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Genome-wide association studies (GWASs) have identified genetic loci associated with
the risk of Alzheimer’s disease (AD), but the molecular mechanisms by which they
confer risk are largely unknown. We conducted a metabolome-wide association
study (MWAS) of AD-associated loci from GWASs using untargeted metabolic pro-
filing (metabolomics) by ultraperformance liquid chromatography–mass spectrometry
(UPLC-MS). We identified an association of lactosylceramides (LacCer) with
AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 1025 to
1.3 × 10244). We showed that plasma LacCer concentrations are associated with cogni-
tive performance and genetically modified levels of LacCer are associated with AD risk.
We then showed that concentrations of sphingomyelins, ceramides, and hexosylcera-
mides were altered in brain tissue from Abca7 knockout mice, compared with wild type
(WT) (P = 0.049–1.4 × 1025), but not in a mouse model of amyloidosis. Furthermore,
activation of microglia increases intracellular concentrations of hexosylceramides in part
through induction in the expression of sphingosine kinase, an enzyme with a high con-
trol coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk
for AD arising from functional variations in ABCA7 is mediated at least in part through
ceramides. Modulation of their metabolism or downstream signaling may offer new
therapeutic opportunities for AD.
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Genome-wide association studies (GWASs) have robustly identified thousands of genetic
loci for complex traits and disorders. Genetic loci have been used to identify pathways
affected in the early stages of the disease and may differentiate potential causal pathways
from effects secondary to the disease process. GWASs have so far identified 47 unique
genetic loci for Alzheimer’s disease (AD) (1–3). However, the underlying pathway(s)
mediating risk are poorly understood or unknown for most AD-associated genes.
Many of the genes associated with AD, including ABCA7, APOE, and TREM2, are

associated with altered lipid metabolism, suggesting this may be a common feature of
AD. Untargeted metabolomics measures metabolites, such as lipids and other small mol-
ecules, in biological samples and provides an objective means to investigate the metabolic
features that may contribute to the disease risk (4–8). However, studying the association
of metabolites with diseases in an observational setting is prone to well-characterized
biases, such as confounding and reverse causation. Here, we conducted a metabolome-
wide genetic association study (MWAS) to detect metabolic features in peripheral blood
associated with genetic variants for AD identified in prior GWASs (1–3). Both GWASs
and MWASs adopt an agnostic approach that is not biased according to prior knowledge
and is more likely to discover novel pathways. The approach aims to uncover metabolic
pathways conferring susceptibility to AD before disease onset and therefore provide
mechanistic insight into the etiopathogenesis of AD.
We conducted MWASs on genetic variants reported by the largest GWAS on AD (1).

We used data from two large epidemiologic cohorts—the Airwave Health Monitoring
Study (Airwave) (9) and the Rotterdam Study (10)—with the metabolome measured by
ultraperformance liquid chromatography–mass spectrometry (UPLC-MS). Among all
genetic loci associated with AD in GWASs, we found the strongest associations between
genetic variants in ABCA7 and lipid signals in the hexosylceramide pathway. We there-
fore focused further analysis on metabolites associated with ABCA7 and tested them
against cognitive measures in the Airwave study, the Rotterdam Study, and the Finnish
Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER)
trial (11). We then applied Mendelian randomization (12) to assess whether the
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disease are robust; however, the
underlying pathways are not well
understood. By integrating
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least in part, through alteration in
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identified metabolites may be on the causal pathway linking
ABCA7 to AD and used a bioinformatic approach to investigate
the extent to which ABCA7 was expressed in the brain. Then,
taking a reverse translational approach from human studies to
functional experiments, we performed targeted lipidomics and
the analysis of transcriptomics datasets in brain tissue from the
Abca7 knockout (KO) mouse (13) to investigate whether the
Abca7 pathway influences lipid metabolism in the brain and
whether this pathway also exists in mouse models of amyloidosis.
Finally, we show that activation of microglia induces changes in
hexosylceramides consistent with these classes of lipids playing a
role in neuroinflammation.

Results

The study workflow is summarized in Fig. 1.

MWAS on AD-Related Single-Nucleotide Polymorphisms (SNPs)
Identifies Associations between ABCA7 and Lactosylceramides
(LacCers). In our UPLC-MS analysis of the Airwave and Rotter-
dam Study data, we measured 5,199 mass spectral features (the
unique mass to charge ratio–retention time pairing [m/z-RT])
and annotated 1,815 of them (Dataset S1). The 47 AD-related
SNPs associated with metabolic features at a metabolome-wide

significance level (MWSL) (SI Appendix, SI Methods) are shown
in the Manhattan plot in Fig. 2. We observed the strongest asso-
ciation (Pearson correlation coefficient = �0.53, P = 7.16 ×
10�44) between rs3752246 in ABCA7 and a feature with m/z =
1,068.696 and RT = 7.84 min in the negative ionization mode
spectrum (abbreviated as LNEG, 1,068.6958_7.8401), which
corresponds to LacCer(d18:1/24:1) (Fig. 2 and SI Appendix, Fig.
S1 and Dataset S2). Overall, we identified 121 associations with
10 AD-related SNPs at ABCA7 that surpassed the 5% family-
wise error rate (FWER) significance threshold (Dataset S2).
These features corresponded to 41 unique mass spectrometry fea-
tures (MWSL α = 0.05) mapped to 16 metabolites (Fig. 3 and
Dataset S2 and SI Appendix, SI Methods). Ten of the 41 meta-
bolic features were from LacCers or sulfatide hexosylceramides
(SHexCers). In subsequent analyses where a single feature is used
to represent a given metabolite, we have chosen either the domi-
nant feature that represents the parent ion or the major adduct of
the parent ion, whichever was the greater in relative intensity.

Association with Cognitive Performance. The association of
10 SNPs at ABCA7 with cognition is presented in Dataset S3.
Of the 16 metabolomic features associated with ABCA7, 14 were
available to test against individual cognitive performance variation
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Fig. 1. The overall design of the study.
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in Airwave, 13 in the Rotterdam Study, and 11 in the FINGER
trial data, a lifestyle intervention trial following individuals
selected based on having a higher risk of late-life cognitive impair-
ment (mean age 69.2 ± 4.7 y). Using mixed-effect regression

models, five of the metabolites (including three LacCer species)
were positively associated (P < 0.05/11, Bonferroni threshold)
with a composite cognitive score (Fig. 4A) based on an extended
version of the neuropsychological test battery (14). We then

LacCer(d18:1/24:1)

Fig. 2. Manhattan plot on the association of metabolites detected by mass spectrometry with AD-related SNPs. Features associated with ABCA7 SNPs are
annotated. For some metabolites, more than one metabolic feature was found to be associated with AD-related SNPs, and the No. of metabolic features
corresponding to the same metabolites is described in brackets. LacCer: lactosylceramide, NAPE: N-acyl phosphatidylethanolamine, PA: phosphatidic acid.
Red features are assayed by negative ionization mode lipidomics and blue features by positive ionization mode lipidomics.
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those features is associated with the connected
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carbon side chain (20:4).
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tested for their association with cognition in the Airwave cohort,
a younger population (mean age 40.0 ± 9.2 y) unselected for risk
of dementia. None of the metabolic features was associated with
cognitive performance, suggesting that the association may
depend on age and other risk factors (Fig. 4A). We also tested for
associations between changes in these 14 metabolic features in
plasma and changes in cognitive scores in the FINGER trial,
comparing baseline and 2-y follow-up data, and found that a
higher level of an N-acylphosphatidylethanolamine annotated as
NAPE(P-18:1/20:4/18:1) or NAPE(O-18:0/20:4/18:1) (Dataset
S2 for annotation details), and referred to here as NAPE5*, was
associated with slower cognitive decline (SI Appendix, Fig. S2).
Finally, we examined the association of the metabolic features with
three cognitive domains, including working memory, executive
function, and processing speed, in the Airwave study, FINGER
trial, and the Rotterdam Study. Metabolic features annotated to
NAPE5* and PA(O-18:1/20:4) and/or PA(P-18:0/20:4) were
nominally associated with working memory and executive func-
tion. Moreover, LacCer(d18:1/22:0) was nominally associated with
executive function and processing speed and SHexCer(d18:2/22:0)
was associated with executive function (Dataset S4).

Association with Mild Cognitive Impairment and Dementia.
We examined the association of the metabolic features with the
incidence of dementia in the Rotterdam Study. We observed a

nominally significant association between a metabolic feature
annotated to PA(O-18:1/20:4) and incident dementia (SI
Appendix, Tables S5 and S6).

Mendelian Randomization Analysis. Mendelian randomization
is an instrumental variable analysis in which genetic variants are
used as proxies for specific exposures (in this case, metabolites)
to overcome unmeasured confounding and reverse causation in
observational studies (15). From GWAS on Airwave data, we
identified genetic instruments (SNPs) for Mendelian randomi-
zation analysis (1) for 32 of the 41 mass spectral features related
to the 10 AD-related SNPs at ABCA7.

The list of genetic variants for each metabolic feature is pre-
sented in Dataset S7. A two-sample Mendelian randomization
analysis (16) was then performed using the genetic variants as
instruments for the associated metabolites and testing these variants
against the risk of AD in GWAS data. Using the inverse variance
weighted method and after applying a false discovery rate of
0.05, we found supporting genetic evidence for inverse associ-
ations of LacCer(d18:1/24:1) and LacCer(d42:3) with AD (Fig. 4B
and Dataset S8). To assess possible violation of assumptions under-
lying Mendelian randomization analysis, we carried out weighted
median and Mendelian randomization (MR)-Egger methods as
sensitivity analyses (see Materials and Methods). The findings were
consistent with the inverse variance weighted estimates.

FINGER Airwave studyA

B

Fig. 4. (A) The association of ABCA7-associated
metabolites with the cognitive score in the FINGER
trial and Airwave. For FINGER, the association
between metabolite concentrations and cognition
was tested using a linear mixed model adjusted for
fixed effects of age at baseline, sex, intervention,
visit (binary), and domain of participant groups and
for random effects of within-subject variation. For
Airwave, the association between metabolite con-
centrations and cognition at baseline was tested
using a linear mixed model adjusted for fixed
effects of age at baseline, sex, visit (binary) of partic-
ipant groups, and random effects of within-subject
variation. We obtained the z score for both metabo-
lite levels and cognition values before analysis.
Chemical species are represented by their molecular
ion or most-abundant adduct ion. Larger dots indi-
cate 95% CI, not including the null value; red dots
indicate associations with P < 0.05/11 for FINGER
and P < 0.05/14 for Airwave (Bonferroni correction
for 11 and 14 features, respectively). (B) Associations
of LacCer(d18:1/24:1) and LacCer(d42:3) with the
risk of AD based on Mendelian randomization.
Dots indicate inverse variance weighted (IVW) esti-
mates, triangles indicate weighted median (WM),
and squares indicate Egger estimates. Red and
larger shapes indicate significant associations
with P < 0.05.
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Association with Pathologic Biomarkers of AD. Using data
from the Rotterdam Study, we examined the association between
35 metabolic features associated with ABCA7 with pathologic
biomarkers of AD. Metabolic features annotated to Lac-
Cer(d18:1/24:0) and LacCer(d18:1/24:1) showed nominally sig-
nificant associations with the circulatory levels of amyloid beta
40, amyloid beta 42, and neurofilament light chain (NfL), but
not Tau (SI Appendix, Tables S9–S12).
Using data from the FINGER trial, we found associations between

metabolic features annotated to LacCer(d18:1/24:1), LacCer(d42:3),
LacCer(d18:1/24:0), LacCer(d18:1/22:0), LacCer(d18:1/16:0), SHex-
Cer(d18:2/22:0), NAPE(O-18:1/20:4/18:1)*, and NAPE(O-18:1/
20:4/18:0)* with the total gray-matter volume as well as cortical
thickness in AD signature regions (average of entorhinal, inferior tem-
poral, middle temporal, and fusiform regions) (SI Appendix, Tables
S13–S18) (17).

Ceramide Metabolism in Brain Tissue. Using expression quan-
titative trait loci (eQTL) data from the Genotype-Tissue
Expression project (18), we found that the 10 ABCA7 SNPs
were associated with lower expression of ABCA7 in multiple
human brain tissues, including the cerebellum and cerebral
hemisphere (SI Appendix, Fig. S3). We then carried out meta-
bolic profiling of brain tissue (left hemispheric cerebral cortex)
from the Abca7 KO mouse versus wild type (WT) to test
whether variations in lipid profiles related to ABCA7 in periph-
eral blood in the human studies above are also found in mouse
brain tissue. We performed UPLC-MS in both positive and
negative ionization modes on the lipid phase of chloroform/
methanol/water extractions of the mouse cerebral cortex
(Dataset S19) and then performed principal-component analysis
(PCA) to visualize dominant patterns (Fig. 5). While the main
variance in the positive ionization mode data was driven by sex
(PC1 = 80.4%, PC2 = 8.7%), the principal factor discriminat-
ing samples in the negative ionization mode data was attributed
to genotype (PC1 = 59%, PC2= 14.2%, PC3 = 6.9%).
Based on associations of plasma LacCer concentrations with

the ABCA7 locus in the human studies, we filtered the mouse
lipidomic data specifically for sphingolipids (sphingomyelins,
ceramides, and hexosylceramides). We performed a two-way
ANOVA to investigate genotype–sex interactions. Nine sphingo-
lipids detected in negative ionization mode differed between the
Abca7 KO and WT mice (P < 0.05), with seven associated with
genotype and two associated with sex (one passing the Bonfer-
roni correction for multiple testing). Repeating this analysis for
the positive ionization mode dataset, 244 differences were identi-
fied across the detected sphingolipids, of which 159 were associ-
ated with sex (two passing the Bonferroni correction for multiple
testing) and 44 were associated with interactions between sex
and Abca7 genotype (24 passing the Bonferroni correction for
multiple testing). It was notable that, while the one common
LacCer decreased in concentration in the brain tissue of Abca7
KO mice, the common sphingolipids, ceramides, and hexosylcer-
amides all increased in concentration, suggesting Abca7 is associ-
ated with a failure to process sphingolipids into LacCer species.
These data suggest a role for ABCA7 in regulating ceramide
metabolism in the brain.
A previous study of Abca7 heterozygous mice failed to detect

any changes in ceramide derivatives but did detect impaired
microglia function following inflammatory stimuli (19). The
lack of lipidomic changes may have been related to the small
effect size in the heterozygous mice at a relatively early age
(55–58 d), and so we examined the translation of enzymes
involved in sphingolipid metabolism (sphingolipid metabolism,

map 00600; sphingolipid signaling pathway, map 04071) and
the ABCA transporters to test whether sphingolipid metabolism
is altered in the brain of heterozygous mice (data from GSE
139592). The four groups in the dataset (WT and Abca+/�,
with and without lipopolysaccharide [LPS] stimulation) were
readily separated by orthogonal projections to latent structures
discriminant analysis (OPLS-DA) of the mRNA levels of two
pathways and Abca genes (SI Appendix, Fig. S4A; R2X = 91%,
R2Y = 98%, Q2 = 47%; passing random permutation test).
Abca+/� were associated with the increased translation of
Abca15, Abca4, and Sptlc3 and decreased Abca9, Ugt8a, Hexb,
Sgms1, and Sgpp2, while LPS treatment increased Sgms2,
Acer2, and Abca1 and decreased Abca9 and 9130409I23Rik
(ortholog delta 4-desaturase sphingolipid 1) (SI Appendix,
Fig. S4B).

To test whether LacCers are common to all forms of AD, we
examined the lipid profile of brain tissue (left cerebrum) from
AppNL-G-F mouse (a model of amyloidosis with humanized APP
with Swedish, Iberian, and Arctic familial mutation; n = 6
AppNL-G-F, n = 5 WT), performing LC-MS/MS and multivari-
ate statistics to investigate perturbations in sphingolipid metab-
olism. While OPLS-DA could separate the samples from
AppNL-G-F mouse brain from WT samples, these models failed
to pass cross-validation (SI Appendix, Fig. S5). As these were
young mice, we also examined a dataset from GEO examining
the effects of aging in the APP/PS1 mouse (GEO GSE 86828),
demonstrating that alterations in sphingolipid metabolism and
Abca transporter expression in aged mice (7- vs. 18-mo-old
mice) (SI Appendix, SI Results and Fig. S6). We also built an
OPLS-DA model to examine sphingolipid metabolism in this
dataset, and this also failed to pass cross-validation, indicating
that any lipidomic changes associated with genotype had a rela-
tively small effect size, particularly when compared with the
Abca7 KO mouse model. For univariate analysis, no significant
differences were detected for LacCer, suggesting that any altera-
tions in sphingolipid metabolism in this mouse model of early-
onset AD are much subtler than those associated with ABCA7
(SI Appendix, Fig. S6). Overall, these data do not suggest that
sphingolipid metabolism is a shared underlying mechanism for
early-onset as compared with late-onset AD.

Alterations in Ceramide Metabolism in Activated Microglia.
Given that inflammation was associated with alterations in
sphingolipid metabolism and to further investigate the role of
hexosylceramides in the brain, we examined lipid changes in
neuroinflammation triggered by activation of microglia, a hall-
mark of early-stage AD. Human microglia (HMC3) was cul-
tured in the presence of increasing concentrations (0.1 μg/mL;
1.5 μg/mL) of LPS to induce inflammation. Exposure to 1 μg/
mL of LPS for 24 h caused a robust increase in a wide range of
lipids as evidenced by PCA (Fig. 6A), including increases in
LacCers (d18:1/16:0, d18:1/18:0, and d18:1/24:1) and sphingo-
myelins (SM(d18:1/14;0), SM(d18:0/22:1), and SM(d18:1/
22:1)) (Fig. 6B). Activation of microglia was associated with an
increase in expression of sphingosine kinase 1 (SphK1), as well as
cytokines and other inflammatory markers (Fig. 6C).

Discussion

Our genomic and metabolomic data from human, animal, and
in vitro studies provide evidence that LacCers play a potentially
causal role in linking variants in ABCA7 with the risk of AD.
Our MWAS indicated that, among genes so far identified for
AD, ABCA7 had the strongest associations with metabolic traits

PNAS 2022 Vol. 119 No. 43 e2206083119 https://doi.org/10.1073/pnas.2206083119 5 of 12

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206083119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206083119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206083119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206083119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206083119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206083119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206083119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206083119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206083119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206083119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206083119/-/DCSupplemental


in peripheral blood. Most of these features were annotated to
LacCers; the strongest association was found between rs3752246
in ABCA7 and LacCer (d18:1/24:1). We confirmed that deletion
of Abca7 in the mouse results in a range of alterations in sphin-
golipid metabolism, particularly for ceramides and hexosylcera-
mides, which indicate a failure to process sphingolipids to
LacCers. Reduced expression of Abca7 in heterozygous mice was
also associated with alterations in sphingolipid metabolism.
However, these associations were not seen in a mouse model of
early-onset AD, although there was some evidence of altered
sphingolipid metabolism in aging APP/PS1 mice, suggesting
that the LacCers may preferentially be involved in the etiopatho-
genesis of late- as compared with early-onset AD. We also
demonstrate that, during activation of microglia, as occurs in
neuroinflammation, these hexosylceramides increase in intracel-
lular concentration in part through induction in the expression
of sphingosine kinase, an enzyme with a high control coefficient
for sphingolipid and ceramide synthesis.

The genetic loci associated with AD can be separated into two
broadly defined groups of genes. The first set includes a small
No. of genes (APP, PSEN1, and PSEN2) with a strong and auto-
somal dominant hereditary effect and is associated with familial,
early-onset AD. For these loci, potential underlying molecular
mechanisms have been defined in some detail and underpin the
“amyloid hypothesis” postulating that pathological amyloid-beta
peptides are a primary cause of neurodegeneration (20–22). The
second group of genes is more extensive and includes genes
implicated in phagocytic, lipid, and inflammatory pathways (1)
that may interact with comorbid disease or environmental risk
factors in the development of late-onset AD (19, 23, 24). How-
ever, relative to the early-onset Mendelian forms, much less is
known about primary causal mechanisms associated with late-
onset AD and how mechanisms initiating the late- and early-
onset forms of AD lead to a common pathology.

ABCA7 is part of the adenosine triphosphate–binding cassette
(ABC) reporter family, important in regulating phospholipid and
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Fig. 5. Lipidomics analysis of the cortex of the Abca7-null mouse identifies alterations in ceramide metabolism in the brain. (A) Principal-component analysis
(PCA) of the lipidomic data collected in negative ionization mode (variation represented by PC2 = 14.2%, PC3 = 6.9%). (B) PCA of the lipidomic data collected in
positive ionization mode (variation represented by PC1 = 80.4%, PC2 = 8.7%). (C) Venn diagram of lipidomic changes detected in the dataset summarizing
all sphingolipid changes associated with genotype (Abca7), sex, and their interaction by ANOVA. (D) Box plot of ANOVA results for hexosylceramide (HexCer)
(d18:1/16:0), HexCer (d18:1/22:0), HexCer (d18:1/24:0), and lactosylceramide (LacCer) (d18:1/16:0). (E) Schematic of key changes detected in sphingomyelins
(SMs), ceramides (Cers), HexCer, and LacCer detected in both the cortex of the Abca7-null mouse and the human MWAS analysis. Arrow indicates a significant
increase or decrease in sphingolipid species by ANOVA in KO males relative to WT males (genotype). WT: wild type, KO: Abca7-null, m: male, f: female.
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cholesterol transport across the cell membrane and within the
cell between subcellular organelles (19). The transporter has also
been shown to have a higher preference for transporting phos-
phatidylserine lipids relative to phosphatidylcholines out of the
cell when compared with ABCA1 (25), suggesting the trans-
porter has an important role in maintaining and regulating
intracellular phosphatidylserine concentrations. ABCA7 is highly
expressed in microglia in cell culture and neuronal cells, particu-
larly in the hippocampus (26). From cell-culture experiments,
ABCA7 expression is regulated by sterols through the SREBP2
pathway (27), and increased expression of ABCA7 has been
shown to enrich HeLa cells with ceramides (28). Neuronal cells
that lack ABCA7 show evidence for increased endoplasmic retic-
ulum (ER) stress and amyloid beta 40 (Aβ40) and Aβ42
production. Sakae et al. (13) proposed that ABCA7 deficiency
alters lipid metabolism in ways that secondarily increase
SREBP2 and BACE1 expression and induce ER stress, contrib-
uting to the generation of pathological Aβ species, which accu-
mulate and may lead to cognitive deficits prodromal to AD.
Consistent with this model, genetic variants at ABCA7 are asso-
ciated with relative atrophy of the cortex and hippocampus
both in cognitively normal people and in those with mild cogni-
tive impairment (29).
Our untargeted lipidomic assay of Abca7 KO versus WT

mouse brains showed decreases in a wide range of phosphatidyl-
cholines, phosphatidylserines, and phosphatidylglycerols and dif-
ferences in the concentrations of more than 250 sphingolipids
(including ceramides) in the KO model. These results support a
role for ABCA7 in sphingolipid/ceramide metabolism, particu-
larly in terms of the synthesis of hexosylceramides and LacCers.
Consistent with this, Sakae and colleagues used a targeted lipido-
mics assay of 275 lipids to assess lipidomic changes in the brains

of Abca7 KO mice (13). They found differences in 26 specific
lipids: decreases in 12 species of phosphatidylethanolamines,
three phosphatidylglycerols, one lysophosphatidylcholine, and
two sphingomyelins and increases in three phosphatidylcholines,
one ceramide, three sulfatides, and one cerebroside. Furthermore,
we showed that activation of microglia using LPS caused an
increase in intracellular hexosylceramides and sphingolipids, in
part associated with an increase in expression with SphK1, a key
enzyme in the synthesis of sphingolipids and ceramides. Altera-
tions in sphingolipid metabolism were also apparent in the tran-
scriptional profile of brain tissue of Abca7 heterozygous mice
(19) and during aging in APP/PS1 mice at 18 mo, when plaque
formation is most apparent (30).

One question raised by this research is how translatable the
results are from the ABCA7 gene to other genetic causes of AD.
We found no evidence of sphingolipid metabolism changes in
the AppNL-G-F mouse of early-onset AD in a similarly powered
mouse study, indicating that any alterations in lipid metabolism
in this mouse model are subtler. However, at the transcriptional
level, sphingolipid metabolism is perturbed as APP/PS1 mice
age from 7 mo to 18 mo, over which time plaque formation
progresses from mild to severe (30). As noted above, ABCA7 is
associated with late-onset AD, along with several other genes
associated with AD and altered lipid metabolism, including
APOE and TREM2, suggesting sphingolipid metabolism may
particularly be associated with late-onset AD compared with
early-onset AD.

Previous human studies have shown inconsistent relation-
ships of ceramides with cognitive impairment (31), memory
impairment (32), and dementia field (33). The Women’s
Health and Aging Study II and a clinic-based case-control
study, both including small Nos. of individuals, reported
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SM(d18:1/14:0) SM(d18:0/22:1) SM(d18:1/24:1)
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LacCer(d18:1/16:0) LacCer(d18:1/18:0) LacCer(d18:1/24:1)

Fig. 6. Lipidomic changes in cultured human microglia following lipopolysaccharide (LPS)-induced activation. (A) PCA of the lipidomic profile of microglial
cells with and without LPS activation. (B) Box plots of key changes in lactosylceramides and sphingomyelins following LPS activation. Control: no treatment.
Treated: addition of LPS. P values are based on the Student’s t test. (C) Western blot analysis of protein changes induced by LPS activation in human micro-
glia. iNOS: inducible nitric oxide synthase, Sphk1: sphingosine kinase 1, TNF-α: tumor necrosis factor-alpha, IL-6: interleukin-6, HsP: heat shock protein,
GAPDH: glyceraldehyde-3-phosphate dehydrogenase.
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inconsistent associations of plasma ceramides with memory
loss, mild cognitive impairment, and risk of AD. A GWAS on
136 targeted metabolites in a Chinese population reported an
inverse association between the risk allele of rs3752246 in
ABCA7 and the ceramide d18:1/24:1 (34). However, that study
was limited by the inclusion only of metabolites available in the
targeted metabolomics platform, in comparison with our study,
which had a broad representation of the metabolome through an
untargeted metabolomics approach. Furthermore, our study was
designed to investigate metabolic pathways associated with
AD-related genetic loci, which provided greater specificity and
statistical power than the genome-wide approach used in the
above GWAS. In addition, we assessed possible causality by Men-
delian randomization and applied a reverse translational approach
to validate our findings in both animal and cellular models.
We used Mendelian randomization to test for potential

causal relationships between LacCer concentrations in plasma
and AD. We first performed GWAS on metabolic features in
Airwave to generate genetic instruments for the target LacCers
and then took advantage of the most-recent and largest AD
GWAS data to test for associations of these genetic variants
with AD (2). Using this approach, we found evidence of possi-
ble causal associations of decreased concentrations of plasma
LacCer (d18:1/24:1) and LacCer (42:3) with increased risk of
AD, suggesting that ABCA7 contributes to the regulation of
systemic LacCer concentration in the genesis of AD.
Gene-set analyses have implicated pathways involving lipid

metabolism in AD more generally, in addition to those for
inflammation and amyloid processing (1). These observations sug-
gest that the genesis of AD shares features with the metabolic
disease–associated inflammation (“metainflammation”) that affects
adipose and other peripheral tissues in the metabolic syndrome
(35). In this context, we note that four metabolites, NAPE3*,
NAPE4*, NAPE5*, and PA* (Dataset S2), and one unassigned

metabolite corresponding to the feature SLNEG_782.4965
3.5812 associated with ABCA7 SNPs have arachidonic acid
(20:4) side chains, while LacCers activate cPLA2-A, a phospholi-
pase that hydrolyses arachidonic acid from phospholipids (36).
We further note that arachidonic acid, a substrate for cyclo-
oxygenase and lipoxygenase, is a driver of macrophage and micro-
glial proinflammatory pathways in the aging and AD (37).

ABCA7 is widely expressed throughout the body, including
the brain, particularly in myeloid cells (https://www.proteinatlas.
org/). AD risk–raising SNPs were all associated with reduced
ABCA7 activity, and previous work has shown that Abca7 KO
increases soluble Aβ in an APP mouse model (38). Taken
together, we propose a mechanism where impaired ABCA7
function results in alterations in sphingolipid metabolism in
the brain, including both neuronal and microglial cells (Fig. 7).
We postulate that the reduced concentration of LacCers in
blood plasma associated with ABCA7 SNPs arises because of
impaired efflux of phosphatidylserines impacting systemic
metabolism. Increased intracellular concentrations of phospha-
tidylserines drive the production of sphingolipids, ceramides,
and hexosylceramides as measured in the Abca7-null mouse.
Ceramides and hexosylceramides have been postulated to
increase lipid rafts in cell membranes (39), and in turn, it has
been speculated that changes in cell-membrane fluidity drive
increased processing of APP by BACE1 (13), increasing amy-
loid plaque formation.

In addition, activation of microglia induces an increase in sphin-
golipid metabolism, in part through the induction of SphK1,
which leads to an increase in intracellular hexosylceramides.

Thus, in summary, the observed reduction in blood serum
lactose–ceramides detected in our cohort studies may reflect an
impaired transport of these lipids out of cells in the brain,
which subsequently accelerates the deposition of amyloid pla-
ques and may also directly contribute to neuroinflammation.

Fig. 7. A summary graphic of the proposed mechanism by which ABCA7 dysfunction is associated with an increased risk of developing Alzheimer’s
disease. (1) A reduction in expression/activity of ABCA7 is associated with an increase in AD risk, as well as a reduction in blood-plasma concentrations of
lactosylceramides. In our putative mechanism, we rationalize this with a reduction in the flux of lipids through ABCA7. (2) ABCA7 has more affinity to export
phosphatidylserines (PSs) than phosphatidylcholines (PCs) across the plasma membrane compared with other ABCA lipid transporters (e.g., ABCA1) (25).
With a reduction in the function of ABCA7, intracellular concentrations of PSs increase relative to PCs. (3) As PSs accumulate intracellularly, so does serine
(PS is broken down to CDP-glycerol and serine). Serine and palmitoyl-coenzyme A (CoA) form 3-sphinganine at the start of the ceramide synthesis pathway.
(4) In the ceramide pathway, 3-sphinganine is synthesized in the ER, which after some steps is converted into ceramides and, in subsequent steps, glucosyl-
ceramides and lactosylceramides in the Golgi apparatus. At this stage, there is a branch point. (A1) Ceramides, glucosylceramides, and lactosylceramides
can all form lipid rafts (39) in the plasma membrane. (A2) Lipid rafts encourage interactions between β-site APP cleaving enzyme 1 (BACE1) and amyloid-β
precursor protein (APP) to make amyloid-β, which ultimately forms plaques (13). (B) Ceramides are broken down to sphingosine in the ER, a precursor
for sphingosine-1-phosphate via SPHK1, both of which are increased in inflammation as well as induce inflammation in a feedforward step. Because of
disrupted PS metabolism and a failure in exporting PS to the extracellular space, blood concentrations of lactosylceramide decrease.
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The same ceramides are also increased in the activation of
microglia during inflammation and may contribute to lipid
remodeling of cell membranes and the processing of APP to
form amyloid plaques.
Our study has some limitations. First, GWAS signals may

reflect indirect associations, which means that the causal variant
may be a mutation in the vicinity of the top SNP and work
through a gene other than the one closest to the SNP. Here, we
present eQTL data supporting the sentinel SNP being associated
with expression levels of the ABCA7 gene. Moreover, the mouse-
model results indicate that the Abca7 gene is related to sphingoli-
pid metabolism. Second, we discovered associations of LacCers
with the ABCA7 locus using peripheral blood rather than
directly in the brain. Thus, our results either imply that systemic
biochemical pathology promotes the genesis of AD (e.g., via
inflammation) or that there is a related lipid dyshomeostasis in
the central nervous system. However, our observations of differ-
ences in concentrations of other lipids (particularly sphingoli-
pids, ceramides, and hexosylceramides) in the Abca7 KO mouse
brain relative to WT controls suggest the latter possibility. Third,
rather than directly testing causal associations between concen-
trations of LacCers and AD, we carried out Mendelian randomi-
zation analyses in which genetic information was used to identify
potential causal links between the LacCers and the risk of AD.
This approach involves three key assumptions (15): (i) the
genetic variants are associated with the risk factor (LacCer
metabolites in this case); (ii) there are no unmeasured confound-
ers between genetic variants and outcome (AD); and (iii) the
genetic variants affect the outcome only through their effect on
the risk factor (that is, there are no directional pleiotropic
effects). We fulfilled the first assumption by setting strict
criteria for selecting genetic variants (P < 5 × 10�8 and
F-statistics > 10). It is not easy to verify the extent to which the
second and third assumptions hold, but our findings were robust
to sensitivity analyses, and the MR-Egger method did not indicate
any potential directional pleiotropic effects. Finally, a heterozygote
mouse model would have been preferential, as it could be a better
representative of the lower ABCA7 expression in humans.
In conclusion, we report associations between SNPs at the

ABCA7 locus and LacCers in peripheral blood. The SNPs were
also associated with differences in cognitive function and have
potential causal links with the risk of AD (40). Manipulation
of sphingolipid metabolism is already being explored for aug-
menting the efficacy of anticancer and insulin resistance thera-
peutics (41). These may point to effective strategies that could
be tested as “repurposed” treatments for AD.

Materials and Methods

Study Samples. Airwave is an occupational cohort of 53,116 police officers and
staff aged 18 y and over across Great Britain launched in June 2004 (9). Blood
samples were obtained at the screening visit (with consent) and stored at
�80 °C at the laboratory before being transferred to a biorepository facility and
stored in vapor-phase liquid nitrogen. Metabolomic assays were done for
∼4,000 samples (Dataset S1). The samples were divided into two separate sam-
ple sets (referred to herein as Airwave 1 and Airwave 2). Airwave 1 utilized lith-
ium heparin plasma samples, and Airwave 2 used ethylenediaminetetraacetic
acid (EDTA) plasma samples. Both sets of samples were analyzed at the National
Phenome Centre (Imperial College London, London, UK). In addition, a set of
2,250 samples was analyzed by Metabolon, Inc. (Morrisville, NC, USA), of which
1,000 were also included in Airwave 2.

The Rotterdam Study is a prospective cohort study of individuals in the
Ommoord district of Rotterdam, the Netherlands (10). At baseline, between
1990 and 1993, 7,983 participants over 55 years old were interviewed at home
and underwent extensive clinical examination at the research center. Serum

samples were collected from 1997 to 1999, stored at �20 °C, and analyzed for
metabolites by Metabometrix Ltd. (London, UK) using protocols adapted from
the National Phenome Centre. The Airwave and Rotterdam sample and feature
Nos. are described in Dataset S1.

FINGER is a randomized controlled trial of 1,260 individuals aged 60–77 y
with increased risk for dementia based on the Cardiovascular Risk Factors, Aging,
and Incidence of Dementia risk score and cognition at a mean level or slightly
lower than expected for their age (42). The population was randomly assigned
to a multidomain intervention (diet, exercise, cognitive training, and vascular
risk monitoring) or a control group (general health advice) in a 1:1 ratio. We
used metabolomics and cognitive data at baseline and 2-y follow-up across both
the intervention and control groups. EDTA plasma samples were analyzed at the
National Phenome Centre.

Genomics Data. For both Airwave and the Rotterdam Study, DNA samples
were extracted from leukocytes. Genotyping was done using Illumina Infinium
HumanExome-12v1-1 BeadChip Array in Airwave and Illumina 550 K arrays in
the Rotterdam Study. Both studies imputed their data to 1000 Genomes Phase
3 reference panel, and the imputed data were used throughout.

Metabolomics Data. For each cohort (Airwave 1, Rotterdam Study, and
FINGER), metabolomics data were acquired using UPLC-MS. Methods and qual-
ity control (QC) have been described previously (43–45). Briefly, a pooled study
reference sample was prepared for each population. Serum and plasma long-
term reference samples were prepared using commercial bulk serum and
plasma (BioIVT [Seralab], West Sussex, UK). These QC samples were analyzed at
regular intervals throughout data acquisition. Mixtures of authentic reference
standards were added to the study reference, long-term reference, and study
samples used in the UPLC-MS analysis to enable targeted data-quality monitor-
ing during acquisition.

Plasma samples from FINGER were prepared and underwent UPLC-MS profil-
ing analysis for lipids and small metabolites as previously described (43). The
same procedures were used to analyze plasma samples from Airwave and serum
samples from the Rotterdam Study except that 100 μL of samples was used
without dilution before the addition of isopropanol for the lipidomics analyses.
Briefly, batches of 80 samples were prepared into 96-well plates. Each sample
was mixed with four parts of 4 °C isopropanol, incubated at 4 °C for 2 h in a
plate shaker at 1,400 rpm, centrifuged, and the supernatant aliquoted into a
96-well plate.

All analyses were acquired on Acquity UPLC systems coupled to Xevo G2-S
ToF mass spectrometers (Waters Corporation, Milford, MA, US). For these sam-
ples, three assays were employed: reversed-phase chromatography (RPC) for
lipid profiling in positive ion mode (LPOS), RPC for LNEG, and hydrophilic inter-
action liquid chromatography for small molecule profiling in positive ion mode
(HPOS).

Data Processing. Peak picking was completed using Bioconductor R-package
XCMS (46). Drift correction was done using a method previously described (47).
For FINGER, we used nPYc toolbox (48). Negative values were replaced with
zeros, and the data were natural log transformed after adding one. We filtered
the data based on RT to exclude nonretained and cleaning phase features—only
features in the following RTs (in minutes) were accepted: HPOS (0.5–7), LNEG
(0.3–9.5), and LPOS (0.45–12). We used PCA to identify samples that were out-
liers and excluded them (HPOS = 8, LNEG = 4, and LPOS = 1).

Further, we excluded values that were greater than five median absolute
deviations (MADs) from the median (HPOS = 7,216, LNEG = 6,106, and
LPOS = 8,285). We used ten principal components from genome-wide scans to
adjust for population stratification. Finally, we transformed the data into z scores
using median and MAD, so that we had comparable intensities across studies.
We determined cross-study feature correspondence for the Airwave and the
Rotterdam Study using an in-house algorithm that selects the matches that are
the closest in RT and m/z ratio in the two prealigned datasets.

Metabolomic feature intensities were normalized across samples to be com-
parable across cohorts. In each cohort separately, the value of each variable was
brought to zero, then one was added and was transformed using a natural log
scale. Each feature was then subtracted from its median and divided by its MAD.
After combining the data from all cohorts, the dataset was additionally sub-
tracted from its grand median and divided by the MAD.
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UPLC-MS Metabolite Annotation. Lipid annotation was initially completed
by matching accurate mass fragmentation measurements to reference spectra
from online databases (LIPID MAPS (49), Metlin (50), and Human Metabolome
Database (51)) and previous publications. Where chemical reference materials
were commercially available (Avanti Polar Lipids, Sigma Aldrich, Cayman Scien-
tific), they were used to generate definitive molecular identification by direct
matching of chromatographic and spectral qualities (including accurate mass,
MS/MS spectra, and isotopic distribution) to those observed in the profiling data.
NAPE standards were synthesized in house using the protocol described in SI
Appendix, Supplementary Methods. For FINGER data, annotations were transferred
from the Airwave data after finding feature correspondence between the two data-
sets, using the same method as described above. Annotation confidence is reported
according to guidance in the Metabolomics Standards Initiative (52) (details in
Dataset S2 footnotes), any additional annotations were done as described above.
Selection of genetic variants. We identified 47 unique genetic loci based on
three recent GWASs on AD (1–3). The lead SNP from 45 genetic loci was avail-
able in our data and was analyzed in the exploratory-stage MWAS (see below).
To focus on the pathways linking ABCA7 and the risk of AD, we selected SNPs
with a P < 1 × 10�5 within ±500 kb from the lead SNP in ABCA7 using
the most recent GWAS by the International Genomics of Alzheimer’s Project
(IGAP) consortium (2) (discovery stage: Ncase/control = 21,982/41,944). For corre-
lated SNPs with r2 ≥ 0.5, we kept the SNP with the smallest P value, resulting
in 10 SNPs selected for the MWAS focusing on ABCA7.

MWAS. We carried out linear regression to study the association of each SNP
with all metabolomic features (Metabolon, HPOS, LNEG, and LPOS) with adjust-
ment for age, sex, and cohort. We used a permutation-based method to estimate
the MWAS significance level (53, 54) to account for multiple testing and the
high degree of correlation in metabolomics datasets. A P value threshold giving
a 5% FWER was computed for each SNP in each metabolomics platform.
Representative features. For subsequent analysis, we used a single feature to
represent each metabolite. The representative feature was chosen based on the
major detected ion (either parent ion, closest adduct, or isotope that gave the
largest intensity and was not confounded by isobaric species).

Association with Cognition. We examined the association of ABCA7 SNPs
with cognition using summary statistics data from the largest GWAS on cognition
by Davies et al. (55). We observed a nominally significant association with
rs3752246, which had the strongest association with LacCer(d18:1/24:1). We
used data from the Airwave (n = 768), FINGER (n = 1,083), and the Rotterdam
(n = 542) studies to examine the association of identified metabolites with three
cognitive domains (executive function, processing speed, and working memory)
as well as an overall score of cognitive performance.

In the Airwave study, cognition was measured using a version of the Cardiff
Cognitive Battery (56) in Airwave and using standard neuropsychological tests
(an extended version of the neuropsychological test battery) in FINGER (57). In
the Airwave study, processing speed was assessed (after training) using 60 stim-
uli presented as a two-choice, reaction-time task where participants respond to
one of two targets on the computer screen. Working memory was tested by a
digit-span test where participants had to recall an increasing No. of digits, start-
ing from one digit and ending with the first incorrect answer. Executive function
was assessed by a verbal and numeric reasoning test including 12 items that
gradually increased in difficulty.

In the Rotterdam Study, cognitive function was assessed using a neuropsy-
chological test battery comprising the letter–digit substitution task (No. of correct
digits in 1min), the verbal fluency test (animal categories), the Stroop test (error-
adjusted time in seconds), a 15-word learning test (immediate and delayed
recall), and Purdue pegboard task (58). For each test, z scores were calculated by
dividing the difference between the individual and mean test scores by the SD.
We used the word-learning test to estimate working memory; Stroop reading,
color-naming task, and letter–digit substitution task (weighted half) for informa-
tion processing; and Stroop interference task, verbal fluency test, and letter–digit
substitution task (weighted half) for executive function.

The analysis for FINGER was based on metabolomics and cognition data both
available at baseline and the follow-up visit. In Airwave and the Rotterdam
Study, however, the analysis was cross-sectional using the cognition and metabo-
lomic data at the same visit.

Mendelian Randomization. We performed two-sample Mendelian randomi-
zation analyses to investigate the potential causal relationship between metabo-
lomic features associated with SNPs in ABCA7 and AD risk. We conducted GWAS
on these metabolomic features in Airwave to identify genetic instruments for the
Mendelian randomization analyses. For each feature, data points >5 MAD
were deleted. GWAS was performed using PLINK2 (59). The analysis included
Airwave participants separately genotyped using Affymetrix (n = 882), Illumina
(n = 2,003), and Global Screening Array (n = 823) arrays and was adjusted for
age and sex. Population stratification was controlled by adjusting for 10 principal
components. Summary results for each metabolite feature were combined using
inverse-variance–weighted meta-analysis using METAL (n = 3,708) (60).

For each metabolic feature, SNPs with P < 5 × 10�8 and F statistics >10
were selected as genetic instruments for the Mendelian randomization analysis.
To mitigate weak instrument bias, we only included SNPs with a minor allele fre-
quency greater than 5% and imputation quality greater than 0.7. We removed
correlated SNPs (r2 > 0.1) by retaining the SNPs with the smallest P value. Men-
delian randomization analyses were performed for metabolic features with more
than three independent genetic instruments to allow further sensitivity analyses.
The genetic association of AD was based on the most recent GWAS on AD by the
IGAP Consortium (61).

We searched for genetic instruments for 36 mass spectral features. Three
or more independent instruments were available for 32 features, annotated to
11 metabolites (Dataset S7). We performed Mendelian randomization analysis
for each feature. We estimated the effect of metabolic features on the risk of AD
using the inverse variance weighted (IVW) method (62). Potential pleiotropic
effects were assessed using weighted median (WM) and MR-Egger regression as
sensitivity analyses. Potential outlier SNPs were identified using MR-pleiotropy
residual sum and outlier and were excluded from the analyses (63). We
accounted for multiple testing using false discovery rate correction on causal esti-
mates calculated using the IVW method.

Association with Neuroimaging Measurements. We used data from the
FINGER trial to examine the association of the metabolic features with neuroim-
aging measures. Selection criteria and imaging protocol for the FINGER neuroim-
aging exploratory substudies (n = 132 MRI scans and n = 48 Pittsburgh
compound-B positron emission tomography [PiB-PET] scans conducted in con-
nection to the baseline visit) have been previously described in detail (64, 65).
In brief, brain MRI scans were conducted at four of the six study sites and PiB-
PET scans at one site. The MRI/PET populations were not significantly different in
demographic, clinical, and cognitive characteristics from the populations without
MRI/PET at these sites. However, the MRI/PET populations were slightly older
than the rest of the FINGER participants (mean 70.2 ± 4.6 vs. 69.2 ± 4.7 y for
MRI and 70.8 ± 5 vs. 69.3 ± 4.7 y for PiB-PET).

Regional cortical thickness and volumes were measured using the Freesurfer
image analysis suite (version 5.0.3). For the present study, we chose four MRI
measurements with clear established links to dementia/AD: hippocampus vol-
ume, total gray matter (GM) volume, white matter lesion (WML) volume (all MRI
volumes were divided by total intracranial volume), and a measure of cortical
thickness in AD signature regions calculated as the average of cortical thickness
in entorhinal, inferior temporal, middle temporal, and fusiform regions (17).

For PiB-PET, we used a visual rating of overall amyloid status (positive/nega-
tive) and a composite measure of amyloid deposition calculated as the average
across the prefrontal, parietal, lateral temporal, precuneus, anterior cingulate,
and posterior cingulate regions of interest as previously described (65).

After zero-skewness log transformation for all neuroimaging variables that were
not normally distributed (hippocampus, total GM and WML volumes, and PIB com-
posite), linear-regression models were used to assess the associations between
each MRI measure or the PiB composite score (as dependent variables) and meta-
bolic features (as independent variables). All models were adjusted for age and
sex, and MRI models were additionally adjusted for the study site. All results are
shown uncorrected for multiple testing. Similar logistic-regression models were con-
ducted with positive/negative amyloid status on PiB-PET as the dependent variable.

Mouse Abca7 KO Model. All animal procedures were approved by the Mayo
Clinic’s Institutional Animal Care and Use Committee and were performed
following the NIH’s Guide for the Care and Use of Laboratory Animals (66). Abca7
KO mice (Abca7�/�) (67) were crossbred with WT C57BL/6 inbred mice.
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Littermate male and female Abca7+/+ (WT) and Abca7�/� (KO) mice were killed
at 50 wk of age (four WT male, three WT female, four KO male, and three KO
female), and the left hemisphere of the brain was rapidly dissected and frozen
on dry ice. The left cerebral cortex (20 mg of wet weight tissue) was extracted
using chloroform/methanol/water biphasic extraction, and the lipid fraction was
analyzed along with three pooled samples using UPLC-MS with reverse phase
chromatography (LPOS and LNEG). Peak picking was performed using the R
library XCMS after optimizing peaks extraction and RT correction parameters with
the library IPO (68). Further data processing was completed using KniMet (69).
Briefly, features were removed from further analysis if detected in less than 50%
of the pooled samples with a relative SD higher than 20%. Annotations were
made by the exact mass match with the LIPID MAPS database followed by a
comparison with RTs, collision cross-section, and fragmentation patterns from
previous analyses (Dataset S6). Missing values were either imputed using the R
library “impute” (70) for multivariate statistical analysis or replaced with half of
the minimum value found in the feature for univariate statistical analysis. In
total, 10,837 features were detected in positive and negative ionization mode,
with 5,503 of these features being assigned by a combination of exact mass, RT
matching, and comparison with standards. Multivariate statistics comparing met-
abolic features detected in KO versus WT mice were performed on both negative
and positive ionization mode data.

AppNL-G-F Mouse Model. We examined the lipid profile of brain tissue (left
cerebrum) from the AppNL-G-F mouse (n = 6 AppNL-G-F, n = 5 WT). All procedures
were performed as described for the ABCA7 KO mouse model above.

Data, Materials, and Software Availability. All summary statistics for asso-
ciation data are included in the manuscript and/or supporting information. All
AIRWAVE metabolomic data sets are available for download here https://doi.org/
10.14469/hpc/6945 (71). All other AIRWAVE data may be accessed upon
application to the Dementias Platform UK Data portal (https://portal.
dementiasplatform.uk/Apply/ApplicationProcess) (72). The FINGER data pre-
sented in this article are not readily available because data can be made avail-
able only for those fulfilling the requirements for viewing confidential data as
required by Finnish law and the Finnish Institute for Health and Welfare. More-
over, the purpose of the research must be in alignment with the informed
consent provided for this study and/or the FINGER study, with Finnish law and
regulations at the Finnish Institute for Health and Welfare. Requests are to be
submitted to the Finnish Institute for Health and Welfare: kirjaamo@thl.fi.
Data for the Rotterdam Study can be obtained upon request. Requests
should be directed toward the management team of the Rotterdam Study
(datamanagement.ergo@erasmusmc.nl), which has a protocol for approving
data requests. Because of restrictions based on privacy regulations and the
informed consent of the participants, data cannot be made freely available in a
public repository. Data for ABCA7 KO mice is available here https://www.ebi.ac.
uk/metabolights/MTBLS6093 (73).
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