieira and Durrheim 2002),

where ERR is the energy release rate (J/m3), �zz is the verti-
cal stress acting on the solid face before it is mined (MPa), 
and dz is the face convergence due to mining (mm).

(1)ERR =
1

2
× �zz × dz

Vieira and Durrheim (2002) proposed a probabilistic 
methodology to calculate rockburst risk by applying a sim-
ple technique to remove multiple counts of ERR at the same 
position by introducing incremental ERR ( ERRi ). ERRi is 
defined as the energy released between excavation step n − 1 
( ERRn−1 ) and excavation step n ( ERRn ). It is given as,

The ERRi index does not consider initial convergence 
and in situ energy that can be stored in the rock before 
extraction starts. Vieira and Durrheim (2002) considered 
rock to be elastic except at the mining face and simulated 
a hypothetical case. In the research presented in this paper, 
a strain-softening model was used to represent coal failure, 
the model was equilibrated before excavation to account for 
in situ energy, and a retreating LTCC mining was modelled 
as practised at Coal Mine Velenje (Si et al. 2015b).

3.2.2 � Gas Energy

The gas expansion energy present in coal is related to the 
free gas and adiabatic expansion of gas desorbed from the 
coal structure. The volume of free gas present in the coal 
seam can be calculated as (Tu et al. 2019, 2021),

where Vf ree is the volume of free gas present in the cracks 
and fractures (m3), Vm ( = lblock × wblock × hblock ) is the vol-
ume of coal ( lblock is the length of the coal block (m), wblock 
is the width of the coal block (m), hblock is the height of the 
coal block (m)) (m3), � is the coal porosity (%), pg is the gas 
pressure in the coal matrix (MPa), Patm is the atmospheric 
pressure (MPa) and � is the ratio of specific heats at constant 
pressure over constant volume for methane and carbon diox-
ide ( � = 1.31).

The volume of adsorbed gas can then be calculated as,

where Va is the volume of gas adsorbed in the coal (m3) and 
Vgas is the volume of gas released (m3).

Free and adsorbed gas energy can be calculated as (Tu 
et al. 2019, 2022; Lei et al. 2020; Xue et al. 2021),

(2)ERRi = ERRn − ERRn−1

(3)Vf ree = �Vm

(

pg

Patm

)
1

�

(4)Va = Vgas − Vf ree
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where Wf ree is the free gas energy (J/m3), Wadsorbed is the 
adsorbed gas energy (J/m3), Wgas is the total gas expansion 
energy (J/m3), Va is the total volume of gas adsorbed at n th 
excavation step (m3), Vm is the volume of coal ejected (m3), 
and pn is the gas pressure in the coal seam at n th excavation 
step (MPa).

3.2.3 � Crushing Energy

Several physical processes like abrasion, crack propagation, 
crushing, fracture, friction, and vibration require energy. The 
energy dissipation during coal crushing includes heat energy 
and sound energy losses (Lei et al. 2020). The major energy 
dissipation occurs in crushing the coal which is directly 
proportional to the new surface area of the pulverised coal 
(Dai et al. 2019; Cheng et al. 2021). Due to the presence of 
several cracks, fissures, and fractures in the coal before an 
outburst, it is difficult to identify an exact increase in the 
surface area. The crushing energy required can be calculated 
as (Cheng et al. 2021),

where Wc is the crushing energy required per unit volume of 
coal (J/m3), s is the new surface area (m2/g), w is the specific 
energy of coal (J/m2), and � is the density of coal (kg/m3).

3.2.4 � Transportation Energy

As a rockburst or gas outburst propagates, broken coal par-
ticles move from their original positions into the mine open-
ings (Xue et al. 2021). Researchers proposed a horizontal 
projectile (Lei et al. 2020) or parabolic motion (Cao et al. 
2019a) of the broken coal particles. Previous researchers 
suggested an ejection velocity in the range of 8–50 m/s for 
a violent failure to occur (Hosseini et al. 2015; Zhou et al. 
2016c; Gale 2018). Using the kinetic energy equivalent, the 

(5)Wf ree =
PatmVf ree

Vm(� − 1)

[

(

pn

Patm

)
�−1

�

− 1

]

(6)Wadsorbed =
PatmVa

Vm(� − 1)

[

(

pn

Patm

)
�−1

�

− 1

]

(7)Wgas = Wf ree +Wadsorbed

(8)Wc = s × w × �

minimum energy required for violent ejection of coal/rock 
into the mine workings can be calculated as,

where Wk is the transportation energy required for violent 
ejection (J/m3), mf  (= Vm × � ) is the mass of the coal/rock 
block being ejected (kg), and Vej is the ejection velocity of 
the coal/rock mass (m/s).

3.2.5 � Conditions for Rockbursts and Gas Outbursts

Unconfined compressive strength, tensile strength and total 
energy stored per unit volume of coal/rock are good indica-
tors to forecast rockbursts and gas outbursts (Nussbaumer 
2000). For rockbursts and gas outbursts to occur, several 
conditions need to be simultaneously satisfied, these are: 
strength conditions, energy conditions and rockburst/gas 
outburst tendency (Dou et al. 2018; Cai et al. 2019).

3.2.5.1  Strength Conditions  The essential strength condi-
tion implies that rockbursts may occur when the stress act-
ing on the coal at nth excavation step exceeds the uniaxial 
compressive strength ( 𝜎n > 𝜎c ) such that the coal has failed 
(Wang and Park 2001; Cai et  al. 2016; Dou et  al. 2018). 
Similarly, for gas outbursts to occur, the difference between 
the gas pressure at the exposed face to the atmospheric pres-
sure should be more than the tensile strength of coal (Lei 
et al. 2021; Tu et al. 2021).

3.2.5.2  Energy Conditions  The minimum energy accumu-
lated in the coal seam should overcome the required crush-
ing energy and additional energy losses to cause rock failure 
(Wen et  al. 2016; Dou et  al. 2018; Canbulat et  al. 2019). 
The accumulated energy should be sufficiently higher than 
the required transportation energy to cause the violent ejec-
tion of broken coal particles (Cai et al. 2016; Fedotova et al. 
2017; Canbulat et al. 2019).

3.2.5.3  Bursting Tendency  The ability of a coal/rock to 
store strain energy and release them instantaneously when a 
failure occurs is determined by the brittleness index of coal 
( �c/�t ) (Peng et al. 1996; Xu et al. 2020). The energy accu-
mulated in the coal due to retreat longwall mining at n th 
excavation step ( ERRi) and free gas energy ( Wf ree ) should 
be more than the minimum crushing energy ( Wc ) and the 

(9)Wk =
mfV

2

ej

2Vm
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transportation energy ( Wk ) (Wen et al. 2016). Based on the 
energy hypothesis, different triggering criteria were pro-
posed,

Rockbursts

Gas outbursts

Coal and gas outbursts

If the above triggering criteria are not met, the energy 
stored is insufficient to eject the broken coal violently, then 
rockbursts and coal and gas outbursts are unlikely. For gas 
outbursts, the free gas energy should be more than the crush-
ing energy required as adsorbed gas takes time to desorb 
from the coal surface to flow into the cracks. If the free gas 
energy does not overcome the crushing energy required, it 
inhibits rapid desorption, and thus gas outbursts may not 
occur. In such a scenario, if the strength conditions are met, 
it may lead to quasi-static coal failure and excessive gas 
emissions.

(10)ERRi −Wc −Wk > 0

(11)Wadsorbed −Wc > 0

(12)ERRi +Wf ree −Wc −Wk > 0

4 � Modelling Approach

4.1 � Coupled Geomechanical and Gas Flow 
Modelling

A retreating LTCC mining model of 500 m × 500 m × 150 m 
dimension with a grid size of 5 m × 5 m × 3 m along the X-, 
Y-, and Z- axes, respectively, was constructed in FLAC3D. 
The X-axis was set along the length of the longwall panel, 
Y-axis was set across the width of the longwall panel, and 
Z-axis was set along the vertical direction passing through 
the origin at the bottom of the model. Different rock lay-
ers were simulated to represent the lithology at Coal Mine 
Velenje. The lithology considered for modelling had a 15 m 
mining level, overlain by 60 m goaf of previous mining lev-
els and 15 m clay, and underlain by 60 m coal on the floor 
(Fig. 4).

The fork-shaped solid representing the heterogeneous 
zone was inserted in the FLAC3D model of the coal seam, 
assuming full penetration to generate 10,703 heterogene-
ous zone elements spanning the mining level and underlying 
coal seam (Fig. 5a). Detrite and xylite zones were assigned 
depending on the heterogeneity distribution (Fig. 5b). The 
longwall face modelled cuts through the heterogeneous 
zone having different xylite blocks at each excavation step. 
A representative cross-section along XX (Fig. 5c) and YY 
(Fig. 5d) shows the interaction of heterogeneous zones with 
the longwall panel.

The baseline geomechanical properties of different forma-
tions at Coal Mine Velenje, taken from experimental work 
carried out by the former Velenje engineers and published 
literature, were assigned to the model (Table 1). Mohr–Cou-
lomb strain-softening model was implemented in FLAC3D to 
represent the mechanical behaviour of coal and coal-measure 
rocks (Itasca 2017). The model was constrained with stress 
boundaries on both sides (X- and Y-axes), and the bottom 
(Z-axis) was fixed. The model was placed below − 305 m, 
with an overburden density of 2360 kg/m3 initialised in the 
model. The load corresponding to 305 m (7.19 MPa) thick 
overburden was applied on the top surface. The model was 
gravity loaded and reached initial equilibrium before exca-
vation started.

In the coupled model, the coalbed methane module of 
ECLIPSE 300 with two different coal regions was used 
to represent different gas adsorption behaviour for detrite 
and xylite (Schlumberger 2017). Several sub-routines were 
written in FLAC3D to facilitate the exact assignment of 
reservoir properties, gas pressure gradient, and Langmuir 
properties to each lithotype present in the model (Table 2 
and Fig. 6a). Si et al. (2015b) monitored the gas pressure 
dynamics at different mining levels and found that the gas 
pressure was maximum in the first mining level but due to Fig. 4   Lithology and gas pressure gradient implemented in the Coal 

Mine Velenje model
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Fig. 5   A mining model developed with a full penetration of the het-
erogeneous zone in FLAC3D b 90% distribution of xylite in the het-
erogeneous zone, c a cross-section across XX along which the vertical 

stress and pore pressure distribution were analysed, and d a cross-
section across YY showing longwall face crossing the heterogeneous 
zone

Table 1   Baseline mechanical 
properties of different layers/
lithotypes considered for 
numerical simulation (after 
Zavšek 1993; Si et al. 2015c; 
Cao et al. 2019b)

K is the bulk modulus (GPa), G is the shear modulus (GPa), c is the cohesion (MPa), � is the angle of 
internal friction (o), �

t
 is the tensile strength (MPa),c

r
 is the residual cohesion (MPa), and �

tr
 is the residual 

tensile strength (MPa)

Layer/lithotype K G c � �
t

c
r

�
tr

Clay 1.10 0.24 1.90 30 0.92 0.63 0.52
Xylite 0.90 0.19 3.25 30 1.80 0.52 1.02
Detrite 0.90 0.19 2.10 23 0.92 0.35 0.52
Goaf 0.77 0.17 0.63 30 0.52 0.63 0.52
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subsequent over-mining, the seam gas pressure dropped to 
around 0.8 MPa in the modelled mining level. They also 
determined the underlying seam gas pressure referring to 
borehole data and found it to be stable at around 1.6 MPa 
before extraction commenced.

In the coupled numerical simulation workflow, the pore 
pressure ( pn−1 ) calculated at excavation step ( n − 1 ) by 
ECLIPSE 300 was passed to FLAC3D to calculate a provi-
sional stress state ( �n

′

 ) at the excavation step ( n ). The provi-
sional stress state ( �n

′

 ) and pore pressure ( pn−1 ) was used to 
calculate the permeability ( kn ) at the excavation step ( n ) in 
FLAC3D. The permeability ( kn ) was passed to ECLIPSE 300 
to calculate the updated pore pressure ( pn ). The simulated 
fluid time, tn−1 to tn , represent coal extraction time at the 
excavation step ( n ). The updated pore pressure ( pn ) was fed 
back to FLAC3D to re-equilibrate and calculate the actual 
stress state ( �n ) at the excavation step ( n ). The actual stress 
state ( �n ) and pore pressure ( pn ) was used as an input for the 
next excavation step ( n + 1 ). Further details of the coupled 
model can be found in Si et al. (2015c).

To represent LTCC mining with a face advance rate of 
5 m in each excavation step, first, the lower 3 m thickness 
of the coal was extracted (nulled) to represent cutting by 
the longwall shearer and equilibrated to create the initial 
face; next, the top coal (12 m) left during the previous step 
was instantaneously removed; and finally, the complete 15 m 
mining level was reinstated with an elastic goaf material 
property and solved to equilibrium to represent one exca-
vation step in LTCC (Fig. 5b). The process was repeated 
for several excavation steps, advancing the longwall face 
through the heterogeneous zone with a varying abundance 
of xylite, to represent soft conditions and hard conditions of 
retreating longwall mining.

4.2 � Probabilistic Risk Assessment Framework

In probabilistic risk assessment (PRA), any complex engi-
neering system that can be described quantitatively using 
mathematical equations can be modelled (Mattenberger 
et al. 2015; Song and Yang 2018). Fixed as well as stochastic 

Table 2   Baseline reservoir 
properties of different layers/
lithotypes considered for 
numerical simulation (after Si 
et al. 2015c)

�
m
 is the matrix porosity (%), �

c
 is the cleat porosity (%), k

h
 is the horizontal permeability (m2), k

v
 is the 

vertical permeability (m2), P
L(CH

4
) is the Langmuir pressure for CH

4
 (MPa), P

L(CO
2
) is the Langmuir pres-

sure for CO
2
 (MPa), V

L(CH
4
) is the Langmuir volume for CH

4
 (m3/tonne), and V

L(CO
2
) is the Langmuir vol-

ume for CO
2
 (m3/tonne)

Layer/lithotype �
m

�
c

k
h

k
v

P
L(CH

4
) P

L(CO
2
) V

L(CH
4
) V

L(CO
2
)

Clay 0.30 0.05 2 × 10–16 1 × 10–16 – – – –
Xylite 0.30 0.03 2 × 10–17 1 × 10–17 4.0 2.5 15 25
Detrite 0.90 0.10 2 × 10–16 1 × 10–16 7.5 4.7 25 50
Goaf 0.01 0.30 3 × 10–14 3 × 10–14 – – – –

Fig. 6   a Pure CO2 and CH4 isotherms for Velenje lignite used in the heterogeneous coupled model, b additional Langmuir isotherms considered 
for detrite
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parameters can be implemented in the framework to repre-
sent uncertainty. The Monte Carlo simulation approach is 
used to propagate the uncertainty in input throughout the 
system and the output (Mattenberger et al. 2015; Goldsim 
2017; Song and Yang 2018). Multiple triggering criteria can 
be defined and monitored to analyse the system’s response to 
the stochastic variations. The PRA calculates the probabil-
ity of the occurrence of unlikely but high-consequence out-
comes as the proportion of realisations where the triggering 
criteria were met (Goldsim 2017). The results obtained from 
PRA analysis are quantitative, reliable and provide a mean-
ingful alternative to traditional risk assessment approaches 
(Song and Yang 2018).

In this research, a PRA framework was developed to 
estimate the probability of rockbursts and gas outbursts 
in retreating LTCC mining (Fig. 7). The fixed parameters 
considered include dimensions of the longwall panel (the 
length, width, and height of the coal block mined), physical 
properties of coal (density, porosity, cohesion, the angle of 
internal friction, and specific energy), and initial conditions 

and parameters of gas migration (the initial gas pressure 
in the coal matrix, atmospheric pressure, and adiabatic 
constant). These values do not change in a longwall panel 
and are mostly fixed in the evaluation. To incorporate the 
dynamic changes and system feedback during mining, the 
vertical stress acting on coal, incremental energy release 
rate, and total volume of gas emission at the face for each 
excavation step were fed into the model as stochastic vari-
ables. Pore pressure did not show much variation and thus 
a fixed value was fed into the model. Fixed and stochastic 
parameter values were used to estimate several second-
ary parameters that were needed to calculate energy and 
stress states using Eqs. (1)–(9). Several triggering criteria 
that control the occurrence of rockbursts and gas outbursts 
(Eqs. (10)–(12)) were assigned in the framework. The prob-
ability of a rockburst occurrence was calculated without tak-
ing gas expansion energy contribution into account (Eq. 10). 
The probability of a gas outburst was calculated without 
considering the strain energy contribution (Eq. 11) and the 
probability of coal and gas outbursts was calculated using 

Fig. 7   A schematic PRA framework showing different parametric cal-
culations and triggering criteria to forecast rockbursts, gas outbursts 
and coal and gas outbursts in retreating LTCC mining, where lblock  is 
the length of the coal block, wblock is the width of the coal block, hblock 
is the height of the coal block, � is the coal porosity, c is the cohe-
sion, � is the angle of internal friction, ρ is the density, s is the new 
surface area, w is the specific energy of coal, pg is the initial gas pres-
sure in the coal matrix, Patm is the atmospheric pressure, γ is the adi-
abatic constant, Vej is the ejection velocity of the coal/rock mass, �n is 

the vertical stress and pn is the pore pressure in the coal seam at n th 
excavation step, Vgas is the volume of gas in coal, ERRi is the incre-
mental energy release rate, Vm is the volume of coal, �c is the uniaxial 
compressive strength, Wc is the crushing energy required per unit vol-
ume of coal,  Vfree is the volume of free gas present in the cracks and 
fractures, mf  is the mass of the coal/rock block being ejected, Va is the 
volume of gas adsorbed from the coal, Wfree is the free gas energy, 
Wadsorbed is the adsorbed gas energy, �t is the tensile strength, and Wk 
is the transportation energy required for violent ejection
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Fig. 8   Flowchart representing 
the PRA framework developed

Fig. 9   The PRA framework implemented in GoldSim
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both strain energy and gas expansion energy contributions 
(Eq. 12). It was considered risk-free when none of the trig-
gering criteria was true. A flowchart representing the PRA 
framework developed is presented in Fig. 8.

The PRA framework developed (Figs. 7, 8) was imple-
mented in GoldSim, a dynamic and probabilistic risk assess-
ment software, by linking influences and non-linear depend-
encies to represent the complex engineering system (Fig. 9). 
Depending on the nature of input values (fixed or stochastic), 
suitable data elements were selected, and distributions were 
assigned. Expression elements were used to graphically link 
relevant data elements, represent their interdependencies and 
calculate values. As per Eqs. (1–2), the stochastic energy 
release rate ( ERR ) obtained from the numerical model was 
used to calculate the energy release rate ( ERRi ). The length 
( lblock ), width ( wblock ) and height ( hblock ) of coal block were 
multiplied to represent coal volume ( Vm ). The coal volume 
( Vm ), porosity ( � ), gas pressure in the coal matrix ( pg ), 
atmospheric pressure ( Patm ) and adiabatic constant (γ) were 
used to calculate the free gas present in the coal ( Vf ree ). Fol-
lowing Eq. (4), the stochastic volume of gas released ( Vgas ) 
calculated from the numerical model and the volume of free 
gas ( Vf ree ) were used to calculate the volume of adsorbed gas 
present in the coal seam ( Va).

As per Eq. (5), the coal volume ( Vm ), the volume of free 
gas ( Vf ree ), adiabatic constant (γ), atmospheric pressure 
( Patm ), and final gas pressure ( pn ) were used to calculate 
the free gas energy ( Wf ree ). The volume of adsorbed gas 
( Va ), adiabatic constant (γ), atmospheric pressure ( Patm ), 
final gas pressure ( pn ) and coal volume ( Vm ) were used to 
calculate the adsorbed gas energy ( Wadsorbed ) from Eq. (6). 
The density of coal (ρ), specific energy of coal ( w ), and new 
surface area ( s ) were used to calculate the crushing energy 
of coal ( Wc ). The coal volume ( Vm ) and density (ρ) were 
used to calculate the coal mass ( mf  ). The coal mass ( mf  ), 
stochastic ejection velocity ( Vej ) and coal volume ( Vm ) were 
used to calculate the required transportation energy ( Wk ). 
The stochastic value of vertical stress ( �n ) acting on coal 
seam at each excavation step was taken from the numeri-
cal model. The cohesion ( c ) and the angle of internal fric-
tion ( � ) were used to calculate the unconfined compressive 
strength ( �c = 2ccos�∕(1 − sin�) ). The tensile strength 
( �t ) value was taken from the input to the numerical model. 
The correlations between different elements are represented 
using black arrows. The correlations and dependencies were 
verified in the model, as incorrect dependencies may result 
in inappropriate system responses, which can be difficult to 
debug in complex systems, increase computational times and 
give erroneous results (Mattenberger et al. 2015).

Status elements were used to define several triggering 
conditions. The conditional output from the status ele-
ment (true/false) was represented using green arrows. 
The unconfined compressive strength ( �c ), stress ( �n ) and 

tensile strength ( �t ) were used to calculate the strength 
conditions ( 𝜎n > 𝜎c , �c/�t<14). As per Eq. (10), the trans-
portation energy ( Wk ), crushing energy ( Wc ), incremental 
energy release rate ( ERRi ), and strength conditions were 
used to calculate the rockburst potential. The atmospheric 
pressure ( Patm ), final gas pressure ( pn ), free gas energy 
( Wf ree ), crushing energy ( Wc ) and tensile strength of coal 
( �t ) were used to calculate the gas outburst conditions ( Wf ree 
>Wc , pn − Patm > 𝜎t ). The adsorbed gas energy ( Wadsorbed ), 
crushing energy ( Wc ) and gas outburst conditions were used 
to calculate the gas outburst potential from Eq. (11). Fol-
lowing Eq. (12), the crushing energy ( Wc ), transportation 
energy ( Wk ), incremental energy release rate ( ERRi ), and 
free gas energy ( Wf ree ) were used to calculate the coal and 
gas outburst potential when rockburst potential is false and 
strength conditions are true. The crushing energy ( Wc ) and 
adsorbed gas energy ( Wadsorbed ) were used to calculate the 
quasi-static coal failure and excessive gas emissions poten-
tial ( Wadsorbed > Wc ) when gas outburst potential, rockburst 
potential and coal and gas outburst potential were false, 
while strength conditions were true. The safe mining condi-
tions were concluded when the rockburst potential, gas out-
burst potential, coal and gas outburst potential, and strength 
conditions were false.

Monte Carlo simulations using Latin Hypercube sam-
pling were used to generate independent and equally likely 
realisations of the model, uniformly spanning the values of 
stochastic parameters to represent uncertainty. The model 
was then simulated through time at appropriate timesteps to 
monitor the future state of the model. Result elements were 
used to monitor the probability distribution. The values of 
fixed parameters fed into the numerical model and the sto-
chastic parameters obtained from the results of numerical 
modelling were fed into the framework using the data ele-
ments and all calculations were performed in GoldSim to 
run different scenarios and ultimately give the probability of 
rockbursts, gas outbursts and coal and gas outbursts.

Based on field monitoring data, several researchers have 
confirmed that most microseismic activities were observed 
within 100 m ahead of the longwall face (e.g., Cao et al. 
2020). Therefore, the vertical stress acting on the coal seam, 
the displacement of the roof due to mining, pore pressure, 
and the incremental energy release rate were calculated 
within 100 m ahead of the active longwall face. Histograms 
of the vertical stress and strain energy were plotted, and a 
suitable distribution was fitted to calculate the stochastic 
variation in these parameters as the LTCC face retreats. The 
volume of total gas emission was calculated for each exca-
vation step and fed into the model as stochastic parameters 
with the Poisson distribution. The values of these parameters 
vary at each excavation step and are also sensitive to the 
change in values of geomechanical and reservoir properties. 
These uncertainties were fed into the GoldSim model as 
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Fig. 10   The influence of xylite percentages on a vertical stress dis-
tribution at 25th excavation step, b pore pressure distribution at 25th 
excavation step, c volume of failed zones, d methane emission rate, e 

carbon dioxide emission rate, and f total gas emission rate, at differ-
ent excavation steps
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stochastic parameters. To realistically incorporate the uncer-
tainty in the stochastic parameters throughout the model 
and the output, the model was simulated through time at a 
timestep of 1 day for 100 days using Monte Carlo simulation 
and the entire model was run for 100,000 independent and 
equally likely realisations in GoldSim.

5 � Parametric Analysis of the Effects 
of Lithological Heterogeneity

The coupled geomechanical and gas flow modelling results 
were used to provide system feedback by generating sta-
tistically sufficient data to represent dynamically changing 

mining conditions at the LTCC. Fixed parameters taken 
from the coupled models are lblock =5 m, wblock =5 m, hblock 
=3 m, pg =0.7 MPa, Patm =0.085 MPa, and � =2360 kg/m3. 
The crushing energy of coal was calculated using values s = 
0.015 m2/g and w = 10 J/m2 taken from the literature (Cheng 
et al. 2021). The velocity of ejection ( Vej ) was implemented 
as a stochastic parameter having a Poisson distribution with 
a mean value of 10 m/s.

5.1 � The Effect of Xylite Distribution

The xylite distribution may vary throughout the deposit. To 
accommodate this variability, three different distributions 
were considered to represent 30%, 60% and 90% xylite 

Fig. 11   Plots for the change in xylite percentage a normal distribu-
tion of vertical stress acting within 100 m ahead of the longwall face, 
b pore pressure variation acting within 100 m ahead of the longwall 

face, c log-normal distribution of ERRi at 16th excavation step and 
d variation in the face heterogeneity at the active longwall face as it 
retreats through the fork-shaped heterogeneous zone
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content in the heterogeneous zone (Fig. 3b–d). These dis-
tributions exhibit different face heterogeneity levels at the 
longwall face as it retreats through the heterogeneous zone. 
The layer properties were kept the same as listed in Tables 1 
and 2. The peak vertical stress acting ahead of the longwall 
face was compared at the 25th excavation step where the 
variability was maximum. The abutment stress increased 
from ~ 15.62 MPa for 30% and 60% xylite to ~ 18.21 MPa 
for the 90% xylite scenario (Fig. 10a). The pore pressure 
accumulated ahead of the longwall face at the 25th excava-
tion step increased from ~ 0.88 MPa for 30% and 90% xylite 
to ~ 0.92 MPa for 60% xylite (Fig. 10b). However, as the 
pore pressure variation was only ~ 0.04 MPa, the change was 
assumed to be insignificant. A large volume of coal failed 
initially due to the vertical stress redistribution at the start of 
LTCC mining. After the fifth excavation step, the longwall 
face entered the heterogeneous zone with the volume of the 

failed zone depending on the geomechanical properties of 
different lithotypes.

The variation in the volume of the failed zone is less for 
30% xylite distribution because a relatively small volume of 
strong xylite is present in the model. The variation increases 
with the increase in xylite percentage which can be attrib-
uted to the increased volume of strong xylite blocks as the 
longwall retreat through the heterogeneous zone (Fig. 10c). 
The emission rate of methane (Fig. 10d) and carbon dioxide 
(Fig. 10e) across the longwall face varies inversely with the 
face heterogeneity and with the xylite percentage. The mini-
mum gas emission rate occurs at the 18th excavation step 
for 30% xylite distribution and at 15th excavation step for 
60% and 90% xylite distributions which corresponds to the 
high face heterogeneity at the active longwall face. A large 
volume of gas is released as the longwall retreats past the 
hard conditions to soft conditions as the face heterogeneity 
decreases. It can also be seen that the volume of gas released 

Table 3   Stochastic input for the 
change in the energy release 
rate (log scale) and gas emission 
due to variation in xylite 
distributions in the coal seam

Xylite distribution 30% 60% 90%

Excavation step µ σ Gas µ σ Gas µ σ Gas

1 0.30 0.17 206.28 0.30 0.17 206.28 0.30 0.17 206.28
2 1.00 0.98 2479.59 1.00 0.98 2468.83 1.00 0.98 2485.69
3 2.00 0.60 1631.07 2.00 0.60 1643.82 2.00 0.60 1633.05
4 2.20 0.55 1062.64 2.20 0.55 1085.26 2.20 0.55 1087.06
5 2.20 0.55 941.73 2.20 0.58 1053.02 2.20 0.55 934.05
6 2.20 0.60 1017.20 2.20 0.60 1133.09 2.20 0.60 961.90
7 2.20 0.60 1089.26 2.25 0.60 1119.62 2.25 0.60 922.04
8 2.50 0.45 986.94 2.50 0.55 960.56 2.50 0.53 889.81
9 2.50 0.45 961.07 2.50 0.68 824.27 2.55 0.53 800.69
10 2.50 0.45 929.59 2.50 0.58 792.22 2.50 0.40 768.46
11 2.70 0.28 967.84 2.70 0.26 820.22 2.25 0.54 688.23
12 2.65 0.24 976.91 2.65 0.40 731.24 2.65 0.25 625.60
13 1.60 0.50 999.24 2.65 0.23 613.46 2.65 0.25 537.89
14 2.20 0.60 929.25 2.00 0.58 579.97 1.85 0.85 383.67
15 2.70 0.22 851.78 2.65 0.23 377.97 2.25 0.70 285.83
16 2.10 0.45 830.29 2.65 0.23 554.33 1.85 0.60 427.07
17 2.00 0.60 766.99 2.35 0.60 567.10 1.85 0.60 450.27
18 2.80 0.21 712.75 2.70 0.25 688.71 1.85 0.70 584.48
19 1.75 0.70 838.90 1.95 0.55 866.97 2.75 0.21 747.32
20 2.70 0.44 978.61 2.45 0.50 874.39 2.05 0.60 870.49
21 2.80 0.28 1010.08 2.05 0.60 858.76 2.25 0.65 889.94
22 2.40 0.45 940.52 2.75 0.20 893.90 2.70 0.40 824.13
23 2.00 0.60 965.70 1.65 0.60 926.14 2.25 0.50 849.14
24 2.10 0.65 997.91 1.85 0.60 879.03 2.15 0.60 788.92
25 2.40 0.72 961.95 2.35 0.75 871.24 2.25 0.59 798.64
26 2.60 0.45 949.32 2.45 0.45 875.60 2.80 0.21 815.99
27 1.60 0.60 918.08 2.00 0.55 922.41 1.45 0.60 836.61
28 2.10 0.65 923.90 2.05 0.62 866.44 1.70 0.60 768.65
29 2.30 0.62 923.11 2.25 0.50 921.38 2.45 0.48 795.16
30 2.30 0.48 877.34 2.75 0.30 788.02 2.75 0.23 733.82
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decreases sharply with the increase in xylite distributions 
in the heterogeneous zone (Fig. 10d–f) which is natural as 
xylite has lower porosity and significantly lower gas content 
(Fig. 6a) and permeability.

Vertical stress acting ahead of the longwall face (within 
100 m) roughly followed a normal distribution with a mean 
value of 9.45 ± 0.5 MPa (Fig. 11a). The pore pressure acting 
ahead of the longwall face does not show any appreciable 
change due to mining and mostly has a value of ~ 0.86 MPa, 
thus a fixed value was selected, and it was not stochastically 
varied in the PRA model (Fig. 11b). The variation in ERRi 
is large and roughly follows a log-normal distribution. Fig-
ure 11c shows a representative plot of the ERRi distribution 
for the change in xylite percentage. The face heterogeneity at 
the active longwall face keeps changing at every excavation 
step influencing the volume of gas emissions (Fig. 11d). The 
mean and standard deviation of ERRi and the volume of total 
gas emission at each excavation step for xylite percentage 
is listed in Table 3.

Figure 12a shows the probability of rockburst occurrence 
at different excavation steps for the change in xylite percent-
ages. The variation in the probability is pronounced in the 
heterogeneous zone. For 30% xylite distribution, the hetero-
geneous zone has fewer xylite blocks and thus the influence 
of heterogeneity is less pronounced with rockburst prob-
ability peaking at the 25th excavation step only which cor-
responds to the situation when mining has retreated past the 
hard conditions and the face heterogeneity decreased to a 
very low value. For 60% xylite distribution, the number of 
xylite blocks in the heterogeneous zone is more and affects 
the stress and gas accumulation. As the mining retreats 
through the heterogeneous zone, the probability of rock-
bursts peak can be seen at the 10th excavation step which 
corresponds to the sudden increase in face heterogeneity 
(Fig. 11d) and at the 25th excavation step, when the mining 
retreats past the heterogeneous zone. For 90% xylite distri-
bution, a single peak is seen around the 15th excavation step 
that corresponds to maximum face heterogeneity (Fig. 11d).

Fig. 12   The probability of a rockbursts and b coal and gas outbursts at different xylite distributions

Table 4   Coal heterogeneity 
scenarios with varied 
geomechanical properties 
for xylite while other layer 
properties are kept fixed

Case Geomechanical properties Reservoir properties
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1 5.20 25 2.72 0.86 1.60 0.30 0.03 2 × 10–17 1 × 10–17 4.0 2.5 15 25
2 7.25 28 4.02 1.21 2.36 0.30 0.03 2 × 10–17 1 × 10–17 4.0 2.5 15 25
Base 3.25 30 1.80 0.52 1.02 0.30 0.03 2 × 10–17 1 × 10–17 4.0 2.5 15 25
Fixed values
Clay 1.90 30 0.92 0.63 0.52 0.30 0.05 2 × 10–16 1 × 10–16 – – – –
Detrite 2.10 23 0.92 0.35 0.52 0.90 0.10 2 × 10–16 1 × 10–16 7.5 4.7 25 50
Goaf 0.63 30 0.52 0.63 0.52 0.01 0.30 3 × 10–14 3 × 10–14 – – – –
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Fig. 13   The influence of geomechanical properties of xylite on a ver-
tical stress distribution at 25th excavation step for 30% xylite, a ver-
tical stress distribution at 25th excavation step for 60% xylite, c the 

volume of failed zones for 30% xylite, d the volume of failed zones 
for 60% xylite, e total gas emission rate for 30% xylite, and f total gas 
emission rate for 60% xylite, at different excavation steps
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Similarly, the probability of coal and gas outburst occur-
rence due to the change in the xylite distribution follows 
a similar trend as that for rockbursts (Fig. 12b). However, 
the probability of occurrence is relatively less than that for 
rockbursts. This can be attributed to the fact that only reali-
sations where ERRi and free gas energy are more than the 
crushing energy was considered. For 30% xylite distribution, 
the probability is very low with a single peak at the 25th 
excavation step, as mining retreats past the hard conditions 
and face heterogeneity drops. For 60% and 90% xylite distri-
bution, a similar trend was observed as for rockbursts, which 
is dependent on the face heterogeneity. The low probability 
can be related to the fact that the pore pressure (~ 0.86 MPa) 
developed in the coal seam was not sufficient to overcome 
the tensile strength of coal (0.92 MPa) and thus tensile fail-
ure was not observed in the model.

The probability of gas outbursts is nil in all excavation 
steps, which can be attributed to the fact that the gas con-
tent in the coal seam is not high, thus the crushing energy 
required for gas outbursts is not met. The probability of 
occurrence of rockbursts and coal and gas outbursts hazard 
is very low (in the order of 10–3). It can be judged that it 
is mostly safe to continue retreat mining, but the operators 
should be more vigilant when the face heterogeneity varies 
significantly.

To verify the accuracy of the GoldSim model, 100,000 
random scenarios considered were also evaluated in terms 
of the effect of % xylite distribution in the coal seam on the 
probability of rockburst and gas outburst occurrence using 
MS-Excel. The PRA framework implemented in the Gold-
Sim was replicated in Excel by specifying the input param-
eters assigned to and stochastic variations obtained from the 
numerical models as input values for calculations. Verifica-
tion analysis has shown general consistency between the two 
models, with only slight deviations attributed to rounding off 
errors of significant digits. Therefore, the GoldSim model 
can be used to determine the probability of rockbursts, gas 
outbursts and coal and gas outbursts for other scenarios. The 
analysis of different xylite distributions shows that 60% and 
90% xylite had a very similar response to face advance and 
change in reservoir conditions due to coal production, which 
is quite different from the 30% xylite scenario. As 90% xylite 
distribution represents an extreme scenario that is unlikely 
to occur in most coal seams, 30% and 60% xylite scenarios 
were considered for further parametric analysis. Since no 
appreciable change in pore pressure was observed, the effect 
of changes in lithology on pore pressure was not analysed 
further.

5.2 � The role of Geomechanical Properties of Xylite

Further analyses were conducted by increasing the stiff-
ness of xylite. The cohesion, angle of internal friction, 

tensile strength, and residual cohesion of xylite blocks were 
increased while the reservoir properties of xylite were kept 
unchanged (Table 4). The properties of other layers in the 
model were also kept fixed as in Tables 1 and 2 (referred to 
as the base case). This resulted in an increase in the UCS of 
xylite from 11.26 MPa for the base case to 16.32 MPa for 
Case 1 and 24.13 MPa for Case 2.

The peak vertical stress acting ahead of the longwall 
face varied in the range ~ 15.64–16.89 MPa for 30% xylite 
(Fig. 13a) and in the range ~ 15.86–17.47 MPa for 60% xylite 
(Fig. 13b) for the increase in stiffness of xylite. For 30% 
xylite, the peak vertical stress occurs further inside the long-
wall on solid coal, showing fractured coal ahead of the face. 
For 60% xylite, the peak vertical stress occurs ahead of the 
face on solid coal for the base case (UCS = 11.26 MPa) and 
Case 1 (UCS = 16.32 MPa), and some fractures are induced 
at the face. As the stiffness of xylite is increased to a very 
high value in Case 2 (UCS = 24.13 MPa), the vertical stress 
peaks further towards the faceline. This can be attributed to 
the fact that the UCS of xylite is higher than the maximum 
stress acting on the face (~ 16.17 MPa), thus no appreciable 
fractures are induced in coal, and it can withstand the stress 
abutment acting on the face.

As Fig. 13c, d illustrates, the volume of failed zones is 
inversely proportional to the stiffness of xylite. As the stiff-
ness of xylite increases from the base case, the volume of 
failed zone decreases. The volume of the failed zone is also 
sensitive to face heterogeneity as longwall retreats through 
the heterogeneous zone. It decreases as the face heterogene-
ity increases. For 30% xylite, as the longwall retreats past 
the hard condition (high face heterogeneity), the volume of 
failed zone increases to a higher value than that at the start 
of extraction, suggesting more fractures are induced due to 
mining-induced stress abutment (Fig. 13c). For 60% xylite, 
the effect of stiffer xylite is more prominent as the volume 
of failed zone decreases significantly in the case of very 
stiff xylite (Case 2). Even after crossing the hard conditions, 
the volume of failed zone remains low as compared to the 
value at the start of extraction for Case 2 (Fig. 13d). These 
observations suggest that a relatively high distribution of 
stronger xylite can control the volume of the failed zone, 
thereby preventing high permeability pathways from being 
formed, blocking gas movement towards the face, and reduc-
ing emissions at the active face. The results exemplify that 
the volume of the failed zone depends strongly on the spatial 
distribution, geomechanical properties and the relative abun-
dance of xylite in the heterogeneous zone. The rate of total 
gas emission obeys the face heterogeneity while retreating 
through the heterogeneous zone (Fig. 13e, f). In general, 
with the increase in stiffness of xylite, the rate of gas emis-
sion decreases sharply, which can be attributed to the lesser 
volume of failed zones. As the longwall passes through 
the hard conditions, a sudden spike in the rate of total gas 
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emission occurs. This spike is steeper and higher for Case 
2 as compared to that for Case 1 or the base case for 30% 
xylite (Fig. 13e). For 60% xylite, the rate of total gas emis-
sion decreases sharply from around 120 m3/min to around 10 
m3/min as the stiffness of xylite is increased, demonstrating 
the barrier effect of a large spatial distribution of stiff xylite 
to gas flow. This is followed by a sudden increase in gas 
emission rate once the face heterogeneity reduces (Fig. 13f), 
which matches the observation of previous researchers who 
have suggested that strong, low permeability xylite acts as 
a barrier to gas flow.

Vertical stress acting within 100 m ahead of the longwall 
face roughly followed a normal distribution with a mean 
value of 9.45 ± 0.5 MPa for both 30% and 60% xylite distri-
butions (Fig. 14a, b). A small peak is found around 15 MPa 
that corresponds to the maximum stress abutment acting at 
the active face, which increases in magnitude when the stiff-
ness of xylite is increased.

The effect is more pronounced for 60% xylite distribution 
(Case 2). The pore pressure acting ahead of the longwall face 
does not show any appreciable change due to mining and 
mostly has a value of ~ 0.86 MPa (Fig. 14c, d). The variation 
in ERRi follows a log-normal distribution. A representative 
plot of the ERRi distribution for 30% xylite distribution is 
shown in Fig. 14e and for 60% xylite distribution is shown 
in Fig. 14f. The mean and standard deviation of ERRi and 
the volume of total gas emission at each excavation step for 
the change in geomechanical properties of xylite are listed 
in Table 5.

Figure 15 shows the probability distribution for rock-
bursts and coal and gas outbursts with the change in the 
geomechanical properties of xylite. For 30% xylite distri-
bution (Fig. 15a, b), the probability of the occurrence of 
rockbursts and coal and gas outbursts are very low at all 
excavation steps except for the 25th step which corresponds 
to the soft mining conditions when the longwall face has 
retreated past the zone of high face heterogeneity. It can 
also be seen that for very stiff xylite (Case 2), the probability 
is higher for both rockbursts and coal and gas outbursts as 
compared to that for Case 1 and the base case. Similarly, 
for 60% xylite distributions (Fig. 15c, d), the probability of 
rockbursts and coal and gas outbursts peaks at the 25th exca-
vation step with stiff xylite (Case 2) having the maximum 

probability. The probability of rockbursts and coal and gas 
outbursts increases as the stiffness of xylite is increased. The 
small fluctuations observed in the heterogeneous zone con-
firm the dependence of rockbursts and coal and gas outbursts 
on face heterogeneity. The probability is relatively higher for 
the 60% xylite scenario, however, the value is in the order of 
10–3, suggesting it is mostly safe to continue mining in the 
representative scenarios.

5.3 � The Role of Gas Storage Capacity of Detrite

The role of the gas storage capacity of detrite on the prob-
ability of rockbursts and coal and gas outbursts were also 
analysed by assigning different Langmuir parameters for 
detrite. The geomechanical properties of xylite were main-
tained as they were for Case 2 (Table 4), referred to as the 
base case this time. Two new Langmuir isotherms were 
constructed with higher CO2 sorption/desorption rates for 
detrite (Table 6 and Fig. 6b). It can be seen from Fig. 16a 
that, for the scenarios with increased gas storage capac-
ity (therefore desorption rate) for detrite, the rate of total 
gas emission increases further as compared to the cases in 
Fig. 13e and f for both 30% and 60% xylite distributions. 
The impact is more prominent for 60% xylite where the rate 
of total gas emission decreases sharply to around 10 m3/min 
following the increase in face heterogeneity and increases 
rapidly to around 150 m3/min once the hard conditions are 
crossed by the retreating longwall face (Fig. 16b). Increased 
gas holding capacity for detrite in a high lithological hetero-
geneity scenario further suggests that, if potential coal and 
gas outburst conditions are created by much stronger xylite 
layers dominating the seam, the probability for coal and gas 
outbursts will be increased further.

The geomechanical properties were not changed, thus, the 
stress distribution obtained for this case remains the same at 
9.45 ± 0.5 MPa for both 30% and 60% xylite distributions 
(Fig. 14a, b). The pore pressure acting ahead of the longwall 
face showed some change due to the change in Langmuir 
parameters. A slight increase in pore pressure can be seen 
but it mostly has a value around ~ 0.86 MPa (Fig. 17a, b). A 
representative plot of the ERRi showing log-normal distribu-
tion for 30% xylite is shown in Fig. 17c and for 60% xylite 
distribution is shown in Fig. 17d. The mean and standard 
deviation of ERRi and the volume of total gas emission at 
each excavation step for the change in Langmuir properties 
are listed in Table 7.

Figure 18 shows the probability distribution for rock-
bursts and coal and gas outbursts with the change in Lang-
muir properties at different xylite percentages. The probabil-
ity of rockbursts and coal and gas outbursts is very low for 

Fig. 14   Variation in the a vertical stress for 30% xylite distribu-
tion, b vertical stress for 60% xylite distribution, c pore pressure for 
30% xylite distribution, d pore pressure for 60% xylite distribution, 
e energy release rate at 23rd excavation step for 30% xylite distribu-
tion, and f energy release rate at 22nd excavation step for 60% xylite 
distribution

◂
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30% xylite distributions (Fig. 18a, b). The change in Lang-
muir properties does not affect the probability of rockbursts 
and gas outbursts for a very stiff xylite. For the 60% xylite 
distribution (Fig. 18c, d), the probability of rockbursts and 
coal and gas outbursts shows some variation. It peaks just 
after entering the heterogeneous zone as the face heteroge-
neity starts to increase. For the hard conditions (when face 
heterogeneity is high), the probability remains low mostly 
because the change in Langmuir properties does not have a 
significant effect and the gas emission rate is low.

6 � Conclusions

This paper presented a new probabilistic risk assessment 
methodology to realistically assess the complex rockburst 
and gas outburst occurrences using stress conditions, energy 
conditions and the bursting tendency of coal. The limita-
tions of earlier developed approaches were overcome by 
accommodating feedback from a coupled geomechanics 
and gas flow model and implementing uncertainty in the 
mining parameters. The PRA framework developed is easy 
to adapt to other underground mining scenarios and offers 
the flexibility to modify the triggering criteria to suit the 
mining conditions. The results obtained from the PRA are 
representative of the actual field observations which give the 

Table 5   Stochastic input for the change in the energy release rate (log scale) and gas emission due to variation in geomechanical properties

Case 1 2

Xylite distribution 30% 60% 30% 60%

Excavation step µ σ Gas µ σ Gas µ σ Gas µ σ Gas

1 0.30 0.17 206.28 0.30 0.17 206.28 0.30 0.17 206.28 0.30 0.17 206.28
2 1.00 0.98 2479.59 1.00 0.98 2468.83 1.00 0.98 2479.59 1.00 0.98 2468.83
3 2.00 0.60 1644.21 2.20 0.58 1646.45 2.00 0.60 1642.30 2.20 0.58 1646.45
4 2.20 0.51 1064.84 2.20 0.50 1081.37 2.20 0.50 1107.77 2.20 0.70 1092.97
5 2.20 0.58 923.12 2.20 0.58 1069.96 2.20 0.55 949.18 2.20 0.55 1069.41
6 2.20 0.60 980.16 2.20 0.56 1137.82 2.20 0.68 921.27 2.20 0.58 1151.16
7 2.25 0.58 1039.60 2.25 0.62 1107.44 2.25 0.62 1081.86 2.25 0.58 1197.63
8 2.45 0.50 975.99 2.50 0.48 925.71 2.45 0.52 1061.33 2.50 0.50 983.32
9 2.45 0.52 903.03 2.50 0.53 802.79 2.45 0.51 891.62 2.55 0.50 898.00
10 2.25 0.55 864.82 2.50 0.42 770.87 2.00 0.65 848.21 2.50 0.48 729.90
11 2.60 0.30 864.01 2.70 0.28 763.77 2.60 0.32 827.66 1.85 0.75 764.75
12 2.70 0.22 960.63 2.50 0.30 628.85 2.70 0.26 947.91 2.00 0.75 659.93
13 1.50 0.60 951.29 2.70 0.24 620.53 2.65 0.23 1041.41 2.20 0.40 568.18
14 2.00 0.63 898.68 2.40 0.55 452.33 2.25 0.56 921.48 2.65 0.28 567.63
15 2.70 0.25 824.53 1.60 0.55 253.17 2.75 0.23 888.32 2.70 0.28 211.73
16 2.35 0.40 659.88 2.15 0.65 290.78 2.20 0.50 763.06 1.95 0.65 144.54
17 2.75 0.19 655.20 1.75 0.64 397.02 2.70 0.27 677.82 2.10 0.62 133.02
18 1.50 0.48 665.10 1.60 0.65 582.31 1.55 0.45 639.52 2.30 0.43 464.81
19 2.45 0.53 728.31 2.25 0.50 810.24 2.25 0.65 610.08 2.65 0.23 705.43
20 2.20 0.50 936.01 2.10 0.55 829.91 2.20 0.48 920.11 1.65 0.52 1119.78
21 2.75 0.24 1072.14 2.75 0.33 894.39 2.75 0.20 1199.19 2.65 0.22 717.71
22 2.05 0.48 944.28 2.50 0.45 884.26 1.85 0.50 978.89 1.50 0.65 931.40
23 2.75 0.20 952.80 2.75 0.22 843.17 1.70 0.40 911.74 1.85 0.59 925.15
24 2.05 0.60 973.74 2.75 0.25 851.98 2.15 0.60 936.85 2.15 0.60 780.40
25 2.25 0.70 934.91 2.75 0.23 875.02 2.25 0.80 969.44 2.50 0.74 833.32
26 2.50 0.42 911.12 1.90 0.54 851.00 2.60 0.40 947.79 1.15 0.72 887.28
27 1.70 0.53 882.59 1.30 0.54 796.92 2.20 0.50 853.66 1.50 0.60 899.15
28 2.50 0.50 883.56 1.90 0.62 818.22 2.50 0.55 865.15 1.85 0.58 761.91
29 2.75 0.22 861.74 2.30 0.45 872.99 2.70 0.30 899.95 1.80 0.60 934.23
30 2.00 0.45 816.00 2.65 0.36 800.56 2.05 0.45 829.01 1.95 0.60 799.06
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Fig. 15   Probability distribution for a rockbursts, b coal and gas outbursts for 30% xylite distribution, c rockbursts and d coal and gas outbursts 
for 60% xylite distribution with the change in geomechanical properties of xylite

Table 6   Coal heterogeneity 
scenarios with varied Langmuir 
properties for detrite while most 
other layer properties are kept 
fixed

Case Geomechanical properties Reservoir properties
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1 2.10 23 0.92 0.35 0.52 0.90 0.10 2 × 10–16 1 × 10–16 3.8 2.0 15 50
2 2.10 23 0.92 0.35 0.52 0.90 0.10 2 × 10–16 1 × 10–16 2.5 1.2 15 50
Base 2.10 23 0.92 0.35 0.52 0.90 0.10 2 × 10–16 1 × 10–16 7.5 4.7 25 50
Fixed values
Clay 1.90 30 0.92 0.63 0.52 0.30 0.05 2 × 10–16 1 × 10–16 – – – –
Xylite 7.25 28 4.02 1.21 2.36 0.30 0.03 2 × 10–17 1 × 10–17 4.0 2.5 15 25
Goaf 0.63 30 0.52 0.63 0.52 0.01 0.30 3 × 10–14 3 × 10–14 – – – –
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confidence for it to be used as a versatile tool to forecast the 
probability of hazards in underground mining by suitably 
incorporating the mining conditions.

The research described in this paper suggests that, given 
the heterogenous coal seam characteristics present at Coal 
Mine Velenje, the probability of rockbursts is generally 
higher as compared to the probability of coal and gas out-
bursts. This can mostly be attributed to the low pore pressure 
developed in the coal seam, which is less than the tensile 
strength of coal, thus, tensile failure is restricted in most 
cases. However, high-stress abutment acting ahead of the 
longwall face does not rule out the chance of excessive gas 
emission at the longwall face. The triggering criteria consid-
ered in the PRA framework suggest that the longwall mining 
is safe to conduct, however, this needs to be tested in the 
field by correlating it with other field monitoring data. The 
PRA framework can be further improved to provide short-
term/real-time analysis of the probability of rockbursts, gas 
outbursts and coal and gas outbursts by incorporating the 
field monitoring data into the model.

It was found that the total volume of gas emission is 
highly sensitive to face heterogeneity. The emitted gas 
includes free gas as well as adsorbed gas. The volume of 

free gas calculated was significantly low as compared to the 
volume of adsorbed gas per unit volume of coal extraction. 
The free gas energy was calculated to be between 2 and 4% 
of the adsorbed gas energy. This matches the observations 
of Cheng et al. (2021), who also found adsorbed gas energy 
to be the main reason behind gas outbursts and concluded 
that gas desorption energy is the major contributor to gas 
expansion energy. As the free gas energy was found to be 
less than the crushing energy (0.354 MJ/m3), the probability 
of gas outburst occurrence is unlikely. In the case of coal and 
gas outbursts, ERRi may combine with the free gas energy 
to cumulatively exceed the crushing energy and thus a low 
probability for coal and gas outbursts was observed, which 
suggests the framework is reliable.

It was also evident from the analysis that since a large 
volume of adsorbed gas is present and in most situations 
the strength criteria were met, excessive gas emissions are 
highly likely. This observation made from the PRA frame-
work supports the field conditions reported by Si et  al. 
(2015a), who found that excessive gas emissions are a regu-
lar phenomenon at Coal Mine Velenje.

Fig. 16   The influence of reservoir properties of detrite on total gas emission rates at different excavation steps for the change in Langmuir prop-
erties a 30% xylite, and b 60% xylite
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Fig. 17   Variation in the pore pressure for a 30% xylite distribution, b 60% xylite distribution and energy release rate c at 29th excavation step for 
30% xylite distribution, and d at 19th excavation step for 60% xylite distribution for the change in Langmuir parameters
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Table 7   Stochastic input for the change in the energy release rate (log scale) and gas emission due to variation in Langmuir properties

Case 1 2

Xylite distribution 30% 60% 30% 60%

Excavation step µ σ Gas µ σ Gas µ σ Gas µ σ Gas

1 0.30 0.17 357.09 0.30 0.17 357.15 0.30 0.17 478.40 0.30 0.17 478.42
2 1.00 0.98 2949.28 1.00 0.98 2962.49 1.00 0.98 3138.05 1.00 0.98 3122.69
3 2.00 0.58 2205.16 2.20 0.58 2172.44 2.00 0.58 2545.21 2.20 0.58 2490.19
4 2.10 0.50 1561.38 2.20 0.60 1552.49 2.10 0.50 1776.49 2.20 0.60 1772.63
5 2.20 0.54 1299.90 2.20 0.54 1449.84 2.20 0.55 1444.53 2.20 0.55 1610.66
6 2.20 0.65 1195.11 2.20 0.65 1483.99 2.20 0.61 1368.17 2.20 0.61 1682.85
7 2.50 0.50 1350.41 2.50 0.60 1500.75 2.50 0.55 1411.95 2.50 0.65 1691.86
8 2.50 0.48 1354.52 2.50 0.52 1297.18 2.50 0.50 1500.77 2.50 0.54 1455.15
9 2.45 0.51 1130.48 2.45 0.50 1141.85 2.25 0.55 1167.69 2.55 0.57 1297.16
10 2.35 0.60 1109.22 2.25 0.60 924.58 2.50 0.35 1211.39 2.25 0.75 968.99
11 2.40 0.40 1021.06 2.20 0.70 953.54 2.60 0.30 1178.39 2.50 0.46 1057.79
12 2.70 0.24 1155.77 2.60 0.43 853.00 2.70 0.24 1319.92 2.65 0.40 988.93
13 2.70 0.35 1472.66 2.50 0.28 718.74 2.70 0.25 1511.97 2.50 0.30 789.89
14 2.20 0.56 1179.11 2.50 0.32 678.96 2.50 0.45 1323.21 2.55 0.40 766.64
15 2.65 0.20 1110.09 2.65 0.24 265.75 2.65 0.21 1241.41 2.65 0.26 306.27
16 2.35 0.40 947.36 2.25 0.60 170.75 2.10 0.40 1052.19 2.25 0.58 171.38
17 2.70 0.21 918.05 1.85 0.60 163.31 2.70 0.32 950.45 1.90 0.58 169.21
18 1.50 0.85 816.78 1.95 0.50 582.60 1.35 0.55 908.61 1.70 0.60 595.98
19 2.25 0.66 762.34 1.85 0.50 877.15 2.05 0.68 920.63 2.35 0.40 969.29
20 2.05 0.65 1151.42 1.30 0.53 1422.64 2.25 0.60 1223.44 1.35 0.55 1558.61
21 2.75 0.19 1551.23 2.60 0.24 936.58 2.75 0.20 1670.80 2.65 0.36 1033.78
22 1.75 0.55 1220.28 2.15 0.45 1196.60 2.05 0.45 1375.46 2.25 0.42 1400.91
23 2.00 0.60 1173.79 1.70 0.60 1167.77 2.00 0.50 1285.64 2.05 0.59 1263.52
24 2.25 0.60 1194.53 2.05 0.60 1035.53 1.95 0.62 1322.14 1.85 0.62 1135.73
25 2.00 0.55 1290.20 2.70 0.25 1074.48 2.20 0.65 1373.10 2.75 0.35 1187.37
26 2.65 0.40 1202.15 2.75 0.24 1132.53 2.75 0.25 1357.89 2.75 0.21 1240.44
27 2.20 0.55 1125.81 1.60 0.65 1116.20 2.25 0.50 1224.56 1.45 0.60 1247.46
28 2.35 0.65 1089.67 1.75 0.50 995.23 2.25 0.65 1194.98 1.95 0.50 1074.25
29 2.50 0.40 1135.65 1.50 0.60 1175.81 2.30 0.70 1256.79 1.55 0.60 1285.31
30 1.50 0.50 1050.33 1.80 0.55 1057.29 2.30 0.40 1156.25 1.90 0.55 1195.50
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Fig. 18   Probability distribution for a rockbursts, b coal and gas outbursts for 30% xylite distribution, c rockbursts and d coal and gas outbursts 
for 60% xylite distribution with the change in Langmuir parameters
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