
Imperial College of Science, Technology and Medicine
Department of Mechanical Engineering

Parallel Harmonic Balance Method for Analysis of
Nonlinear Mechanical Systems

Jiřı́ Blahoš

October 2022

Submitted in part fulfilment of the requirements for the degree of PhD.

Originality statement

I certify that the intellectual content of this thesis is the product of my own work and that

all the assistance received in preparing this thesis and sources have been acknowledged.

i

ii

Copyright declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents

are licensed under a Creative Commons Attribution-Non Commercial 4.0 International

Licence (CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format.

You may also create and distribute modified versions of the work. This is on the condition

that: you credit the author and do not use it, or any derivative works, for a commercial

purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by

naming the licence and linking to the licence text. Where a work has been adapted, you

should indicate that the work has been changed and describe those changes

Please seek permission from the copyright holder for uses of this work that are not included

in this licence or permitted under UK Copyright Law.

Blahoš Jiřı́

October 2022

iii

iv

Abstract

Mechanical vibration analysis and modelling are essential tools used in the design of var-

ious mechanical components and structures. In the case of turbine engine design specif-

ically, the ability to accurately predict vibration of various parts is crucial to ensure their

safe operation while maintaining efficiency. As the designs become increasingly complex

and margins for errors get smaller, high fidelity numerical vibration models are neces-

sary for their analysis. Research of parallel algorithms has progressed significantly in the

last decades, thanks to the exponential growth of the world’s available computational re-

sources. This work explores the possibilities for parallel implementations for solving large

scale nonlinear vibration problems. A C++ code using MPI was developed to validate

these implementations in practice. The harmonic balance method is used in combina-

tion with finite elements discretisation and applied to an elastic body with the Green-

Lagrange nonlinear model for large deformations. A parameter continuation scheme using

a predictor-corrector approach is included to compute frequency response functions. A

Newton-Raphson solver is used to solve the bordered nonlinear system of equations in the

frequency domain. Three different parallel algorithms for solving the linearised problem

in each Newton iteration are analysed - a sparse direct solver (using MUMPS library), GM-

RES (using PETSc library) and an inhouse implementation of FETI. The performance of the

solvers is analysed using beam testcases and a fan blade geometry. Scalability of MUMPS

and the FETI solver is assessed. Full nonlinear frequency response functions with turning

points are also computed. Use of artificial coarse space and preconditioning in FETI is

discussed as it greatly impacts convergence properties of the solver. The presented parallel

linear solvers show promising scalability results and an ability to solve nonlinear systems

of several million degrees of freedom.

Keywords: nonlinear vibration analysis, distributed geometric nonlinearity, harmonic bal-

ance, parameter continuation, frequency response function, parallel solver, MUMPS, FETI,

GMRES, domain decomposition, large scale model

v

vi

Acknowledgements

Throughout the writing of this dissertation and during the years of my PhD, I have been

supported and guided by the following people which I want to thank.

First and foremost I want to thank my parents for their love and for guiding and supporting

me through my entire life. I also want to thank all other family members for their love and

encouragement in difficult times.

I want to express my gratitude to my supervisor Dr Loı̈c Salles. His support, experience

and knowledge were invaluable for my navigation through many aspects of the entire PhD

study.

I am also thankful to all my colleagues in the VUTC lab at Imperial College London for

their professional help. Special thanks goes to Dr Alessandra Vizzaccaro and Dr Fadi El

Haddad for their numerous help during my study.

I also want to thank the EXPERTISE [172] training network for providing funding and

connections with many people and institutions working in this field.

Special thanks is dedicated to Professor Daniel J. Rixen from Technical University of Mu-

nich for his time and kindness. His knowledge significantly contributed to this work.

I am grateful to IT4Innovations for opportunity for secondment and providing their com-

putational resources. Special thanks goes to Dr Tomáš Brzobohatý for his time and shared

knowledge.

vii

viii

There are no accidents.

Master Oogway

ix

x

Contents

Originality statement i

Copyright declaration iii

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Motivation . 1

1.2 EXPERTISE network . 4

1.3 Objectives . 4

1.4 Outline . 5

2 Physics and discretisation 7

2.1 State of the art . 7

2.2 Problem physics . 8

2.2.1 Linear deformations . 9

2.2.2 Nonlinear deformations . 11

2.2.3 Boundary conditions . 12

xi

xii CONTENTS

2.3 Finite elements . 12

2.3.1 Boundary conditions . 17

2.3.2 Evaluating the mesh integrals . 17

2.3.3 C tensor, symmetries and Voigt notation 22

2.4 Conclusion . 25

3 Vibration modelling 26

3.1 State of the art . 26

3.1.1 Harmonic balance and continuation . 27

3.1.2 Reduced order modelling . 28

3.1.3 Linear and nonlinear solvers . 29

3.2 Harmonic Balance Method . 32

3.3 Newton-Raphson . 36

3.4 Alternating Frequency Time (AFT) . 38

3.5 Boundary conditions . 40

3.6 Continuation . 41

3.7 Linear analysis and modes . 45

3.8 Conclusion . 48

4 FETI for HBM 50

4.1 State of the art . 50

4.1.1 Parallel linear solvers . 51

4.1.2 Domain decomposition methods . 51

4.1.3 FETI method . 52

CONTENTS xiii

4.1.4 Parallel HBM . 54

4.2 Domain decomposition of the nonlinear HBM problem 55

4.3 Treatment of corners . 60

4.4 Linearised problem - Newton step . 61

4.5 Solving the linearised problem . 66

4.6 Preconditioning . 71

4.7 Choice of artificial coarse space . 73

4.8 Continuation . 75

4.9 Conclusion . 77

5 Code 79

5.1 Structure . 80

5.1.1 Input and output . 83

5.2 Linear algebra . 85

5.2.1 DOF ordering . 88

5.2.2 Global solvers . 89

5.2.3 Notes about MUMPS . 91

5.3 FETI implementation . 93

5.3.1 Primal and dual maps . 93

5.3.2 Application of the dual problem operator 96

5.3.3 Projectors . 98

5.3.4 Convergence . 103

5.4 Conclusion . 104

xiv CONTENTS

6 Results 105

6.1 Hardware overview . 106

6.2 Testcase overview . 106

6.2.1 Note on parameters . 107

6.3 Global solvers results . 109

6.3.1 Code verification . 109

6.3.2 Scalability . 112

6.3.3 Blade FRC . 118

6.3.4 GMRES performance on global system 121

6.4 FETI solver results . 127

6.4.1 Coarse space and preconditioner effect 127

6.4.2 Scalability . 137

6.4.3 Projected dual problem equations . 153

6.4.4 Frequency Response Curve . 154

6.5 Conclusion . 161

7 Conclusion 163

7.1 Research work conclusion . 163

7.1.1 Global system with direct solver . 163

7.1.2 Global system with GMRES . 163

7.1.3 FETI . 164

7.2 Scientific contributions . 164

7.3 Future work . 165

Bibliography 166

A Cantilever beam response study 182

A.0.1 Discussion . 191

xv

xvi

List of Tables

5.1 List of used 3rd party libraries . 82

6.1 Salomon supercomputer information . 106

6.2 Karolina supercomputer information . 107

6.3 Clamped-clamped beam testcase parameters 109

6.4 Clamped-clamped beam testcase numerical parameters 110

6.5 Cantilever beam verification testcase parameters 111

6.6 Clamped-clamped beam testcase numerical parameters 111

6.7 Clamped-clamped beam scaled testcase parameters 113

6.8 Small scale scalability testcase parameters . 113

6.9 MUMPS scalability runtime . 116

6.10 Blade FRC testcase parameters . 118

6.11 Blade FRCs computation times . 120

6.12 First weak scalability test dimensions . 138

6.13 Second weak scalability test dimensions . 147

6.14 First strong scalability test dimensions . 148

6.15 FETI FRC testcase numerical parameters . 155

A.1 Cantilever beam continuation numerical parameters 183

xvii

xviii

List of Figures

1.1 Diagram of analysis for a bladed disk . 3

2.1 Mesh example . 13

2.2 HEXA20 element . 18

3.1 Pendulum vibration . 27

3.2 FRC example . 29

3.3 Nonzero stiffness matrix pattern example . 31

3.4 Periodic harmonic motion example . 33

3.5 Diagram of AFT for the nonlinear force vector 39

3.6 Diagram of AFT for the nonlinear Jacobian matrix 40

3.7 Example of nonlinear FRC for clamped-clamped beam 42

3.8 Diagram of one continuation step . 43

3.9 Clamped-clamped beam testcase . 45

3.10 Linear FRC for different damping values . 47

3.11 Beam linear FRC example . 48

4.1 Types of FETI . 53

4.2 Espreso (IT4I) scalability . 54

xix

xx LIST OF FIGURES

4.3 FETI diagram . 58

4.4 Effect of matrix B and BT . 59

4.5 Multiple domains interfacing in a corner with fully redundant constraints. . 61

4.6 Translation and rotation of neighbouring domains 75

4.7 Construction of interface rotations for artificial coarse space 76

5.1 Code flow diagram . 80

5.2 Code abstractions and implementations . 81

5.3 CSR matrix storage example . 85

5.4 Example of index distribution (nonoverlapping) 86

5.5 Example of index distribution (nonoverlapping) 86

5.6 Global matrix distribution . 87

5.7 Example of imports between distributions . 88

5.8 DOF ordering scheme . 89

5.9 Mesh distribution and global map . 90

5.10 Mesh distribution and FETI primal maps . 94

5.11 Dual variable distribution in FETI . 95

5.12 Steps in applying the F operator . 97

5.13 FETI natural coarse space required communication 100

5.14 FETI dual vector nonzero pattern overlap . 100

5.15 FETI artificial coarse space required communication 102

6.1 Clamped-clamped beam testcase . 107

6.2 Cantilever beam testcase . 107

6.3 Blade testcase . 108

LIST OF FIGURES xxi

6.4 Clamped-clamped beam verification testcase FRC 110

6.5 Cantilever beam first mode . 111

6.6 Cantilever beam verification testcase FRC . 111

6.7 Small scale scalability - runtime, setup 1 . 114

6.8 Small scale scalability - efficiency, setup 1 . 114

6.9 Small scale scalability - runtime, setup 2 . 115

6.10 Small scale scalability - efficiency, setup 2 . 115

6.11 MUMPS scalability runtime . 117

6.12 MUMPS scalability speed-up . 118

6.13 Blade FRCs for various forcing amplitudes . 119

6.14 Blade FRCs for H0123 and H012345 . 120

6.15 Blade FRCs for H0123 and H012345 (detail) . 121

6.16 Scaled clamped-clamped beam nonlinear FRC 122

6.17 Global system GMRES solve iteration count 123

6.18 Global system GMRES solve residuals for 128 MPIs 124

6.19 Global system GMRES solve runtimes . 124

6.20 Global system GMRES nonlinear solve GMRES residuals 125

6.21 Global system GMRES nonlinear solve GMRES residuals 125

6.22 Global system GMRES nonlinear solve Newton residuals 126

6.23 Global system GMRES nonlinear solve runtimes 126

6.24 FETI coarse space use comparison . 129

6.25 FETI coarse space use comparison . 130

6.26 FETI coarse space use comparison . 131

xxii LIST OF FIGURES

6.27 FETI coarse space use comparison . 132

6.28 FETI coarse space use comparison . 132

6.29 FETI coarse space use comparison . 134

6.30 FETI coarse space use comparison . 135

6.31 FETI coarse space use comparison . 136

6.32 FETI coarse space use comparison . 136

6.33 Scalability results - timing . 140

6.34 Scalability results - GMRES convergence . 141

6.35 Scalability results - timing . 142

6.36 Scalability results - GMRES convergence . 143

6.37 Scalability results - timing . 144

6.38 Scalability results - GMRES convergence . 145

6.39 Scalability results - GMRES tolerance comparison 146

6.40 Scalability results - decomposition mesh comparison 147

6.41 Scalability results - decomposition comparison 148

6.42 Scalability results - timing . 149

6.43 Scalability results - speed-up . 150

6.44 Scalability results - GMRES iteration count . 151

6.45 Scalability results - domain connectivity . 152

6.46 FETI comparison of dual problem variants . 154

6.47 FETI FRCs for H0123 GMRES tolerance comparison 156

6.48 FETI FRC amplitudes comparison . 157

6.49 FETI FRC harm 012345 detail . 158

6.50 Direct solver reference for FRC harm 012345 158

6.51 FETI FRC GMRES iterations comparison . 160

A.1 Cantilever beam testcase . 182

A.2 Cantilever beam testcase excitation . 183

A.3 Cantilever beam FRC . 184

A.4 Cantilever beam FRC - zoomed . 184

A.5 Cantilever beam FRC - zoomed . 185

A.6 Cantilever beam FRC - zoomed . 185

A.7 Cantilever beam FRC - high harmonics count 186

A.8 Cantilever beam modes . 186

A.9 Cantilever beam FRC mode 2 H012 . 187

A.10 Cantilever beam FRC mode 2 H0123 . 188

A.11 Cantilever beam FRC mode 20 H0123 . 189

A.12 Cantilever beam FRC mode 20 H012345 . 190

xxiii

xxiv

Nomenclature

α, αi Vector of coefficients for null space vectors R in FETI (global, for domain i)

β Vector of coefficients for FETI dual solution λ1 on the artificial coarse space Gc

ε Small strain tensor

ΓD Part of boundary of Ω0 where Dirichlet condition is prescribed

λ Vector of Lagrange multipliers (dual variables) in FETI

λ, µ Elasticity tensor constants for isotropic materials (only in section 2.3.3)

λ0, λ12, λ1, λ2 Parts of ∆λ solution in FETI dual problem

R Set of real numbers

A, Ai FETI domain matrices (global, for domain i)

A+, A+
i Pseudoinverse of A, Ai

D First part of right hand side vector in linearised dual problem equations in FETI

E Second part of right hand side vector in linearised dual problem equations in FETI

F FETI dual operator

F ′ Preconditioner for the FETI dual operator F

G, Gi Artificial coarse space vectors in dual variables in FETI (global, for domain i)

G, Gi Null space vectors in dual variables in FETI (global, for domain i)

Li FETI domain matrix left null space basis vectors in columns for domain i

N Number of domain in a mesh domain decomposition

xxv

xxvi NOMENCLATURE

P FETI orthogonal projector

Pc FETI conjugate projector

Q FETI orthogonal projector

R, Ri FETI domain matrix right null space basis vectors in columns (global, for domain i)

Sbb
i Schur complement of Ai on the domain boundary

ν Poisson’s ratio

ω Base frequency of vibration

Ω0, Ω Closed connected space on which the problem is defined in undeformed, deformed

coordinate system

π 3.14159265 . . .

ρ0, ρ Material density in undeformed, deformed coordinate systems

σ Small stress tensor

τ Prediction vector in continuation procedure

F̃ Vector of external forces in frequency domain

F̃nl
int Vector of nonlinear part of internal forces in frequency domain

ũ Vector of harmonic (Fourier) coefficients for displacements in frequency domain

ũ0, ũc, ũs Constant, cosine and sine components of ũ

ũi Vector of harmonic (Fourier) coefficients for displacements in frequency domain on

domain i (in parts discussing FETI)

ac, as Amplitudes of external force vector for its base frequency cosine and sine compo-

nents

B, Bi Matrix of domain interface constraints in FETI (global, for domain i)

bc
k,n, bs

k,n Values of cosine and sine functions sampled at discrete time points

Bb
i Boundary (interface) portion (column wise) of a Bi matrix

NOMENCLATURE xxvii

C Elasticity tensor (4th order)

D Damping matrix

dot Standard vector dot product

E Green-Lagrange strain tensor

EY Young’s modulus

F Vector of external forces in time domain

f0, f External force field in undeformed, deformed coordinate systems

FD Deformation gradient

Fint Vector of internal forces in time domain

Fnl
int Vector of nonlinear part of internal forces in time domain

G General set of nonlinear algebratic equations, later used specifically for the HBM

system

g Additional constraint function in correction stage of continuation procedure

h Used as a limit variable in certain equations

H, Hi Function for HBM equations of motion in FETI (global, for domain i)

Hc FETI domain interface constraint function

ht Length of time step in alternating frequency time procedure time sampling

K Stiffness matrix (linear part)

Knl Stiffness matrix (nonlinear part)

L Lagrangian for FETI formulation

M Mass matrix

Nr, N Scalar finite element shape function in reference, actual element coordinates

Nt Number of discrete time points in alternating frequency time procedure time sam-

pling

O A zero vector or matrix of appropriate (fitting) size

R(t) Residual of discrete equations of motion in time domain

rM, rK Rayleigh damping coefficients for mass and stiffness matrix respectively

rT, rR Translational and rotational parts of rigid body modes of domain linear stiffness

matrix K in FETI

S Second Piola-Kirchhoff stress tensor

s Size of prediction step in continuation procedure

T One time period of vibration

tn Discrete time values in alternating frequency time procedure time sampling

u Vector of discretised displacements (from section 2.3 onward)

u, U Continuous displacement vector function

v Weak formulation test function, finite element shape function

w Weight coefficient for finite element Gauss quadrature rules

x A generic variable

x0, x Undeformed, deformed spatial coordinate systems (in section 2.2)

Z Dynamic stiffness matrix in HBM

xxviii

Chapter 1

Introduction

1.1 Motivation
Vibration is a physical phenomenon naturally occurring in all rotatory mechanical systems
as well as many other constructions or components experiencing periodic loading (bridges,
buildings). When not properly controlled, excessive vibration can cause catastrophic fail-
ures leading to significant financial cost as well as serious health hazards. Even smaller
magnitude vibration can cause damage to mechanical components over a long time span
due to high cycle fatigue. Modelling and predicting occurrence of any and all vibration
in industrial machines and constructions is therefore a necessary step in their engineering
process.

Designs of new aero engines in aerospace industry are required to meet many different
and sometimes conflicting criteria. Emphasis is placed on high fuel efficiency to reduce
the operating cost as much as possible. Other aspects include complexity and cost of
both manufacturing and subsequent maintenance, durability or compatibility with other
components of the aircraft. In recent decades, a growing emphasis is also placed on the
ecological friendliness of the engines. Finally, all these requirements need to be coupled
with high robustness and reliability of the engines to ensure the maximum possible level
of safety during their operation. Combining this entire set of requirements efficiently into
the final design demands use of the most advanced mathematical modelling tools as well
as the state of the art computing capabilities.

Analysis of vibration as a scientific field and its use in turbine engineering has many
decades of history [30, 129]. Many approaches and models have been since developed.
Harmonic balance method (HBM) is a common tool modelling approach for steady state
harmonic motion, which makes it a popular method for vibration analysis [180]. While
explicit time marching schemes have been successfully used for modelling nonlinear vibra-
tion [188], HBM was shown to be a more efficient tool for obtaining steady state responses
[158]. Parameter continuation techniques and bifurcation detection algorithms have been
developed to acquire proper understanding of character of the vibration across a range

1

2 Chapter 1. Introduction

of operating frequencies [3]. Accurate models of various nonlinearities (such as large de-
formations or contact) are necessary to correctly predict vibration responses of complex
industrial components [111]. Model order reduction techniques are often used to reduce
the size of the analysed system to reduce computational cost [150]. Experimental measure-
ment of vibration is then important to validate any new proposed modelling technique
[42]. Generally, a complete vibrational analysis of a turbine and its components is a com-
plex procedure with many steps and employing various algorithms [162]. A diagram of
vibrational analysis of a bladed disk can be seen in 1.1.

While reduced order models are very useful vibration analysis tools, they inherently in-
troduce certain assumptions into the model, which might reduce its accuracy or scope of
applicability. Additionally, their validation relies on accurate full model results. This means
that modelling of full nonlinear vibration systems remains an essential component of the
analysis. Thanks to rapid development of microchip technology and utilisation of mas-
sively parallel computer systems in the recent decades large scale computer simulations
can be now executed in previously unthinkable times. Combining the state of the art vibra-
tion analysis tools with modern parallel programming techniques can lead to significant
improvements in terms of accuracy and level of detail of the models. This level of detail
is necessary for further refinement of turbine designs while maintaining high safety and
reliability standards. Such demand requires the ability to process meshes with millions of
nodes. Models of this size are commonly used in industry for linear modal analysis and
computation of linear vibrational responses [74]. However, the computational requirements
are much higher for models with distributed nonlinearities. While some attempts to solve
large scale nonlinear mechanical vibration problems with HBM have been made [113], the
number of degrees of freedom is limited to hundreds of thousands at most. This work aims
to push this limit further.

1.1. Motivation 3

Figure 1.1: Diagram of analysis for a bladed disk taken from [162].

4 Chapter 1. Introduction

1.2 EXPERTISE network
The project presented here was a part of a European Training Network (ETN) called
EXPERTISE (models, EXperiments and high PERformance computing for Turbine mechan-
ical Integrity and Structural dynamics in Europe) [172]. The goal of this network was
to connect researchers across Europe in a joint effort towards developing advanced tools
for dynamics analysis of large-scale models of turbine components. An important aspect
of this network was collaboration and training of students in various engineering areas
related to nonlinear structural dynamics of turbomachinery and high performance com-
puting (HPC). Four work packages (WPs) were established employing together 15 Ph.D.
students. WP1 research focused on understanding of the physics of friction contacts and
developing advanced contact models. WP2 work was aimed at experimental identifica-
tion of contact interfaces. WP3, where this particular project was listed, had a goal to
develop efficient software analysis tool for highly refined finite element models for non-
linear vibration problems. WP4 then focused on the computing problematic, especially on
data dependency, task parallelism and high level abstractions of I/O operations in parallel
computing.

The collaboration within the EXPERTISE network contributed greatly to the results pre-
sented in this work. In particular, extensive discussions took place with the IT4Innovations
research institute in the Czech Republic and the Technical University Munich. Their knowl-
edge regarding the domain decomposition methods and parallelisation techniques were
invaluable for this work.

1.3 Objectives
Recent development in the field of parallel computing and algorithms opens new pos-
sibilities for large scale modelling of nonlinear mechanical vibration problems. Various
divide and conquer algorithms have been successfully used to obtain significant computa-
tional speed-ups in related fields, such as static and transient structural analysis, acoustics
or electromagnetism. The main objective of this work is to explore options to efficiently
parallelise solving process of full large scale nonlinear vibration models in mechanics for
distributed memory architectures.

A parallel C++ code was developed as a part of this project. This code implements al-
gorithms described in this work so that they can be tested and evaluated on the current
top of the line computer hardware. The code takes advantage of several existing software
libraries for parallel computing. They offer efficient implementations of various complex
functionalities required for numerical modelling, such as meshing, discretisation, inter-
process communication, linear algebra or linear solvers. The code is used to compute
nonlinear vibration responses on several testcases. The goal is to study the capabilities of
the proposed parallelisation techniques as well as reveal directions where further research
is required.

1.4. Outline 5

FETI method, a parallel algorithm for solving linear systems of equations based on domain
decomposition approach, has been shown to be very efficient for large scale systems. This
work applies the method to solve large scale vibration systems to study its suitability for
this type of problems. The formulation of the method is adapted to better fit the harmonic
balance equations and its performance is analysed in depth.

1.4 Outline

The content of this thesis is divided into seven chapters, each covering one aspect of the
studied problematic. Following the introduction, the second chapter lays out the underly-
ing physical and discrete models used for this work. First, the state of the art in the fields of
continuum mechanics and finite elements is overviewed. Next the equations of motion for
a continuous solid are established in both their strong and weak form, including definition
of the nonlinearities. Boundary conditions are also addressed. Finally, the finite element
scheme used to discretise the equations of motion is described.

The third chapter introduces the harmonic balance method (HBM) as the tool used to model
vibration. Again, the state of the art regarding this method and topics closely related to it
is first overviewed. Application of HBM on the discrete equations of motion obtained from
the second chapter is then described in detail. The equations are transformed into their
frequency domain form. A standard Newton-Raphson method is then introduced to solve
those nonlinear equations. The alternating frequency time and parameter continuation
procedures are described to allow for computing a nonlinear vibrational response over a
range of frequencies. The boundary conditions are addressed again and one section is
dedicated to linear modal analysis.

The fourth chapter presents the FETI method and its application to the nonlinear vibra-
tional system arising from HBM. State of the art of this method as well as of parallel solvers
in general is first discussed. Next, the application of the FETI method approach to solving
the nonlinear HBM equations is described in detail. The FETI form of the HBM equations
is established. The algorithm is adapted to fit the indefinite and nonsymmetric character of
the problem. Preconditioning technique is also discussed and an artificial coarse space is
introduced to improve convergence of the iterative solver. Finally, the extended bordered
system is defined for a parameter continuation procedure.

The fifth chapter covers implementation of the theory and algorithms that were presented
in the previous three chapters. Basic characteristics of the developed code are laid out.
The chapter describes the structure of the code, 3rd party libraries that were used and
discusses their properties. Special focus is placed on the parallelisation aspect of the code,
highlighting its implementation details. In particular, implementation of the FETI method
is discussed extensively.

The sixth chapter provides practical results that were achieved with the implemented code.

6 Chapter 1. Introduction

First, overview of used hardware and testcases is provided. Comparisons of results from
the code to results of other researchers are then presented for verification purposes. Next,
the chapter presents results for three different parallel solvers - MUMPS, PETSc GMRES
and an inhouse FETI implementation. Single frequency responses as well as responses for
full frequency ranges are computed using large nonlinear vibration models. The solvers
are analysed in terms of their convergence properties, memory efficiency and parallel scal-
ability. A discussion is provided for each result.

Lastly, the results of this work are discussed and conclusions are presented. Various per-
formance aspects of each solver are assessed. Scientific contributions of the work are sug-
gested, as well as an outlook into possible future research of the topic.

Chapter 2

Physics and discretisation

This chapter provides an overview of the basic theoretical background in mathematics and
physics used in mechanical analysis that is relevant for this work. First, the mathematical
framework describing the physics of motion of elastic bodies undergoing deformation is
laid out. This provides the connecting point with the physical phenomenon of solid me-
chanics and mechanical vibration in particular. Second, discretisation of the established
equations of motion using a well known finite element technique is described. This trans-
fers the physical motion from the realm of partial differential equations defined on a space
continuum into the realm of ordinary differential equations defined for a set of spatially
discrete variables.

2.1 State of the art

When modelling vibration (or any general motion) of continuous solids, their underlying
material model needs to be defined first. There are many types and ways to classify mate-
rials and their behaviour. A fundamental level study of material physics can be found in
[149]. Hartley et al. [88] provided an overview regarding the topic of material deformation
and its modelling. This work uses the isotropic elastic material model. This means no
plastic deformations are assumed and the material properties don’t vary with the direction
of examination. Use of this model is valid for many engineering applications. Its linear
version can be mathematically described as:

div(σ) + ρ0 f0 = ρ0ü

σ = Cε

ε =
1
2
(∇u + (∇u)T)

(2.1)

The above equations are discussed in detail in Section 2.2.1. Overview of the topic of
linear elasticity can be found in [82, 167]. However, the linear model is not sufficient in

7

8 Chapter 2. Physics and discretisation

many modelling scenarios as real vibrating structures often exhibit nonlinear behaviour,
especially when the deformation becomes larger. Therefore, nonlinear elastic models need
to be used instead. A comprehensive study on behaviour and modelling of nonlinear elastic
materials can be found in [32].

Besides material properties, a common source of nonlinearity in mechanics is contact. A
general overview of contact modelling for solids is in [145]. Research of techniques to
model contact has been of utmost importance in turbomachinery engineering. A turbine
engine consists of many moving parts which are in various forms of contact with one an-
other. Accurate modelling of those contact points is necessary to obtain accurate vibration
response of the entire structure. Examples of studies regarding contact in bladed disks and
how it affects their vibration can be found in [42, 68, 141, 143]. Rizvi et al. [154] provided
a survey of dynamics experiencing dry friction damping.

When modelling solids it is often not feasible to model their physics analytically, especially
in cases of complex geometries or boundary conditions. A discretisation scheme is used
instead. The most common discretisation technique used in this field is the finite element
method (FE or FEM). Its principle stands on weak formulation of the motion equations by
introducing a space of test functions and then discretising this set of test functions along
with discretisation of the solid into a mesh of elements and nodes. The weak form of the
equations of motion with v being the test function looks as follows:

∫
Ω0

div(σ)vdΩ0 + ρ0

∫
Ω0

f0vdΩ0 = ρ0

∫
Ω0

üvdΩ0 (2.2)

See Sections 2.2.1 and 2.3 for details. Use of this method dates as far back as the 1940s [91]
and it has since been used in many fields for numerical modelling of partial differential
equations. The theory of this method as well as its practical use and computer implemen-
tations have been described in a wide range of literature [19, 20, 38, 119, 168].

2.2 Problem physics

To model vibration, one first needs to establish the physical framework describing a motion
of a solid body. The most basic model based on continuum mechanics for solids is the so
called linear elasticity model. This model assumes that the body deformation is linearly
proportional to the magnitude of the deforming force. This assumption only holds up to a
certain point in terms of magnitude of the deformation. When the deformation is too large,
a more accurate model needs to be used to account for the nonlinearity. Both linear and
nonlinear elastic models used for this work are described in the following sections.

2.2. Problem physics 9

2.2.1 Linear deformations

Assume a body covering an area (closed connected space) Ω0 ⊂ R3, which is in a rest
(undeformed) state, and is described by a coordinate system x0 in R3. When deformed,
the body covers a new area Ω̄, described by a new coordinate system x : R3 → R3 which
maps points of the body from their undeformed location x0 to their deformed location. The
displacement field u : R3 ×R → R3 is then defined as:

u(x0, t) = x(x0, t)− x0 (2.3)

with t representing the time variable.

Spatial derivative of u with respect to the undeformed coordinate system is denoted as:

∇u =
∂u
∂x0 =


∂u1
∂x0

1

∂u1
∂x0

2

∂u1
∂x0

3
∂u2
∂x0

1

∂u2
∂x0

2

∂u2
∂x0

3
∂u3
∂x0

1

∂u3
∂x0

2

∂u3
∂x0

3

 (2.4)

with u1, u2, u3 and x0
1, x0

2, x0
3 denoting (only in this instance) first, second and third compo-

nents of u and x0 respectively. Deformation gradient is defined as:

FD =
∂x
∂x0 = I +∇u (2.5)

When using the linear model, which is suitable as long as the deformations are small, the
strain tensor ε : R3 ×R → R3×3 can be defined as:

ε =
1
2
(∇u + (∇u)T) (2.6)

with the arguments x0 and t in ε and u omitted for better readability.

A variation of this strain is then:

δε =
1
2
(∇δu + (∇δu)T) (2.7)

Cauchy stress σ is used, and is coupled linearly with the strain tensor as:

σ = Cε (2.8)

10 Chapter 2. Physics and discretisation

where C is a fourth order tensor. In this work, it is assumed to be a tensor with constant
coefficients. Its form will be discussed in more detail later (see Section 2.3.3).

The governing partial differential equation of linear elasticity is:

div(σ) + ρ0 f0 = ρ0ü (2.9)

with f0 = f0(x0, t) : R3×R → R3 being the external body forces acting on the body (in the
undeformed state). ρ0 denotes the material density and is assumed to be constant in both
space and time. The double dotted ü represents the second derivative of u with respect to
the time variable.

As a prerequisite to the following finite element analysis, the equations of motion need to
be transformed to their weak form [19]. This is done by multiplying them by a test function
v = δu and integrating over Ω0, which yields:

∫
Ω0

div(σ)vdΩ0 + ρ0

∫
Ω0

f vdΩ0 = ρ0

∫
Ω0

üvdΩ0 (2.10)

with multiplication between functions on R3 (such as f v or üv) representing the standard
vector dot product. Applying Green’s identity to the integral involving stress σ and rear-
ranging terms, the above yields:

ρ0

∫
Ω0

üvdΩ0 +
∫

Ω0

σ : ∇vdΩ0 −
∫

∂Ω0

v(σn)dS = ρ0

∫
Ω0

f vdΩ0 (2.11)

The : operator stands for double dot product between 2 second order tensors, i.e. A : B =

∑i,j Ai,jBi,j. The stress tensor σ is symmetric (this is discussed in more detail in Section
2.3.3), which implies that:

σ : ∇v = σ : sym(∇v)

= σ :
1
2
(∇v + (∇v)T)

= σ : δε

(2.12)

Assuming zero surface tension, i.e. eliminating the boundary integral, the final weak form
for a linear elastic problem yields:

ρ0

∫
Ω0

üvdΩ0 +
∫

Ω0

σ : δεdΩ0 = ρ0

∫
Ω0

f vdΩ0 (2.13)

The above represents the weak form of (2.9). The weak form is a more suitable formulation
for solving of practical problems, as solving their strong form is in general not feasible.

2.2. Problem physics 11

2.2.2 Nonlinear deformations

When deformations are large, linear strain is no longer a suitable model. Instead, the
Green-Lagrange strain tensor is used in this work to account for this nonlinearity:

E =
1
2
(∇u + (∇u)T + (∇u)T∇u) (2.14)

A variation of the strain δE with respect to a particular test function v can also be deter-
mined:

δE = lim
h→0

E(u + hv)− E(u)
h

=
1
2

lim
h→0

∇u+h∇v+(∇u+h∇v)T+(∇u+h∇v)T(∇u+h∇v)−∇u−(∇u)T−(∇u)T∇u
h

=
1
2

lim
h→0

h
[
∇v + (∇v)T + (∇v)T∇u + (∇u)T∇v

]
+ h2(∇v)T∇v

h

=
1
2

[
∇v + (∇v)T + (∇v)T∇u + (∇u)T∇v

]
+

1
2

lim
h→0

h(∇v)T∇v︸ ︷︷ ︸
= 0

=
1
2

[
∇v + (∇v)T + (∇v)T∇u + (∇u)T∇v

]

(2.15)

The weak form from the linear case (2.13) still holds, but only in the deformed state:

ρ
∫

Ω
üvdΩ +

∫
Ω

σ : δεdΩ = ρ
∫

Ω
f vdΩ (2.16)

with f and ρ representing the same quantities as f0 and ρ0 but in the deformed state.
However, it can be shown that this can be rewritten into:

ρ0

∫
Ω0

üvdΩ0 +
∫

Ω0

S : δEdΩ0 = ρ0

∫
Ω0

f0vdΩ0 (2.17)

where S stands for the second Piola-Kirchhoff stress. This formulation is entirely in the
undeformed body state. Details of this transformation can be seen in [20]. Furthermore,
assuming the material to be of the St Venant-Kirchhoff type, i.e. assuming small strains
(not deformations), the stress strain relationship can be kept linear as in 2.8:

S = CE (2.18)

12 Chapter 2. Physics and discretisation

2.2.3 Boundary conditions

There are three most commonly used types of boundary conditions that can be imposed on
the boundary ∂Ω0 to further restrict a solution to a partial differential equation - Dirichlet,
Neumann and Robin boundary condition.

The Dirichlet boundary condition prescribes specific values for the solution, i.e.:

u = a(x0) on ΓD ⊂ ∂Ω0 (2.19)

The Neumann condition prescribes value for the derivative of the solution in the direction
of the surface’s outer normal n:

∂u
∂n

= (∇u)n = b(x0) on ΓN ⊂ ∂Ω0 (2.20)

However, in elasticity equations, this condition takes the form of prescribed traction in the
normal direction:

σn = b(x0) on ΓN ⊂ ∂Ω0 (2.21)

Note that this still involves derivative of u, given the equations (2.6) and (2.8). This version
of the Neumann condition matches the terms obtained in the boundary integral in (2.11).

The last variant is the so called Robin boundary condition, which is a linear combination
of the previous two:

αu + β
∂u
∂n

= c(x0) on ΓR ⊂ ∂Ω0 (2.22)

This work will only employ the homogeneous Dirichlet boundary condition, i.e.: u = 0 on a
given ΓD. For the rest of the boundary, zero surface traction is assumed, in correspondence
with the elimination of the boundary integral in (2.11). The particularities of enforcing the
Dirichlet boundary condition will be discussed in later sections.

2.3 Finite elements

From this section forward, a new notation is adopted. The continuous vector field of
displacements u will be denoted as U. u will instead represent the vector of displacements
for a discrete set of nodes on a mesh.

Assume a discretisation of Ω0 into a mesh of 3D elements labelled e, i.e. Ω0 = ∪iei.
These elements don’t overlap and they are each determined by a set of nodes. For each

2.3. Finite elements 13

Figure 2.1: Example of a regularly meshed cube solid

of these nodes and each of the xyz coordinates, a single test function (whose restriction
on a particular element is called a shape function for that element) v is assumed. The
standard Lagrange interpolating polynomials are used in this work. This means that each
of these functions is nonzero at exactly 1 of the 3 coordinates only, has value 1 at exactly
one node and 0 at all the other ones. They are also zero everywhere outside the elements
that coincide with the function’s corresponding node. Let’s index these functions vi for i
from 1 to 3×Nnodes, or from 1 to Ndo f , as there are 3 degrees of freedom assumed per node,
one per each coordinate axis. The weak form equation (2.17) becomes a set of equations
corresponding to the set of the test functions v.

The continuous solution field U is then expressed as a linear combination of these test
functions:

U = ∑
i

uivi (2.23)

The vector of the solution coefficients ui is u. This vector is still a function of time, i.e.
u : R → RNdo f . Let’s have a closer look at the individual terms in (2.17). Starting with the
inertial term:

I j
1 = ρ0

∫
Ω0

ÜvjdΩ0 = ρ0

∫
Ω0

∑
i
(üivi) vjdΩ0

= ρ0 ∑
i

üi

∫
Ω0

vivjdΩ0

= ρ0 ∑
i

üi ∑
k

∫
ek

vivjdΩ0

(2.24)

it is not difficult to realise that this expression collectively over all values of j represents a

14 Chapter 2. Physics and discretisation

matrix vector multiplication:


I1
1

I2
1
...

I
Ndo f
1

 = ρ0


∑i üi ∑k

∫
ek

viv1dΩ0

∑i üi ∑k
∫

ek
viv2dΩ0

...
∑i üi ∑k

∫
ek

vivNdo f dΩ0


= Mü

(2.25)

where:

M = ρ0 ∑
k


∫

ek
v1v1dΩ0

∫
ek

v2v1dΩ0 · · ·
∫

ek
vNdo f v1dΩ0∫

ek
v1v2dΩ0

∫
ek

v2v2dΩ0
∫

ek
vNdo f v2dΩ0

...∫
ek

v1vNdo f dΩ0
∫

ek
v2vNdo f dΩ0 · · ·

∫
ek

vNdo f vNdo f dΩ0

 (2.26)

M is the mass matrix of the discretised system.

For the external forces term, one obtains:

I j
2 = ρ0

∫
Ω0

f0vjdΩ0 = ρ0 ∑
k

∫
ek

f0vjdΩ0 (2.27)

This can be also summarised into the vector of external forces:

F =


I1
2

I2
2
...

I
Ndo f
2

 (2.28)

Note that this vector is still a function of time.

Lastly, the internal forces:

I j
3 =

∫
Ω0

S(E) : δEjdΩ0

=
∫

Ω0

(CE) : δEjdΩ0

(2.29)

with δEj standing for the strain variation with respect to test function vj. This integral over
the entire range of j indices forms the vector of the internal forces inside the body. It is
nonlinear in u, i.e.:

2.3. Finite elements 15

Fint(u) =


I1
3

I2
3
...

I
Ndo f
3

 (2.30)

In the future sections, the derivative of this vector ∇uFint(u) will also be important. Let’s
for convenience denote PL and PR the left and right term around the C tensor in the integral
(2.29):

PL(u) = E(U) =
1
2

[
(∇U)T∇U +∇UT +∇U

]
=

1
2

[
(∑

i
ui(∇vi)

T)(∑
i

ui∇vi) + ∑
i

ui(∇vT +∇v)

]

Pj
R(u) = δEj(u) =

1
2

[
(∇U)T∇vj + (∇vj)

T∇U + (∇vj)
T +∇vj

]
=

1
2

[
∑

i
ui(∇vi)

Tvj + (∇vj)
T ∑

i
ui∇vi + (∇vj)

T +∇vj

]
(2.31)

The derivatives with respect to a particular element of u then yield:

∂PL(u)
∂uk

=
1
2

[
(∇U)T∇vk + (∇vk)

T∇U + (∇vk)
T +∇vk

]
∂Pj

R(u)
∂uk

=
1
2

[
(∇vk)

T∇vj + (∇vj)
T∇vk

] (2.32)

Note that ∂PL(u)
∂uk

= Pk
R(u) = δEk(u). The derivative of the integral (2.29) with a particular

index j with respect to uk is then:

∂I j
3

∂uk
=
∫

Ω0

[
(CPL) :

∂Pj
R

∂uk
+

(
C

∂PL

∂uk

)
: Pj

R

]
dΩ0

=
∫

Ω0

[
1
2
(CE) : ((∇vk)

T∇vj + (∇vj)
T∇vk) +

(
CδEk

)
: δEj

]
dΩ0

(2.33)

The first term in the sum inside the integral can be rearranged:

16 Chapter 2. Physics and discretisation

(CE) : ((∇vk)
T∇vj + (∇vj)

T∇vk) = Tr((CE)T (∇vk)
T∇vj) + Tr((CE) ((∇vj)

T∇vk)
T)

= Tr((CE) (∇vk)
T∇vj) + Tr((CE) (∇vk)

T∇vj)

= 2Tr((CE) (∇vk)
T∇vj)

= 2(∇vk(CE)) : ∇vj
(2.34)

This gives a new expression for (2.33):

∂I j
3

∂uk
=
∫

Ω0

[
(∇vk(CE)) : ∇vj +

(
CδEk

)
: δEj

]
dΩ0 (2.35)

It can be shown that the above expression is symmetric in terms of indices j and k.
Furthermore, the term

(
CδEk) : δEj contains, among others, term

(
C((∇vk)

T +∇vk)
)

:
((∇vj)

T +∇vj) which is independent of u. It is the only constant part of this expression
and can be, similarly to the mass matrix above, expressed as a stiffness matrix K. The entire
derivative of the internal forces is then:

∇Fint(u) =



∂I1
3

∂u1

∂I1
3

∂u2
· · · ∂I1

3
∂uNdo f n

∂I2
3

∂u1

∂I2
3

∂u2

∂I2
3

∂uNdo f n
...

∂I
Ndo f n
3
∂u1

∂I
Ndo f n
3
∂u2

· · · ∂I
Ndo f n
3

∂uNdo f n


= K +∇Fnl

int(u) = K + Knl(u) (2.36)

with Knl = ∇Fnl
int for convenience. Similarly, the internal forces vector Fint can be split into

its linear and nonlinear part:

Fint(u) = Ku + Fnl
int(u) (2.37)

The entire weak form (2.17), combined with the discretised displacement field (2.23), can
be then expressed as a set of nonlinear differential equations with u and its time derivatives
as the unknown function:

Mü + Fint(u) = F(t) (2.38)

Rayleigh damping is used to introduce motion damping into the system. The damping
matrix D therefore takes the form:

D = rM M + rKK (2.39)

2.3. Finite elements 17

With rM and rK being the Rayleigh damping coefficients.

The final form of the motion equations with the damping term included looks as follows:

Mü + Du̇ + Fint(u) = F(t) (2.40)

2.3.1 Boundary conditions

As mentioned previously, the only boundary condition used in this work is the homo-
geneous Dirichlet boundary condition, i.e. u(t) = 0 for t >= 0. This implies that also
u̇(t) = 0 and ü(t) = 0. No forcing is imposed on the Dirichlet boundary degrees of free-
dom as those dofs are supposed to remain stationary, i.e. Fi(t) = 0 for i representing a
Dirichlet boundary dof.

Starting with the equations of motion without damping (2.38), the traditional way to im-
pose a zero Dirichlet boundary condition is to zero out the corresponding row and column
in the M and K matrices, and inserting zero into the Fnl

int vector. Then, 1 is inserted into the
diagonal of K for the given degree of freedom. This turns (2.38) into:

i-th column
↓



K′ · · · O · · · K′
... O

...
i-th row → O O 1 O O

... O
...

K′ · · · O · · · K′





u′
...

ui
...

u′

=





F′
...

0
...

F′

(2.41)

with K′, u′ and F′ symbolically representing all other parts of the given matrix/vector. This
expression achieves ui = 0 with ui being a particular Dirichlet boundary degree of freedom.

When assembling the damping matrix D as described in (2.39), the mass matrix is used
as is, i.e. including the zeroed out rows and columns. The stiffness matrix is used as is
with the exception that the diagonal 1’s are replaced by zeros as well. The derivative of
nonlinear forces ∇Fnl

int is treated the same way, the Dirichlet rows and columns are zeroed
out, including the diagonal elements.

2.3.2 Evaluating the mesh integrals

In order to assemble the discretised equations motion as defined in (2.38), the integrals I j
1,

I j
2 and I j

3 (described in (2.24), (2.27) and (2.29)), as well as derivatives of I j
1 and I j

3 (described
in (2.25) and (2.35)), need to be evaluated. First, as it was hinted before, since the domain is

18 Chapter 2. Physics and discretisation

decomposed into a set of non-overlapping elements that completely cover it, the integrals
can be computed per-element, meaning

∫
Ω0

= ∑k
∫

ek
, with ek standing for the mesh ele-

ments. The individual elements are commonly simple geometrical shapes. Tetrahedrons
and hexahedrons are among the most used elements used in FE modelling. However,
computing the integrals on the elements analytically is still not practical, especially for
nonlinear terms. Instead, a numerical integration scheme is used.

In this work, Gauss quadrature rules are used. These rules define a value of an integral of
a function over a volume by a sum of function values in given points, multiplied by certain
coefficients:

∫
e

f (x) ≈∑
i

wi f (xi) (2.42)

The coefficients w are typically called weights. The positions of the points xi and values
of their corresponding weights wi are determined in such a way so that the approximation
above provides exact results for polynomials up to a certain order. This order determines
the order of the quadrature rule. The higher the order the more accurate the approximation
is but also the more points it contains.

Quadrature rules are defined on so called reference elements. A reference element is a
uniquely defined element located in a reference coordinate axes xr. An example of a 20
node hexahedron (HEXA20) reference element is in Figure 2.2.

Figure 2.2: HEXA20 reference element with its conventional node numbering. First num-
bered are the 8 vertex nodes (black labels) and then the 12 mid-edge nodes (green labels).

Vertices of this element are located at coordinate values of ±1. This fixes the element’s size

2.3. Finite elements 19

and positioning in the coordinate space, which also fixes the quadrature points xr
i . The

weight values are independent of the element shape and position.

∫
er

f (xr) ≈∑
i

wi f (xr
i) (2.43)

Next, a set of reference shape functions in the reference coordinates Nr(xr) is defined
for a particular reference element. These reference shape functions are defined as scalar
functions, i.e. Nr : R3 → R. For the HEXA20 reference element, the reference shape
functions are as follows:

20 Chapter 2. Physics and discretisation

Nr
1(xr) =

1
8
(1− xr

1)(1− xr
2)(1− xr

3)(−2− xr
1 − xr

2 − xr
3)

Nr
2(xr) =

1
8
(1 + xr

1)(1− xr
2)(1− xr

3)(−2 + xr
1 − xr

2 − xr
3)

Nr
3(xr) =

1
8
(1 + xr

1)(1 + xr
2)(1− xr

3)(−2 + xr
1 + xr

2 − xr
3)

Nr
4(xr) =

1
8
(1− xr

1)(1 + xr
2)(1− xr

3)(−2− xr
1 + xr

2 − xr
3)

Nr
5(xr) =

1
8
(1− xr

1)(1− xr
2)(1 + xr

3)(−2− xr
1 − xr

2 + xr
3)

Nr
6(xr) =

1
8
(1 + xr

1)(1− xr
2)(1 + xr

3)(−2 + xr
1 − xr

2 + xr
3)

Nr
7(xr) =

1
8
(1 + xr

1)(1 + xr
2)(1 + xr

3)(−2 + xr
1 + xr

2 + xr
3)

Nr
8(xr) =

1
8
(1− xr

1)(1 + xr
2)(1 + xr

3)(−2− xr
1 + xr

2 + xr
3)

Nr
9(xr) =

1
4
(1− (xr

1)
2)(1− xr

2)(1− xr
3)

Nr
10(xr) =

1
4
(1 + xr

1)(1− (xr
2)

2)(1− xr
3)

Nr
11(xr) =

1
4
(1− (xr

1)
2)(1 + xr

2)(1− xr
3)

Nr
12(xr) =

1
4
(1− xr

1)(1− (xr
2)

2)(1− xr
3)

Nr
13(xr) =

1
4
(1− xr

1)(1− xr
2)(1− (xr

3)
2)

Nr
14(xr) =

1
4
(1 + xr

1)(1− xr
2)(1− (xr

3)
2)

Nr
15(xr) =

1
4
(1 + xr

1)(1 + xr
2)(1− (xr

3)
2)

Nr
16(xr) =

1
4
(1− xr

1)(1 + xr
2)(1− (xr

3)
2)

Nr
17(xr) =

1
4
(1− (xr

1)
2)(1− xr

2)(1 + xr
3)

Nr
18(xr) =

1
4
(1 + xr

1)(1− (xr
2)

2)(1 + xr
3)

Nr
19(xr) =

1
4
(1− (xr

1)
2)(1 + xr

2)(1 + xr
3)

Nr
20(xr) =

1
4
(1− xr

1)(1− (xr
2)

2)(1 + xr
3)

(2.44)

The above functions can be collectively written into a vector Nr as:

Nr =


Nr

1
Nr

2
...

 (2.45)

Let’s define nodal coordinates of an actual mesh element as:

2.3. Finite elements 21

Y =



Y1
1 Y1

2 Y1
3

Y2
1 Y2

2 Y2
3

Y3
1 Y3

2 Y3
3

Y4
1 Y4

2 Y4
3

Y5
1 Y5

2 Y5
3

...


(2.46)

Then the spatial coordinates x within bounds of the element e can be expressed using the
reference shape functions Nr and the element nodal coordinates as:

x = YT Nr(xr) = g(xr) (2.47)

where g : R3 → R3 is a function mapping the reference coordinates to the actual coordi-
nates for the particular element. One can then define shape functions for elements in their
actual coordinates, using the reference shape functions:

Ni(x) = Nr
i (xr) = Nr

i (g−1(x)) (2.48)

These shape functions (all of them collectively denoted N) are essentially the same as Nr,
only stretched to fit the actual element e. Using the established relationships between the
reference and actual coordinates and their corresponding shape functions, an integral over
element e can be expressed as:

∫
e

f (Nj(x))de =
∫

e
f (Nr

j (g−1(x))de

=
∫

er
f (Nr

j (g−1(g(xr)))|det((∇g)(xr))|der

=
∫

er
f (Nr

j (xr))|detJ|der

≈∑
i

wi f (Nr
j (xr

i))|detJ|der

(2.49)

using the substitution x = g(xr) on the second line, with J = (∇g)(xr), and the Gauss
quadrature approximation as defined in (2.43) on the third line. This relationship shows
that integral of any function of shape functions on the actual element can be rewritten as an
integral on the reference element, using the reference shape functions instead. Lastly, the
test functions v used two sections back can be defined using the scalar shape functions N.
As mentioned before, each function v has only one of its coordinates nonzero. Therefore:

22 Chapter 2. Physics and discretisation

vi(x) =

Nj(x)
O
O

 or

 O
Nj(x)

O

 or

 O
O

Nj(x)

 (2.50)

The different indexing i and j is used to emphasize that there is a different number of v
and N functions.

The relationship between integration on an element e and computing Gauss quadrature on
the corresponding reference element established by (2.49) can be extended to functions of
several shape functions as well. Considering that the shape functions v used in the finite
element discretisation described in Section 2.3 are merely an extension of shape functions
N into 3 dimensions, this integration relationship can be applied to functions of v’s as well.
Therefore, the integrals I1, I2 and I3, as well as their derivatives, can be computed in per
element fashion using the Gauss quadrature procedure on reference elements as described
above. For each element of the mesh, one only needs to know its coordinates, as those
define the transforming function g. Additionally, for nonlinear terms one also needs to
know values of displacements on the element nodes.

It should be noted that the matrices and vectors in (2.38) might be different when the Gauss
quadrature integration is performed, as it is only an approximation. The accuracy of the
integration depends on the quadrature order and exact expression that is being integrated.
No differentiation in notation is made in this work to separate the exact and approximated
matrices.

2.3.3 C tensor, symmetries and Voigt notation

The C tensor describing the stress-strain relationship (2.8) and (2.18) can have many forms,
depending on the required material properties. For this work, the material is assumed to be
isotropic. This means that the entire tensor can be described using only 2 scalar constants:

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (2.51)

with δ being the Kronecker’s delta. These two constants can be expressed in terms of
Young’s modulus EY and Poisson’s ration ν:

λ =
EYν

(1 + ν)(1− 2ν)

µ =
EY

2(1 + ν)

(2.52)

This form of C introduces many symmetries. Both stresses - σ and S - are symmetric
because of this, as well as the product CδEk in (2.35).

2.3. Finite elements 23

In (2.35) it was stated that this term is symmetric in terms of swapping indices j and k. This
symmetry is proven here in general case for square real matrices A, X and Y, where A is
symmetric but X and Y are arbitrary:

(XA) : Y = ∑
i,k

[
∑

j

(
Xij Ajk

)
Yik

]
= ∑

i,j,k

(
Xij AjkYik

)
= ∑

i,j,k

(
Yik AkjXij

)
... using symmetry of A

= ∑
i,j

[
∑
k

(
Yik Akj

)
Xij

]
= (YA) : X

(2.53)

which directly proves that (∇vk(CE)) : ∇vj = (∇vj(CE)) : ∇vk in 2.35 since S = CE is
symmetric. Using this observation combined with a property of the double dot product
A : B = A : sym(B) for symmetric A, one can show that:

(∇vk(CE)) : ∇vj = (sym(∇vk)(CE)) : sym(∇vj)

= (δεk(CE)) : δεj
(2.54)

with δεk and δεj being variations of the small strain tensor as defined in (2.7) for functions
vk and vj respectively. The second term (CδEk) : δEj in (2.35) is thanks to the symmetries
of C also symmetric in j and k indices.

Because of the existing symmetries, the tensor notation in the finite element terms is typi-
cally simplified by using Voigt notation. This notation reduces the order of tensors, turning
second order tensors (matrices) into first order tensors (vectors) and fourth order tensors
into matrices. A general 3× 3 matrix A is turned into a 6 element vector Ā:

A =

Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

→ Ā =



Axx

Ayy

Azz
1
2

(
Axy + Ayx

)
1
2 (Axz + Azx)
1
2

(
Ayz + Azy

)


(2.55)

For example, the term δε in Voigt notation yields:

24 Chapter 2. Physics and discretisation

δε̄ =



∂vx
∂x
∂vy
∂y
∂vz
∂z

1
2

(
∂vx
∂y +

∂vy
∂x

)
1
2

(
∂vx
∂z + ∂vz

∂x

)
1
2

(
∂vy
∂z + ∂vz

∂y

)


(2.56)

The idea is to put the diagonal values of the matrix first, followed by sums of the off-
diagonal terms divided by 2. The variation of the Green-Lagrange strain δE is vectorised
into δĒ in the same way. Note that each shape function only has one of its coordinates
nonzero, as established in (2.50). This means that in the bottom 3 rows of (2.56), only one
of the two terms will be nonzero for any shape function.

The C tensor becomes a 6× 6 matrix in Voigt notation:

C̄ =
EY

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2


(2.57)

Using this notation, the product (CδEk) : δEj can be expressed in Voigt notation as:

(CδEk) : δEj = (δĒk)TC̄δĒj (2.58)

This form involves only matrix vector multiplication. This vectorised notation allows for
stacking multiple δĒ vectors into a matrix. As described in Section 2.3.2, the mesh integrals
can be evaluated on the per element basis. One can therefore evaluate a complete contribu-
tion of a particular element into the global system matrices by stacking values of δĒ for all
shape functions of that element (for all degrees of freedom of that element) into a matrix
and evaluate:


(δĒ1)T

(δĒ2)T

...
(δĒN)T

 C̄
[
δĒ1 δĒ2 · · · δĒN

]
(2.59)

with the indexing 1, 2, . . . , N going over all shape functions related to all degrees of freedom
of the element. This method of computation can be much faster than computing the terms

2.4. Conclusion 25

individually. The term (δεk(CE)) : δεj can also be computed for the entire element using
one set of matrix multiplications with Voigt notation. The exact procedure can be found in
detail in [20].

2.4 Conclusion

This chapter first covers the basics of continuum mechanics that are relevant for this work.
The equations of motion for continuous solids are established in their strong and subse-
quently weak form. Both a linear model and a nonlinear model of deformation are formu-
lated. The source of nonlinearity in this work arises from the use of the Green-Lagrange
strain tensor. Overview of the most common types of boundary conditions in solid me-
chanics is provided.

Next, the finite element discretisation scheme is applied on the weak formulation. Numer-
ical evaluation of individual terms of the motion equations in their weak form is discussed
in detail. Standard Lagrange polynomials are used combined with a Gauss quadrature
rule. A way of enforcing the homogeneous Dirichlet boundary condition in the discrete
equations of motion is described. The damping term is added using the Rayleigh damping
model. The result is a system of nonlinear ordinary differential equations with time being
the independent variable.

Chapter 3

Vibration modelling

Following the established theory in Chapter 2, this chapter introduces the harmonic balance
method (HBM) on top of it. This method eliminates the remaining continuous variable in
the system of equations (2.40) - time - and establishes a set of nonlinear algebraic equations
to be solved. HBM is a well established tool used to model nonlinear vibrational motion.
Closely related to HBM are the alternating frequency time procedure (AFT) and the contin-
uation algorithm, which together provide a tool set to obtain a nonlinear vibration response
for a range of frequencies. The way of handling of boundary conditions for the problem in
its HBM form is also discussed.

3.1 State of the art

Mechanical vibration is a repetitive back and forth motion of a body (or its parts) around
its equilibrium position. Such motion occurs when the body is displaced or deformed from
this equilibrium position and forces exist that try to return it back to it. A classical high
school example of a vibrational motion is in Figure 3.1. Such motion is often, even though
not necessarily, periodic. A general overview of the problematic of vibration analysis can be
found in [72, 92, 175]. In many real situations, vibration is damped, meaning the amplitude
of the motion is decreasing over time. Such damping occurs naturally due to factors like
air friction or friction between multiple moving bodies. Often times damping is a desired
factor and is introduced into the system with intent to reduce the amount of unwanted
vibration. An overview of damping techniques can be found in [12]. The problematic of
identifying damping coefficients from experimental measurements is discussed in [146].

26

3.1. State of the art 27

Figure 3.1: A simple example of vibrational motion - a suspended pendulum offset from
its equilibrium position and propelled by gravity to swing back and forth.

3.1.1 Harmonic balance and continuation

Harmonic balance method (HBM) is a well established and widely used tool for modelling
vibration. The basic idea of the method is an assumption that the solution to nonlinear
equations of motion is periodic and can be approximated by a truncated Fourier series of
sinusoidal functions:

u(t) = ũ0 +
m

∑
k=1

ũc
kcos(kωt) + ũs

ksin(kωt) (3.1)

For details on the above equation see Section 3.2. The presence of higher harmonics (k > 1)
is necessary to account for nonlinearities of the system. The method can be viewed as
a Galerkin procedure in the time coordinate, using the sin and cos functions as shape
functions, similarly to what the finite element method does in space coordinates. The use of
Fourier series for approximating solutions to nonlinear mechanics problems can be traced
back to [112]. In the 1960s the method was used in its current form for solving nonlinear
periodic systems [180, 179]. For modern comprehensive overview of the HBM method and
its applications in nonlinear vibration problems one can refer to [111]. Cameron and Griffin
[29] described an alternating frequency time procedure to numerically evaluate nonlinear
terms in frequency domain. Fast Fourier transform (FFT) can be used in HBM to speed up
evaluation of the Fourier coefficients [31].

Typically, one is interested in vibration response to a range of frequencies 〈ωmin, ωmax〉
rather than a single point. A set of solutions for a frequency range is called the frequency
response curve (FRC). An example of an FRC is in Figure 3.2. A continuation technique
needs to be used for nonlinear problems in order to capture all existing solutions, as there
can be more than one for each frequency point. An overview of continuation techniques
can be found in [3]. Calvetti and Reichel [28] discussed solving large continuation prob-
lems and identifying singularities in the Jacobian matrix. Such singularities can indicate

28 Chapter 3. Vibration modelling

presence of bifurcations. Padmanabhan and Rajendra [133] proposed a method to follow
period-doubling bifurcations. Beran and Carlson [16] used domain decomposition meth-
ods to compute Hopf bifurcation points. Chan and Saad [33] detailed the use of bordered
systems that arise from the continuation method. Xie et al. [192] described tracking of
bifurcations and detecting boundaries of stability. Lahmam et al. [115] proposed higher or-
der predictor-corrector algorithms. Damil and Potier-Ferry [43] introduced a method called
asymptotic numerical method (ANM) as an alternative to the predictor-corrector approach.
This method uses a perturbation expansion technique to compute solutions along the FRC
without need for a corrector. Cochelin et al. [36] further studied the ANM method. Kessab
et al. [99] used ANM for plastic nonlinearities. Zahrouni et al. [87] proposed adaptations
of ANM to handle contact problems. Several other alternatives to continuation method
have been used. Incremental harmonic balance method was used in [34, 171]. Khang et al.
[130] used shooting method to compute nonlinear vibrations of piecewise-linear systems.

Many software tools implementing continuation techniques have been developed. In 1986
Doedel [50] introduced AUTO, a continuation and bifurcation software for ordinary differ-
ential equations, written in Fortran. It supports both OpenMP and MPI parallelism. Several
Matlab tools used for numerical continuation and vibration analysis exist. Dhooge et al.
[49] developed MATCONT, a Matlab package for numerical bifurcation analysis of ODEs.
MANLAB is a Matlab package for interactive continuation and bifurcation analysis of non
linear systems of equations [37, 80, 81]. Dankowicz and Schilder [44] introduced Continu-
ation Core and Toolboxes (COCO), a Matlab-based development platform that provides a
large amount of standard functionality required for investigating bifurcation problems and
implementing toolboxes for new types of problems. NLvib is another Matlab tool which
is used for nonlinear vibration analysis [111]. Košata et al. [108] developed HarmonicBal-
ance.jl in language Julia for nonlinear dynamics modelling using harmonic balance. It also
supports parallelisation. LOCA is a numerical continuation package in the Trilinos library,
implemented in C++ and supporting both OpenMP and MPI parallelism (through other
Trilinos packages) [173].

Detroux et al. [48] demonstrated use of HBM to study vibration response of a nonlinear
tuned vibration absorber. Aguirre [11] used HBM to perform dynamic analysis of turbo-
machinery blades. Salles et al. [157] used HBM with dual time stepping algorithms for
contact interfaces with fretting wear. Petrov [142] analysed vibration of bladed disks us-
ing cyclic symmetry. Seinturier [166] detailed industrial practices for computing forced
response of bladed disks for aero-mechanical optimisation. Guskov et al. [83] employed
HBM to analyse dynamic properties of Jeffcott rotor systems subject to unbalances.

3.1.2 Reduced order modelling

Reduced order modelling (ROM) techniques are commonly used in vibration analysis to
reduce the number of degrees of freedom of the analysed system. Comparison of vari-
ous techniques can be found in [150]. One of the most popular ROM techniques is the

3.1. State of the art 29

Figure 3.2: An example of an FRC. Amplitude of nonlinear vibration computed over a
range frequencies. This response is for a single dof spring-mass oscillator with a wall
contact at various gaps.

Craig-Bampton model [41] which uses a small selected set of normal modes to transform
the system into modal coordinates. This transformation results in using only a small set of
modal amplitudes as new unknowns. Kim and Lee [100] enhanced this method by compen-
sating for the error caused by the residual modes and [24] further improved the method.
Application of model order reduction techniques for geometrically nonlinear structures can
be found in [178, 185]. Kang et al. [95] and Kim and Kang [103] studied a hyper-reduction
method for rotating component (such as propeller blades) forced vibration analysis. Kim
et al. [102] performed structural analysis based on reduced order modelling for gas turbine
blades, using a transient time model. They employed both full order models and reduced
ones in different stages of the analysis, using parallel direct sparse solver (PARDISO) for
the linear system of equations.

3.1.3 Linear and nonlinear solvers

When discretising a PDE system of any sort using the FE method (or any other discretisa-
tion method), one eventually encounters a set of linear or nonlinear algebraic equations to
solve. The nonlinear system arising from the harmonic balance method can be written as
follows:

Z(ω)ũ + F̃nl
int(ũ, ω) = F̃ (3.2)

See again Section 3.2 for details. Solving such systems is often the most time consuming
part of the entire computing process. Extensive research has therefore been conducted re-
garding nonlinear and linear numerical solvers. These two types of solvers often operate in

30 Chapter 3. Vibration modelling

a hierarchical manner. An outside nonlinear solver runs in loops, solving a linear system
repeatedly, until a good solution approximation is found. This is the case for example of
the Newton-Raphson method, possibly the most commonly used nonlinear solver. History
of this solver can be found in [25]. Many variants of this method have been developed
over the years. Noor and Waseem [131] proposed a variant with cubic convergence rate.
Knoll and Keyes [107] discussed Jacobian free Newton-Krylov methods, meaning no need
for assembling the Jacobian matrix explicitly. A generalisation of the method for nons-
mooth functions was studied in [147]. Other nonlinear solvers have been proposed, such as
Adomian decomposition [8] or homotopy perturbation [75]. An overview of methods for
solving nonlinear systems can be found in [7, 132].

Linear solvers can be categorised into two groups - direct and iterative. The base distinc-
tion is that a direct solver provides after a series of calculations the final solution to the
system, without any intermediate steps. Iterative solvers on the other hand begin with an
initial solution estimate which they gradually improve upon in a series of iterations, until
convergence criteria are met. Stopping an iterative solver prematurely can still provide a
reasonable solution estimate, which is not the case with direct solvers. On the other hand,
iterative solvers commonly struggle more with ill conditioned matrices [177].

When solving a linear system, it is important to consider properties of the system matrix.
Matrices coming from finite element discretisations typically have sparse pattern, mean-
ing proportionally only a small percentage of their elements are nonzero. An example of
such matrix is in Figure 3.3. Such matrices are usually stored in special formats that re-
duce amount of required storage space to its minimum [144]. A solver working with such
matrix should ideally preserve this sparsity as much as possible. Other important matrix
properties are symmetry, definiteness and the condition number. Laub [116] covered topics
regarding analysis of these matrix properties.

Direct linear solvers typically rely on a form of LU (or Cholesky for symmetric matrices)
factorisation of the matrix. An overview of direct solvers for sparse matrices is in [45].
One of the challenges when factorising a sparse matrix is to maintain the sparsity of the
factors. In theory, factors of a sparse matrix are dense. However, a good reordering of
the matrix rows and columns can be found to achieve at least a certain level of sparsity.
The most popular software packages implementing such reordering techniques are Scotch
[140], Metis [97] or Parmetis [96]. Many software packages for direct solving of linear
systems have been developed, such as SuperLU [47] and its parallel version [118], PARDISO
[2, 163, 164], which was later integrated into the IntelMKL library [1], and MUMPS [4, 5],
which was used in this work.

Overview of iterative linear solvers can be found in [77, 155]. A prominent category of
linear solvers are the so called Krylov subspace solvers. These solvers generate a sequence
of growing Krylov spaces on which the solution is approximated. Krylov spaces are gen-
erated iteratively by multiplying the current residual by the system matrix to obtain a new
basis vector which extends the approximation space [182]. In exact arithmetic, such solvers

3.1. State of the art 31

are guaranteed to find the exact solution in at most n iterations, where n is the rank of
the system matrix. However, in practice a good approximation can be found much ear-
lier. Since Krylov methods don’t require any factorisation, no reordering of the matrix is
necessary, and their memory requirements are generally much lower for large systems.

Among the most popular Krylov subspace methods are the conjugate gradient method
(CG) [90] and the generalised minimal residual method (GMRES) [156]. CG is used for
symmetric positive definite matrices, while GMRES can be used for general matrices. How-
ever, GMRES requires more memory as the entire Krylov space basis needs to be stored. It
also requires a more computationally expensive orthogonalisation procedure. Convergence
analysis of GMRES can be found in [78]. Many other Krylov subspace iterative methods
exist. The biconjugate gradient method (BiCG) [69] and its stabilised version (BiCGStab)
[183] are modifications of CG for nonsymmetric matrices. MINRES [134] is a conjugate
gradient type method for symmetric but indefinite matrices. CGS [169] is a modification
of BiCG that doesn’t require multiplications by transpose of the matrix. Ghai et al. [73]
provided a comparison of Krylov subspace methods for large-scale linear systems.

Figure 3.3: An example of the nonzero value (blue) pattern of a stiffness matrix for FE
discretisation of a clamped-clamped beam. This particular matrix has an average of 99
nonzero values per row, while its size is 1503× 1503. This means the sparsity of this matrix
is around 0.93.

An important part of solving a linear system is preconditioning of the system matrix. This
essentially means finding an approximation of the inverse of the matrix which will reduce

32 Chapter 3. Vibration modelling

the condition number of the system, making it easier to solve. In case of an iterative
solver, preconditioning can radically reduce the number of iterations required to reach the
solution. In direct solver, the matrix rows and columns can be scaled and reordered in
order to reduce impacts of numerical errors. Bertaccini and Durastante [17] and Benzi
[14] provided an overview of preconditioning options for large linear systems. Modified
variants of direct solvers can be used to compute fast incomplete factorisation of the matrix
that can be used as a preconditioner for an iterative solver. Arany [6] and Kaasschieter
[94] described use of incomplete Cholesky factorisation as preconditioning for CG. Mittal
and Al-Kurdi [128] studied the use of incomplete LU factorisation to precondition GMRES.
Désiré and Atenekeng Kahou [187] studied use of Schwarz domain decomposition method
as GMRES preconditioning.

3.2 Harmonic Balance Method

The previous sections showed how the analytical partial differential equations of elasticity,
including the Green-Lagrange model for large deformations, are discretised into a system
of ordinary nonlinear differential equations (2.40), where the unknown displacement u(t)
is a vector function of time. When provided with initial conditions for u(0) and u̇(0), such
equations can be solved by a time integration scheme. By discretising the time variable into
a set of time points, one can compute the solution u at next time point using the knowledge
of solution (and its first derivative) in the previous time points by applying methods like
Euler or Runge-Kutta iterative schemes.

Vibration is a type of motion that exhibits a certain repetitive pattern, typically many times
over. In this work the assumption is made that the vibrational motion in question is periodic
with a single time period T. In many scenarios, it is not important at which time point the
motion starts and what are the absolute values on the time axis. Having the information
about the motion over any window of one time period provides enough information. It is
not important at which time point this period window is anchored, as seen in Figure 3.4.

There are 2 types of vibrations. The first is free vibration, meaning there is no external
force present. In the motion equations (2.40), this would mean F = O. If the damping term
is present, such vibration diminishes over time due to dissipation of energy. The motion is
therefore technically not periodic as the amplitude decreases with time. If no damping is
present, the motion keeps repeating periodically with the same amplitude. The frequency
of the motion is determined by the physical parameters of the system. The second type is
forced vibration. This occurs when a periodic external force (excitation force) actuates the
body, keeping it in motion even when damping is present. Ignoring any possible initial
transitory motion when the force action begins, in steady state when the motion becomes
periodic, its period matches the period of the excitation force. Any other components of
the motion will be eliminated by the damping. Even without any damping, the body is
assumed to react only with the frequency of the excitation force.

3.2. Harmonic Balance Method 33

Figure 3.4: Example of a periodic harmonic motion, with 2 possible time windows stretch-
ing over one period of the motion marked. The character of the motion is fully described
within both of those windows.

The most fundamental way to describe a periodic motion is by using sine and cosine waves.
A motion with a sinusoidal shape is called harmonic motion. Periodic motion with sinu-
soidal shape appears in many physical phenomena, such as vibrating strings in musical
instruments, a pendulum released from a slightly offset position, and others. Furthermore,
by a series of sine and cosine functions with growing frequency, one can approximate other
periodic functions. This is the basis of Fourier series and Fourier analysis. The sine and co-
sine functions additionally have the convenient property of being each other’s derivatives
(ignoring the sign).

Harmonic balance method (HBM) is an alternative method to time integration techniques
that can be used to model vibrational motion. It is based on the ideas and assumptions
discussed above. The excitation force F(t) is assumed to have a sinusoidal shape, i.e.:

F(t) = accos(ωt) + assin(ωt) (3.3)

with ω being the excitation frequency and ac and as being vectors of coefficients, indepen-
dent of time.

Given the frequency of motion ω, the period of motion is:

T =
2π

ω
(3.4)

In case of a linear system (using the linear strain formulation in 2.6, meaning Fnl
int in 2.37 is

34 Chapter 3. Vibration modelling

zero), the body will respond purely on that same frequency, meaning the solution can be
expressed as:

u(t) = ũccos(ωt) + ũssin(ωt) (3.5)

with ũc and ũs being again vectors of constant coefficients. In nonlinear case, an excita-
tion at frequency ω can invoke motion not only at that frequency, but also at its integer
multiples. The solution formula needs to be therefore expanded to:

u(t) = ũ0 +
m

∑
k=1

ũc
kcos(kωt) + ũs

ksin(kωt) (3.6)

The above can be understood as a finite Fourier series approximation of the solution, as the
solution in this form might not be the exact solution. The nonlinearity can induce motion
that could only be captured exactly by using an infinite Fourier series, meaning k→ ∞. The
ũ coefficients correspond to different harmonic components of the solution. The coefficient
ũ0 represents the 0th harmonic part, or the constant term. In general, the more of the higher
harmonic components are used for the solution, the more accurate the obtained solution
will be. The newly introduced coefficients ũ can be collectively expressed as a vector:

ũ(t) =



ũ0

ũc
1

ũs
1
...

ũc
m

ũs
m


(3.7)

Not all harmonic parts (shortly harmonics) need to be necessarily present in the system.
Based on the available information about the nature of the problem at hand, one can selec-
tively use only specific harmonics that are expected to be the most relevant ones (respond-
ing with highest amplitudes) for approximating the solution in time. The excitation vector
is then expressed using the same harmonics that were used for the solution:

F(t) = a0 +
m

∑
k=1

ac
kcos(kωt) + as

ksin(kωt) (3.8)

However, F will only have nonzero coefficients at first harmonic, i.e. the ac
1 and as

1 values.
Having the solution in form (3.6), one can also express its first and second derivatives:

u̇(t) = ω
m

∑
k=1

k [−ũc
ksin(kωt) + ũs

kcos(kωt)] (3.9)

3.2. Harmonic Balance Method 35

ü(t) = −ω2
m

∑
k=1

k2 [ũc
kcos(kωt) + ũs

ksin(kωt)] (3.10)

As mentioned previously, the solution in this form is only an approximation. A deviation
from the actual solution can therefore be expressed in a form of residual:

R(t) = Mü + Du̇ + Fint(u)− F(t) (3.11)

Having defined the residual, it is natural to aim to minimise it. One way to do that is to
require projections of the residual on the same harmonic functions used to approximate
the solution to be zero, i.e.:

2
T

∫ T

0
R(t) · 1 dt = 0

2
T

∫ T

0
R(t) cos(kωt) dt = 0, for k = 1..m

2
T

∫ T

0
R(t) sin(kωt) dt = 0, for k = 1..m

(3.12)

As before, note that not all harmonics, meaning not all values of k, need to be present
necessarily. The above projections using the integral

∫ T
0 dt are essentially a dot product in

space of functions defined on 〈0, T〉. As mentioned previously, one period is enough to
entirely determine the shape of the solution. This procedure is analogous to the weak for-
mulation of the partial differential equations in 2.3. The solution there was also expressed
as a sum of coefficients multiplied by the base shape functions. The equations of motion
were then, like here, projected onto the same shape functions, resulting in a set of equations
with the solution coefficients as unknowns. Here, the newly introduced unknowns are the
harmonic coefficients in vector ũ. The integral in the projections over time eliminates time
as a variable in the system. Therefore, by evaluating the integrals in (3.12), a new system
of purely algebraic equations is obtained. By eliminating time, the transition is made from
time domain, where the vector u(t) is the unknown, to frequency domain, with unknown
being the vector of coefficients ũ. The matrices and vectors in (3.11) are by evaluating the
projections transformed into frequency domain. It is useful to note here that the harmonic
functions cos(kωt) and sin(kωt), as well as the constant term function, are orthogonal to
one another under the dot product defined by the projection integral

∫ T
0 dt.

The excitation vector can be transformed analytically, resulting in the excitation vector in
frequency domain F̃:

36 Chapter 3. Vibration modelling

F̃ =



2a0

ac
1

as
1
...

ac
m

as
m


(3.13)

As mentioned previously, only the first harmonic coefficients ac
1 and as

1 will be considered
nonzero in the following text.

Another portion of the residual R(t) that can be transformed analytically is the linear part
Mü + Du̇ + Ku. The resulting term in frequency domain will be Z(ω)ũ, where:

Z(ω) =



2K O O O O · · · O O
O K−ω2M −ωD O O O O
O ωD K−ω2M O O O O
O O O K− (2ω)2M −2ωD O O
O O O 2ωD K− (2ω)2M O O
...

. . .
...

O O O O O K− (mω)2M −mωD
O O O O O · · · mωD K− (mω)2M


(3.14)

The remaining part of R(t) to be handled is Fnl
int(u), which will transform into F̃nl

int(ũ, ω).
This transformation cannot be performed analytically in general and will be addressed
later. The transformation of the equations of motion from (2.40), using (3.12), results in
equations of motion in frequency domain:

Z(ω)ũ + F̃nl
int(ũ, ω) = F̃ (3.15)

These equations are of purely algebraic character, as there is no continuous variable present
in them. The spatial dimensions have been eliminated by the finite element discretisation
and time has been removed by the projections of the residual on the harmonic functions.
The following sections will focus on how to solve this nonlinear system of equations.

3.3 Newton-Raphson

A common tool used to solve general systems of nonlinear algebraic equations is the so
called Newton-Raphson (shortly Newton’s) method [98]. Assume a general vector of un-
knowns x ∈ Rn. A set of nonlinear equations can be then written as a vector function
G : Rn → Rn:

3.3. Newton-Raphson 37

G(x) = 0 (3.16)

Given a solution guess xk, the Newton’s method computes a solution step ∆xk:

∇G(xk)∆xk = −G(xk); (3.17)

The solution is then updated by adding the step:

xk+1 = xk + ∆xk (3.18)

This process repeats until the solution to (3.16) is found, or the maximum number of itera-
tions is reached. An initial solution guess x0 needs to be provided for the method to start.
For the lack of a better alternative, zero vector is commonly used. Acceptance of the solu-
tion guess xk as a solution can be decided by various criteria. One can demand the norm
‖G(xk‖ (the error in the residual) being under a given tolerance. A relative residual error
‖G(xk)‖
‖G(x0)‖ can also be measured. A stagnation of the solution guesses can also be checked,

i.e. checking the size of the step ‖∆xk‖. Convergence of Newton’s iterations to a solution
is not guaranteed and it depends on the solved equations (especially on the character of
the nonlinearity) as well as the initial guess. However, Newton’s method generally shows
good convergence quality when the initial guess is picked near the actual solution. In such
cases, the method has been proven to have quadratic rate of convergence [98].

Given the general formula for the Newton’s iteration method (3.17), its application on the
HBM equations as defined in 3.15 yields the following:

∇ũ

[
Z(ω)ũ + F̃nl

int(ũ, ω)− F̃
]

∆ũk =[
Z(ω) +∇ũ F̃nl

int(ũ, ω)
]

∆ũk = F̃− Z(ω)ũk − F̃nl
int(ũ

k, ω)
(3.19)

The above system can be solved by any available serial or parallel linear solver that accepts
as inputs the system matrix and the right hand side vector. For given parameter ω one
can this way obtain the nonlinear vibrational response of the system for that frequency.
In this work two such readily available solvers have been tested - MUMPS (parallel direct
sparse solver) and GMRES. Details about how they were used can be found in Chapter 5
and results obtained in Chapter 6. Details about about evaluating the nonlinear terms in
the equations and computing a full nonlinear response curve for a range of frequencies are
discussed in the following sections.

38 Chapter 3. Vibration modelling

3.4 Alternating Frequency Time (AFT)

The evaluation of the projection integrals (3.12) for the nonlinear term Fnl
int of the residual

R(t) in Section 3.2 was skipped. This is because calculating these integrals analytically is
either impossible or impractical. Therefore, a numerical approximation is called upon once
more. A method called AFT is used for this. AFT stands for alternating frequency time
procedure [29]. It samples the time along the period T to numerically approximate value
of the integrals

∫ T
0 . For example, projection on the k-th harmonic cosine function can be

approximated as follows:

2
T

∫ T

0
Fnl

int(u(t))cos(kωt)dt ≈ 2
Nt

Nt−1

∑
n=0

Fnl
int(u(nht))cos(kωnht)

=
2

Nt

Nt−1

∑
n=0

Fnl
int,ncos(kωnht)

(3.20)

given that the time period T is divided equally into Nt steps of size ht =
T
Nt

. The discrete
time steps are tn = nht. This operation can be collectively along all used harmonic functions
seen as discrete Fourier transform of Fnl

int,n into F̃nl
int. A diagram of this procedure is in Figure

3.5. To obtain values of u(t) for the discrete time points tn, equation (3.6) is used:

u(tn) = ũ0 +
m

∑
k=1

ũc
kcos(kωtn) + ũs

ksin(kωtn) (3.21)

It can be noted that:

ωtn = nωht = nω
T
Nt

= nω
2π

ωNt
= n

2π

Nt
(3.22)

which shows that the discretised values of cos(kωtn) and sin(kωtn) are in fact not ω de-
pendent. They can therefore be defined universally as:

bc
k,n = cos(kωtn) = cos

(
kn

2π

Nt

)
bs

k,n = sin(kωtn) = sin
(

kn
2π

Nt

) (3.23)

This means that as long as Fnl
int only depends on u and not u̇ or ü, the transformation

integrals such as in (3.20) will only depends on ũ and not ω. A simplification can therefore
be made by removing ω as a parameter:

F̃nl
int(ũ, ω)→ F̃nl

int(ũ) (3.24)

3.4. Alternating Frequency Time (AFT) 39

Using this numerical integration procedure, the vector of nonlinear forces in frequency
domain F̃nl

int can be computed as:

F̃nl
int(ũ) =

2
Nt

Nt−1

∑
n=0



1 · Fnl
int,n

bc
1,n · Fnl

int,n
bs

1,n · Fnl
int,n

...
bc

m,n · Fnl
int,n

bs
m,n · Fnl

int,n


(3.25)

An equality sign rather that the≈ sign is used as this is the actual definition of the nonlinear
forces vector which will be used in computations. It can be seen how the AFT got its name.
Starting from a vector in frequency domain ũ, it transfers this vector to time domain as
shown in (3.21). In time domain, the nonlinear vectors Fnl

int,n are computed for each time
point. After that, these vectors are multiplied by the b functions values and summed to
obtain a vector in frequency domain.

Figure 3.5: Diagram of AFT procedure to evaluate nonlinear forces vector F̃nl
int. DFT and

iDFT stand for discrete Fourier transform and its inverse respectively.

The matrix of derivatives ∇ũ F̃nl
int also needs to be evaluated in order to assemble the com-

plete Jacobian matrix for Newton’s iterations as described in (3.19). Diagram of this evalu-
ation is in Figure 3.6. Mathematically it yields the following:

∇ũ F̃nl
int(ũ) =

2
Nt

Nt−1

∑
n=0


1 · Knl

n bc
1,n · Knl

n bs
1,n · Knl

n · · · bc
m,n · Knl

n bs
m,n · Knl

n

bc
1,n · Knl

n bc
1,nbc

1,n · Knl
n bc

1,nbs
1,n · Knl

n bc
1,nbc

m,n · Knl
n bc

1,nbs
m,n · Knl

n

bs
1,n · Knl

n bs
1,nbc

1,n · Knl
n bs

1,nbs
1,n · Knl

n bs
1,nbc

m,n · Knl
n bs

1,nbs
m,n · Knl

n
...

. . .
...

bc
m,n · Knl

n bc
m,nbc

1,n · Knl
n bc

m,nbs
1,n · Knl

n bc
m,nbc

m,n · Knl
n bc

m,nbs
m,n · Knl

n

bs
m,n · Knl

n bs
m,nbc

1,n · Knl
n bs

m,nbs
1,n · Knl

n · · · bs
m,nbc

m,n · Knl
n bs

m,nbs
m,n · Knl

n

 (3.26)

40 Chapter 3. Vibration modelling

where Knl
n = Knl(u(tn)), using the notation established by (2.36).

The equation above shows that in order to numerically evaluate ∇ũ F̃nl
int, one needs to eval-

uate the gradient of the forces ∇uFnl
int in time domain for each of the discrete time steps tn.

The subsequent transfer into the frequency domain gradient is a straightforward transfor-
mation using the harmonic basis functions b and summing over the time points.

Figure 3.6: Diagram of AFT procedure to evaluate nonlinear Jacobian matrix ∇ũ F̃.

3.5 Boundary conditions

In order to achieve ui(t) = 0 in the HBM system all the harmonic coefficients related to
that time domain degree of freedom need to be 0, i.e.:

ui = 0 =⇒ ũi,0 = 0

ũc
i,k = 0 for all k

ũs
i,k = 0 for all k

(3.27)

3.6. Continuation 41

The way of imposing this requirement is analogous to how it is imposed in time domain
2.3.1. The corresponding positions in the right hand side vector in (3.19) are zeroed out, as
well as the Jacobian matrix rows and columns. In fact, if one performs this modification on
the time domain matrices and vectors as described in 2.3.1, this will automatically create
the desired matrix and vector form in the HBM system. The stiffness matrix on the diagonal
blocks in Z(ω) will provide the required 1 on the main diagonal for all solution coefficients
on all harmonics and zeroed out appropriate rows and columns. The mass and damping
matrices will also have the required rows and columns zeroed out. The nonlinear vector F̃nl

int
is assembled from the nonlinear vectors in time domain as shown in (3.25). Similarly, the
nonlinear part of the Jacobian matrix ∇ũ F̃nl

int is assembled from nonlinear Jacobian matrices
in time domain (3.26). Therefore, both F̃nl

int and ∇ũ F̃nl
int will have required rows and columns

zeroed out.

3.6 Continuation
In order to obtain a set of solutions for a range of frequencies, typically called frequency re-
sponse curve (FRC), a continuation algorithm needs to be employed. This means following
the solution curve, using an already computed solution as an initial guess to compute the
next one. There are many types of continuation algorithms. The one employed in this work
is a predictor-corrector approach. For prediction, either naive, tangent or secant predictors
are used. For corrector the so called pseudo arc-length formula is used. This corrector is a
linearisation of another commonly used corrector called the arc-length corrector. Diagram
describing one step of a predictor-corrector continuation is in Figure 3.8. Example of a
nonlinear FRC can be seen in Figure 3.7.

The goal is to obtain a set of solutions for a range of ω:

{(ũ, ω)} for ω ∈ 〈ωmin, ωmax〉 (3.28)

These points can be described as solutions to the following equation:

G(ũ, ω) = Z(ω)ũ− F̃nl
int(ũ, ω)− F̃ (3.29)

Note that ω is now also a variable of the HBM system. A tangent τ = (τũ
τω
) of the solution

curve at point (ũ, ω) is implicitly defined as:

[∇ũG(ũ, ω)∇ωG(ũ, ω)]

(
τũ

τω

)
= O (3.30)

In order to simplify the equation above, it is assumed τω = 1. This assumption will allow
to compute the ũ part of the tangent vector at the cost of one solve of the linear system

42 Chapter 3. Vibration modelling

Figure 3.7: Example of nonlinear FRC for clamped-clamped beam for a range of frequen-
cies. It can be seen that for certain frequencies multiple solutions exist.

of equations, same as in Newton iterations. The assumption is reasonable, as it is rare to
encounter the case where the ω part of the tangent vector would be 0 (i.e. the tangent
vector would be exactly vertical). The new formula to compute the tangent is then:

∇ũG(ũ, ω)τũ = −∇ωG(ũ, ω) (3.31)

Having computed the tangent τ, one can obtain a reasonable guess for the next solution
(ũp

i+1, ω
p
i+1) on the solution curve, using an already computed solution (ũi, ωi) as a starting

point:

(ũp
i+1, ω

p
i+1) = (ũi, ωi) +

s
‖τ‖ (τũ, τω) (3.32)

with s being the size of the step one wishes to perform. This is called the prediction part of
the continuation algorithm. After the predicted solution (ũp

i+1, ω
p
i+1) is obtained, it is used

as the initial guess for the Newton iterative procedure, which identifies an actual solution
on the solution curve in the vicinity of the predicted point. This part is called the correction.
The step size parameter s can be adjusted throughout the tracking of the curve depending
on how the correction procedure manages to converge.

3.6. Continuation 43

Figure 3.8: Diagram of one continuation step. Blue point - already computed solution, red
arrow - prediction step using tangent predictor, red point - next solution prediction, blue
points - next possible solutions, obtained with arc-length and pseudo arc-length corrector
constraints (from left to right).

Since ω was added as a variable, another equation also needs to be added to properly
determine solutions to (3.29):

g(ũ, ω) = 0 (3.33)

where g(ũ, ω) : RN+1 → R.

The pseudo arc-length corrector approach uses g to enforce orthogonality between the
search space of the Newton iterations and the prediction vector:

g(ũ, ω) = dot((ũ, ω)− (ũp
i+1, ω

p
i+1), τ) (3.34)

Its derivative yields:

∇g = (∇ũg,∇ωg) = (τũ, τω) (3.35)

For comparison, the arc-length corrector (which is not used in this work) would yield:

g(ũ, ω) = ‖(ũ, ω)− (ũp
i+1, ω

p
i+1)‖ − s (3.36)

44 Chapter 3. Vibration modelling

Newton step with the Jacobian matrix extended by the added variable ω and the equation
g = 0 is then defined as follows:

[
∇ũG(ũk, ωk) ∇ωG(ũk, ωk)

∇ũg(ũk, ωk) ∇ωg(ũk, ωk)

](
∆ũk

∆ωk

)
= −

(
G(ũk, ωk)

g(ũk, ωk)

)
(3.37)

One possible way to solve this extended linear system is to separate the extra column and
row of the matrix related to the ∇ω derivative and the g function:

x1 = − ∇ũG(ũk, ωk)−1G(ũk, ωk)

x2 = ∇ũG(ũk, ωk)−1∇ωG(ũk, ωk)
(3.38)

The variables x1 and x2 are temporary variables which are both computed by solving with
the matrix ∇ũG(ũk, ωk). The newton step in ũ and ω are then computed as follows:

∆ωk =
−g(ũk, ωk)− dot

(
∇ũg(ũk, ωk), x1

)
∇ωg(ũk, ωk)− dot

(
∇ũg(ũk, ωk), x2

)
∆ũk = x1 − ∆ωkx2

(3.39)

This algorithm is a result of applying Gauss elimination of the last row the matrix from
(3.37), then solving for the last variable which is ∆ωk and then substituting it into the
remaining rows to solve for ∆ũk. It is commonly called the bordered solve algorithm, as
it performs Gauss elimination around the added border row and column of the matrix.
The main benefit of this approach is that it allows for solving linear systems with matrix
∇ũG(ũk, ωk) rather than the extended one. That means that any parallel algorithm that can
efficiently invert this matrix can still be used as is for the extended system when performing
continuation. The drawback is that two solves (for two different right hand side vectors
but same matrix) need to be performed for each Newton iteration (to obtain the temporary
variables x1 and x2).

As mentioned previously, prediction directions other than the tangent are possible. An-
other popular option is the secant predictor, which is computed as a vector passing through
the last 2 known solutions:

τs = (ũi, ωi)− (ũi−1, ωi−1) (3.40)

The obvious advantage of this predictor is its extremely low computational cost (a sub-
traction of two vectors instead of solving a linear system). The drawback can be worse
accuracy of the predicted solution. An even simpler prediction method is the so called
naive or natural prediction. It performs a step purely in frequency, keeping the previous
solution as the predicted one:

3.7. Linear analysis and modes 45

τn = (O,±1) (3.41)

this predictor might be used for simplicity in situations when the Newton solver doesn’t
have any issues finding the right solution and there is no need to differentiate between
multiple possible solutions for one frequency. This predictor is not capable of handling
FRC turning points (points where the curve changes direction in terms of ω).

3.7 Linear analysis and modes

Let’s for a moment (the scope of this section) limit the equations of motion posed in (2.40)
to their linear form, i.e.:

Mü + Du̇ + Ku = F(t) (3.42)

This means that when HBM is applied, the corresponding equations in frequency domain
(3.15) are reduced to:

Z(ω)ũ = F̃ (3.43)

Since Z is a block diagonal matrix, an excitation on a particular harmonic will only cause
response on that same harmonic. Assuming only an excitation on the first harmonic, the
problem can be solved using only the first harmonic and the Z matrix will therefore be
only:

Z(ω) =

[
K−ω2M −ωD

ωD K−ω2M

]
(3.44)

Figure 3.9: Computational testcase - a clamped-clamped beam with square profile and
excitation force in the middle.

Let’s use this simple linear HBM model to obtain FRC for a clamped-clamped beam excited
in the middle (Figure 3.9). Without the need to go into specific values of various parameters,

46 Chapter 3. Vibration modelling

the general shape of the FRC will look similarly to that in Figure 3.11. Only one solution
exists for each frequency ω and the amplitude of vibration is significantly higher around
certain frequencies, called resonant or natural frequencies. These frequencies are typically
computed by solving a following generalised eigenvalue problem:

Kv = ω2Mv (3.45)

with v being the corresponding eigenvector. These eigenvectors are the so called free vi-
bration mode shapes (modes). One way of deriving them is to solve the following initial
value problem:

Ku(t) + Mü(t) = 0

u(0) = u0

u̇(0) = 0

(3.46)

Just like in HBM, a harmonic solution is assumed:

u(t) = Acos(ωt) + Bsin(ωt)

u̇(t) = −ωAsin(ωt) + ωBcos(ωt)

ü(t) = −ω2Acos(ωt)−ω2Bsin(ωt) = −ω2u(t)

(3.47)

Taking into account the initial conditions, it turns out that A = u0 and B = O. The actual
solution is therefore in form:

u(t) = u0cos(ωt) (3.48)

Since the assumption (3.47) was made about the form of the solution, its validity needs to
be verified by plugging it back into the original equation (3.46). This gives:

(
Ku0 −ω2Mu0

)
cos(ωt) = 0 (3.49)

Since this must be true for any time t ≥ 0, it follows that:

Ku0 −ω2Mu0 = 0 (3.50)

Therefore, in order for (3.48) to be a valid solution, the pair (u0, ω) needs to satisfy the
above equation, which is the same as (3.45). This shows a property of the mode shapes.
Without any damping and external forcing, the system will remain in the same periodic
motion indefinitely, without gaining or loosing any energy.

3.7. Linear analysis and modes 47

Figure 3.10: Demonstration of how reducing the damping increases (with inverse propor-
tionality) the amplitude of the response. The legend describes the amount of damping with
respect to a reference value.

One can further notice that without any damping present, the Z matrix looks as follows:

Z(ω) =

[
K−ω2M O

O K−ω2M

]
(3.51)

The main diagonal blocks correspond to the expression in (3.50). Therefore, a mode shape
v belongs to null space of such Z assembled for the corresponding resonance frequency ωv.
More precisely:

[
K−ω2

v M O
O K−ω2

v M

](
v
v

)
=

(
O
O

)
(3.52)

This means the matrix Z is singular for the resonant frequency. Therefore, a solution
to (3.43) with no damping present might not exist for this frequency, depending on the
character of the excitation. It is a well known property of matrices that Im(A) ⊥ null(AT)

[13]. Taking advantage of the symmetry of Z, it follows that also Im(A) ⊥ null(A). The
cos and sin portions of the excitation vector F̃ ∈ Im(A) must therefore be orthogonal to the
given mode shape vector in order for (3.43) to have a solution.

The presence of this singularity can be observed even with damping present. As the damp-
ing decreases, the amplitude of vibration at the resonant frequency increases with inverse
proportionality. This can be seen in Figure 3.10. However, the presence of damping does

48 Chapter 3. Vibration modelling

eliminate this singularity, as long as the damping matrix doesn’t have the given mode shape
as its null vector as well.

Figure 3.11: Example of a linear FRC for a clamped-clamped beam, with 2 responding
modes highlighted.

3.8 Conclusion

This chapter builds on top of the theory laid out in the second chapter by introducing
the harmonic balance method. First, state of the art of nonlinear vibration analysis and
HBM in particular is overviewed. HBM is a well established method within the field as it
allows modelling of steady state vibration without the need for expensive time stepping

3.8. Conclusion 49

procedures. Coupling HBM with other tools such as parameter continuation, nonlinear
models and efficient linear solvers allows for solving of complex nonlinear vibration anal-
ysis problems. State of the art of numerical solvers is also discussed as these are necessary
components of computational modelling.

The discrete nonlinear equations of motion are then used as an entry point into the HBM
formulation for steady state periodic motion. The frequency domain form of the equations
of motion is derived. The AFT procedure using numerical integration for evaluation of
nonlinear terms is explained. The nonlinear HBM equations are then used in context of a
predictor-corrector type parameter continuation. For this, the equations are extended into
the so called bordered system by adding the frequency as another variable and introducing
an additional constraint equation. Naive, tangent and secant predictors are described.
Standard Newton-Raphson nonlinear solver is used for the correction stage. This provides
a sufficient toolset for computing nonlinear FRCs of a vibrating structure. In addition, a
brief summary of linear modal analysis is provided as it will be useful in the following
chapter.

Chapter 4

FETI for HBM

As discussed in the previous chapter, the HBM equation as shown in (3.19) can be fed
into an existing linear solver of choice and be solved. The bordered system used for the
continuation procedure can easily be built around this. This is one of the approaches that
is also explored in this work. Another approach was developing an in house domain de-
composition parallel linear solver based on the FETI method. This solver uses the existing
theory of the FETI method and adapts it specifically for the nonlinear HBM problem. The
mathematics of this solver is described in this chapter.

FETI, which stands for finite element tearing and interconnecting, is a well established
domain decomposition method for solving systems of linear equations. It is designed
in a way that allows for efficient parallel implementation of the algorithm. It was first
introduced in [67] as a way to solve static linear elasticity problems. Since then it has been
successfully used to solve various systems with billions of degrees of freedom.

This chapter first provides the state of the art of parallel linear solvers and the FETI method
in particular. Next, the basic theory of the method and its fitting onto a nonlinear HBM
problem is described. The HBM equations are derived in a domain decomposition manner.
This form of the equations is then linearised for the Newton-Raphson solver. Precondi-
tioning of the FETI form of the equations is discussed and an artificial coarse space is
introduced for better convergence. Lastly, the equations are extended by the frequency
variable to be used in the parameter continuation procedure.

4.1 State of the art

FETI is an algorithm that is well suited for applications on massively parallel computer
architectures. This section therefore provides the state of the art overview not only for
FETI but also for parallel linear solvers in general. A special section is also dedicated to
research specifically in the area of parallelising the HBM equations or equations of similar
structure.

50

4.1. State of the art 51

4.1.1 Parallel linear solvers

Parallelism is an essential part of modern linear solvers. Parallel computing is a relatively
young field which rose into prominence with the development of multiprocessor computer
architectures. Current top of the line supercomputers have number of processing cores
in the order of millions [53]. To utilise efficiently such architectures, parallel implementa-
tions of the linear solvers (and other related algorithms) had to be developed. A parallel
algorithm utilises a set of threads or tasks that are capable of running independently of
each other, each solving part of the whole problem. Common way to measure parallel
efficiency is by assessing an algorithm’s scalability [114]. However, other more general
measures can be employed [194], taking into account multiple aspects such as reliability,
cost efficiency, development time and energy consumption [186]. Many software libraries
have been developed providing parallel implementations of various linear solvers, such as
previously mentioned MUMPS, SuperLU or PARDISO. Packages offering extensive linear
algebra functionalities in parallel have been developed, such as PETSc [10], Trilinos [173]
and many others. Kim et al. [101] proposed a domain-wise parallel direct solver for large
scale structural analysis.

Efficient handling of FE meshes is an important part of any large numerical model. Meca
et al. [126] proposed an approach for parallel loading and preprocessing of unstructured
meshes stored in sequential files. Gharbi et al. [57] presented a parallel mesh generation
method that is well suited for domain decomposition methods.

4.1.2 Domain decomposition methods

Domain decomposition methods are a group of linear solvers that do not very well fit into
the direct/iterative division. They are often called hybrid solvers as they utilise both a di-
rect and an iterative solver in different parts of their solve process. They can also be viewed
as preconditioners to iterative solvers. Domain decomposition solvers significantly gained
in popularity with the arrival of parallel computing, as their formulation and structure is
suitable for efficient parallelisation. An overview of domain decomposition methods can
be found in [51, 55]. They can be divided into two categories - overlapping and nonover-
lapping, depending on the overlap of the domains the methods create. The most popular
overlapping method is the Schwarz method [165]. Several variants of this method have
been developed over the years, such as the multiplicative Schwarz method [15], additive
Schwarz [56] or restricted additive Schwarz method [86] which has been successfully used
to solve problems of elasticity and Stokes systems of hundreds of millions of degrees of
freedom. Nonoverlapping domain decomposition methods include among others the bal-
ancing domain decomposition (BDD) and the finite element tearing and interconnecting
method (FETI), which was used in this work. The theory of BDD can be found in [121].
An advanced variant - balancing domain decomposition with constraints (BDDC) - was
studied in [122, 123]. This method was also used for solving linear elasticity problems for
hundreds of millions of degrees of freedom [9].

52 Chapter 4. FETI for HBM

4.1.3 FETI method

FETI, which is one of the primary focuses of this work, was first proposed in [67] as a
method to solve linear elastic problems. Convergence properties of the method were dis-
cussed in [65]. The basic idea of the method is to assume a separate problem defined for
each domain with free boundary on domain interfaces and then enforce domain continuity
via constraints using the Lagrange multiplier technique. Farhat and Mandel [64] applied
FETI to 4th order plate bending problems. Cho et al [35] applied FETI for large scale nonlin-
ear static structural multibody analysis, using a co-rotational formulation. FETI-DP (dual
primal) was later developed. This method keeps exact domain continuity at certain parts
of the mesh [61, 124]. Klawonn and Rheinbach [105] discussed an inexact FETI-DP variant.
Lumba and Datta [120] applied FETI-DP as a part of their rotor aeroelastic solver X3D.
Galliet and Cochelin [70] used FETI in combination with ANM to compute solutions of
static nonlinear deformations with parametrised loading force. Total-FETI method which
also uses Lagrange multipliers to enforce Dirichlet boundary condition was presented in
[54] and its parallel implementation can be found in [110]. A hybrid FETI variant, which
is a combination of classical FETI and FETI-DP was studied in [26, 106]. Paraschos and
Vouvakis [135] proposed a FETI-DOP (dual overlapping primal) variant, using an auxil-
iary primal coarse problem that is fully overlapping. A diagram highlighting differences
between some of the above mentioned FETI variants is in Figure 4.1. Recent massively
parallel implementations of the FETI method, utilising the state of the art computing hard-
ware, can be found in [85, 176]. Example of scalability results of FETI for billions of degrees
of freedom can be seen in Figure 4.2. Cermak et al. [58] provided an insight into FETI pre-
conditioning. Vašatová et al. [181] studied parallel assembly of the natural coarse space
matrix.

4.1. State of the art 53

Figure 4.1: Diagram showing basic differences between some of the most prevalent variants
of the FETI method [125]. The original FETI method from [65] is on top. Below that
is FETI-DP which keeps domains connected by their corners by keeping the corner primal
variables in the dual formulation [61]. Total-FETI (TFETI) method is similar to the standard
FETI method but it also disconnects the Dirichlet boundary condition and adds Lagrange
multipliers to enforce it [54]. This means all the domains are equal in terms of their set
of rigid body modes. The final diagram shows the hybrid total-FETI (HTFETI) which
combines TFETI and FETI-DP approaches [106].

54 Chapter 4. FETI for HBM

Figure 4.2: Results of the strong scalability test for heat transfer and linear elasticity prob-
lems with 20 and 11 billion unknowns respectively. Obtained with ESPRESO solver running
on Titan supercomputer. Figure taken from [85]. The results demonstrate superlinear scal-
ing of the solver by staying below the linear scaling marker line. This means that the solver
scales better with increasing the number of CPUs than what is commonly called the ideal
scalability. This does not mean that better scaling cannot be applied, but it is a good bench-
mark for the quality of scalability. It assumes that doubling the number of computational
resources will half the required computational time.

One more class of linear solvers that should be mentioned are multigrid solvers. The basic
idea behind multigrid solvers is to solve the system at hand multiple times on several
coarse grids in a sequence in order to accelerate computations of different wavelengths of
the solution. Multigrid solvers can also be used as preconditioners for other solvers. An
overview of multigrid solvers can be found in [191]. Their parallel properties were studied
in [18]. Many multigrid software packages have been developed, such as BoomerAMG [89]
[59], ML [173] or AMGCL [46]. Blatt et al. [23] demonstrated use of a multigrid solver to
solve Laplace and Poisson problems with around 1.34× 1011 dofs.

4.1.4 Parallel HBM

Finally, the intersection of the topics discussed in previous sections and chapters is re-
viewed, meaning parallel solvers for nonlinear HBM equations, as this is the topic of this
work. The HBM matrix is generally nonsymmetric and indefinite, meaning algorithms such
as FETI, which in their original form assumed symmetric positive definite matrix, need to
be modified. Cai and Widlund [27] studied domain decomposition algorithms for indefi-
nite elliptic problems. Xu and Cai [193] studied preconditioning of GMRES for indefinite or

4.2. Domain decomposition of the nonlinear HBM problem 55

nonsymmetric problems. Farhat et al. [60] proposed a variant of FETI called FETI-DPH for
solving acoustic scattering problems. The algebraic equations from these problems resem-
ble those of linear HBM equations. Farhat et al. [62] solved large scale linear mechanical
vibration and nonlinear transient problems with FETI-DP. Farhat et al. [63] applied FETI-
DP for shell vibration problems. Corral and Crespo Vaquerizo [40] used HBM to solve
Navier-Stokes equations for periodic flows with a parallel multigrid solver. Sanghavi [161]
studied FETI methods for acoustic problems with porous materials, which involves solv-
ing the Helmholtz equation. Kuether and Steyer [113] solved nonlinear HBM problems in
mechanics with predictor-corrector continuation with GMRES preconditioned by inverting
diagonal blocks of the system matrix in parallel. The largest testcase presented has 900k
degrees of freedom. Ju and Zhu [93] computed FRCs for nonlinear mechanical vibration
problems using HBM with shared memory parallelisation with up to 8 cores. Kononenko
[109] analysed linear mechanical vibration response using a parallel simulation suite called
ACE3P. Patil and Datta [137, 138] solved nonlinear HBM problems related to periodic rotor
dynamics, using a parallel skyline solver and a direct sparse solver (MUMPS).

Lot of research on solving HBM equations has been done in modelling of electrical cur-
rents and electromagnetic fields. Garcia Bedoy Torres [71] developed a Python code for
shared memory parallelisation of HBM for circuit simulations. Copeland and Langer [39]
followed [193] and applied a domain decomposition technique to solve nonlinear eddy cur-
rent problems using HBM. Dong and Li [52] solved nonlinear HBM equations for circuit
simulations. Parallelisation is done by (partially) neglecting off diagonal coupling between
different harmonics of HBM and solving a set of separate linear systems, one for each har-
monic, in parallel. Li and Dong [117] further developed this technique. Yao et al. [195]
applied FETI-DP to solve 3D nonlinear dynamic electromagnetic problems. It also assumed
decoupling of different harmonics.

It can be seen that HBM is a popular tool for analysing vibration in various scientific
fields. However, research around its parallel implementation for distributed nonlinearity
in mechanical vibration problems seems to be limited in terms of maximum problem size.
Several specifics of this field need to be accounted for. A predictor-corrector frequency
continuation needs to be employed to obtain a full response curve. The distributed non-
linearity creates coupling between dofs of all harmonics within one physical degree of
freedom. This coupling cannot be generally neglected. The system Jacobian matrix is also
indefinite and nonsymmetric. Research specifically targeting the topic of efficient parallel
implementations of HBM for mechanical vibration is therefore necessary.

4.2 Domain decomposition of the nonlinear HBM problem

FETI is a non-overlapping type of domain decomposition algorithm, meaning the mesh is
decomposed into domains that don’t overlap in volume, they only share common faces and
nodes at the interfaces (see Figure 4.1 for illustration). Each domain covers an internally

56 Chapter 4. FETI for HBM

connected volume (meaning there are no separate ’islands’ within one domain) and all
domains together cover the entire mesh. The method can be seen as solving a constrained
optimisation problem using the Lagrange multiplier technique.

Assuming a decomposition into N domains, the motion equations (3.15) are first assumed
separately for each domain (indexed with i):

Zi(ω)ũi + F̃nl
int(ũi) = F̃i (4.1)

with ũi being the solution vector on all nodes of domain i, meaning these vectors will
have overlaps on interfaces between neighbouring domains. The solution vector across all
domains can be written into one vector as:

ũ =


ũ1

ũ2
...

ũN

 (4.2)

Note that this vector is not the same in terms of its content as the ũ vector in the HBM
sections, as this form of the solution vector contains multiple variables for the same dof
for domain interface nodes. The notation is the same since it should be clear from the
context which version of the vector is being used. No Dirichlet boundary condition is
enforced in these domain equations of motion. The domains are treated as completely
free and independent of each other. This means that solving (4.1) on each domain would
not provide solution for the global problem (3.15). The Dirichlet boundaries, as well as
connectivity of neighbouring domains, are added via additional constraint equation:

∑
i

Biũi = O (4.3)

The structure of the Bi matrices will be discussed in a moment. First, a Lagrangian can be
established:

L(ũi, λ) = f (ũi)− λT

(
∑

i
Biũi

)
(4.4)

with scalar function f here being such that its gradient yields (4.1), meaning:

∇ũi f (ũi) = Zi(ω)ũi + F̃nl
int(ũi)− F̃i (4.5)

4.2. Domain decomposition of the nonlinear HBM problem 57

The argument ũi means that the domain solution vectors are from all domains inserted as
parameters into the function, i.e. f (ũi) = f (ũ1, ũ2, . . . , ũN). A stationary point (ũi, λ) of
this Lagrangian is then defined by equating its derivatives to zero, i.e.:

∂L
∂ũi

(ũi, λ) = O

∂L
∂λ

(ũi, λ) = O
(4.6)

Evaluating the ∂L
∂ũi

derivative yields:

Zi(ω)ũi + F̃nl
int(ũi) = F̃i + BT

i λ (4.7)

providing domain motion equations. The derivative ∂L
∂λ yields the constraint equation as

already established in (4.3). Solving (4.7) together with (4.3) with unknowns being ũ and λ

is equivalent to solving the global HBM equations from (3.15) for the global solution vector
ũ. The λ part of the FETI solution provides information about forces between domains on
their interfaces. The displacement values in ũ are called the primal variables, and variables
in λ are called the dual variables. This Lagrange multiplier procedure is the basic principle
of FETI and the reason for its name. The mesh is first torn into separate domains and then
connected back together using the Lagrange multipliers λ. An illustration of this can be
seen in Figure 4.3.

The domains are also separated from their Dirichlet boundaries, which are then also en-
forced by the constraint equations (4.3). This approach is known as total-FETI. This variant
used for static analysis is described in [110]. This is different to the original FETI algorithm
proposed in [67], which kept the Dirichlet boundary condition incorporated in a classical
way into the domain matrices. The advantage of the total-FETI approach is that all domains
are treated in the same way, regardless of presence of any Dirichlet boundary.

The structure of the Bi matrices that prescribe the constraint equations can be described as
follows:

Bi =
[
O Bb

i

]
(4.8)

with:

Bb
i =


±1 O · · · O
O ±1 · · · O
...

O O · · · ±1

 (4.9)

58 Chapter 4. FETI for HBM

Figure 4.3: Diagram of total FETI domain decomposition. The blue rectangles represent
individual domains that are connected together by the Lagrange multipliers on their inter-
faces (yellow arrows). The Dirichlet boundary condition is also enforced by them.

Bb
i is the boundary part of the Bi matrix, meaning those columns that correspond to bound-

ary degrees of freedom in ũi. The ±1 values are decided in a way so that the corresponding
boundary dof gets multiplied by 1 on one domain and -1 on the other one. This ensures the
continuity between domains by enforcing ũi − ũj = O for boundary degrees of freedom.
The Bi matrix additionally also enforces the Dirichlet boundary condition by including 1
for the corresponding dofs.

Matrices Bi can be also interpreted as a restriction of dofs of domain i to its interface.
An interface of a domain is considered to be the set of primal dofs that are connected to
dofs on other domains via the Lagrange multipliers λ. An interface between two domains
then refers to the primal variables that are connected between those two domains, or the
corresponding λ variables that connect them, depending on the context. Two domains are
considered to be neighbours if an interface exists between them. In the opposite direction,
multiplication by BT

i inserts the interface dual variables to their appropriate positions in the
domain primal variable vector. Since domain variables get mapped by Bi only to interface of

4.2. Domain decomposition of the nonlinear HBM problem 59

Figure 4.4: Effect of applying matrices Bi and BT
i . No direct connection exists between

domains 1 and 3 through the B matrices application, since they don’t share an interface
together. A connection between domain primal variables and interface dual variables exists
only between neighbouring domains, those that share a common interface.

that domain and nowhere else, inversely, only the interface variables related to a particular
domain will get mapped to that domain by BT

i . This local relationship between domains
and their interfaces is illustrated in Figure 4.4 and it will prove useful in the implementation
of the FETI solver.

Before going further, few functions are introduced to simplify notation. Let’s wrap the
FETI domain equations of motion (4.7) into a function Hi:

Hi(ũi, ω, λ) = Zi(ω)ũi + F̃nl
int(ũi)− F̃i − BT

i λ = O (4.10)

including the frequency ω as a variable also. This will be used later when the continuation
procedure is applied. The derivative of Hi by ũi is then:

Ai(ũi, ω, λ) = ∇ũi Hi(ũi, ω, λ)

= Zi(ω) +∇ũi F̃
nl
int(ũi)

(4.11)

and its derivative by λ:

∇λHi(ũi, ω, λ) = −BT
i (4.12)

The domain connectivity equation (4.3) is wrapped into an Hc function:

Hc(ũ) = ∑
i

Biũi = O (4.13)

with its derivative by ũi being:

60 Chapter 4. FETI for HBM

∇ũi Hc(ũ) = Bi (4.14)

The derivative of Hc by λ is O.

Functions Hi over all domains can be grouped into one function H:

H(ũ, ω, λ) =


H1(ũ1, ω, λ)

H2(ũ2, ω, λ)
...

HN (ũN , ω, λ)

 = O (4.15)

and its derivative by ũ:

A(ũ, ω, λ) = ∇ũH(ũ, ω, λ) =


A1 O · · · O
O A2 · · · O
...

O O · · · AN

 (4.16)

Using the notation established above, the complete FETI formulation of the nonlinear HBM
equations of motion can be expressed as:

(
H(ũi, ω, λ)

Hc(ũi)

)
=

(
O
O

)
(4.17)

4.3 Treatment of corners

Depending on the mesh decomposition, multiple (more than 2) domains can meet in cer-
tain locations of the mesh. There are multiple ways to prescribe the domain continuity
constraint (4.3) for such degrees of freedom. One can pick one domain and connect all the
other domains to it. Or run a ’chain’ of connections from the first domain to the last. In
principle, any variant that binds all the present domains together will work. Another way
is to introduce an additional degree of freedom for the corner dofs and bind all dofs to that
extra dof. This method is called a localised version of Lagrange multipliers and can be seen
for example in [136], among other possible variants. For this work, a fully redundant set of
Lagrange multipliers is used for all corners between multiple domains. This means that all
domains are connected to all other domains. The choice of this method is based on [153],
which states that this choice is necessary to be able to construct efficient preconditioners.
It also proves convenient from the implementation standpoint, as all domains are treated
equally. An example of such fully redundant domain connection can be seen in Figure
4.5. This approach of fully redundant connections is not applied to the Dirichlet boundary

4.4. Linearised problem - Newton step 61

degrees of freedom. A degree of freedom that has a Dirichlet boundary condition imposed
onto itself does not anymore connect to degrees of freedom of other domains connected in
that point.

Figure 4.5: Multiple domains (blue areas) interfacing in a corner with fully redundant
constraints. The red numbers represent number of Lagrange multipliers related to the
corresponding primal degree of freedom. These numbers can be used for scaling the ±1
values in the B matrices.

Additionally, a scaling of the values in the B matrices is introduced for the corner degrees
of freedom. One can observe that for the corner degrees of freedom, the Bi matrix as
defined in (4.8) and (4.9) will have multiple nonzero values in the corresponding column.
The values are scaled in such a way that (Bb

i)
TBb

i = I, with I being an identity matrix of an
appropriate size. This means dividing the values in Bi for the corner degrees of freedom by
the factor of

√
m, where m represents the number of connections for the given dof, i.e. the

number of nonzero values in the particular column. The values of m are also highlighted in
Figure 4.5. This scaling is discussed for instance in [58]. It can also be viewed as a form of
preconditioning. Since there are multiple connections in the corner, their significance can
be lowered to match the ’strength’ of the connections between only 2 domains.

4.4 Linearised problem - Newton step

Considering ω to be a fixed parameter for a moment, Newton step formula for equations
(4.17) can be formed analogously to (3.19). Denoting the Newton step as (∆ũ, ∆λ), it can
be computed by solving:

[
A ∇λH
∇ũi Hc O

](
∆ũ
∆λ

)
= −

(
H
Hc

)
(4.18)

62 Chapter 4. FETI for HBM

omitting the function parameters for simpler notation. Expanding individual terms in the
above yields:


A1 O · · · O −BT

1
O A2 · · · O −BT

2
...

...
O O · · · AN −BT

N
B1 B2 · · · BN O




∆ũ1

∆ũ2
...

∆ũN
∆λ

 = −


H1

H2
...

HN
Hc

 (4.19)

By defining B to be the domain connectivity matrix covering all domains:

BT =


BT

1
BT

2
...

BT
N

 (4.20)

the Newton step (4.18) can be rewritten as:

[
A −BT

B O

](
∆ũ
∆λ

)
= −

(
H
Hc

)
(4.21)

The above formula represents one iteration of Newton method where the steps ∆ũ and ∆λ

are used to update the solution guess ũ and λ. In FETI, this linearised problem is solved
by first eliminating the primal variables from the equations by expressing:

∆ũ = A+
(
−H + BT∆λ

)
+Rα (4.22)

or in terms of one domain:

∆ũi = A+
i

(
−Hi + BT

i ∆λ
)
+Riαi (4.23)

where A+
i is a pseudoinverse of Ai and:

A+ =


A+

1 O · · · O
O A+

2 · · · O
...

O O · · · A+
N

 (4.24)

Note the presence of matrix R which stands for null space (a base of it in columns) of A,
as the domain matrices can possibly be singular. This is because the Dirichlet boundary

4.4. Linearised problem - Newton step 63

condition is not included in the domain matrices and some domains might be without any
Dirichlet boundary whatsoever, so the domains are left ’floating’ without being attached
anywhere. One has to therefore account for it by adding the null space to the solution. The
null space is defined on each domain separately as:

AiRi = O (4.25)

The domain null space bases Ri are then stacked diagonally into one matrix R across all
domains:

R =


R1 O · · · O
O R2 · · · O
...

O O · · · RN

 (4.26)

Additional vector of unknowns α is introduced which represents the vector of coefficients
that multiply the null space vectors:

α =


α1

α2
...

αN

 (4.27)

The step in primal solution ∆ũ as expressed in (4.22) is substituted into the second row of
equations from (4.21) to obtain:

B
[
A+

(
−H + BT∆λ

)
+Rα

]
= −Hc

BA+BT∆λ + BRα = BA+H − Hc

(4.28)

Let’s simplify the notation in (4.28) by denoting:

F = BA+BT = ∑
i

BiA+
i BT

i (4.29)

and:

G = BR = [B1R1, B2R2, · · · , BNRN]
= [G1,G2, · · · ,GN]

(4.30)

and:

64 Chapter 4. FETI for HBM

D = BA+H − Hc = ∑
i

(
BiA+

i Hi
)
− Hc (4.31)

Equation (4.28) then yields:

F∆λ + Gα = D (4.32)

This formulation is called the dual problem, as it includes only the dual variables λ and
the primal variables ũ have been eliminated. The α vector is only temporary for the linear
solve, it doesn’t propagate across Newton iterations. Since a new set of variables α has
been introduced, additional set of equations is also required to fully determine the whole
system. Before applying the pseudoinverse A+ in (4.21), the domain equation reads:

Ai∆ũ = −Hi + BT
i ∆λ (4.33)

The right hand side of the above system must naturally belong to image of Ai. A general
linear algebra rule states that a matrix image is orthogonal to the null space of its transpose
[13]. This implies the requirement:

LT
i

(
−Hi + BT

i ∆λ
)
= O (4.34)

with Li being the left null space Ai, i.e. AT
i Li = O. The equation above is called the

compatibility equation, as it enforces the compatibility of the right hand side in (4.33). An
argument follows showing that Li can be replaced with Ri as they are equal.

First, in a linear case Ai = Zi. It was discussed before (see Section 3.7) that for the nonzero
harmonic blocks, the presence of damping removes mode shapes from the null space of
the matrix. An assumption is made that no other null space vectors exist for these blocks.
This is not a proof, but it has been verified by various testcases. The zero harmonic block
is formed by the stiffness matrix K, which is symmetric and therefore has the same left
and right null space. In particular, the basis of null space of K in 3 dimensions consists of
6 vectors - 3 translations along 3 coordinate axes, and 3 rotations around those same axes
[26, 66]. Let’s denote these two sets of 3 vectors rT and rR, i.e.:

null(K) = null(KT) =
[
rT rR

]
(4.35)

Taking all the above into consideration, it is assumed that for linear problems it holds that
null(Zi) = null(ZT

i), with the only null space being the null space of the matrix K in the
0th harmonic block (if present).

4.4. Linearised problem - Newton step 65

Second, in nonlinear case, the nonlinear term ∇ũ F̃nl
int is added to the Z matrix. The block

structure of this term is shown in (3.26). Each block (in terms of harmonic coefficients)
consists of a sum of several matrices Knl multiplied by some coefficients. An assumption is
made here that all these matrices, as well as their sum, have the same null space, regardless
of what displacement they are evaluated for (as long as it’s not zero). Specifically, the null
space of any Knl is the translation part of null space of the linear K. The rotation vectors
are no longer present [66, 189, 190].

null(Knl) = null(KnlT
) =

[
rT

]
(4.36)

Based on the above, it is concluded that the null space of the complete domain matrix as
defined in (4.11) is either both translation vectors rT and rotation vectors rR in a linear case
or only the translation vectors rT for a nonlinear case. In both cases, this null space is only
present for the 0th harmonic part. If 0th harmonic is not used, no null space is present.
Furthermore, because of (4.35) and (4.36), it is assumed that null(Ai) = null(AT

i). One
can therefore replace the left null space with the right null space in (4.34), obtaining the
compatibility equation in form:

RT
i

(
−Hi + BT

i ∆λ
)
= O (4.37)

After rearranging:

GT
i ∆λ = RT

i BT
i ∆λ = RT

i Hi = Ei (4.38)

Collectively for all domains, the compatibility equation reads:

GT∆λ =


G1

G2
...
GN

∆λ =


E1

E2
...
EN

 = E (4.39)

Complete dual problem including the compatibility equation is then:

[
F G
GT O

](
∆λ

α

)
=

(
D
E

)
(4.40)

This completes the transition of the linearised problem in Newton step from being defined
in both primal and dual variables in (4.21) into its dual form.

66 Chapter 4. FETI for HBM

4.5 Solving the linearised problem

The dual problem from (4.40) can be solved in many ways. The most simple one would be
to assemble the problem matrix and use any available linear solver. However, this would
not take advantage of the properties of the system and would be gravely inefficient. The
standard way to solve the dual problem coming from the FETI method, adapted to the HBM
structure of the domain matrices Ai, is described in the following paragraphs. The entire
process (including preconditioning which is discussed afterwards) is also summarised in
Algorithm 1 at the end of this section.

The dual solution ∆λ is first split into 2 orthogonal components:

∆λ = λ0 + Pλ12 (4.41)

where λ0 ∈ Im(G) and Pλ12 ∈ null(GT). The component λ12 is allowed to be in any space
and the orthogonality to λ0 is ensured by applying an orthogonal projection P in the form:

P = I − G(GTG)−1GT (4.42)

This projection is orthogonal to a projection:

Q = G(GTG)−1GT (4.43)

One can easily verify that PQ = O and PG = O.

Since λ0 ∈ Im(G) and the other component Pλ12 ⊥ Im(G), it follows that:

Q∆λ = Q(λ0 + Pλ12)

= Qλ0

= λ0

(4.44)

In other words, if the complete solution ∆λ is known, then the λ0 component can be
obtained by orthogonally projecting that solution onto Im(G). This observation can be
used in combination with the second line of equations in (4.40):

λ0 = Q∆λ

= G(GTG)−1GT∆λ

= G(GTG)−1E
(4.45)

4.5. Solving the linearised problem 67

The image of G is called the natural coarse space of the problem in dual variables. It is cre-
ated from null spaces of individual domains that were transferred into dual variables by the
Bi matrices. Number of columns in G is determined by number of null space vectors across
all domains. As discussed previously, the only null space comes from the 0th harmonic
part of Ai and can have at most 6 vectors per one domain. This means that the matrix GTG
inside the P and Q is relatively small compared to the size of the dual problem. Because
of that, computing the natural coarse space solution component λ0 in the way described
in (4.45) requires inverting only this small matrix, makings this computation relatively low
cost.

It remains to compute λ12 and α. The next step is to require that the residual of the first
equation in (4.40) to be orthogonal to columns of G. This is a type of a weak solve, similar
in principle to the residual projection in (3.12):

GT(F∆λ + Gα−D) = O

GTF∆λ + GTGα = GTD
(4.46)

Rearranging to express α yields:

GTGα = GT(D −F∆λ)

α = (GTG)−1GT(D −F∆λ)
(4.47)

hence obtaining an expression to compute α, provided that ∆λ is known, which at this
point it is not. However, the α variable can now be eliminated by plugging the above
expression for it back into the first line of (4.40) to obtain:

F∆λ + G(GTG)−1GT(D −F∆λ) = D (4.48)

and after reorganising the terms:

(I − G(GTG)−1GT)F∆λ = (I − G(GTG)−1GT)D
PF∆λ = PD

(4.49)

Using the fact that the λ0 component of ∆λ is already known and noting the presence of
the P projector on both sides the above can be rearranged into:

PFPλ12 = P(D −Fλ0) (4.50)

Obtaining a system to be solved for unknown λ12. Once λ12 is computed, the full dual
solution ∆λ can be obtained, followed by computing α using (4.47). This completely solves

68 Chapter 4. FETI for HBM

the dual problem.

The reason why the dual problem is solved in this way has already been hinted. By solving
first for λ0, one can relatively quickly compute the low frequency part of the solution
(frequency in spatial dimensions). The null space vectors of domain matricesAi can be seen
as eigenvectors attached to the lowest possible eigenvalue - 0. They can also be interpreted
as vibration modes of (3.45) with ω = 0 (with K + Knl instead of just K for nonlinear
case). One can therefore see that the vibration frequency of the modes in time and spatial
frequency of their deformations are related. See the modes in Figure 3.11 for comparison.
The higher frequency mode also has more ’wavy’ shape. The solution λ0 therefore provides
a coarse approximation (hence the naming coarse space) of the solution in dual variables
across all domains. It is the rough estimate without the fine details.

When solving (4.50) for the other solution component λ12, an iterative Krylov space solver
is typically used. This is because an iterative solver doesn’t require explicit assembly of the
problem matrix, in this case F . Only its multiplication with a vector needs to be imple-
mented. Studies of FETI convergence show [151, 170] that Krylov space solvers typically
struggle with establishing the ’global shape’ of the solution, meaning finding the high
wavelength solution components. On the other hand, they are fast to smooth out local
low wavelength errors. Because of this property, having the coarse component λ0 already
computed removes this component from the solution. Solving for λ0 in advance can also
be seen as establishing the general global shape of the solution across all domains. The iter-
ative solver then needs to only find the ’fine detail’ solution λ12 for which the convergence
will be much faster. This is what fundamentally makes FETI a powerful algorithm. The
coarse solution λ0 is first efficiently computed by inverting a small sized problem. Then,
the fine solution part λ12 is again efficiently computed by the iterative solver thanks to the
knowledge of λ0.

At this point, the discussion about FETI could be finished. The algorithm described above
is sufficient to solve the dual problem. However, as discussed previously, the only null
space present in G is on the 0th harmonic portion of the frequency domain vectors. This
means that also the natural coarse space solution only has nonzero values on the 0th har-
monic positions. For other harmonics, no coarse space is effectively present, so the iterative
solver will have to compute full solution for those harmonics, which will likely slow down
the convergence. It is therefore natural to ask for another coarse space for the nonzero
harmonics.

One can add an additional, so called artificial, coarse space Gc that is not mandatory but can
improve convergence of the iterative solver used to solve (4.50). Such additional artificial
coarse space is commonly used in the FETI2 method [76]. This coarse space is required to
be orthogonal to the natural coarse space G, i.e. GT

c G = O. Discussion on how to achieve
this orthogonality follows below in Section 4.7. The construction of this coarse space is
analogous to the construction of the natural coarse space G. Starting from domain vectors
in primal variables Rc,i on each domain, one can assemble Gc as:

4.5. Solving the linearised problem 69

Gc = BRc = [B1Rc,1, B2Rc,2, · · · , BNRc,N]

= [Gc,1,Gc,2, · · · ,Gc,N]
(4.51)

Unlike the vectors in Ri, which form the null space of Ai, the vectors in Rc,i can be gener-
ally any vectors. One can then assume a further split of the solution λ12:

λ12 = λ2 + Gcβ (4.52)

with Gcβ representing the solution part on space generated by columns of Gc. Next, the
same weak solution procedure is applied with Gc to (4.50) as was done with G in (4.46):

GT
c PFP(λ2 + Gcβ) = GT

c P(D −Fλ0) (4.53)

Since GT
c G = O, it follows that GT

c P = GT
c and also PGc = Gc, so the above can be simplified:

GT
c FP(λ2 + Gcβ) = GT

c (D −Fλ0) (4.54)

Expressing β:

GT
c FGcβ = GT

c (D −F (λ0 + Pλ2))

β = (GT
c FGc)

−1GT
c (D −F (λ0 + Pλ2))

(4.55)

Substituting for β in (4.50) yields:

PFP(λ2 + Gc(GT
c FGc)

−1GT
c (D −F (λ0 + Pλ2))) = P(D −Fλ0) (4.56)

After rearrangement:

P(F −FPGc(GT
c FGc)

−1GT
c F)Pλ2 = P(D −Fλ0)−PFPGc(GT

c FGc)
−1GT

c (D −Fλ0)

P(I −FGc(GT
c FGc)

−1GT
c)FPλ2 = P(I −FGc(GT

c FGc)
−1GT

c)(D −Fλ0)
(4.57)

Let’s denote:

Pc = I −FGc(GT
c FGc)

−1GT
c (4.58)

70 Chapter 4. FETI for HBM

It can be seen that this is a projection analogous to (4.42), involving Gc this time. However,
this projection is not orthogonal like P as it includes the FETI operator F . It is called a
conjugate projection. The equation (4.57) then yields:

PPcFPλ2 = PPc(D −Fλ0) (4.59)

The equation (4.59), which is the equation (4.50) additionally projected by Pc, is then solved
with an iterative solver to obtain λ2. After that, the last part of the ∆λ solution can be
obtained:

λ1 = Gcβ (4.60)

with β being determined from (4.55). The reason to write λ1 as Gcβ was to emphasize the
fact that λ1 exists in the space spanned by columns of Gc. The complete solution to the
dual problem is then simply:

∆λ = λ0 + P(λ1 + λ2) (4.61)

As before, once ∆λ is known, α can be computed using (4.47). This provides a complete
solution to the dual problem stated in (4.40). Once the dual problem is solved, the pri-
mal solution step ∆ũi can be computed using (4.22). This completely solves one Newton
iteration, providing the next solution guess (ũi, λ).

As a final note, FETI for static elastic problems standardly uses the conjugate gradient
method (CG) as the iterative solver to solve (4.50) or (4.59) [67, 76]. This is because F
in those problems is symmetric positive definite. This is not the case here as the domain
matrices Ai are generally indefinite and nonsymmetric. This property translates to the dual
system matrix F . Therefore, GMRES is used in this work instead of CG.

4.6. Preconditioning 71

Algorithm 1 Newton step with FETI

1: Input: Ai, Bi, Hi, Hc

2: Factorise Ai
3: F = ∑i BiA+

i BT
i . Dual problem operator

4: D = ∑i
(

BiA+
i Hi

)
− Hc . Dual problem right hand side

5: Ri = null (Ai) . Compute domain matrix null space
6: G = [B1R1,B2R2, . . . ,BNRN]
7: Assemble and factorise GTG
8: P = I − G

(
GTG

)−1 GT . Orthogonal projection

9: Rc,i = CreateArtificialCS() . Establish artificial coarse space
10: Gc = [B1Rc,1,B2Rc,2, . . . ,BNRc,N]
11: Assemble and factorise GT

c FGc

12: P = I −FGc
(
GT

c FGc
)−1 GT

c . Conjugate projection

13: E =
(
(RT

1 H1)
T, (RT

2 H2)
T, . . . , (RT

NHN)T)T

14: if isPreconditionerDirichlet then
15: Sbb

i = Abb
i −Abi

i
(
Aii

i
)−1Aib

i . Compute domain matrix Schur complement

16: Si =

[
O O
O Sbb

i

]
17: F ′ = ∑i BiSiBT

i
18: else if isPreconditionerLumped then
19: F ′ = ∑i BiAiBT

i
20: end if

21: λ0 = G
(
GTG

)−1 E . Compute solution on natural coarse space

22: GMRES Op = PPT
c F ′PPcFP

23: GMRES Rhs = PPT
c F ′PPc(D −Fλ0)

24: λ2 = GMRES(GMRES Op, GMRES Rhs) . Solve the projected dual problem

25: β = (GT
c FGc)−1GT

c (D −F (λ0 + Pλ2))
26: λ1 = Gcβ . Compute solution on artificial coarse space
27: ∆λ = λ0 + P (λ1 + λ2) . Compute complete dual solution

28: α = (GTG)−1GT(D −F∆λ)
29: ∆ũi = A+

i
(
−Hi + BT

i ∆λ
)
+Riαi . Compute primal solution

30: Output: ∆ũi, ∆λ

4.6 Preconditioning

Preconditioning is a common way to improve performance of Krylov based iterative solvers.
Their goal is to transform the linear system to lower the condition number of the matrix,

72 Chapter 4. FETI for HBM

which can significantly improve the rate of convergence of the solver [139]. An ideal pre-
conditioner would be the inverse of the system matrix, which is however not efficient to
compute. A preconditioner is therefore in some sense an approximation of the matrix
inverse, such that it is computationally cheap to obtain.

In FETI, a preconditioner operator F ′ can be used to improve convergence when solving
the projected dual problem (4.59). There are 2 preconditioners that are commonly used
in FETI for static elasticity problems [58] to improve convergence of the projected dual
problem solver. These preconditioners are also explored in this work.

The first option is the so called lumped preconditioner. This preconditioner takes form of:

F ′ = ∑
i

BiAiBT
i (4.62)

The lumped preconditioner can be interpreted as approximating the inverse of a sum by
sum of inverses, since F = ∑i Bi A+BT

i . The second preconditioner is called Dirichlet and
it reads:

F ′ = ∑
i

BiSiBT
i (4.63)

where Si =

[
O O
O Sbb

i

]
. The Sbb

i block represents the Schur complement of the domain

matrix Ai on the domain boundary degrees of freedom, meaning:

Sbb
i = Abb

i −Abi
i (Aii

i)
−1Aib

i (4.64)

where b and i superscripts indicate boundary and internal primal domain degrees of free-
dom respectively, for rows and columns (in that order). The block division of Si is only
symbolic, as in practice the structure will depend on order of dofs on the domain.

It should be noted that the mathematical expressions for both of the preconditioners follow
the pattern of the expression for F . They are both computed as a sum of partial results
computed on each domain. This is important for efficient parallelism. While the lumped
preconditioner is computationally cheaper to obtain, the results in [58] show that the Dirich-
let preconditioner achieves better reduction of number of iterations in the iterative solver.
Both preconditioners will be assessed in later sections.

Given the operator form of the projected dual problem, the preconditioner F ′ can simply
be applied from the left:

F ′PPcFPλ2 = F ′PPc(D −Fλ0) (4.65)

4.7. Choice of artificial coarse space 73

However, it was observed experimentally (see results in Section 6.4.3) that adding a second
set of projections PPT

c after the preconditioner improves convergence of GMRES:

PPT
c F ′PPcFPλ2 = PPT

c F ′PPc(D −Fλ0) (4.66)

This version of the projected dual problem was used for all results in this work (except
when no preconditioner was used). This means that another set of P and Pc projections
needs to be performed, with the latter transposed. The form of the equations above was
reached during discussions of this topic with professor Rixen [152]. The optimal form of
applying the preconditioner to the projected dual problem requires a deeper mathematical
analysis. This was not possible to conduct during the time scope of this project. Therefore,
the equation (4.66) is presented as is without a thorough explanation. Alternatively, the
simpler version of the equations (4.65) is also valid and can be successfully used.

4.7 Choice of artificial coarse space

So far, nothing has been said about the form of the artificial coarse space Gc. The only
requirement set for it is that GT

c G = O. It should be noted that this requirement is not
strictly necessary. One can achieve this orthogonality by first projecting any arbitrary Gc by
P , i.e. picking:

Ḡc = PGc (4.67)

then:

ḠT
c G = GT

c PTG = GT
c (G − G) = O (4.68)

However, this approach might cause a problem in terms of parallelisation of the algorithm.
It is therefore better to pick Gc such that it already satisfies the orthogonality condition and
whose vectors are well localised, i.e. spanning only several neighbouring interfaces in the
mesh.

As it was previously argued (see Sections 3.7 and 4.4), the null space of the domain matrices
A is restricted only to the 0th harmonic, if that is present in the system. The Bi matrices
do not change this, so all the vectors in G have nonzero values only at their 0th harmonic
positions. This means that any vector in Gc that is zero in its 0th harmonic will trivially
satisfy the orthogonality.

A natural idea is to use the same vectors for the artificial coarse space that are used for the
natural coarse space, i.e. expand the null space of the 0th harmonic block of the domain

74 Chapter 4. FETI for HBM

matrix to other harmonics, as those are loosely speaking the ’coarsest vectors available’.
Since the vectors in Gc do not need to be in any relation to the actual null space of the 0th
block, one can pick the entire 6 vectors that form the null space of the linear stiffness matrix
K, regardless of the problem being possibly nonlinear. Denoting:

ri = null(Ki) =
[
rT,i rR,i

]
(4.69)

with rT,i and rR,i being the translation and rotation parts respectively. The entire artificial
coarse space in primal variables can then look like this:

Rc,i =





O O · · · O O 0th harmonic - no artificial CS
ri O · · · O O 1st harmonic cosine part
O ri · · · O O 1st harmonic sine part
...

O O · · · ri O m-th harmonic cosine part
O O · · · O ri m-th harmonic sine part

(4.70)

Gc is then computed as shown in (4.51).

This choice of Gc is used in this work for several reasons. First, this coarse space is compu-
tationally cheap to assemble and can be evaluated independently on each domain. Second,
no better options were discovered during this research. Adding several lowest frequency
modes of the individual domains was tested but with no observable convergence improve-
ments. This was done by computing the free vibration modes on each domain using the
domain Ki and Mi matrices (see (3.50)). Another artificial coarse space that was tested
is a coarse space proposed in [60]. This wave-based coarse space attempts to recognise
the specific character of the Helmholtz equation which in its structure resembles the HBM
problem. However, difficulties implementing this coarse space were encountered and this
option was also dropped. This is not a definitive conclusion about any of the unsuccess-
fully tested options. A more thorough research and tuning of those options could reveal
that these options are viable candidates. This work is nevertheless limited to the artificial
coarse space described in (4.70).

Additionally, Gc can also include vectors that are nonzero on the 0th harmonic. Here one
must be careful to satisfy the orthogonality condition. The idea used in this work is to use
the rotation part of K null space once the system becomes nonlinear and the rotations are
no longer part of Knl null space. However, these rotations cannot be used in the form in
which they appear in the null space of K. While they are orthogonal to translations on the
same domain, they are not orthogonal to translations of the neighbouring domains. This
can be seen in Figure 4.6. A way to resolve this issue for a regular hexahedral mesh is to
construct separate rotation vectors for each interface between 2 domains. These rotations

4.8. Continuation 75

Figure 4.6: Translation and rotation of neighbouring domains. The right boundary of the
blue domain and the left boundary of the orange domain correspond to the same degrees
of freedom in dual variables λ.

are constructed around centres of the given interfaces, and restricted only to those inter-
faces. i.e. the vectors ri are zeroed out everywhere outside the interface dofs. Furthermore,
the rotations also have to be zeroed out at the edges of the interfaces when there is a corner
between more than 2 domains. These modified rotations are shown in Figure 4.7. If a
domain interface is too small (in terms of number of elements it covers in any direction)
and the rotations need to be restricted because of the corners so much that not even width
of a single element would be covered by it, that rotation vector is omitted from the coarse
space completely.

4.8 Continuation

The continuation algorithm as presented in Section 3.6 requires additional attention when
combined with FETI. This is because the set of unknowns in the HBM problem was ex-
tended by adding the Lagrange multipliers λ. When frequency ω is assumed as another
unknown, the complete set of variables required to describe a solution point to (4.7) on
an FRC is (ũ, λ, ω). This means that an FRC also exists in the λ variables and so those
need to be followed by the continuation loop as well. Assuming a prediction direction
τ = (τũi , τλ, τω) and a predicted solution guess (ũp

i , λp, ωp), the pseudo arc-length con-
straint function g is analogous to the one defined in (3.34):

g(ũi, λ, ω) = dot((ũi, λ, ω)− (ũp
i , λp, ωp), τ) (4.71)

the lower index i identifying index of the Newton iteration was dropped to not be confused
with domain index for ũi. Combining the standard newton step using the FETI algorithm
as defined in (4.21) with the pseudo arc-length correction extension as done in (3.37), one
obtains:

 A −BT ∇ω H
B O ∇ω Hc

∇ũg ∇λg ∇ωg


∆ũ

∆λ

∆ω

 = −

H
Hc

g

 (4.72)

76 Chapter 4. FETI for HBM

Figure 4.7: Construction of domain interface rotations for artificial coarse space on 0th
harmonic for a regular mesh. Instead of rotating around the centre of the domain, for each
individual interface between 2 domains, a rotation of that interface is constructed around
its centre. The rotation is restricted only to dofs of that interface and has zeros everywhere
else in the domain. Zeroing out at the edges of the interfaces is further performed if there
is a corner between multiple domains. This ensures orthogonality of all such rotations to
all translation vectors in G.

with the function parameters as well as the upper k index omitted for notation simplifica-
tion purposes. Noting that ∇ω Hc = O as Hc does not depend on ω and using the pseudo
arc-length constraint function g defined in (4.71), the above simplifies to:

A −BT ∇ω H
B O O
τũ τλ̃ τω


∆ũ

∆λ

∆ω

 = −

H
Hc

g

 (4.73)

Applying the same bordered solve algorithm as in (3.38) and (3.39), one obtains:

4.9. Conclusion 77

[
A −BT

B O

](
x1,ũ

x1,λ

)
= −

(
H
Hc

)
[
A −BT

B O

](
x2,ũ

x2,λ

)
=

(
∇ω H

O

) (4.74)

Note that both of the temporary variables x1 and x2 can be obtained by solving the standard
linear system with the FETI structure as defined in (4.21). After that, the Newton steps can
be obtained:

∆ω =
−g− dot((τũ, τλ), x1)

τω − dot((τũ, τλ), x2)

(∆ũ, ∆λ) = x1 − ∆ωx2

(4.75)

In case of tangent predictor, same approach as in (3.31) can be applied, but using the FETI
solver. This would yield a linear system:

[
A −BT

B O

](
τũ

τλ

)
=

(
−∇ω H

O

)
(4.76)

with the matrix A and vector H evaluated for an already computed solution (ũi, λ, ω) and
(τũ, τλ) being parts of the tangential vector in ũi and λ at that solution point.

4.9 Conclusion

This chapter provides the necessary theoretical background for the FETI method and its
application on the nonlinear HBM equations. State of the art of parallel linear solvers
in general is first overviewed. Many existing linear solvers have been parallelised and
many new solvers have been developed specifically to benefit from the new massively
parallel computer platforms. This opened possibilities for solving numerical problems at a
completely new scale. State of the art of the FETI method in particular is then reviewed. The
method has become a popular domain decomposition linear solver since its introduction
in 1991 and it has since proven to be an efficient solver. In the realm of static elasticity
problems it achieved impressive scalability on problems reaching sizes of billions of degrees
of freedom.

Following the state of the art overview, the formulation of the FETI algorithm for the
HBM equations is introduced. It follows the well established theory of the FETI method
used in static elasticity problems. The mesh is decomposed into domains and interface
continuity is enforced using Lagrange multipliers. The dual equations are derived using
the standard procedure of eliminating the primal variables and introducing the domain
rigid body modes (null space of domain matrices). The total-FETI approach is used. This
variant also detaches all domains from their Dirichlet boundary. An argument is made

78 Chapter 4. FETI for HBM

about the nature of the domain matrices null space. The standard orthogonal projection
on the natural coarse space is performed to obtain the portion of a solution on the coarse
space. Then, the additional artificial coarse space is introduced to improve convergence
for the nonzero harmonic components of the solution. This coarse space can be extended
to also further improve convergence on the 0th harmonic. The properties of the artificial
coarse space and its possible forms are discussed. GMRES is the iterative solver chosen to
solve the projected dual equations for the fine portion of the dual solution.

Other essential aspects of the solver such as treatment of corners between multiple do-
mains and preconditioning are addressed. The FETI formulation of the linearised HBM
equations inside a Newton iteration is put into context with the bordered system used in
the continuation procedure.

Chapter 5

Code

A large portion of this work was dedicated to developing a code in which the theory pre-
sented above could be properly tested. Early in the study process, a decision was made
to develop a custom code from scratch instead of building upon an existing library. There
are libraries that could have served as a good starting point, such as the ESPRESO library
from IT4I [84], which has proven to be very efficient in its FETI algorithm implementation.
However, a new custom code was developed because it offered more flexibility and oppor-
tunity to tailor it more around the HBM problem structure, as well as a good opportunity
for personal skill development of the author. The code is publicly available at Gitlab [21].

The code was developed in C++ under the Linux environment, using extensively the object
oriented programming principles. It has been given working name ParHBM, standing
simply for parallel harmonic balance method. Emphasis was put on code modularity so
that various parts can potentially be replaced by different implementations. While the code
is in house developed from scratch, it does employ many 3rd party libraries to handle many
tasks such as linear algebra, solving linear systems, graphical output and meshing. All of
the used libraries are well established open source packages with good support. The focus
of the development was therefore mostly on the harmonic balance method, continuation
and the FETI algorithm.

For parallelism, the message passing interface (MPI) was used. This is a common tool used
for creating massively parallel applications, i.e. applications capable of running on dis-
tributed memory architectures. MPI spawns a desired number of processes (ranks) that all
execute the same code on a distributed memory platform. Each MPI process is bound to a
CPU on one of the computing nodes. This is in contrast to libraries such as OpenMP, which
only support multithreading on a single processor and memory system (shared memory).
MPI hides plenty of the communication code required for inter processor communication
and offers a set of functions for various types of data exchange between processes. It is
also possible to combine MPI and OpenMP to take advantage of the shared memory be-
tween several CPUs on one processor as well as to allow communication between different
processors. However, this option was decided against in this work for simplicity reasons.

79

80 Chapter 5. Code

The following chapter provides an insight into the code global structure. It presents the
main functionalities of the code, shows interactions between key modules and briefly de-
scribes IO. Several parallel implementation features are highlighted, especially related to
the FETI algorithm.

5.1 Structure

Figure 5.1: Diagram of the general flow of the code run. The code takes a configuration file
and a mesh as an input. Task runner acts as a main class that executes selected tasks while
employing the key modules such as HBM class, FE class, mesh interface and linear solvers.
The linear algebra framework is employed throughout the most of the code.

The structure of the code is designed around the object oriented principle. Several classes
represent key elements of the code. Their overview and general interaction can be seen
in Figure 5.1. The HBM class handles assembling of the harmonic problem matrices and
vectors in accordance to (3.15), as well as their FETI domain versions as in (4.7). The
abstract linear solver class represents a common interface to various linear solvers. The

5.1. Structure 81

Figure 5.2: Diagram of some of the key abstract elements of the code and their implemen-
tations and 3rd party libraries used.

motion equation class provides an interface for equations of motion in time domain as they
are written in (2.40). Various physical systems can yield such discrete motion equations.
However, the code currently only provides an implementation for 3D finite elements dis-

82 Chapter 5. Code

List of used 3rd party libraries
MUMPS [5] [4] Parallel direct sparse solver
Intel MKLPDSS [1] Parallel direct sparse solver
Eigen [79] Linear algebra package
libMesh [104] Parallel mesh processing package
Spectra [148] Large scale eigenvalue library
Armadillo [159] [160] Linear algebra package
Trilinos (Epetra) [173] Parallel linear algebra package
PETSc [10] Portable, Extensible Toolkit for Scientific Computation

Table 5.1: List of used 3rd party libraries

cretisation as described in 2.3. A general mesh interface is also present to provide a unified
access to mesh functionalities such as obtaining nodal and element data. Lastly, a linear
algebra interface is used throughout the most of the code. This interface provides access
to the basic linear algebra classes such as matrices and vectors and functionalities around
them. The linear algebra interface also handles distributed parallelism, i.e. the matrices
and vectors can exist among multiple MPI ranks. This will be discussed in more detail
later.

The general interfaces described above have each their implementation, possibly multiple.
The overview of the most important parts of the code represented by a general interface and
their implementations can be seen in Figure 5.2. This design is a typical feature of an object
oriented code and it allows for simple additions or replacement of various implementations
of the same interface as well as for unified handling of different 3rd party libraries. The list
of all used 3rd party libraries is in Table 5.1.

The linear solver interface currently supports 3 different solvers that are sourced by 3 differ-
ent 3rd party packages (Intel MKL, MUMPS and GMRES from PETSc). Switching between
these solvers is then a matter of changing one configuration option value. However, due
to technical issues with IntelMKL regarding compilation only the GMRES and MUMPS
solvers were used for this work.

The mesh interface provides an access to the problem mesh. The mesh is spatially dis-
tributed into domains among MPI ranks. The number of domains is equal to number of
MPI ranks, with each domain assigned to one MPI rank. The interface has 2 different im-
plementations. First is a wrapper around the libMesh library. This library is capable of
loading and parsing common mesh file formats (such as gmsh, unv, exd and others) and
partitioning (using Metis or Parmetis) the mesh among MPI ranks. It further provides in-
formation about the mesh distribution, nodal and element mapping to the mesh domains.
For each element of the mesh, it provides the finite element values such as coordinates of
the Gauss integration points, values of the Jacobian determinants, the shape functions as
well as their derivatives. It supports linear as well as quadratic finite elements and various
quadrature rules for numerical integration. A drawback of this library is that its loading

5.1. Structure 83

and distribution part scales badly with number of MPI ranks and mesh size. Therefore,
an additional mesh interface implementation was created that generates a regular hexa-
hedral mesh directly in the code. While this only limits the available meshes to shapes
such as beams, cubes and plates, the advantage is good scalability as no file loading has to
be performed, and most of the mesh generation can be performed in parallel. This mesh
generator still uses some of the libMesh library features such as obtaining values required
for numerical integration over elements (this is expressed by the dashed line in 5.2). The
VTK library is used for visualisation and postprocessing of computed results.

The central class in the code is the task runner. It interacts with all the other core classes in
the code and uses them to execute tasks demanded by the configuration. Three tasks are
available: FRC computation (using either the global (3.15) or FETI (4.17) form of the HBM
equations), computation of eigenfrequencies of a linear system (3.45) using the eigenvalue
library Spectra and output of the distributed mesh into VTK files. Pseudocode of the con-
tinuation loop can be seen in Algorithm 2. Among other things, the algorithm also shows
how the continuation step size was adapted. In case of FETI, the continuation is addi-
tionally performed in the λ variables as well. In case of the tangent predictor variant, the
tangent vector computed by equation (3.31) or (4.76) can point in either direction. There-
fore, the tangent from the previous continuation step is stored and cosine between those
two tangents is computed. If this cosine is negative, meaning the angle between the vectors
is larger than 90°, the current tangent is reversed. This step is based on the assumption
that the tangent vector of the curve would not change direction so dramatically between 2
continuation steps.

5.1.1 Input and output

Input of the code is all done through a single configuration file. This file uses a flat structure
consisting of a set of keys and corresponding values, which can range from single numerical
values to lists of strings. On code start, each MPI rank loads the configuration file, parses
it as stores all the provided key-value pairs. Each of the existing keywords also have
its predefined default value that is used if no value is provided in the configuration file.
Additionally, any key-value pair can be provided directly in the terminal when executing
the code as a command line argument, overriding the configuration file.

Output of the code can be created in two formats as illustrated in Figure 5.1: plain text and
VTK files. The text output simply lists values for all degrees of freedom for all frequencies
of an FRC. One file is created per MPI rank, with the local dofs values. Additionally, only
output for selected mesh nodes can be created. The values are written in the csv format.
The VTK output creates the set of vtu files, one per domain. This file stores the data in
a VTK unstructured grid format. It provides the information of the mesh partition for
the given MPI rank, together with the values of solutions for all nodes of that partition.
Additionally, one pvtu file is created that holds information about all the vtu partitions, so
the entire solution can be loaded in a visualisation tool through this one file.

84 Chapter 5. Code

Algorithm 2 Continuation loop

1: Input: Mesh, external forces, physical parameters
2: Input: Start and end frequencies ωs and ωe
3: ωmin = min(ωs, ωe)
4: ωmax = max(ωs, ωe)
5: s = ss . Starting continuation step
6: ω = ωs . Starting continuation frequency
7: ũ = NewtonSolve(ω) . Solve for starting frequency, see (3.17)
8: (ũp, ωp) = (O, 0) . Storage for previous solution and frequency
9: while ω ∈ 〈ωmin, ωmax〉 do

10: (τũ, τω) = PredDir(ũ, ω, ũp, ωp) . Prediction direction, see (3.31), (3.40), (3.41)
11: (ũp, ωp) = s

‖τ‖ (τũ, τω) . Prediction step, see (3.32)
12: if ωp /∈ 〈ωmin, ωmax〉 then
13: break . End loop if out of frequency range
14: end if
15: (ũnew, ωnew) = NewtonSolve(ũp, ωp, τũ, τω) . Correction step, see (3.37)
16: if NewtonConverged then
17: (ũp, ωp) = (ũ, ω) . Update previous solution
18: (ũ, ω) = (ũnew, ωnew) . Update current solution
19: if newtonIt < maxNewtonIt then . Did Newton converge in less than

maximum number of iterations?
20: s = s ∗ sUpCoe f f . Increase s by a coefficient > 1
21: else . Keep the step size the same
22: end if
23: else
24: s = s ∗ sDownCoe f f . Decrease s by a coefficient < 1
25: if s < smin then
26: break . End loop if even minimum step size failed
27: end if
28: end if
29: end while

5.2. Linear algebra 85

5.2 Linear algebra

A fundamental building block of the code is an efficient linear algebra implementation. As
mentioned before, this is provided by the Epetra package, which is a part of the Trilinos
library. Epetra provides efficient large scale distributed implementations of sparse matrices
and vectors, and operations on them. It also employs the object oriented principle, making
the library code easily understandable and well structured.

Figure 5.3: Example of a matrix stored in the CSR format.

Epetra uses a compressed sparse row (CSR) matrix format. Rather than storing the entirety
of the matrix in a larger array, only the nonzero values are stored in a list, along with their
column indices. An additional list of indices is stored to mark starts of individual rows in
the value and column arrays. This storage system is efficient for matrices who don’t have
many nonzero values, compared to their total number of elements, which is commonly
the case with matrices coming from the finite element discretisation. Furthermore, the row
start indices array reduces the total memory consumption even more, as it is not necessary
to store row indices for all nonzero values. An example of such storage is in Figure 5.3.

To achieve parallelism, a matrix or a vector is distributed among the MPI ranks. It es-
sentially exists on all ranks simultaneously. Each rank then contains part of the data. A
particular distribution is defined by distribution maps. These are maps defining a distribu-
tion of indices among MPI ranks, within a given MPI communicator, meaning among given
set of MPI ranks. A set of indices is split among MPI ranks, so that each rank only contains
a subset of those indices. This distribution can be nonoverlapping, meaning the subsets are

86 Chapter 5. Code

Figure 5.4: Example of index distribution among MPI ranks. This distribution has no
overlaps between ranks.

Figure 5.5: Example of index distribution among MPI ranks. This distribution has an
overlap between ranks 2 and 3 - indices 8 and 9 are present on both ranks.

mutually exclusive, or overlapping, meaning some of the subsets contain common indices.
An example of a nonoverlapping distribution map is in Figure 5.4 and of an overlapping
distribution map in Figure 5.5. The distribution maps contain the original global indices (a
portion of them), but they also establish new local indexing on each MPI rank. It should be
noted that the distribution maps don’t necessarily have to be contiguous, i.e. for example
rank 1 can contain indices 0 and 2 and rank 2 can contain indices 1 and 3.

A distributed matrix is built using two distributed maps - one for row distribution and
one for column distribution. The row distribution map determines the actual distribution
of the matrix data among the MPI ranks and it has to be nonoverlapping. A matrix is
distributed uniquely along its rows. The column map determines the range of column
indices that contain any nonzero values on a given rank. It doesn’t determine an actual
distribution of data among MPI ranks, but it is essential for operations such as matrix-
vector multiplication. This map can be (and often is) overlapping. An example of a matrix
distributed among MPI ranks, with its row and column maps, is in Figure 5.6. A distributed
vector is built using only one distribution map - the row distribution, as it only contains one

5.2. Linear algebra 87

Figure 5.6: Example of a distribution of a matrix assembled globally over all MPI ranks.
Blue fields represent nonzero values. The matrix is uniquely distributed by rows, defined
by row maps. Column maps can overlap in order to cover all columns related to the given
set of rows.

column. However, in the case of vectors, this row distribution map can also be overlapping.

Another important element of the distribution framework are imports. Import is a transfer
of values from a matrix/vector of one distribution to the same matrix/vector (in terms of
dimensions) on the same MPI communicator but with different distribution. In this code,
only imports of vectors are performed. This is useful in various situations when vector
values need to be redistributed among MPI ranks in different way, so each MPI rank has
access to values that it requires for its further computation tasks. For example, a matrix-
vector multiplication has to import the multiplied vector from its map into the column
map of the multiplying matrix, so that each rank has all the vector values necessary to
compute the local part of the result. An example of possible imports is in Figure 5.7.
Naturally, imports involve communication between MPI ranks, so they should be used
carefully. The Epetra matrix and vector classes also allow for adding values to nonlocal
positions, meaning adding values from a rank to row indices that are not present in the
distribution map for that rank. This of course also implies communication, but it is a
necessary thing when assembling the finite element matrices.

The functionalities above - the distributed matrix and vector class, the distribution maps
and imports - are all provided by the Epetra package. They are, however, hidden behind
an interface that allows for potential replacement by another linear algebra library, without
having to modify the rest of the code.

88 Chapter 5. Code

Figure 5.7: Example of two different imports between vectors of same size but with different
distributions. A vector distributed uniquely (no overlaps) has its values imported into
another vector with a different unique distribution. Then the values are imported again,
this time into a vector with overlapping and noncontiguous distribution.

5.2.1 DOF ordering

Throughout Chapters 3 and 4, ordering degrees of freedom in vectors and matrices is done
by harmonics. First come all dofs related to harmonic 0, then all dofs related to harmonic 1
cosine part, then sine part, etc. This is done intentionally in order to simplify the structure
of the vectors and matrices, since individual harmonics are of primary interest when de-
scribing HBM. Using this ordering, the dynamic stiffness matrix Z(ω) can be conveniently
expressed using the harmonic block structure as seen in (3.14). For implementation of spa-
tially parallelised HBM the preferred ordering is different. Ordering used in this work is
illustrated by Figure 5.8.

The idea of this ordering is that dofs are primarily sorted by nodes. This means that the
distribution of dofs follows the spatial distribution of the mesh into domains. Within the
scope of one node dofs are sorted first by their dimension and then harmonic coefficient.
All dofs related to a particular node are present on that node’s MPI rank. This eliminates
any need for MPI communication when transforming solution and forces vectors from
frequency to time domain and back using the AFT procedure.

5.2. Linear algebra 89

Figure 5.8: Hierarchy of orderings applied to degrees of freedom. First, dofs are sorted by
their corresponding nodes. Then, within each group of dofs for one node, dofs are sorted
by their physical dimension. Lastly, within each group for one node and dimension, dofs
are sorted by harmonics.

This ordering is applied to all maps, non overlapping and overlapping, as well as to both
primal and dual variable vectors and matrices.

5.2.2 Global solvers

As stated previously, one way to compute an FRC is by solving the global system of equa-
tions. A solver in this case operates on the global set of linear equations and uses matrices
and vectors distributed globally among all MPI ranks. All distribution maps used for the
global system of equations use the global communicator MPI COMM WORLD. The HBM
system matrices and vectors, as written in (3.15), are assembled globally for the entire mesh.
The mesh is distributed among MPI ranks, with each rank owning an exclusive subset of
the mesh elements and nodes. Since the degrees of freedom are connected to mesh nodes, a
global unique distribution map is established based on the nodal distribution of the mesh.
This map is used as the row map for the Jacobian matrix in the Newton solver and all the
vectors as well. Dirichlet boundary condition for this global system is enforced by zeroing
out corresponding rows and columns and putting 1 on the diagonal as described in Section
3.5. An example of a mesh distribution and corresponding dof maps is in Figure 5.9.

Additionally to the unique map, another map is required for certain tasks. In order to
assemble the nonlinear part of the Jacobian matrix ∇ũ F̃nl

int and the nonlinear force vector
F̃nl

int, one needs displacement values on all nodes of all elements on the given rank, so that
the element contributions can be computed. Therefore, values of the solution vector ũ that
is kept in the non overlapping distribution have to be imported into another vector which is
distributed in an overlapping distribution. This overlapping distribution includes all nodes
in contact with elements that are local to the given rank. This distribution is the second
distribution illustrated in Figure 5.9. Importing from the non overlapping map into the

90 Chapter 5. Code

Figure 5.9: Example of a mesh distribution and 2 maps generated from it. Each colour
represents one MPI rank. The first map is a nonoverlapping defining unique distribution
of nodes among MPI ranks. The second is an overlapping map which includes domain
boundary nodes in all those ranks whose domains are in contact with that node.

5.2. Linear algebra 91

overlapping map involves communication. However, this communication only happens
among neighbouring domains of the mesh, so its performance impact is limited.

The code currently includes 3 different global linear system solvers, as illustrated in Figure
5.2 - MUMPS, Intel MKLPDSS and PETSc GMRES. All these solvers are capable of solving
a system of linear equations in parallel, and they all use a distribution approach similar to
the one used by the Epetra package. It is therefore straightforward to feed the distributed
matrix into the solvers. The MKL solver uses exactly the same CSR format that’s described
in Figure 5.3. MUMPS uses the same format for the values and row indices arrays, but it
also requires full array of column indices (same as row indices array), so this array has to
be specially created for this solver. The PETSc GMRES solver doesn’t require the system
matrix assembled globally (except when certain preconditioners are used) but in the current
code implementation the matrix is still assembled.

Convergence

Convergence of the newton loop solving a global HBM system as described in (3.15) is
determined based on the relative residual norm:

‖Z(ω)ũ + F̃nl
int(ũ, ω)− F̃‖
‖F̃‖

≤ tol (5.1)

This criterion is used also in pseudo arc-length continuation loop when ω is also a variable
in the system. Satisfaction of the added constraint equation g in (3.34) is not considered for
convergence. In case of using MUMPS as the linear solver for individual Newton iterations,
the relative residuals after solving the linear systems (3.38) are not controlled. In case of
the GMRES solver, the tolerance for this residual is set in configuration and observed. Ad-
ditionally, the maximum number of GMRES iterations is also restricted by a configuration
value. In neither case is the linear solver relative residual used as a convergence criterion.
The computed Newton step is accepted regardless of the final relative residual of the linear
system.

5.2.3 Notes about MUMPS

The MUMPS solver is used as the main direct solver of linear systems in the code. It is
used as a global solver when solving the global HBM system, as well as a solver for domain
matrices A and matrices inside projectors P and Pc in the FETI solver. Two versions of the
library were used in the code for the time span of this work. First, the version 5.1.2 was
linked and used for for the earlier computations. Later, an update to version 5.4.1 was
made.

MUMPS operates in 3 stages. The first stage is analysis. In this step, the solver analyses the
matrix structure in terms of its nonzero pattern. It only requires to be provided with indices

92 Chapter 5. Code

of nonzero values. In ParHBM, this step needs to be invoked in many cases only once
throughout the entire continuation run. This is because nonzero patterns of certain matrices
(such as the global system Jacobian matrix) don’t change. Even when the Jacobian matrix
happens to be linear for certain iterations of Newton solve, the solver is still provided with
all potentially nonzero indices. Even values that happen to be zero for the linear case are
provided as explicit zeros into the solver.

The second stage is factorisation. This stage computes the actual LU factorisation of the
matrix. The matrix values have to be provided for this step. Factorisation needs to be
performed every time when the matrix values change, i.e. at the beginning of each Newton
iteration. However, it doesn’t need to be executed every time a solve is required with
a different right hand side. This is beneficial for the corrector step of the continuation
algorithm which uses the bordered matrix solve approach and therefore 2 solves with 2
different right hand sides are required as seen in (3.38). The factorisation stage is the most
computationally expensive part.

The last stage of the MUMPS solver is the solve stage. This step computes the solution of
the system, provided a right hand side vector, performing the forward and backward elim-
ination using the factors L and U computed during the factorisation phase. As mentioned
before, it can be executed many times for various rhs vectors as long as the matrix is un-
changed. It also allows for multi right hand side (rhs) solves, which is more efficient than
solving for each rhs vector separately in a loop. This is beneficial in case of solving (3.38).
The solve phase has significantly lower computational requirements that the factorisation
phase.

MUMPS offers several other features, such as computing Schur complement, which was
used for the Dirichlet preconditioner in FETI, or solving a rank deficient system by detect-
ing null pivots of the matrix. This means it offers multiplication by the matrix pseudoin-
verse, which is used for domain matrices in FETI when applying A+

i . MUMPS can also
solve a system with a transposed matrix, using the initialised and factorised original matrix,
allowing for application of PT

c required in (4.66) without needing for separate assembly of
(GT

c FGc)T and AT
i .

The older version (5.1.2) used in this work comes with a limitation of only allowing cen-
tralised right hand side vectors, which means that the right hand side vector of a linear
system needs to be collected from all ranks to rank 0 before solving the system. This ob-
viously creates a communication bottleneck. This has been changed in version 5.2.1 when
support for distributed right hand side vectors was added. However, the solver interface
in the code was not updated to support this new feature, so even with the newer MUMPS
version the rhs was still gathered on rank 0. This bottleneck impacts the MUMPS solver
whenever a matrix distributed over multiple MPI ranks is factorised. The domain matrix
solves in FETI won’t be affected by this since those MUMPS instances operate each on a
single rank.

5.3. FETI implementation 93

The solution vector is distributed inside MUMPS. The distribution map is decided by the
package during the factorisation phase and provided to the user. Since the MUMPS in-
terface in ParHBM returns solution in the same distribution as the right hand side vector
and the matrix rows, an import of the solution needs to be made after every solve from
the MUMPS distribution to the unique row distribution. The amount of communication
required for this depends on how different those two distributions are.

An important part of the FETI solver is null space detection on domain matrices Ai.
MUMPS is capable of detecting null space of matrices and solving a linear system with
rank deficient matrix and returning one possible solution, essentially providing a pseu-
doinverse functionality. The null space detection in MUMPS is controlled by a threshold
parameter for null pivot detection. A pivot encountered in factorisation is considered to
be null if the infinite norm of its row/column is smaller than tol × ‖Apre‖ where tol is a
configurable parameter and Apre is the system matrix, preprocessed before factorisation:

Apre = PDr AQcDcPT (5.2)

where P is a permutation matrix, Qc is a column permutation and Dr and Dc are diagonal
matrices for row and column scaling. This null pivot detection has to be enabled on the do-
main matrix solvers to get the pseudoinverse functionality. However, the null space found
by MUMPS is not used in the code. As it was discussed in Section 4.4, the assumption is
made that null space is present only on the 0th harmonic block, and has a specific size. In
linear case it contains 6 vectors (3 translations and 3 rotations) and in nonlinear case only
the 3 translations. Therefore, these vectors are assembled by the code directly, in a way
that makes them mutually orthogonal, and normalised. It is then checked whether they
are truly null space vectors by multiplying them by the domain matrix and checking the
error from zero vector. The code also checks that the number of null space vectors is equal
to number of detected null pivots by MUMPS on each domain.

5.3 FETI implementation
The FETI solver is an in house implementation, following the theory laid out in Chapter 4.
The projected dual problem (4.59) or (4.66) is solved using the GMRES PETSc solver, the
same that is used for the global system. The FETI domain matrices Ai and matrices inside
the projectors P and Pc are factorised by MUMPS. This approach allowed for experiments
with various parts of the algorithm and adaptation of the solver for specifically solving
nonlinear HBM problems.

5.3.1 Primal and dual maps

The FETI solver uses the same domain distribution as the global solvers. It’s only the
treatment of this distribution that is different. While in case of the global system dofs

94 Chapter 5. Code

Figure 5.10: Example of a mesh distribution and its interpretation by the FETI algorithm.
The distribution itself is the same, but the domain boundary nodes and dofs are assumed
to exist separately on all domains that they are in contact with. The primal variable domain
maps are shown on the right. Compare that to the overlapping map in Figure 5.9.

are indexed globally among all MPI ranks, the FETI distribution of the primal variables is
localised to each MPI rank and therefore domain. Each domain owns all nodes that are
connected with its elements, including the boundary nodes. This means that the nodes and
dofs are redundant on domain interfaces. Each domain then indexes these dofs locally by
its own numbering starting from 0. Each domain therefore creates its own local domain
map for primal dofs, which exists on a local communicator MPI COMM SELF. An example
of such distribution is in Figure 5.10. The domain maps, while having different indexing,
can be bijectively mapped onto the overlapping global map which is shown in Figure 5.9.
This relationship can be used to transfer FETI primal solution on domains into a global
solution vector so it can be compared with solutions from global solvers. First, domain
solutions are transferred from domain maps into the overlapping global map. Then, the
overlapping map is restricted to the unique global map, meaning only one value is selected
for each interface degree of freedom. This choice doesn’t have any impact on the solution as
long as the domain connectivity equation 4.3 is satisfied within a good enough tolerance.
However, in terms of the FETI algorithm, the primal variables only exist in their local
domain maps on each MPI rank. No concept of a global solution vector is required.

5.3. FETI implementation 95

Figure 5.11: Example of a mesh distribution and its interpretation by the FETI algorithm.
Highlighting the Lagrange multipliers λ between domains and their distribution among
MPI ranks. A possible unique distribution is on the left. An overlapping distribution
where each rank owns all lambdas connected with its domain is in the middle. The right
map represents the same distribution as the middle map, but localised for each domain,
analogously to the localised primal variables in Figure 5.10.

The situation becomes different with the dual variables λ. These variables exist on domain
interfaces only. Since the GMRES solver that solves the projected dual problem requires a
unique distribution of unknowns among MPI ranks, such distribution needs to be estab-
lished for λ. This global unique distribution should be well balanced in terms of sizes on
individual ranks, which is achieved by a custom implemented balancing algorithm. This
algorithm exchanges ownership of dual variables between neighbouring domains, moving
it from domains with more variables to domains with less. This exchange is performed a
fixed number of times. A requirement is placed on the distribution that each rank only
contains those dual variables that belong to one of its interfaces. Besides the unique map,
an overlapping map needs to be created that includes all lambdas on each rank that are
connected to the corresponding domain. This map is required for importing values of λ

from a unique dual vector when domain primal variables need to be computed, using the
equation (4.23):

96 Chapter 5. Code

∆ũi = A+
i

(
−Hi + BT

i ∆λ
)
+Riαi (5.3)

As it was illustrated in Figure 4.4, to perform multiplication of BT
i λ for domain i, only

values of λ shared between processor i and its neighbours are required. This is the purpose
of the overlapping dual map. Additionally, a domain dual map on a local communicator is
created on each rank that mirrors the overlapping dual map, but establishes local indexing
on each domain, in same manner as the primal domain maps mirror the global overlapping
primal map. All these 3 different dual maps are illustrated in Figure 5.11.

5.3.2 Application of the dual problem operator

One of the most common operations when solving a linear system using the FETI method is
multiplication by the F matrix. It is present multiple times in the projected dual problem
equations (4.59) and (4.66), once directly and then in the Pc projector. This means the
multiplication by F needs to be performed twice or three times in each iteration of GMRES.
The mathematical formula for it is simple. However, its explicit assembly is unnecessary
and would be inefficient. Instead, it is treated as an operator, and only its multiplication
effect on a vector is implemented.

The GMRES solver operates on vectors in unique dual variable map. Therefore, the imple-
mentation of the F operator needs to accept and also return vectors in this distribution.
However, internally, all 3 dual maps that were described above are used. A diagram ex-
plaining the implementation of the F operator is in Figure 5.12.

5.3. FETI implementation 97

Figure 5.12: The process of F application. MPI communication between neighbouring
domains is performed in steps 1 and 4. The other steps are performed completely indepen-
dently on each rank.

The input dual vector first needs to be imported from the unique map into the overlapping
map, in order to have all necessary dual variables on each rank. This import involves MPI
communication but only among neighbouring domains. Next, the values are transferred
from overlapping map into local domain dual maps. This is because the Bi matrices are
built using the primal and dual domain maps, meaning each Bi matrix exists completely
locally on its MPI rank. The row map of the Bi matrix is the dual domain map and the
column map is the primal domain map. The transfer of values from the overlapping to
domain maps involves no MPI communication. The vectors in domain dual variables are
then multiplied by BT

i on each domain in parallel.

The result of multiplication by BT
i is a vector in primal domain map. This vector is then

multiplied by A+
i . This multiplication is done by solving a linear system with Ai as the

system matrix. This operation is performed by MUMPS. The domain matrix has the do-

98 Chapter 5. Code

main primal map for its both row and column map, so it exists entirely locally on each
rank. A separate instance of MUMPS solver is created on each rank for this matrix, using
the MPI COMM SELF communicator. It is factorised once at the beginning of a Newton
iteration, and then the solve phase is called with null pivot detection enabled. The result of
A+

i multiplication is then multiplied by BT
i , providing a vector in dual domain map.

The final part is to sum contributions of dual vectors from all domains into one vector in the
unique dual map. The linear algebra framework offers insertions of values into positions
that are on another rank. An option exists to sum multiple values that are inserted into
the same position from multiple different ranks. Since the global unique distribution of
the domain dual variables is known on each rank, the values are simply inserted into
their appropriate positions and the unique distribution vector is assembled, summing all
contribution in the process. This step again involves MPI communication between ranks of
neighbouring domains.

5.3.3 Projectors

Same as with the F operator, the input and output of both the P and Pc projectors are
in unique dual variables. Both of these projectors are also not explicitly assembled, rather
their application on a vector is implemented.

The P projector is defined only by the natural coarse space vectors in G. Provided an input
x in the unique dual map, one has to compute (I−G(GTG)−1GT)x, following the definition
in (4.42). Multiplying the outer brackets yields x−G(GTG)−1GTx. The first step is therefore
to compute:

x1 = GTx (5.4)

This involves computing a dot product of x with each column in G. The vectors of G exist
locally on domains. Following the definition in (4.30), Gi is assembled in domain dual map
of the i-th domain. Gi only has nonzero values on positions related to interface surrounding
its domain, and zeros everywhere else. To evaluate dot product of x with columns of Gi,
only values of x on interface of domain i are relevant. This means the x vector needs
to be imported from the dual unique map to the overlapping map, which involves only
communication between neighbouring domains. The result x1 is then stored in parallel,
each domain containing results of GT

i x. A unique global map, called the natural coarse
space map, is created for this vector, with its size on each rank corresponding to number
of columns in Gi for that rank. Creation of this map involves global communication of
column counts of Gi between all domains to establish the global indexing. However, this
communication only exchanges a single integer and is therefore cheap.

The next step is to compute:

5.3. FETI implementation 99

x2 = (GTG)−1x1 (5.5)

For this, the matrix GTG is explicitly assembled in parallel. Its row map is the natural
coarse space map used to store x1. It’s block structure per domain can be expressed as:

GTG =




GT
1 G1 GT

1 G2 · · · GT
1 GN Domain 1

GT
2 G1 GT

2 G2 · · · GT
2 GN Domain 2

...
...

GT
NG1 GT

NG2 · · · GT
NGN Domain N

(5.6)

However, not all blocks of GT
i Gj will have nonzero values. Naturally, the diagonal blocks

GT
i Gi will be nonzero. These products can be evaluated independently on each domain.

Besides the diagonal blocks, a block GT
i Gj will have nonzero values only when domains

i and j share a common interface. This means that again only communication of values
between neighbouring domains is required. The extent of such communication is illus-
trated in Figure 5.13. Furthermore, only parts of Gi vectors need to be communicated to
each neighbouring domain, as only a part of the entire domain interface is shared with
each neighbour. This is shown in Figure 5.14. This fact reduces the amount of data to
be communicated between neighbours to the necessary minimum. Using this communica-
tion scheme, a rank i receives all necessary values of Gj, where j marks all neighbouring
domains, and assembles its part of the GTG matrix, meaning all nonzero GT

j Gj blocks, inde-
pendently of other ranks. The matrix is then passed into and factorised by MUMPS, which
allows for solving x2 = (GTG)−1x1 in parallel. The resulting vector x2 is distributed in the
same way as x1.

100 Chapter 5. Code

Figure 5.13: Diagram showing domains that need to communicate with the green domain,
coloured in orange, when assembling GTG. Communication is required between neigh-
bouring domains because they share parts of their interfaces, where the values of G exist
on each domain.

Figure 5.14: Two vectors in dual variables in global unique dual map, each coming from
a domain dual vector for different domain. An overlap in their nonzero pattern (positions
marked with X) is caused by the shared interface between the two domains.

5.3. FETI implementation 101

The final part is to compute:

x3 = Gx2 (5.7)

This implies multiplying columns of G by values in x2 and then summing the results into
one vector. The multiplication part is entirely parallel as the distribution of values in x2

is already matching the distribution of columns in G. A single vector x3 is then created
with dual unique distribution, and the result vectors are summed into it. This also involves
communication among neighbouring domains.

After performing the above steps, the product Px is then computed simply as x− x3. The
required communication is among domain neighbours plus communication required by
MUMPS when factorising and solving with the GTG matrix. It should also be noted that
this matrix is very small compared to the size of the entire dual problem, having at most 6
rows and columns per domain, corresponding to the 6 possible null space vectors of A.

Application of Pc is in many ways similar to the application of P . Computing the dot
products x1 = GT

c x is done in the same way. The columns of Gc are distributed analogously
to G - each domain owns vectors on its interface Gc,i. An artificial coarse space unique map
is established to store x1, based on the distribution of columns of Gc.

The second step - assembly of GT
c FGc - requires more attention due to the presence of the

F operator. Application of F to vectors of Gc,i of a particular domain i extends the nonzero
pattern of the result vectors to interfaces of neighbouring domains. This is because domain
matrices of neighbouring domains Aj couple dofs between various interfaces. Illustration
of this can be seen in Figure 5.15.

102 Chapter 5. Code

Figure 5.15: Diagram (top) showing domains that need to communicate with the green
domain, coloured in orange and blue, when assembling GT

c FG. Each domain needs to
communicate with its neighbours and also neighbours of its neighbours. This is because
the F operator extends the nonzero pattern of a Gc vector of domain i to its neighbours
(bottom).

Therefore, more blocks in GT
c FGc will be nonzero. Each domain needs to communicate with

its neighbours and also neighbours of its neighbours in this step. The matrix is assembled
in parallel in the same way as GTG, using the unique artificial coarse space map for its row
map. The matrix is generally larger than GTG, especially when using multiple harmonics,
since Gc,i contains 6 vectors for each harmonic coefficient. However, it is still much smaller
than the entire dual problem.

The solve x2 = (GT
c FGc)−1x1 is then performed. Next, the multiplication and sum of

columns of Gc is performed in the same way as in case of P . Lastly, the F operator is
applied. The mechanics of that step have already been described previously.

In summary, application of both P and Pc projectors is very similar. For each domain, they
both require communication only between limited number of domains that are nearby,

5.3. FETI implementation 103

without need for any global communication. Therefore their application should be scalable
to a certain degree. The Pc projector requires farther reaching communication because
of the presence of the F operator. Application of PT

c required after the preconditioner
F ′ can be done by using the MUMPS feature to solve with transpose of the matrix. The
transposed projector yields PT

c = I − Gc(GT
c FGc)−TGT

c FT and the transposed F operator
FT = BA+TBT. Applying FT means simply solving the domain matrices Ai with the
transposed flag in MUMPS. The same is then done for the transpose of the GT

c FGc matrix.
Finally, it should be noted that computing α in (4.47), λ0 in (4.45), β in (4.55) and λ1 in
(4.60) involves operations that have all been described above.

5.3.4 Convergence

In FETI, same approach is used with regards to convergence checks as in case of the global
solvers. Only the relative residual of the nonlinear problem as defined in 4.7 is checked
during the decision making about accepting a point as a solution on the FRC curve. The
pseudo arc-length constraint function residual is not checked. The solver checks:

‖Zi(ω)ũi + F̃nl
int(ũi, ω)− BT

i λ− F̃i‖
‖F̃i‖

≤ tol (5.8)

for a given solution candidate (ũi, λ, ω). The norm ‖ · ‖ stands for norm over all domains,
meaning:

‖xi‖ expands into
√

∑
i
‖xi‖2 (5.9)

Additionally, when using FETI it is important to also verify the domain connectivity con-
dition (4.3). The code displays the error of ‖∑i Bi∆ũi − Hc‖ at the end of each FETI solve
as well as ‖∑i Biũi‖ at the end of each Newton loop. However, these errors are not part
of the convergence criteria of the Newton solver, they are only displayed to the user for
verification. Same is true for relative residual of the actual FETI linear solve.

The GMRES solver used to solve the projected dual problem is given a tolerance parameter
for its relative residual, meaning it checks:

‖PPT
c F ′PPcFPλ2 −PPT

c F ′PPc(D −Fλ0)‖
‖PPT

c F ′PPc(D −Fλ0)‖
≤ tol (5.10)

When this tolerance is reached, the solver stops. However, even if this tolerance is not
reached and the solver stops at iteration limit, the computed solution estimate is still used
as a valid λ2 solution and the code continues without any difference.

104 Chapter 5. Code

5.4 Conclusion

The chapter provides an overview of the code that has been developed during this work
[21], highlighting several of its key characteristics. The general organisation of the code
and its parallelisation model are briefly described. This provides an insight into the various
algorithmic components that are required to solve a nonlinear vibration problem, and how
they can be logically organised. A pseudocode of the continuation loop is shown, as this is
the central part of the code.

Parallel linear algebra framework is next described. Organisation of dofs, implementa-
tion and distribution of global system matrices and vectors and communication between
MPI ranks is covered. Criteria of convergence for global system are established. Tech-
nical specifics of used 3rd party solver packages (PETSc GMRES and MUMPS) and their
incorporation into the code are described.

The implementation of the FETI solver is subsequently covered. Emphasis is placed on dis-
tribution of both primal and dual variables and their exchange between domains, as this is
a crucial aspect in terms of scalability of the solver. Concept of domain, global overlapping
and unique dual variable distribution maps is described. Another important topic with
regards to parallelism is the communication pattern used for assembly and application of
both coarse space projectors P and Pc and the dual FETI operator F . Convergence criteria
for the FETI solver are established. These criteria are analogous to the ones for the global
solvers, with the additional check of domain connectivity error.

Chapter 6

Results

The following chapter presents various results obtained with the code and methodology
described in the previous chapters. First, an overview of the testing hardware specifications
is presented. Since parallelism is an essential topic of this work, the code was executed
on several state of the art supercomputers available at the time. These supercomputers
by far exceed computational capabilities of any laptop, desktop computer or workstation.
Their relevant technical parameters are presented to provide performance context for the
obtained results.

Next, used testcases are presented. Several geometries and forcing configurations were
used to assess the code’s capabilities. In addition, various number of elements, domains
and used harmonics were often tried in order to observe changes in runtime and conver-
gence properties. The code was tested mostly on academic examples, meaning beams and
cubes. However, a turbine engine blade geometry was also tested.

After the introduction into the hardware and testcases, the results themselves follow, sep-
arated into two parts. First part shows the results for the global solvers, namely MUMPS
and PETSc GMRES. The framework for global solvers was developed first as it was simpler,
considering the solvers themselves (meaning the matrix factorisation in MUMPS and the
GMRES algorithm in PETSc) are 3rd party libraries. Results from the MUMPS solver were
verified against several results from other researches. This validated the implementation
of the finite element and harmonic balance equations. Scalability of the MUMPS solver
was also assessed and a full FRC for a blade geometry was computed, highlighting the
importance of the proper choice of harmonics. While the MUMPS solver is capable of han-
dling problems over a million degrees of freedom in total size, it shows its limits in terms
efficiency as the problem size grows. The Intel MKL PDSS solver was not tested as there
were issues with compiling the code with Intel libraries.

The second part of the results is dedicated to the FETI solver. This solver is still in its pro-
totyping phase and many improvements and optimisations could be made in the future.
Nevertheless, it does seem to surpass the direct solver in its capability of handling larger

105

106 Chapter 6. Results

problems. Similar tests to the direct solver were performed, meaning computation of a
complete FRC and scalability assessment. Furthermore, additional tests related to particu-
larities of the FETI algorithm were made, such as studying the effect of the artificial coarse
space, number of GMRES iterations in various parts of the FRC and others.

6.1 Hardware overview
An overview of the hardware used to obtain the results for this work is presented. The
performance benefits of using distributed memory parallelism with libraries such as MPI
can only be fully realised when the code runs on dozens and more CPUs. This requires
a specialised hardware which by far exceeds performance of any personal computer - a
computer cluster or a supercomputer. A supercomputer consists of hundreds or thousands
of processors which each contains multiple computing cores. Such computers allow for
solving of linear systems with millions and even billions of degrees of freedom, as long as
the solver scales with increasing number of MPI ranks. At the time of writing, the largest
supercomputer in the world is Fugaku in Riken, Japan, with 7,630,848 computing cores
and theoretical peak performance of 537,212 TFlop/s [53]. The unit Flop/s stands for the
number of floating point operations per second the system can perform.

Two different supercomputers were used to run tests of ParHBM. Both are located at
IT4Innovations, a research institute in Ostrava, Czech Republic. Salomon is the older super-
computer at the site and has already been decommissioned. It was used for the early tests
with the global system solved by MUMPS. Karolina, which was installed as a replacement
for Salomon, was used for later tests. The key parameters of both systems are enumerated
in Tables 6.1 and 6.2.

SALOMON
Location Ostrava, Czechia
Installed in 2015
Peak performance [TFlop/s] 2,011
Compute node: 2x12 cores Intel Haswell, 2.5 GHz
RAM per node [GB] 128
Interconnect Infiniband FDR 56 Gb/s

Table 6.1: Salomon supercomputer information

6.2 Testcase overview
Various aspects of the code’s performance were assessed using a set of testcases. Their
geometry, physical parameters, external forcing and boundary conditions are described be-
low. Number of elements in their meshes, number of used domains and used harmonics
will be specified in the following results sections, as different tests used different configu-
rations, depending on the purpose of the test.

6.2. Testcase overview 107

KAROLINA
Location Ostrava, Czechia
Installed in 2021
Peak performance [TFlop/s] 15,690
Compute node: 2x64 cores AMD 7H12, 2.6 GHz
RAM per node [GB] 256
Interconnect Infiniband HDR 200 Gb/s

Table 6.2: Karolina supercomputer information

The first two testcases are a clamped-clamped and a cantilever beam. The clamped-clamped
beam is the same as the one discussed in Section 3.7. Beams are commonly used as aca-
demic testcases in vibration analysis because of their simple geometry. Many analytical
results have been derived for beams which allows for verification of new numerical meth-
ods. The clamped-clamped beam has a square profile, and is excited by a single nodal force
in the middle, perpendicular to the beam’s length. The diagram of the testcase is in Figure
6.1. The cantilever beam is flat and is excited at its free end by a single nodal force in the
middle. The diagram is in Figure 6.2. In all cases, the beams were meshed with a regular
HEXA20 mesh.

The last testcase is a geometry of a turbine engine fan blade inside a sector of a bladed disk.
This geometry is not from any actual commercial blade design, but it has the general shape
of a fan blade, so it can be considered as an industrial geometry testcase. The diagram of
the testcase is in Figure 6.3. The blade is meshed purely by HEXA20 elements.

Figure 6.1: Diagram of the clamped-clamped beam testcase. A single nodal force on first
harmonic (cos) is applied in the middle of the beam.

Figure 6.2: Diagram of the cantilever beam testcase. A single nodal force on first harmonic
(cos) is applied at the free end of the beam, in the middle.

6.2.1 Note on parameters

Physical and numerical parameters for each testcase are shown individually with each re-
sult. A Gauss quadrature rule of order 4 was used universally for all tests for assembling

108 Chapter 6. Results

Figure 6.3: Diagram of the fan blade testcase. A single nodal force on first harmonic (cos)
is applied at the tip of the blade. Zero Dirichlet boundary condition is imposed at the sides
of the disk sector. The contact place between the blade and the disk is removed by fixing
the contact nodes together since no contact model was developed for this work.

both K and M matrices as well as the nonlinear force vector Fnl
int. The size of the continua-

tion step during a continuation run was adapted by 2 fixed coefficients (for up and down
scaling) in accordance with Algorithm 2.

For some tests, values of certain numerical parameters (such as number of AFT points,
size of continuation step, maximum number of Newton iterations in the corrector) are
unknown due to a loss of data at one point during the research. However, the absence
of these parameters does not affect the key conclusions drawn from the results of the
particular tests. The number of AFT points was always set high enough to properly sample
the motion in time (at least 6 points per period of the highest harmonic). For all the
scalability tests the number of AFT points is known. The size of the continuation step
would only influence the time spent on the computation of the FRCs, as long as it is kept
within reasonable bounds and the procedure doesn’t skip whole portions of the FRC. None
of the testcases dealing with computing a full FRC is used for drawing conclusions about
the time efficiency of the code.

6.3. Global solvers results 109

6.3 Global solvers results

First, solvers of the global HBM system were tested. As mentioned earlier, implementation
of these solvers was simpler and therefore done first. One global HBM Jacobian matrix is
assembled for each Newton iteration and is then passed to either MUMPS or PETSc GMRES
solver. The results from the global solvers were used to validate the implementation of the
nonlinear HBM method in parallel, so it can be in return later used for verification of the
FETI solver results. The performance of these solvers was assessed as well. The GMRES
solver in PETSc was specifically tested to have a comparison with FETI, which also uses the
same GMRES solver to solve its dual problem. Many of the results for the global solvers
that are presented here have already been published in [22].

6.3.1 Code verification

Verification of the code was done using both the clamped-clamped and the cantilever
beams. In both cases a nonlinear FRC was computed around a specific resonance fre-
quency and it was compared to results obtained by other researchers. At the time, only
native continuation loop was implemented in the code, meaning the code only made simple
steps in frequency and running Newton with fixed frequency, using previous solution as
initial guess. This means that the results obtained for these tests lack turning points. Both
verification testcases were computed on Salomon supercomputer and using the MUMPS
solver.

The clamped-clamped beam FRC was computed around its 1st resonance frequency. The
mesh was 2× 2× 15 HEXA20 elements. A forward and backward frequency sweeps were
run to obtain as much of the FRC as possible. The computed FRC was compared to an FRC
computed by a reduced order modelling technique developed independently by another
researcher at Imperial College [184]. The results can be seen in Figure 6.4. Parameters of
this testcase are in Table 6.3 and Table 6.4.

Dimensions [m] 0.03× 0.03× 1
Density [kg/m3] 7800
Young’s modulus [N/m2] 2.1 ×1011

Poisson’s ratio [] 0.3
Damping matrix D = 3×M
Excitation force amplitude [N] 200

Table 6.3: Clamped-clamped beam testcase parameters.

The cantilever beam FRC was also computed around its first resonance frequency. The cor-
responding linear mode can be seen in Figure 6.6. This verification testcase was designed
to match with the testcase in [174]. This work presents a nonlinear FRC for a cantilever
beam for various centrifugal loadings, including zero loading, which is the result used
for comparison. Their FRC was computed using a numerical time integration rather than

110 Chapter 6. Results

Newton tolerance [] 9.9× 10−7

Max Newton steps 4
AFT point count 32
Continuation step init 5
Continuation step min 10−5

Continuation step max 5
Continuation step scale up 1.1
Continuation step scale down 0.4

Table 6.4: Clamped-clamped beam testcase numerical parameters.

Figure 6.4: FRC for the clamped-clamped beam geometry obtained from ParHBM (blue
and black) and FRC obtained for the same testcase using a ROM model.

HBM. All available physical parameters were copied from this paper. Their list is in Table
6.5. Poisson’s ratio value was not found in the paper and was therefore chosen to be 0.3,
as the authors refer to titanium alloy being the modelled material. Comparison of result
FRCs can be seen in Figure 6.5. Data extracted from circle series in top left plot in Figure
6 in [174] were used. Additionally, results from the same ROM code as in the previous
testcase were also computed for comparison. Forward and backward sweeps in frequency
using harmonics 0123 were computed, as well as forward sweep using harmonics 01234567.
However, a different mesh was used as the paper uses beam elements which are not avail-
able in ParHBM. The cantilever beam was meshed by 1× 8× 40 HEXA20 elements. The
ROM model used the same mesh.

6.3. Global solvers results 111

Dimensions [m] 0.005× 0.1× 1
Density [kg/m3] 4400
Young’s modulus [N/m2] 1.04 ×1011

Poisson’s ratio [] 0.3
Damping matrix D = 0.2467×M
Excitation force amplitude [N] 2
Normalising frequency f0 [rad/s] 24.8945

Table 6.5: Cantilever beam verification testcase parameters.

Newton tolerance 5.2× 10−4

Max Newton steps unknown
AFT point count unknown
Continuation step parameters unknown

Table 6.6: Clamped-clamped beam testcase numerical parameters.

Figure 6.5: First linear mode of the cantilever beam.

Figure 6.6: FRC comparison for the cantilever beam verification testcase. Yellow and green
dashed lines represent results obtained in [174] and by the ROM technique respectively.
Full lines represent FRCs computed by ParHBM.

Discussion

The two presented testcases provide a verification of the implementation implementation
of the ParHBM code. Results obtained from the ROM model using the same meshes are

112 Chapter 6. Results

nearly identical to those from ParHBM. There are larger differences with the result from
[174], however, this can be attributed to different meshing and also use of a different com-
putation technique. This gives a reasonable level of confidence in the results obtained from
the developed code in terms of it correctly evaluating and solving the HBM terms and
equations as described in previous chapters. More thorough testing would however be
needed before any serious industrial use of this code. Additionally, note that these results
do not prove the validity of the code in a sense that the mathematical model used for this
work is sufficient to accurately reflect real life vibrational responses. This problematic is
beyond the scope of this research.

6.3.2 Scalability

Scalability is one of the most important properties of any parallel solver. It is a measure
of how well the solver maintains its efficiency when the amount of used computing power
(meaning CPUs) increases. There are two types of scalability measures - strong and weak.
Strong scalability assumes constant total problem size, i.e. the same mesh is used every
time, and increasing number of CPUs. In ideal scenario, the total runtime of the solver
decreases in direct proportion to the number of used CPUs. The second (weak) type of
scalability assumes constant problem size (number of mesh elements) per CPU. The total
mesh size therefore grows proportionally to number of MPIs used. In this case, the runtime
is in ideal scenario expected to remain constant.

Small scale testcase

The first scalability test was a strong scalability analysis performed on a smaller scale mesh
and it focuses on scalability of the AFT procedure. The clamped-clamped beam testcase
as presented in Figure 6.1 was used. The parameters of this testcase are different from
the one in Table 6.3 and can be found in Table 6.7. This modified version of the testcase
was designed later in the research process by scaling the previous testacase. The physical
units (time, length and mass) were scaled in order to move the natural frequency close
to 1, as well as bring the numeric values of Young’s modulus closer to 1 (in terms of
orders of magnitude) in order to achieve similar magnitudes of numerical values in K and
M matrices. This scaling was an attempt to improve conditioning of the HBM matrices.
Karolina was used as hardware for this test and the newer version of MUMPS (5.4.1) was
employed.

Two different setups were used in terms of number of nodes, used harmonics, number of
AFT time integration points and used MPIs. They are both described in Table 6.8.

For both cases one nonlinear solve was performed using Newton tolerance 5× 10−6 and
requiring 4 Newton iterations. The frequency was picked as 0.98. As seen in Table 6.8,
the scalability measurements start from 1 MPI, meaning that this testcase can be used as a

6.3. Global solvers results 113

Dimensions [m] 0.003× 0.003× 0.1
Density [kg/m3] 39
Young’s modulus [N/m2] 10.5
Poisson’s ratio [] 0.3
Damping matrix D = 3× 10−3 ×M
Excitation force amplitude [N] 1× 10−10

Elements per domain 2× 2× 4

Table 6.7: Clamped-clamped beam scaled testcase parameters.

Setup 1 Setup 2
Mesh elements 2× 2× 512 2× 2× 32
Harmonics 0123 0123456789
AFT points 32 128
MPIs 1, 2, 4, 8, 16, 32, 64, 128, 256 1, 2, 4, 8, 16, 32, 64, 128
Freq. domain dofs 323, 001 55, 917

Table 6.8: Small scale scalability testcase parameters.

comparison benchmark with standard serial software implementations of HBM and AFT
procedures.

The results are presented in the following figures. Figure 6.7 shows the runtime of the code
and its distribution among the most important tasks for the first setup. Figure 6.8 then the
corresponding time efficiency of those same tasks in relation to the 1 MPI case. Efficiency
of 100% represents ideal strong scalability. Figures 6.9 and 6.10 then show the same data
for the second setup.

Discussion

Figures 6.7 and 6.9 show that the majority of the runtime is spent on assembly of the Ja-
cobian matrix. Especially for the second setup, which has a larger number of AFT points,
this task takes over 96% of the total runtime in the 1 MPI (i.e. serial) run. The AFT pro-
cedure for the Jacobian matrix dominates the runtime percentage for almost all MPI cases
in both setups. Only for the highest MPI counts there is another task with a percentu-
ally significant time cost - matrix factorisation in the linear solver. It should be noted that
the implementation of the AFT procedure is most likely not very well optimised and the
runtimes presented here could be improved.

While the AFT procedure for the Jacobian matrix is the most time consuming task in both
testcases, it is also the most scalable task, as can be seen in the efficiency Figures 6.8 and
6.10. Same is true for the assembly of the residual vector assembly which uses the same
AFT procedure but applied only to a vector instead of a matrix. On the other hand, the
scalability of the linear solver tasks (analysis, factorisation and solve) quickly deteriorates

114 Chapter 6. Results

Figure 6.7: Code runtime for the first setup of the small scalability test. The blue colour
represents the most expensive task of all - the assembly of the Jacobian matrix. Y axis is in
logarithmic scale.

Figure 6.8: Code efficiency analysis for the first setup of the small scalability test.

6.3. Global solvers results 115

Figure 6.9: Code runtime for the second setup of the small scalability test. The blue colour
represents the most expensive task - the assembly of the Jacobian matrix. Y axis is in
logarithmic scale.

Figure 6.10: Code efficiency analysis for the second setup of the small scalability test.

116 Chapter 6. Results

with rising MPI count. This will be further explored in the following section which analyses
the scalability on a larger scale mesh.

Large scale testcase

The scalability of solving the global system for a large scale problem was assessed by per-
forming a strong scalability test on the MUMPS solver. Version 5.1.2 was used for this test.
The GMRES solver used for the global system was not tested for its lack of performance,
which is shown later in Section 6.3.4. This test was run on Salomon using the clamped-
clamped beam testcase, with parameters being the same as in the validation testcase (see
Table 6.3). The beam mesh was regular HEXA20 mesh with 8× 8× 266 elements. This
corresponds to 81,621 nodes. A nonlinear problem for 1 frequency point (980 rad/s) was
solved, requiring 4 Newton iterations to reach required tolerance. Readers can refer to Fig-
ure 6.4 for its approximate location on the FRC. Harmonics 0123 were again used, like in
the validation test, meaning the total size of the linear system was 1,714,041 dofs. The AFT
procedure used 32 time points. Mesh decomposition was performed by libMesh library
which internally uses Parmetis. The list of MPIs used was 4, 8, 16, 32, 64, 128, 256, 384.
The resulting runtimes can be seen in Figure 6.11 and Table 6.9. Various parts of the code
were timed separately for more detailed evaluation of the solver. Each of the MUMPS’
phases (analysis, factorisation and solve) were timed individually, as well as preprocessing
and postprocessing required before and after the solve phase. Preprocessing involves for
instance communicating the entire right hand side vector to one rank. Postprocessing in-
cludes redistributing the solution from the MUMPS distribution to the code distribution.
The same data interpreted as achieved speed-up with respect to the lowest MPI count are
shown in Figure 6.12.

MPI MUMPS factorisation MUMPS analysis Jacobian matrix assembly Total time
4 4,158 137 710 5,279
8 2,286 89 357 2,877

16 1,706 71 177 2,035
32 982 53 92 1,173
64 862 47 47 986

128 636 66 25 753
256 460 168 14 678
384 416 181 11 664

Table 6.9: MUMPS strong scalability runtime. All times are in seconds.

Discussion

The direct solver was shown to provide a significant parallel speed-up, from approximately
1.5 hours for 4 MPIs to 0.18 hours for 384 MPIs. However, the efficiency is still lacking as
can be seen in the speed-up plot. The most time consuming part of the code is the matrix

6.3. Global solvers results 117

Figure 6.11: MUMPS global solver strong scalability results - runtime. Various parts of the
code were timed separately.

factorisation, which is understandable as it is the main part of solving the linear system.
This part seems to not scale very well and therefore damages significantly the scalability
of the whole solver. The analysis phase of MUMPS also seems to scale badly especially for
the higher end of the MPI counts. The Jacobian matrix assembly, which includes the AFT
procedure, is another time consuming part. This however seems to scale quite well, which
confirms the previously shown results on the smaller scale meshes. These observations
lead to the conclusion that the solver is the most critical part of the whole HBM code when
it comes to scalability for large scale meshes.

It is possible that this testcase was actually too small for MUMPS in terms of size per
domain for the higher numbers of MPIs. However, an issue was observed with MUMPS re-
garding memory consumption. The analysis and factorisation phase require large amount
of RAM for their operation. The scalability test presented in this section was run on 24
nodes at Salomon, meaning 768 cores. However, only 384 cores were used at max. When
running the case on all 768 cores (using 768 MPIs), the solver ran out of memory. This
means that the memory requirements were higher than 4096 GB that were in total avail-
able on those nodes. The assembled Jacobian matrix only occupied a small portion of this
amount.

118 Chapter 6. Results

Figure 6.12: MUMPS global solver strong scalability results - speed-up. Various parts of
the code were timed separately.

6.3.3 Blade FRC

The global system together with MUMPS was also used for computing a nonlinear FRC
for the fan blade testcase. FRC was computed around the first mode of the blade. The
parameters of this test can be seen in Table 6.10. This testcase was run on 2 nodes of
Salomon, meaning 48 MPIs were used.

Density [kg/m3] 4429
Young’s modulus [N/m2] 1.15 ×1011

Poisson’s ratio [] 0.32
Damping matrix D = 0.3981004×M
Mesh elements 7,722
Mesh nodes 41,021
Newton tolerance between 8.6× 10−4 and 4.3× 10−3

AFT point count 20 (H0123), unknwon (H012345)
Continuation step size params unknown

Table 6.10: Blade FRC testcase parameters.

Excitation force was applied at one node at the tip of the blade as seen in Figure 6.3. The
testcase consists of two parts. In first part, the FRC was computed for various amplitudes

6.3. Global solvers results 119

of the excitation force, using harmonics 0123 in all cases. For this part, an older version of
ParHBM was used which only used naive prediction and did not have the ability to turn
around at turning points. The FRCs were therefore computed in two separate sweeps -
forward and backward, to obtain as much of the FRC as possible. The resulting curves are
in Figure 6.13. Total code runtimes for each FRC are in Table 6.11.

Figure 6.13: Blade testcase nonlinear FRC for various forcing amplitudes, using harmonics
0123.

Following these results, another FRC computation was performed, using the largest 20N
force amplitude, and comparing harmonics 0123 and 012345. This computation was per-
formed using a newer code version where turning points were already supported. The
computed FRCs can be seen in Figures 6.14 and 6.15.

Discussion

The fan blade FRC test was performed to demonstrate that the solver can work with a
geometry resembling a realistic industrial shape, as the other testcases are simple beams.
The size of this mesh is still smaller than typical sizes of meshes used in actual industrial
computations. However, even on this size the computation of an entire FRC around one
resonance frequency took multiple hours to complete. This shows the time scale required
for such computations and why efficient parallelisation techniques are required. In this

120 Chapter 6. Results

Curve Total time [h] # points
4N 4.73 146
7N 6.62 147
10N (f) 14.23 120
10N (b) 6.32 85
20N (f) 106.73 906
20N (b) 6.42 80

Table 6.11: Computation times for the blade FRCs. The (f) and (b) marks indicate forward
and backward frequency sweep. Note that these times depend on the number of AFT
points as well as the size and the method of adjustment of the continuation step.

Figure 6.14: Blade testcase nonlinear FRCs for 20N forcing. Comparison of harmonics 0123
and 012345 solutions.

testcase, only 48 MPIs were used, since the previous scalability test showed that the benefits
of using more MPIs deteriorate rapidly after this point.

An interesting observation can be made regarding the number of harmonics used to model
the vibration. As seen in Figure 6.14, using only harmonics 0123 leads to a sudden stiffening
effect of the response, which is no longer present when harmonics 4 and 5 are added. The
response computed using harmonics 012345 has a shape that is expected physically, as
structures of this type typically manifest a softening effect. Clearly, harmonics 0123 are not

6.3. Global solvers results 121

Figure 6.15: Blade testcase nonlinear FRCs for 20N forcing - detail. Comparison of har-
monics 0123 and 012345 solutions.

enough in this case, probably due to harmonics 4 and 5 being significant components of
the nonlinear motion as the amplitude increases. Since they are not included, that higher
harmonic motion component is locked and this creates an artificial stiffening effect. This
shows the importance of selecting the right set of harmonics to accurately capture the
character of nonlinear vibration. An additionally testcase study further elaborating on this
problematic can be found in the appendix A.

6.3.4 GMRES performance on global system

All the results presented to this point were computed using the MUMPS solver. However,
since GMRES was also added to ParHBM in order to solve the projected dual problem
in FETI, it was also tested on the global problem to see how an iterative Krylov space
solver would perform. For this test, the clamped-clamped beam testcase was used. A
linear and nonlinear HBM problem for 1 frequency point were solved on Karolina, using
increasing number of MPIs. Number of elements per domain was fixed, so this test can be
considered to be a weak scalability test. Numbers of GMRES iterations were measured for
each Newton iteration, as well as the total runtime of the code. The scaled version of beam
testcase parameters from Table 6.7 was used. 32 time points were used for AFT in all tests.
The first resonance frequency of this beam is around 1.003, depending on the exact used

122 Chapter 6. Results

mesh. The meshes were generated by the ParHBM’s regular mesh generator, decomposing
the mesh into domains purely along the long axis of the beam (Z axis). Numbers of used
MPI ranks were 8, 16, 32, 64 and 128. The frequency picked for this test was 0.98. Its
position on the beam FRC can be seen in Figure 6.16.

PETSc offers various preconditioners which can be enabled simply by setting a flag in
the code. Several of such preconditioners available for GMRES were tested. However,
none of them was tuned in any way for the HBM problem. Only the flag for the particular
preconditioner was switched on and all possible parameters were left to their default values
determined by PETSc. Therefore the results obtained are only rough estimates and the
solver performance could probably be improved by custom tailoring the preconditioners.

Figure 6.16: Nonlinear FRC of the scaled clamped-clamped beam, measured in its middle
along the Y axis (axis of excitation force). This particular FRC was computed for 2x2x256
HEXA20 elements. It can differ slightly for different mesh sizes. The highlighted frequency
point 0.98 is where the tests for single frequency were run.

First, the linear test was run, meaning that only harmonic 1 was used. GMRES was
used without preconditioning, and then with block Jacobi, geometric algebraic multigrid
(GAMG) and additive Schwarz method (ASM) preconditioners. Required number of GM-
RES iterations for each variant can be seen in Figure 6.17. The number was capped at 1600
to avoid GMRES running for too long, as the solver slows down with iterations because
of the growing space used for direction orthogonalisation. For the largest case (128 MPIs)
the achieved relative residual norm is in Figure 6.18. Tolerance of 10−8 was required as a

6.3. Global solvers results 123

stopping criteria, but was not reached in many cases. The total runtime of the code is in
Figure 6.19. For reference, the same problem was also solved using the MUMPS solver.

Figure 6.17: Number of GMRES iterations performed by the GMRES solver for the global
linear HBM problem for various MPI count.

For the nonlinear test, harmonics 0123 were used. The maximum number of GMRES itera-
tions was extended to 3200. Aside from GMRES without preconditioning only the GAMG
preconditioner was tested as this one performed the best in terms of convergence in the
linear testcase. The maximum number of Newton iterations was set to 4. The requested
relative residual tolerance for the linear solver in each Newton iteration was again set to
10−8. The relative residual tolerance for convergence of Newton solver was set to 5× 10−6.
In all cases, all 4 Newton iterations were required. Figures 6.20 and 6.21 show envelopes
of relative GMRES residuals over all Newton iterations, meaning for each GMRES iteration
the maximum and minimum relative residual across Newton iterations is plotted. It can
be seen that for larger number of MPIs GMRES struggled to converge to a reasonable tol-
erance. Final reached residuals in Newton loop after the 4 iterations are shown in Figure
6.22. MUMPS results are again added for comparison. Total runtimes of the code are in
Figure 6.23.

124 Chapter 6. Results

Figure 6.18: GMRES convergence curves for the global linear HBM problem for 128 do-
mains/MPIs.

Figure 6.19: Total ParHBM runtime for global linear HBM problem. Comparison of GMRES
solver with various preconditioners and MUMPS solver.

6.3. Global solvers results 125

Figure 6.20: Envelopes of relative GMRES residuals across Newton iterations for varying
MPI size for non-preconditioned GMRES for the nonlinear global system testcase.

Figure 6.21: Envelopes of relative GMRES residuals across Newton iterations for varying
MPI size for GAMG preconditioned GMRES for the nonlinear global system testcase.

126 Chapter 6. Results

Figure 6.22: Global nonlinear HBM problem. Final relative residuals reached by Newton
loop after 4 iterations for non-preconditioned GMRES, GAMG preconditioned GMRES and
MUMPS for varying MPI size.

Figure 6.23: Total ParHBM runtime for global nonlinear HBM problem. Comparison non-
preconditioned GMRES, GAMG preconditioned GMRES and MUMPS.

6.4. FETI solver results 127

Discussion

It can be seen on both the linear and the nonlinear testcase that the GMRES solver on the
global HBM system struggles to reach any reasonable tolerance in terms of relative residual.
The only version that manages to reach the desired tolerance is GMRES preconditioned
with GAMG. However, in all cases, the number of required GMRES iterations grows rapidly
with number MPIs. In the nonlinear case this inevitably affects convergence of the outside
Newton solver. When comparing with the MUMPS reference results, it is clear that MUMPS
is outperforming GMRES in both time performance and Newton convergence. As noted
before, the preconditioning of the GMRES solver was done in the simple way of switching
appropriate flags. It is possible that with a more sophisticated and tuned preconditioning
the performance could improve. The FETI algorithm is actually sometimes described as a
preconditioner for Krylov based iterative solvers.

6.4 FETI solver results

The last portion of results is dedicated to the FETI solver. There are many aspects of the
solver to be studied as the algorithm has a certain level of complexity. The results can also
be heavily impacted by specifics in the code implementation, especially in handling the
communication of data between MPI ranks. The key point of interest is the ability of the
solver to solve large systems and its scalability. Additionally, a study of the effect of precon-
ditioners and coarse space is presented. A case of full FRC computation using this solver is
also included. All results in this section were computed on Karolina supercomputer. The
newer version of MUMPS (5.4.1) was used.

6.4.1 Coarse space and preconditioner effect

Before assessing the performance of the solver it is important to compare various options
available in terms of its configuration. As it was discussed in section 4.5, it is possible to
solve the dual problem using only the natural coarse space G, meaning solving the equation
(4.50). However, it was argued that adding the artificial coarse space would be beneficial for
convergence rate. This coarse space can be added only for nonzero harmonics, or it can also
have vectors on the 0th harmonic, as it was discussed in section 4.7. The interface rotations
were used in that case. In section 4.6 two possible preconditioners were introduced - the
lumped and Dirichlet preconditioner. A comparison is made here between using one of
those preconditioners (and neither) and using the artificial coarse space Gc in various forms
(and not using it at all).

For this comparison, a testcase similar to the one specified in Table 6.7 is used, in 2 versions.
A nonlinear problem is solved, using harmonics 0123 and solving for frequency 0.98 (see
Figure 6.16). Number of domains is 32 and 128 and number of elements per domain is
2× 2× 4 and 2× 2× 8 respectively. Tolerance for relative GMRES residual was set to 10−5.

128 Chapter 6. Results

Tolerance in the outside Newton solver was set to 5× 10−6. 32 time points were used in
AFT for all cases. In the first smaller testcase, the maximum number of GMRES iterations
was set large enough that it was never reached. In the larger testcase, it was limited to 800.

For the smaller testcase, the GMRES convergence curves for all Newton iterations are in 3
following figures, split by used artificial coarse space type. Figure 6.24 shows data for case
when no artificial coarse space was used, comparing all 3 preconditioner options (none,
lumped and Dirichlet). Figure 6.25 shows the same comparison for artificial coarse space
used only on nonzero harmonics. Figure 6.26 then shows data for artificial coarse space
used on all harmonics. Figures 6.27 and 6.28 then show summary of total GMRES itera-
tions performed and total time spent in the GMRES solver for all 9 tested variants. In the
time graph, times spent on preparing the artificial coarse space projector Pc and preparing
the Schur complement for the Dirichlet preconditioner are also included. Newton solver
converged successfully in all 9 variants.

6.4. FETI solver results 129

Figure 6.24: GMRES convergence in FETI when no artificial coarse space is used, 32 domain
testcase. Comparison for different preconditioner variants. Convergence for each Newton
iteration for 1 frequency point solve is shown.

130 Chapter 6. Results

Figure 6.25: GMRES convergence in FETI when artificial coarse space on nonzero har-
monics is used, 32 domain testcase. Comparison for different preconditioner variants.
Convergence for each Newton iteration for 1 frequency point solve is shown.

6.4. FETI solver results 131

Figure 6.26: GMRES convergence in FETI when artificial coarse space on all harmonics is
used, 32 domain testcase. Comparison for different preconditioner variants. Convergence
for each Newton iteration for 1 frequency point solve is shown.

132 Chapter 6. Results

Figure 6.27: GMRES convergence total iteration count summary in FETI, 32 domain test-
case.

Figure 6.28: GMRES convergence total solver time summary in FETI, 32 domain testcase.
Time required to prepare artificial coarse space and Schur complement also shown.

6.4. FETI solver results 133

Next follow the same data for the larger testcase. In this one, the option of no artificial
coarse space was dropped as it clearly shows to be significantly worse than the other two.
Comparisons of GMRES convergence curves are in Figures 6.29 for nonzero harmonics
artificial coarse space and 6.30 for artificial coarse space on all harmonics. Newton solver
failed to converge for cases with artificial coarse space on nonzero harmonics with both
lumped and Dirichlet preconditioner. In all other cases Newton converged. Summary of
total GMRES iterations and total GMRES time are in Figures 6.31 and 6.32.

134 Chapter 6. Results

Figure 6.29: GMRES convergence in FETI when artificial coarse space on nonzero har-
monics is used, 128 domain testcase. Comparison for different preconditioner variants.
Convergence for each Newton iteration for 1 frequency point solve is shown. For Dirich-
let preconditioner, GMRES performed [48, 800, 104, 98] iterations. Newton solver failed to
converge for lumped and Dirichlet preconditioner variants, but it converged for no precon-
ditioner case.

6.4. FETI solver results 135

Figure 6.30: GMRES convergence in FETI when artificial coarse space on all harmonics is
used, 128 domain testcase. Comparison for different preconditioner variants. Convergence
for each Newton iteration for 1 frequency point solve is shown. For Dirichlet precondi-
tioner, GMRES performed [48, 66, 71, 73] iterations.

136 Chapter 6. Results

Figure 6.31: GMRES convergence total iteration count summary in FETI, 128 domain test-
case.

Figure 6.32: GMRES convergence total solver time summary in FETI, 128 domain testcase.
Time required to prepare artificial coarse space and Schur complement also shown.

6.4. FETI solver results 137

Discussion

First and the most apparent conclusion from this test is that the solver performs very poorly
when no artificial coarse space is used (Figure 6.24). This variant was therefore removed
from consideration for the larger testcase. This second larger testcase then shows a more
pronounced comparison of the remaining options. In case of artificial coarse space on
nonzero harmonics only (Figure 6.29), Newton solver did not converge for both precon-
ditioners while it did converge without a preconditioner. This might be related to poor
performance of the second Newton iteration in those cases. Convergence rate of Newton
iterations 2-4 can be seen to be much worse than convergence of the 1st iteration already
for the smaller mesh (Figure 6.25). This issue apparently became even more pronounced
and the 2nd Newton iteration did not reach the required convergence, possibly ruining
the Newton solution guess for the next iterations. Situation improved significantly when
coarse space on all harmonics was used (Figure 6.30). Presence of the additional coarse
space on the 0th harmonic reduces the number of iterations from 2nd Newton iteration
further, bringing numbers of all iterations close together. The first Newton iteration is not
affected as in that iteration the problem is linear since zero initial guess is used. Null space
of the domain matrices therefore also includes the rotation vectors, so those are not used
for the artificial coarse space.

The use of the interface rotations for the 0th harmonic artificial coarse space greatly im-
proves GMRES convergence. However, it can still be seen that the number of GMRES
iterations required generally grows slightly with each Newton iteration (Figure 6.30). The
number of GMRES iterations is also significantly larger across all variants for the larger
mesh testcase compared to the smaller one. It is possible that the artificial coarse space
choice for this work is not optimal and a better null space vectors exists that would prevent
GMRES iterations from growing with the problem size and Newton iterations. Note also
that the design of the 0th harmonic artificial coarse space (interface rotations) as presented
in 4.7, has its limitations. First, it might be difficult to identify individual domain interfaces
on irregular meshes. Second, the rotations need to be zeroed out at corners with more than
2 domains to preserve the GT

c G = O orthogonality condition. This means that the rotations
in certain decompositions won’t cover the entire interface but only its interior, which could
reduce effectiveness of such coarse space.

Finally, it seems that the Dirichlet preconditioner is the most effective in reducing the
number of GMRES iterations. When coupled with the complete artificial coarse space it
outperforms all other options (Figures 6.30, 6.32), even despite the extra cost of calculating
Schur complement of domain matrices. Therefore, this combination was used in all further
tests.

6.4.2 Scalability

A series of scalability tests for the FETI algorithm follows. By the time of computing these
results the amount of computation resources available at IT4I was limited due to energy

138 Chapter 6. Results

supply issues. All results in this section were obtained using 2 nodes on Karolina, meaning
256 cores. The setup of the testcase is mostly the same as the scaled clamped-clamped beam
test in Table 6.7. The only difference is the number of elements per domain. Harmonics
0123 were used. Newton solve of nonlinear HBM problem for 1 frequency point (0.98) was
performed. The Newton solver performed 4 iterations and 32 AFT points were used in all
cases. Both weak and strong scalability were assessed, including timing of various parts
of the FETI algorithm to identify potential bottlenecks. Results for the same testcases for
the MUMPS solver were computed as well for reference, so the following tests also further
illustrate the scalability of that solver.

Weak scalability

The first weak scalability testcase was designed to be as large as possible within the avail-
able RAM. The mesh was again decomposed purely along the Z axis. This type of de-
composition minimises sizes of domain interfaces, which consequently minimises memory
requirements on the coarse space projector matrices. The number of elements per domain
was 2× 2× 54. HEXA20 elements were used again. The list of MPIs and corresponding
problem sizes are in Table 6.12.

MPI Total elements Total nodes Total dofs (primal)
4 864 6,501 136,521
8 1,728 12,981 272,601
16 3,456 25,941 544,761
32 6,912 51,861 1,089,081
64 13,824 103,701 2,177,721
96 20,736 155,541 3,266,361

128 27,648 207,381 4,355,001
192 41,472 311,061 6,532,281
256 55,296 414,741 8,709,561

Table 6.12: First weak scalability test dimensions. Total dofs are counted in global sense,
meaning dofs overlapping at interfaces are all counted as one.

The testcase was run with 3 different configurations for the GMRES tolerance, as this value
influences the number of iterations the solver performs. First, the test was run with GM-
RES tolerance 10−5. The time results for this test are in Figure 6.33. Several parts were
timed separately: time spent in GMRES, time spent on processing of domain matrices (this
includes their analysis and factorisation by MUMPS and computation of the Schur comple-
ment for the Dirichlet preconditioner), assembly of domain matrices (this includes the AFT
procedure for evaluation of the nonlinear terms) and preparation of the P and Pc projec-
tors. For reference, time results for the MUMPS solver for the same problem are added.
MUMPS was only able to handle the problem up to 192 MPIs. For the 256 MPI case, the
solver ran out of RAM. A more detailed analysis of the GMRES solve is then provided,
showing individual times of P , Pc and F operators application in each GMRES iteration.

6.4. FETI solver results 139

Figure 6.34 shows the progress of GMRES convergence for each Newton iteration for the
largest number of MPIs (256).

As the results show, the number of GMRES iterations grows significantly with number of
domains, and so does the time spent in GMRES. Therefore, the same test was run with more
GMRES tolerance configurations. One with the tolerance set to 10−3 and second with the
same tolerance which is adaptively changed between Newton iterations. This adaptation
takes the form of:

toli = tol0 ×max
(

1,
‖F̃‖
‖Hi‖

)
(6.1)

with toli being the GMRES tolerance for the i-th Newton iteration and tol0 being the base-
line tolerance (in this case 10−3). Hi represents the residual of the Newton solver in its i-th
iteration. This approach loosens the tolerance when the Newton approaches the solution,
making the relative residual of GMRES being based on the Newton residual rather than
the residual of the internal linear problem of the particular iteration. These two tests start
from MPI count 32.

Time results for the fixed 10−3 tolerance are in Figure 6.35. MUMPS results are added again
for reference. GMRES convergence for the largest MPI count is in Figure 6.36. The same
results for the adaptive 10−3 tolerance are then in Figures 6.37 and 6.38. It can be seen that
GMRES stops at different tolerance for different Newton iterations.

It should be noted that tolerance for the Newton solver was in all cases set to 5× 10−6

and the solver converged within that tolerance in all cases in 4 iterations. The error of
the domain connectivity equation ∑i Biũi was also measured in relative proportion to the
magnitude of the solution vector:

connectivity error =
‖∑i Biũi‖∞

‖ũi‖∞
(6.2)

with ‖ũi‖∞ computed collectively across all domains:

‖ũi‖∞ expands into max
i
‖ũi‖∞ (6.3)

Comparison of total runtimes for all 3 tolerance variants and comparison of reached con-
nectivity errors are in Figure 6.39.

140 Chapter 6. Results

Figure 6.33: Total runtime of ParHBM for weak scalability test with clamped-clamped beam
(harmonics 0123) and times of most significant parts of the code. Variant with 10−5 GMRES
tolerance. MUMPS solver times for the same problem added for reference.

6.4. FETI solver results 141

Figure 6.34: GMRES convergence for weak scalability test with clamped-clamped beam
(harmonics 0123) for the largest case - 256 MPIs. Variant with 10−5 GMRES tolerance.

142 Chapter 6. Results

Figure 6.35: Total runtime of ParHBM for weak scalability test with clamped-clamped beam
(harmonics 0123) and times of most significant parts of the code. Variant with 10−3 GMRES
tolerance. MUMPS solver time for the same problem added for reference.

6.4. FETI solver results 143

Figure 6.36: GMRES convergence for weak scalability test with clamped-clamped beam
(harmonics 0123) for the largest case - 256 MPIs. Variant with 10−3 GMRES tolerance.

144 Chapter 6. Results

Figure 6.37: Total runtime of ParHBM for weak scalability test with clamped-clamped
beam (harmonics 0123) and times of most significant parts of the code. Variant with 10−3

adaptive GMRES tolerance. MUMPS solver time for the same problem added for reference.

6.4. FETI solver results 145

Figure 6.38: GMRES convergence for weak scalability test with clamped-clamped beam
(harmonics 0123) for the largest case - 256 MPIs. Variant with 10−3 GMRES adaptive
tolerance.

146 Chapter 6. Results

Figure 6.39: Comparison of total ParHBM runtimes (top) and domain connectivity error
norm ratio to solution norm (bottom) for various GMRES tolerances. The ’infinite’ norm
‖‖∞ was used, meaning taking the largest absolute value of the vector.

6.4. FETI solver results 147

The second weak scalability testcase used a much smaller domain size - only 36 elements.
The list of MPIs and sizes is in Table 6.13.

MPI Total elements Total nodes Total dofs (primal)
16 576 3,045 63,945
32 1,152 5,957 125,097
64 2,304 11,781 247,401
96 3,456 17,605 369,705

128 4,608 23,429 492,009
192 6,912 35,077 736,617
256 9,216 46,725 981,225

Table 6.13: Second weak scalability test dimensions. Total dofs are counted in global sense,
meaning dofs overlapping at interfaces are all counted as one.

This testcase was tested with 2 different domain decomposition strategies. The first is
decomposition into 2× 2× n

4 domains, where n is the number of used MPIs. The second
strategy is the standard pure Z axis decomposition. Example of both decompositions for
case of 64 MPIs is in Figure 6.40. The number of elements per domain was adjusted
accordingly to keep the overall mesh size the same in both strategies. First strategy (’type
1’) used 3× 3× 4. elements per domain and the second (’type 2’) used 6× 6× 1 elements.

Figure 6.40: Comparison of 2 domain decompositions for case of 64 MPIs. Top - Z axis
slicing (type 2), bottom - 2× 2 domains along the XY axes, the rest along Z (type 1).

The timing of the code for both decomposition types, as well as MUMPS for the same
configurations, can be seen in Figure 6.41. For the first type, the complete MPI range was
computed with MUMPS. For the second decomposition type, only the first and last points
were computed.

148 Chapter 6. Results

Figure 6.41: FETI weak scalability results. Comparison of total runtimes for 2 different
domain decompositions (type 1 and type 2) across a range of MPIs. MUMPS results for
both types shown in black. For type 2, only first and last points were computed.

Strong scalability

A single strong scalability test was computed and is presented here. The parameters are
the same as in the weak scalability cases except for the mesh size and decomposition. The
total size of the mesh was 8× 8× 256 HEXA20 elements. This implies 78,561 nodes and
1,649,781 dofs. The list of used MPIs and corresponding decompositions is in Table 6.14.
GMRES tolerance was set to 10−3. A nonlinear problem using harmonics 0123 was again
solved, taking 4 Newton iterations for all MPI counts.

MPI domains × elements count
16 (1× 1× 16)× (8× 8× 16)
32 (1× 1× 32)× (8× 8× 8)
64 (1× 1× 64)× (8× 8× 4)

128 (2× 2× 32)× (4× 4× 8)
256 (2× 2× 64)× (4× 4× 4)

Table 6.14: Strong scalability test dimensions.

6.4. FETI solver results 149

The change in decomposition from purely Z axis based to a decomposition along all 3 axes
between 64 and 128 MPIs was based on the observation in the previous test where the
runtime was much lower for the latter for higher MPI count. The decomposition for the
MUMPS solver was the same for each MPI count.

Total ParHBM runtime was measured for both solvers as well as several individual parts of
the algorithms. For the FETI solver, the time spent in GMRES, domain matrix assembly and
projectors P and Pc preparation was measured. For MUMPS, the global matrix assembly
and its factorisation are shown. The time data is presented in Figure 6.42. Figure 6.43 then
interprets the same data in terms of a speed-up, highlighting the ideal speed-up based on
the increase of MPI count relative to the lowest count of 16. Figure 6.44 shows number of
required GMRES iterations for each MPI count and each Newton iteration. Lastly, Figure
6.45 shows domain connectivity errors related to the FETI primal solution in terms of the
‖‖∞ norm.

Figure 6.42: FETI strong scalability results. Total runtimes (thick lines) of ParHBM for both
the FETI and MUMPS solvers. Several key algorithm components highlighted by dashed
lines.

150 Chapter 6. Results

Figure 6.43: FETI strong scalability results. Achieved speed-up (thick lines) of ParHBM for
both the FETI and MUMPS solvers, compared to the ideal speed-up (red line). Several key
algorithm components highlighted by dashed lines.

Discussion

The total runtime of a code in case of weak scalability is expected to remain constant along
the increasing number of MPIs. This is very clearly not the case of either of the solvers
in the first presented test. Both MUMPS and FETI show significant increase in time with
increasing number of MPIs (Figures 6.33, 6.35, 6.37). In case of the FETI solver it’s the time
spent in GMRES that plays the biggest part in this increase in total runtime. It can be seen
that this increase in GMRES time correlates strongly with the number of GMRES iterations
required to reach the required tolerance. While other parts of the FETI algorithm also don’t
show perfect scalability, the growing number of GMRES iterations is the key component
damaging the overall solver performance.

The comparison of various GMRES tolerances provides several interesting insights. First,
decreasing this tolerance can significantly reduce the overall number of GMRES iterations
required (Figures 6.33, 6.35, 6.37). Even when the GMRES tolerance is as high as 10−3, the
outside Newton solver still successfully converges within a tolerance of 5× 10−6. It should
be noted that only part of the dual problem solution is solved for with the GMRES solve. A
part of the solution is obtained by solving directly on the natural and artificial coarse spaces.

6.4. FETI solver results 151

Figure 6.44: FETI strong scalability results. Number of GMRES iterations for each Newton
iteration and their total count over the entire Newton solve.

The loosening of the GMRES tolerance however directly correlates with deterioration of
the domain continuity of primal domain solutions (Figure 6.39). It is therefore a trade
off between the two. Importantly, loosening the GMRES tolerance doesn’t significantly
improve the scalability of the solver, only the absolute value of the runtime for each MPI
count.

When comparing GMRES convergence curves in Figures 6.34 and 6.36 two things can be
concluded. First, in both cases, the number of GMRES iterations required increases with
each Newton iteration. Second, while the looser tolerance 10−3 reduces the number of
iterations, it also deteriorates the individual convergence curves. Comparing 3rd and 4th
Newton iterations for both cases, it can be seen that in the 10−5 case, the solver reached
tolerance of 10−3 in well under 200 iterations while it took more than 200 iterations to reach
the same tolerance in the 10−3 case where it was the terminating tolerance. Both of these
observations lead to the idea of the adaptive tolerance that was described above. While
this approach further reduces the number of required GMRES iterations, it also worsens
the domain continuity error even more. It can be concluded that the choice of the GMRES
tolerance is clearly an impactful factor and more research in that area should be conducted
in the future.

152 Chapter 6. Results

Figure 6.45: FETI strong scalability results. Domain connectivity divided by the solution
norm in infinite norms.

The second weak scalability testcase was designed to test the FETI solver with smaller do-
mains. Scalability of this testcase (Figure 6.41) is much better when considering the better
parts of the curves for each decomposition. It can be concluded that the decomposition
strongly affects the scalability of the solver. This agrees with conclusions in [65] which
analysed influence of domain aspect ration on FETI convergence. It can be also observed
that the MUMPS solver seems to not be affected in any significant way by the decomposi-
tion type. As in the first testcase, the dominant factor influencing the scalability of FETI is
time spent in GMRES.

The last testcase shows the strong scalability speed-up efficiency of the FETI solver to be
around 69% for the largest number of domains (Figure 6.43). The biggest slowing factor
seems to be again GMRES. The change of decomposition between 64 and 128 MPIs appears
to impact the total timing, however, as was shown previously in the weak scalability tests,
keeping the decomposition purely along the Z axis could lead to even worse results. While
the number of GMRES iterations increased from 64 to 128 MPIs, it remained approximately
the same when going from 128 to 256 MPIs (Figure 6.44). A larger testcase is required to
better assess the scalability of the solver in the future.

6.4. FETI solver results 153

All the tests are appended with results computed with the MUMPS solver as well. It can be
seen that the FETI solver generally matches and in some cases even outperforms MUMPS.
MUMPS seems to be more efficient with smaller number of domains. Furthermore, in
the first weak scalability testcase, MUMPS was not able to solve the largest MPI problem
due to the lack of memory. As it was discussed in the MUMPS scalability testcase for
the global system, the solver is quite memory intensive. However, this is by no means a
conclusive evaluation of the MUMPS library. As mentioned previously, MUMPS was used
with only MPI and not OpenMP, and the solver might perform better with different domain
decomposition and domain sizes.

6.4.3 Projected dual problem equations

Section 4.6 introduced two possible forms of the projected dual problem - (4.65) and (4.66).
A comparison of these two variants is shown in this section. The 256 MPI case from the
largest weak scalability testcase was used for this (see Table 6.12). GMRES tolerance was
set to 10−5. Number of AFT points was again 32. Newton solver converged in both cases
in 4 iterations within relative tolerance of 5× 10−6. Comparison of GMRES convergence
for all Newton iterations can be seen in Figure 6.46. The domain continuity error was of
same magnitude in both cases.

Discussion

As seen from this result, both versions of the dual problem equations converge to correct
solution with good enough connectivity error. Both can therefore be used in principle. The
advantage of (4.65) is that it requires only one application of P and Pc while (4.65) applies
each twice. However, this testcase demonstrates that the version without the second set
of projections suffers from GMRES stagnation sooner than the second version. The second
version can also experience such stagnations, but they generally happen later (on lower
residual magnitudes). This is why it was used for all results computed in this work.

It should be noted that the application of the preconditioner and projectors are usually
integrated directly inside the Krylov space solver. However, for this work, the operator
approach was used as it allows for use of a standard GMRES library without any needs
for modifications. The form of the projected dual problem equations was discussed with
professor Rixen [152], whose work on FETI is referenced several times in this work [153],
[72], [61]. However, this discussion hasn’t reached its definitive conclusion as of time of
this work and it might be that a better version of the dual problem equations exist.

154 Chapter 6. Results

Figure 6.46: Comparison of GMRES convergence when solving (4.65) (top) and (4.66) (bot-
tom).

6.4.4 Frequency Response Curve

The previous sections on FETI results all worked with one fixed frequency point. The
capability of the solver to compute a full FRC of a structure is analysed here. It is not a
performance analysis as a relatively small testcase was used. The focus is placed on the
shape of the computed FRC and number of GMRES iterations required along the curve.

The testcase setup is again the same as in Table 6.7. Two different sets of harmonics are
compared - 0123 and 012345. Additionally, smaller damping values were used - the refer-
ence damping (3× 10−3 ×M) and half and quarter of that value. The total mesh size was
2× 2× 64 elements, decomposed into 32 domains along the Z axis. Secant predictor was
used. Different GMRES tolerances had to be set for different cases. For harmonics 0123

6.4. FETI solver results 155

case with full and half damping 10−4 was enough. However, for the quarter damping case
the tolerance had to be reduced to 10−5 otherwise the solver wouldn’t converge near the
turning point. This can be seen in Figure 6.47. For harmonics 012345 tolerance of 10−6

was set for all 3 damping values, as even 10−5 was not enough at some turning points.
Domain connectivity error is not shown for this test as the testcase is quite small and it was
consistently good in all cases. Numerical parameters common for all tests in this section
can be seen in Table 6.15.

Computed FRCs for all combinations of harmonics and damping are in Figure 6.48. The
response was calculated in the same node where the excitation force is applied, and in the
same direction. It can be seen that responses for full and half damping are identical for
both harmonic sets. A difference can only be seen for the quarter damping. The FRC for
harmonics 012345 was computed in two sweeps, forward and backward. This was because
of time limitation of 1 hour per job on Karolina at the time of computing these results. The
FRC is still not complete as the two sweeps did not have enough time to connect. Detail of
the FRC for this testcase can be seen in Figure 6.49. For reference, the FRC for this testcase
(H012345, quarter damping) was also computed by the direct solver (MUMPS). This solver
is more efficient for smaller meshes and the its code also allows for resuming a continuation
procedure from the end of a previous code run. A full FRC was computed with this solver
and the result can be seen in Figure 6.50.

Max Newton steps 4
AFT point count 32
Continuation step init 5× 10−3

Continuation step min 10−5

Continuation step max 5× 10−2

Continuation step scale up 1.2
Continuation step scale down 0.5

Table 6.15: FETI FRC testcase numerical parameters. Applies to both harmonic cases and
all 3 damping cases.

156 Chapter 6. Results

Figure 6.47: Detail of FRC for harmonics 0123 with quarter damping. Comparison of
computed FRCs for 2 different GMRES tolerances. The looser tolerance case (red) stopped
converging when approaching the first turning point.

6.4. FETI solver results 157

Figure 6.48: FETI FRC results comparison. Harmonics 0123 (left) and 012345 (right) for
various damping values. Full damping (top row) is the standard 0.003× M. Results for
half and quarter of that value follow below. The number in the title indicates GMRES
tolerance. Red line in the bottom right plot is a separate backward sweep.

158 Chapter 6. Results

Figure 6.49: Detail of FRC for harmonics 012345 with quarter damping. Red line indicating
a separate backward sweep. The two curves are not connected as the FRC is not complete.

Figure 6.50: Reference full FRC computed with the direct solver (MUMPS) for the H012345
quarter damping testcase.

6.4. FETI solver results 159

One of the main points of interest for this test was number of GMRES iterations. Until now,
all tests of FETI have been performed on a single frequency point. This test offers an insight
into how the number of GMRES iterations varies for different parts of the FRC. A summary
of this can be found in Figure 6.51. There are two curves for each variant since there are 2
linear solves required for each Newton step when predictor-corrector algorithm is used, as
described in section 4.8. The black dashed lines indicate positions of turning points. Data
for the backward sweep for the quarter damping harm012345 case is displayed from left to
right, while the direction of the sweep in frequency was from right to left. Only data for
converged FRC points are displayed. Number of GMRES iterations was limited to 200.

160 Chapter 6. Results

Figure 6.51: FETI FRC results comparison of maximum number of GMRES iterations
(across Newton iterations) for each converged FRC point. The vertical dashed lines in-
dicate locations of turning points. Two lines are present for the two solves required for the
bordered solve. Red is for x1 and blue for x2, using notation from (4.74).

6.5. Conclusion 161

Discussion

This testcase demonstrates the capability of the FETI solver to compute a full nonlinear
FRC of a structure. However, tests with much larger meshes are required. Still, several
things can be concluded from this test. First, the requirement of stricter GMRES tolerance to
properly handle turning points, as illustrated in Figure 6.47. Note that secant predictor was
used in this testcase. It is possible that tangent predictor would yield better results in terms
of Newton convergence. In Figure 6.51 it can be seen that for several FRC points the GMRES
solver stagnated and did not manage to reach the tolerance before reaching maximum
iteration count while Newton still converged. This further proves how important the role
of GMRES tolerance is. Second, Figure 6.51 shows that the number of GMRES iterations is
higher around turning points with the high amplitude (the ’peaks’ of the FRCs). This is an
important observation as the number of GMRES iterations significantly impacts the overall
performance of the FETI solver, as was shown previously.

6.5 Conclusion

A series of results obtained from the created code is presented in this chapter. First, an
overview of the employed hardware and list of used testcases and their parameters are laid
out.

The first set of results covers solving the global HBM system. First, the code is validated
by comparing computed FRCs to those computed for the same testcases independently
by other researchers. After that, a strong scalability testcase for the MUMPS global solver
on the clamped-clamped beam geometry with problem size of 1.7M dofs is presented.
This testcase analyses scalability of various parts of the code, including the three stages of
MUMPS solve procedure (analysis, factorisation and solve). It can be seen that the factori-
sation phase in MUMPS is the most expensive task and that its scalability diminishes with
larger numbers of MPIs. This testcase also highlights how memory demanding direct par-
allel solvers can be. It is however noted that the solver was used without its OpenMP capa-
bility. Next, a fan blade geometry testcase is presented, with full nonlinear FRC computed.
This demonstrates the capability of the code to operate on real industry-like geometries.
This test also highlights the importance of harmonics selection. Finally, a test designed to
assess the performance of the GMRES solver on the global system is made. This shows that
GMRES equipped with standard preconditioners without any tuning performs poorly for
nonlinear HBM problems and is not a viable option for large scale computing.

The second part of the results is dedicated to the FETI solver. First, a study of precondi-
tioning and impact of the artificial coarse space is made. It can be seen that the Dirichlet
preconditioner performs better out of the two in terms of both runtime and number of GM-
RES iterations. This is consistent with results from other studies. The test also demonstrates
the importance of the artificial coarse space on both zero and nonzero harmonics.

162 Chapter 6. Results

Three scalability testcases for the FETI solver are presented next. The first weak scalabil-
ity test pushes the solver to its limits in terms of RAM within the available 2 nodes on
Karolina, with the largest case having 8.7 million dofs. The number of GMRES iterations in
this testcase grows significantly with the number of domains, which negatively impacts the
overall scalability. Even still, the FETI solver runtimes are comparable to those of MUMPS,
while being more memory efficient. This testcase also analyses different levels of GMRES
tolerances and their impact on the computed primal solution. The second weak scalability
testcase uses a smaller mesh, with the largest case having 0.98M dofs. This testcase com-
pares two mesh decompositions. It demonstrates the importance of the decomposition in
FETI, as varying the decomposition strongly impacts the number of required GMRES iter-
ations. This is again consistent with other studies on this topic. The first weak scalability
testcase would most likely benefit from a better decomposition as well. It can be seen that
with good decomposition choice the FETI solver is capable of outperforming the MUMPS
solver in terms of runtime. The last testcase assesses strong scalability of the solver using a
1.6M dof system. Mesh decomposition was adjusted for each MPI size based on the previ-
ous testcase results. This testcase again shows the impact of GMRES scalability. The FETI
solver nevertheless outperforms MUMPS.

Next, a comparison of solving two different versions of the projected dual problem equa-
tions is shown, highlighting the number of GMRES iterations and GMRES convergence
stagnation. It shows that while the second set of projections implies larger computational
cost of each GMRES iteration, it allows GMRES to converge to lower tolerances. The best
form of the dual problem formulation remains however an open question.

Finally, a full FRC testcase of a clamped-clamped beam is shown. Three different levels of
damping and two sets of harmonics are used for comparison. This testcase again demon-
strates the importance of choosing the right tolerance for GMRES. It also highlights an
increase in number of GMRES iterations around turning points of the FRCs.

Chapter 7

Conclusion

7.1 Research work conclusion

The present research builds on the well established methodology for nonlinear vibration
analysis. It lays out all the necessary components that are necessary to compute full FRCs
for 3D geometries with geometric nonlinearity using HBM. Attention is then focused on
parallelisation of solving the linear system of equations inside the Newton loop. Three
solving options are presented and analysed - solving the global system with a direct parallel
solver (MUMPS), solving the global system with an iterative solver (GMRES) and applying
a domain decomposition method (FETI). A standalone C++ code was developed to assess
performance of these solvers [21].

7.1.1 Global system with direct solver

MUMPS has proven to be capable parallel solver for nonlinear HBM equations. This is not
surprising as direct solvers are generally known to ”simply work” for any matrix passed to
them. It does not require any parametrisation so it is very user friendly. This made MUMPS
an ideal first solver to test. With this solver, a full nonlinear FRC for a fan blade geometry
was computed, including successful handling of turning points. The scalability of this
solver was assessed. It can be seen that the matrix factorisation phase struggles to scale with
increasing number of domains for the used testcase. Memory demands of this solver were
also shown to be a limiting factor for the solved problem size. It should be noted however
that the solver was used without utilising OpenMP for shared memory parallelism. The
solver has proven to be a reliable and robust tool for solving HBM equations across an entire
frequency range while providing significant parallel speed-ups, up to a certain point.

7.1.2 Global system with GMRES

GMRES implementation in PETSc was also used to solve the global HBM system. However,
it can be seen that this solver struggles to solve the nonlinear problem even in a frequency

163

164 Chapter 7. Conclusion

point with low nonlinearity influence. The number of GMRES iterations required grows
significantly with the problem size and runtime is higher than with MUMPS by an order of
magnitude. This discrepancy in performance is apparent on problems of sizes around 300k
dofs already. This shows that solving the global HBM system with GMRES is not a feasible
strategy. Even when coupled with some of the ready to use preconditioners available in
PETSc the performance improved only marginally. A more sophisticated preconditioning
is therefore necessary.

7.1.3 FETI

The FETI solver results demonstrate several important points. First, it shows that this solver
is capable of solving a large nonlinear HBM system. Considering that FETI can be seen as
a GMRES preconditioner, it is apparent that GMRES requires this type of sophisticated
preconditioning to be able to handle large problems of this kind. MUMPS has also proven
to be an essential component of the solver, allowing for parallel factorisations of the coarse
space matrices.

The FETI solver in many cases outperforms MUMPS in terms of scalability and runtime. It
is also capable of computing full nonlinear FRC including turning points. It was observed
that the number of required GMRES iterations increases around turning points. This could
lead to scalability issues with larger problems. More tests using larger number of MPIs
would be needed in the future to better assess the solver’s large scale capabilities.

Second, the results highlight various critical parameters of the solver. The GMRES toler-
ance can impact the number of iterations and therefore the code runtime in a significant
way. It also strongly influences the error of domain connectivity. A strong enough tolerance
level is also required to successfully go around turning points on nonlinear FRCs. Another
important factor influencing the solver’s performance is domain decomposition. The re-
sults seem to confirm previous research which suggests that bad aspect ratio of domains
deteriorates GMRES convergence.

The exact form of the projected dual problem equations is also important for good GMRES
convergence. No definitive conclusion about this topic is made as it requires more thorough
mathematical analysis.

Finally, the importance of the artificial coarse space is highlighted. Without the presence of
this coarse space on all harmonics GMRES convergence experiences significant stagnations.
The artificial coarse space designed for this work is one of many possible ones. Other more
fitting coarse spaces could possibly be used for even better convergence properties.

7.2 Scientific contributions
This work demonstrates a successful use of various parallelisation techniques to solve large
scale vibration problems with geometric nonlinearity. While the focus of the work is placed

7.3. Future work 165

on linear solvers, other parts of the code also contribute to the overall speed-up that was
achieved. It shows that the current state of the art computing software for linear alge-
bra, meshing, linear solvers and interprocessor communication can be used to compute
full nonlinear vibration response of large 3D finite element models. This can allow future
researchers to analyse larger systems in more detail and less time, allowing for more effi-
cient design process of various industrial components in turbomachinery and other fields.
The ability to compute high fidelity vibration responses is also important for validation of
various complex modelling techniques such as reduced order models.

The FETI algorithm adjusted for the HBM problem used in this work is another contri-
bution to the rich research around this method. It shows that this method is capable of
efficiently solving nonlinear vibration problems. Both benefits and challenges related to
using this method are highlighted. This can be used as an inspiration and benchmark for
future research of this algorithm, especially regarding its use for nonsymmetric indefinite
matrices.

7.3 Future work

Various topics of this work can be further expanded upon to make the whole process of
solving nonlinear vibration problems more efficient and complete.

The physical model chosen for this work was very basic. More physical features can be
added in the future, such as different material models, nonlinearities and employing more
general boundary conditions. Contact and friction models are especially important for
modelling of vibration of multipart moving components. Other physics such as fluid inter-
action and thermal properties can be modelled.

The numerical model can be extended by various features improving its flexibility and
scope of applicability. Different number of harmonics can be used in different parts of
the structure. Capability of tracking nonlinear normal modes, detection of bifurcations
and stability analysis can be added to the continuation code. Different sources of motion
equations can be added, such as 2D models or discrete spring-mass systems.

The FETI algorithm used in this work can be further improved. Optimisations regarding
memory management and MPI communication can be made to speed up its performance.
Implementing preconditioning and coarse space projection operations directly into code of
the iterative solver can also increase its efficiency. Different FETI variants, such as FETI-
DP, can be tested. Further research regarding the artificial coarse space can also provide
significant convergence improvements.

Due to limited computational resources available at the time of testing, all large scale tests
for the FETI solver were obtained with maximum of 256 cores. The scalability results
indicate that the solver should be capable of handling much larger systems. Running the

166 Chapter 7. Conclusion

code on larger number of cores, preferably at least several thousand, will be necessary to
properly assess its capabilities.

As discussed in this work, modelling and analysing vibration of structures such as gas tur-
bines or their components is a complex task involving many steps [74, 162]. The method-
ology and code developed for this project are only a basic isolated entity to demonstrate
capabilities of parallel computing applied to nonlinear vibration problems. The mathe-
matical and software extensions mentioned in previous paragraphs are necessary to make
the developed code useful in industrial applications. Additionally, the code needs to be
integrated into an existing toolchain that an industrial company uses for its design and
development process. Technicalities such as software compatibility, matching inputs and
outputs or used libraries and system environments need to be addressed. When all these
prerequisites are met, the code could serve as a valuable tool in industry for large scale vi-
bration modelling, tackling complex structures such as whole gas turbines with fine mesh
resolution.

Bibliography

[1] Intel Math Kernel Library. Reference Manual. Intel Corporation, 2009. Santa Clara, USA.
ISBN 630813-054US.

[2] C. Alappat, A. Basermann, A. R. Bishop, H. Fehske, G. Hager, O. Schenk, J. Thies, and
G. Wellein. A recursive algebraic coloring technique for hardware-efficient symmetric
sparse matrix-vector multiplication. ACM Trans. Parallel Comput., 7(3), June 2020.

[3] E. Allgower and K. Georg. Introduction to Numerical Continuation Methods. Classics in
Applied Mathematics. Society for Industrial and Applied Mathematics, 2003.

[4] P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. Performance and Scalability
of the Block Low-Rank Multifrontal Factorization on Multicore Architectures. ACM
Transactions on Mathematical Software, 45:2:1–2:26, 2019.

[5] P. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multi-
frontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis
and Applications, 23(1):15–41, 2001.

[6] I. Arany. The preconditioned conjugate gradient method with incomplete factor-
ization preconditioners. Computers & Mathematics with Applications, 31(4):1–5, 1996.
Selected Topics in Numerical Methods.

[7] I. Argyros, S. Hilout, and W. Scientific. Computational Methods in Nonlinear Analy-
sis: Efficient Algorithms, Fixed Point Theory and Applications. Computational Methods
in Nonlinear Analysis: Efficient Algorithms, Fixed Point Theory, and Applications.
World Scientific, 2013.

[8] E. Babolian, J. Biazar, and A. Vahidi. Solution of a system of nonlinear equations by
adomian decomposition method. Applied Mathematics and Computation, 150:847–854,
03 2004.

[9] S. Badia, A. Martı́n, and J. Principe. A highly scalable parallel implementation of
balancing domain decomposition by constraints. SIAM Journal on Scientific Computing,
36:C190–C218, 01 2014.

[10] S. Balay, W. Gropp, L. C. McInnes, and B. F. Smith. Petsc, the portable, extensible
toolkit for scientific computation. Argonne National Laboratory, 2(17), 1998.

167

168 BIBLIOGRAPHY

[11] M. Balmaseda Aguirre. Reduced order models for nonlinear dynamic analysis of rotat-
ing structures : Application to turbomachinery blades. PhD thesis, Université de Lyon,
September 2019.

[12] V. K. Bankar and A. S. Aradhye. A Review on Active, Semi-active and Passive Vibra-
tion Damping. In International Journal of Current Engineering and Technology , 2016.

[13] L. Beilina, E. Karchevskii, and M. Karchevskii. Numerical Linear Algebra: Theory and
Applications. Springer International Publishing, 2017.

[14] M. Benzi. Preconditioning techniques for large linear systems: A survey. Journal of
Computational Physics, 182(2):418–477, 2002.

[15] M. Benzi, A. Frommer, R. Nabben, and D. Szyld. Algebraic theory of multiplicative
schwarz methods. Numerische Mathematik, 89, 01 2001.

[16] P. Beran and C. Carlson. Domain-decomposition methods for bifurcation analysis. In
35th Aerospace Sciences Meeting and Exhibit, 1997.

[17] D. Bertaccini and F. Durastante. Iterative Methods and Preconditioning for Large and
Sparse Linear Systems with Applications. Chapman & Hall/CRC Monographs and Re-
search Notes in Mathematics. CRC Press, 2018.

[18] O. Bessonov. Highly Parallel Multigrid Solvers for Multicore and Manycore Proces-
sors. In Parallel Computing Technologies, pages 10–20. Springer International Publish-
ing, 2015.

[19] M. Bhatti. Fundamental Finite Element Analysis and Applications: with Mathematica and
Matlab Computations. Wiley, 2005.

[20] M. Bhatti. Advanced Topics in Finite Element Analysis of Structures: With Mathematica
and MATLAB Computations. Wiley, 2006.

[21] J. Blahoš. ParHBM - massively parallel C++ code for solvig nonlinear HBM problems.
https://gitlab.com/Blahos/ParHBM/.

[22] J. Blahoš, A. Vizzaccaro, L. Salles, and F. Haddad. Parallel harmonic balance method
for analysis of nonlinear dynamical systems. volume Volume 11: Structures and
Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2 of Turbo
Expo: Power for Land, Sea, and Air, 09 2020.

[23] M. Blatt, O. Ippisch, and P. Bastian. A massively parallel algebraic multigrid precon-
ditioner based on aggregation for elliptic problems with heterogeneous coefficients.
arXiv, 09 2012.

[24] S.-H. Boo, J.-H. Kim, and P.-S. Lee. Towards improving the enhanced craig-bampton
method. Computers & Structures, 196:63–75, 2018.

https://gitlab.com/Blahos/ParHBM/

BIBLIOGRAPHY 169

[25] C. Boyer and U. Merzbach. A History of Mathematics. Wiley, 2011.

[26] T. Brzobohatý, M. Jarošová, T. Kozubek, M. Mensı́k, and A. Markopoulos. Hybrid
Total FETI method. In ECCOMAS 2012 - European Congress on Computational Methods
in Applied Sciences and Engineering, e-Book Full Papers, 01 2012.

[27] X.-C. Cai and O. B. Widlund. Domain decomposition algorithms for indefinite elliptic
problems. SIAM Journal on Scientific and Statistical Computing, 13(1):243–258, 1992.

[28] D. Calvetti and L. Reichel. Iterative methods for large continuation problems. Journal
of Computational and Applied Mathematics, 123, 03 2000.

[29] T. M. Cameron and J. H. Griffin. An alternating frequency/time domain method for
calculating the steady-state response of nonlinear dynamic systems. Journal of Applied
Mechanics, 56(1):149–154, 03 1989.

[30] W. Campbell. Protection of Steam Turbine Disk Wheels from Axial Vibration. General
electric Company, 1924.

[31] A. Cardona, A. Lerusse, and M. Géradin. Fast fourier nonlinear vibration analysis.
Computational Mechanics, 22:128–142, 1998.

[32] J. Cassels, Y. Fu, Y. Fu, R. Ogden, N. Hitchin, W. Elasticity, and L. M. Society. Nonlinear
Elasticity: Theory and Applications. Lecture note series / London mathematical society.
Cambridge University Press, 2001.

[33] T. F. Chan and Y. Saad. Iterative methods for solving bordered systems with appli-
cations to continuation methods. SIAM Journal on Scientific and Statistical Computing,
6(2):438–451, 1985.

[34] Y. Cheung, S. Chen, and S. Lau. Application of the incremental harmonic balance
method to cubic non-linearity systems. Journal of Sound and Vibration, 140(2):273–286,
1990.

[35] H. S. Cho, H. Joo, Y. Lee, M. cheol Gwak, S.-J. Shin, and J. J. ick Yoh. Compu-
tational algorithm for nonlinear large-scale/multibody structural analysis based on
co-rotational formulation with feti-local method. Journal of The Korean Society for Aero-
nautical & Space Sciences, 44:775–780, 2016.

[36] B. Cochelin, N. Damil, and M. Potier-Ferry. The asymptotic-numerical method: an
efficient perturbation technique for nonlinear structural mechanics. Revue Européenne
des Éléments Finis, 3(2):281–297, 1994.

[37] B. Cochelin and C. Vergez. Manlab, an interactive path following software, 01 2009.

[38] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications of
Finite Element Analysis, 4th Edition. Wiley, 4 edition, October 2001.

170 BIBLIOGRAPHY

[39] D. Copeland and U. Langer. Domain decomposition solvers for nonlinear multihar-
monic finite element equations. Journal of Numerical Mathematics, 18, 12 2009.

[40] R. Corral and J. Crespo Vaquerizo. Development of an edge-based harmonic balance
method for turbomachinery flows. In Proceedings of the ASME Turbo Expo, volume 7,
01 2011.

[41] R. R. Craig and M. C. C. Bampton. Coupling of substructures for dynamic analyses.
AIAA Journal, 6(7):1313–1319, 1968.

[42] C. D, C. Gibert, F. Thouverez, and D. J. Numerical and experimental study of friction
damping blade attachments of rotating bladed disks. International Journal of Rotating
Machinery, 2006, 07 2006.

[43] N. Damil and M. Potier-Ferry. A new method to compute perturbed bifurcations:
Application to the buckling of imperfect elastic structures. International Journal of
Engineering Science, 28:943–957, 1990.

[44] H. Dankowicz and F. Schilder. Recipes for Continuation. Computational Science and
Engineering. Society for Industrial and Applied Mathematics, 2013.

[45] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. A survey of direct methods
for sparse linear systems. Acta Numerica, 25:383 – 566, 2016.

[46] D. Demidov. AMGCL — A C++ library for efficient solution of large sparse linear
systems. Software Impacts, 6:100037, 2020.

[47] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A supern-
odal approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications,
20(3):720–755, 1999.

[48] T. Detroux, L. Renson, L. Masset, and G. Kerschen. The harmonic balance method for
bifurcation analysis of large-scale nonlinear mechanical systems. Computer Methods
in Applied Mechanics and Engineering, 296:18–38, 11 2015.

[49] A. Dhooge, W. Govaerts, and Y. A. Kuznetsov. Matcont: A matlab package for nu-
merical bifurcation analysis of odes. ACM Trans. Math. Softw., 29(2):141–164, jun 2003.

[50] E. Doedel. Auto: Software for continuation and bifurcation problems in ordinary
differential equations. Applied math. technical report Caltech, 01 1986.

[51] V. Dolean, P. Jolivet, and F. Nataf. An introduction to domain decomposition methods -
algorithms, theory, and parallel implementation. SIAM, 2015.

[52] W. Dong and P. Li. A parallel harmonic-balance approach to steady-state and
envelope-following simulation of driven and autonomous circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 28(4):490–501, 2009.

BIBLIOGRAPHY 171

[53] J. Dongarra and P. Luszczek. Top500. In Encyclopedia of Parallel Computing, pages
2055–2057. Springer US, 2011.

[54] Z. Dostál, D. Horák, and R. Kučera. Total feti—an easier implementable variant of
the feti method for numerical solution of elliptic pde. Communications in Numerical
Methods in Engineering, 22:1155–1162, 2006.

[55] M. Dryja and O. Widlund. Towards a Unified Theory of Domain Decomposition Algorithms
for Elliptic Problems. Creative Media Partners, LLC, 2018.

[56] E. Efstathiou and M. Gander. Why restricted additive schwarz converges faster than
additive schwarz. Bit Numerical Mathematics - BIT, 43:945–959, 12 2003.

[57] Y. El Gharbi, P. Gosselet, A. Parret-Fréaud, and C. Bovet. Hierarchical substructuring
and parallel mesh generation of heterogeneous structures for domain decomposition
methods. In 14th World Congress in Computational Mechanics and ECCOMAS Congress,
Paris, France, January 2021.

[58] M. Čermák, V. Hapla, J. Kružı́k, A. Markopoulos, and A. Vašatová. Comparison
of different feti preconditioners for elastoplasticity. Computers & Mathematics with
Applications, 74, 01 2017.

[59] R. Falgout, J. Jones, and U. Yang. The design and implementation of hypre, a library
of parallel high performance preconditioners. Numerical Solution of Partial Differential
Equations on Parallel Computers, pages 267–294, 01 2006.

[60] C. Farhat, P. Avery, R. Tezaur, and J. Li. Feti-dph: A dual-primal domain decomposi-
tion method for acoustic scattering. Journal of Computational Acoustics, 13(03):499–524,
2005.

[61] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. J. Rixen. Feti-dp: a dual–primal
unified feti method—part i: a faster alternative to the two-level feti method. Interna-
tional Journal for Numerical Methods in Engineering, 50:1523 – 1544, 03 2001.

[62] C. Farhat, M. Lesoinne, and K. Pierson. A scalable substructuring method for static,
transient and vibration analyses on massively parallel processors. In 41st Structures,
Structural Dynamics, and Materials Conference and Exhibit, 04 2000.

[63] C. Farhat, J. Li, and P. Avery. A feti-dp method for parallel iterative solution of indef-
inite and complex-valued solid and shell vibration problems. International Journal for
Numerical Methods in Engineering, 63:398 – 427, 05 2005.

[64] C. Farhat and J. Mandel. The two-level feti method for static and dynamic plate prob-
lems part i: An optimal iterative solver for biharmonic systems. Computer Methods in
Applied Mechanics and Engineering, 155(1):129–151, 1998.

172 BIBLIOGRAPHY

[65] C. Farhat, J. Mandel, and F. X. Roux. Optimal convergence properties of the feti do-
main decomposition method. Computer Methods in Applied Mechanics and Engineering,
115(3):365–385, 1994.

[66] C. Farhat, K. Pierson, and M. Lesoinne. The second generation feti methods and their
application to the parallel solution of large-scale linear and geometrically non-linear
structural analysis problems. Computer Methods in Applied Mechanics and Engineering,
184(2):333–374, 2000.

[67] C. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting
and its parallel solution algorithm. International Journal for Numerical Methods in En-
gineering, 32:1205 – 1227, 10 1991.

[68] C. Firrone and S. Zucca. Modelling friction contacts in structural dynamics and its
application to turbine bladed disks. IntechOpen, 09 2011.

[69] R. Fletcher. Conjugate gradient methods for indefinite systems. In Numerical Analysis,
pages 73–89. Springer Berlin Heidelberg, 1976.

[70] I. Galliet and B. Cochelin. Une version parallèle des MAN par décomposition de
domaine. Revue Européenne des Éléments Finis, 13(1-2):177–195, April 2012.

[71] J. Garcia Bedoy Torres. Improving harmonic balance performance via parallelization.
Master’s thesis, ITESO, 2016.

[72] M. Geradin and D. Rixen. Mechanical Vibrations: Theory and Application to Structural
Dynamics. Wiley, 2015.

[73] A. Ghai, C. Lu, and X. Jiao. A comparison of preconditioned krylov subspace meth-
ods for large-scale nonsymmetric linear systems. Numerical Linear Algebra with Appli-
cations, 26(1):e2215, 2019.

[74] D. Giagopoulos, A. Arailopoulos, I. Zacharakis, and E. Pipili. Finite element model
developed and modal analysis of large scale steam turbine rotor: Quantification of
uncertainties and model updating. In UNCECOMP 2017, pages 32–44, 01 2017.

[75] A. Golbabai and M. Javidi. A new family of iterative methods for solving system of
nonlinear algebric equations. Applied Mathematics and Computation, pages 1717–1722,
07 2007.

[76] P. Gosselet, D. J. Rixen, F.-X. Roux, and N. Spillane. Simultaneous-FETI and Block-
FETI: robust domain decomposition with multiple search directions. International
Journal for Numerical Methods in Engineering, 104(10):905–927, 2015.

[77] A. Greenbaum. Iterative Methods for Solving Linear Systems. Frontiers in Applied
Mathematics. Society for Industrial and Applied Mathematics, 1997.

BIBLIOGRAPHY 173

[78] A. Greenbaum and L. N. Trefethen. Gmres/cr and arnoldi/lanczos as matrix approx-
imation problems. SIAM Journal on Scientific Computing, 15(2):359–368, 1994.

[79] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[80] L. Guillot, B. Cochelin, and C. Vergez. A generic and efficient taylor series–based con-
tinuation method using a quadratic recast of smooth nonlinear systems. International
Journal for numerical methods in Engineering, 119(4):261–280, 2019.

[81] L. Guillot, B. Cochelin, and C. Vergez. A taylor series-based continuation method for
solutions of dynamical systems. Nonlinear Dynamics, 98(4):2827–2845, 2019.

[82] M. E. Gurtin. The linear theory of elasticity. In Linear Theories of Elasticity and Thermoe-
lasticity: Linear and Nonlinear Theories of Rods, Plates, and Shells, pages 1–295. Springer
Berlin Heidelberg, 1973.

[83] M. Guskov, J.-J. Sinou, and F. Thouverez. Multi-dimensional harmonic balance ap-
plied to rotor dynamics. Mechanics Research Communications, 35:537–545, 2008.

[84] L. Řı́ha, T. Brzobohatý, and A. Markopoulos. Highly scalable feti methods in espreso.
Civil-Comp Proceedings, 107, 2015. cited By 0.

[85] L. Řı́ha, M. Merta, R. Vavřı́k, T. Brzobohatý, A. Markopoulos, O. Meca, O. Vysocky,
T. Kozubek, and V. Vondrak. A massively parallel and memory-efficient fem toolbox
with a hybrid total feti solver with accelerator support. The International Journal of
High Performance Computing Applications, 33:109434201879845, 09 2018.

[86] R. M. Haferssas, P. Jolivet, and F. Nataf. An Additive Schwarz Method Type Theory
for Lions’s Algorithm and a Symmetrized Optimized Restricted Additive Schwarz
Method. SIAM Journal on Scientific Computing, 39(4):A1345 – A1365, February 2017.

[87] Z. Hamid, W. Mtalaa, J. Brunelot, and M. Potier-Ferry. Asymptotic numerical method
for strong nonlinearities. Revue Europeenne des Elements Finis, 2004:97–118, 04 2012.

[88] P. Hartley, I. Pillinger, and C. Sturgess. Numerical Modelling of Material Deformation
Processes: Research, Development and Applications. Springer London, 2012.

[89] V. E. Henson and U. M. Yang. Boomeramg: A parallel algebraic multigrid solver and
preconditioner. Applied Numerical Mathematics, 41(1):155–177, 2002. Developments
and Trends in Iterative Methods for Large Systems of Equations - in memorium
Rudiger Weiss.

[90] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of research of the National Bureau of Standards, 49:409–435, 1952.

[91] A. Hrennikoff. Solution of problems of elasticity by the framework method. Journal
of Applied Mechanics, 8(4):A169–A175, 12 1941.

174 BIBLIOGRAPHY

[92] D. Inman. Engineering Vibration. Pearson Education, 2009.

[93] R. Ju and W. Zhu. An optimized efficient galerkin averaging-incremental harmonic
balance method for high-dimensional spatially discretized models of continuous sys-
tems based on parallel computing. Journal of Computational and Nonlinear Dynamics,
16, 08 2021.

[94] E. Kaasschieter. Preconditioned conjugate gradients for solving singular systems.
Journal of Computational and Applied Mathematics, 24(1):265–275, 1988.

[95] S.-H. Kang, Y. Kim, H. Cho, and S. Shin. Improved hyper-reduction approach for
the forced vibration analysis of rotating components. Computational Mechanics, pages
1–14, 2022.

[96] G. Karypis. METIS and ParMETIS. In Encyclopedia of Parallel Computing, pages 1117–
1124. Springer US, 2011.

[97] G. Karypis and V. Kumar. MeTis: Unstructured Graph Partitioning and Sparse Matrix
Ordering System, Version 4.0. http://www.cs.umn.edu/∼metis, 2009.

[98] C. Kelley. Solving Nonlinear Equations with Newton’s Method. Fundamentals of Algo-
rithms. Society for Industrial and Applied Mathematics, 2003.

[99] N. Kessab, B. Braikat, L. Hassane, N. Damil, and M. Potier-Ferry. High order
predictor-corrector algorithms for strongly non-linear problems. Revue de Mécanique
Appliquée et Théorique, 1:587–613, 01 2006.

[100] J.-G. Kim and P.-S. Lee. An enhanced craig–bampton method. International Journal for
Numerical Methods in Engineering, 103(2):79–93, 2015.

[101] J. H. Kim, C. S. Lee, and S. J. Kim. Development of a high-performance domain-
wise parallel direct solver for large-scale structural analysis. In Proceedings. Seventh
International Conference on High Performance Computing and Grid in Asia Pacific Region,
2004., pages 267–274, 2004.

[102] Y. Kim, H. Cho, S. Park, H. Kim, and S. Shin. Advanced structural analysis based on
reduced-order modeling for gas turbine blade. AIAA Journal, 56(8):3369–3373, 2018.

[103] Y. Kim, S.-H. Kang, H. Cho, and S. Shin. Improved nonlinear analysis of a propeller
blade based on hyper-reduction. AIAA Journal, 60(3):1909–1922, 2022.

[104] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: A C++ Library
for Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engineering with
Computers, 22(3–4):237–254, 2006.

[105] A. Klawonn and O. Rheinbach. Inexact feti-dp methods. International Journal for
Numerical Methods in Engineering, 69(2):284–307, 2007.

http://www.cs.umn.edu/~metis

BIBLIOGRAPHY 175

[106] A. Klawonn and O. Rheinbach. Highly scalable parallel domain decomposition meth-
ods with an application to biomechanics. ZAMM - Journal of Applied Mathematics and
Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 90(1):5–32, 2010.

[107] D. Knoll and D. Keyes. Jacobian-free newton–krylov methods: a survey of approaches
and applications. Journal of Computational Physics, 193(2):357–397, 2004.

[108] J. Košata, J. del Pino, T. L. Heugel, and O. Zilberberg. Harmonicbalance.jl: A julia
suite for nonlinear dynamics using harmonic balance, 2022.

[109] O. Kononenko. A massively parallel solver for the mechanical harmonic analysis of
accelerator cavities. 2 2015.

[110] T. Kozubek, V. Vondrak, D. Horák, Z. Dostal, V. Hapla, and M. Čermák. Total feti
domain decomposition method and its massively parallel implementation. Advances
in Engineering Software, s 60–61:14–22, 06 2013.

[111] M. Krack and J. Gross. Harmonic Balance for Nonlinear Vibration Problems. Mathematical
Engineering. Springer International Publishing, 2019.

[112] N. Krylov, N. Bogoliubov, and S. Lefschetz. Introduction to Non-linear Mechanics. An-
nals of mathematics studies. Princeton University Press, 1947.

[113] R. J. Kuether and A. Steyer. Multi-harmonic balance with preconditioned iterative
solver. International Modal Analysis Conference (IMAC) XXXIX, 12 2020.

[114] V. Kumar and A. Gupta. Analyzing scalability of parallel algorithms and architec-
tures. Journal of Parallel and Distributed Computing, 22(3):379–391, 1994.

[115] H. Lahmam, J. M. Cadou, H. Zahrouni, N. Damil, and M. Potier-Ferry. High-order
predictor–corrector algorithms. International Journal for Numerical Methods in Engineer-
ing, 55(6):685–704, 2002.

[116] A. J. Laub. Matrix Analysis For Scientists And Engineers. Society for Industrial and
Applied Mathematics, USA, 2004.

[117] P. Li and W. Dong. Parallel preconditioned hierarchical harmonic balance for analog
and rf circuit simulation. In Advances in Analog Circuits, chapter 5. IntechOpen, 2011.

[118] X. S. Li and J. W. Demmel. SuperLU DIST: A scalable distributed-memory sparse
direct solver for unsymmetric linear systems. ACM Trans. Mathematical Software,
29(2):110–140, June 2003.

[119] G. Liu and S. S. Quek. The finite element method: A practical course: Second edition.
The Finite Element Method: A Practical Course: Second Edition, 01 2003.

[120] R. Lumba and A. Datta. Development of a Parallel 3D FEA Multibody Solver and
Partitioner for Rotorcraft. In Development of a Parallel 3D FEA Multibody Solver and
Partitioner for Rotorcraft, 01 2022.

176 BIBLIOGRAPHY

[121] J. Mandel and M. Brezina. Balancing domain decomposition: Theory and perfor-
mance in two and three dimensions. Technical report, Center for Computational
Mathematics, University of Colorado at Denver, 1993.

[122] J. Mandel, C. Dohrmann, and R. Tezaur. An algebraic theory for primal and dual
substructuring methods by constraints. Applied Numerical Mathematics, 54:167–193, 07
2005.

[123] J. Mandel and C. R. Dohrmann. Convergence of a balancing domain decomposition
by constraints and energy minimization. Numerical Linear Algebra with Applications,
10(7):639–659, 2003.

[124] J. Mandel and R. Tezaur. On the convergence of a dual-primal substructuring method.
Numerische Mathematik, 88, 05 2000.

[125] A. Markopoulos. Technical report, IT4Innovations National Supercomputing Center,
Czech Republic.

[126] O. Meca, L. Řı́ha, and T. Brzobohatý. An Approach for Parallel Loading and Pre-
Processing of Unstructured Meshes Stored in Spatially Scattered Fashion. In 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 749–
760, 2019.

[127] M. Mignolet, A. Przekop, S. Rizzi, and S. Spottswood. A review of indirect/non-
intrusive reduced order modeling of nonlinear geometric structures. Journal of Sound
and Vibration, 332:2437–2460, 05 2013.

[128] R. Mittal and A. Al-Kurdi. An efficient method for constructing an ilu precondi-
tioner for solving large sparse nonsymmetric linear systems by the gmres method.
Computers & Mathematics with Applications, 45(10):1757–1772, 2003.

[129] N. Myklestad. Fundamentals of Vibration Analysis. McGraw-Hill, 1956.

[130] V. K. Nguyen, H. Cuong, and M.-T. Nguyen-Thai. Calculation of nonlinear vibrations
of piecewise-linear systems using the shooting method. Vietnam Journal of Mechanics,
34, 09 2012.

[131] M. Noor and M. Waseem. Some iterative methods for solving a system of nonlinear
equations. Computers & Mathematics with Applications, 57:101–106, 01 2009.

[132] J. Ortega and W. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Vari-
ables. Classics in Applied Mathematics. Society for Industrial and Applied Mathe-
matics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 1970.

[133] C. Padmanabhan and R. Singh. Analysis of periodically excited non-linear systems
by a parametric continuation technique. Journal of Sound and Vibration, 184:35–58,
1995.

BIBLIOGRAPHY 177

[134] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM Journal on Numerical Analysis, 12(4):617–629, 1975.

[135] G. Paraschos and M. Vouvakis. The dual, overlapping primal feti (feti-dop) domain
decomposition. IEEE Antennas and Propagation Society, AP-S International Symposium
(Digest), pages 2983–2986, 07 2011.

[136] K. C. Park, C. Felippa, and U. Gumaste. A localized version of the method of lagrange
multipliers and its applications. Computational Mechanics, 24:476–490, 01 2000.

[137] M. Patil and A. Datta. A scalable time-parallel solution of periodic rotor dynamics in
x3d. Journal of the American Helicopter Society, 01 2021.

[138] M. Patil and A. Datta. Time-parallel scalable solution of periodic rotor dynamics for
large-scale 3d structures. In AIAA Scitech 2021 Forum. 2021.

[139] J. W. Pearson and J. Pestana. Preconditioners for krylov subspace methods: An
overview. GAMM-Mitteilungen, 43(4):e202000015, 2020.

[140] F. Pellegrini and J. Roman. Scotch: A software package for static mapping by dual
recursive bipartitioning of process and architecture graphs. In High-Performance Com-
puting and Networking, pages 493–498. Springer Berlin Heidelberg, 1996.

[141] E. Petrov. Analytical formulation of friction interface elements for analysis of nonlin-
ear multi-harmonic vibrations of bladed disks. Journal of Turbomachinery, 125:364–371,
02 2003.

[142] E. Petrov. A method for use of cyclic symmetry properties in analysis of nonlinear
multiharmonic vibrations of bladed disks. Journal of Turbomachinery, 126:175–183, 01
2004.

[143] E. Petrov and D. Ewins. Effects of damping and varying contact area at blade-disk
joints in forced response analysis of bladed disk assemblies. Journal of Turbomachinery,
128:403–410, 04 2006.

[144] S. Pissanetzky. Sparse Matrix Technology. Elsevier Science, 2014.

[145] A. Popp and P. Wriggers. Contact Modeling for Solids and Particles. Springer, 2018.

[146] S. Pradhan and S. Modak. A Review of Damping Matrix Identification Methods
in Structural Dynamics. In ASME International Mechanical Engineering Congress and
Exposition, Proceedings (IMECE), volume 12, 11 2012.

[147] L. Qi and J. Sun. A nonsmooth version of newton’s method. Math. Program., 58:353–
367, 01 1993.

[148] Y. Qiu. Spectra. a library for large scale eigenvalue problems, 2018. https://mloss.
org/software/view/689/.

https://mloss.org/software/view/689/
https://mloss.org/software/view/689/

178 BIBLIOGRAPHY

[149] Y. Quere. Physics of Materials. CRC Press, 2020.

[150] D. Rixen, B. Seeger, W.-C. Tai, S. Baek, T. Dossogne, M. Allen, R. Kuether, M. Brake,
and R. Mayes. A comparison of reduced order modeling techniques used in dynamic
substructuring. pages 511–528. Springer, 01 2016.

[151] D. J. Rixen. Domain decomposition solvers (feti), a random walk in his-
tory and some current trends, 10 2014. https://cupdf.com/document/
domain-decomposition-solvers-feti-domain-decomposition-solvers-feti-a-random.
html.

[152] D. J. Rixen. Personal sessions discussing the feti method, 2022.

[153] D. J. Rixen and C. Farhat. A simple and efficient extension of a class of substructure
based preconditioners to heterogeneous structural mechanics problems. International
Journal for Numerical Methods in Engineering, 44:489–516, 1999.

[154] A. Rizvi, C. Smith, R. Rajasekaran, and E. Ken. Dynamics of dry friction damping in
gas turbines: Literature survey. Journal of Vibration and Control, 22, 01 2014.

[155] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, second edition, 2003.

[156] Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Com-
puting, 7(3):856–869, 1986.

[157] L. Salles, L. Blanc, A. Gouskov, P. Jean, and F. Thouverez. Dual time stepping al-
gorithms with the high order harmonic balance method for contact interfaces with
fretting-wear. Proceedings of the ASME Turbo Expo, 6, 03 2014.

[158] L. Salles, B. Staples, N. Hoffmann, and C. Schwingshackl. Continuation techniques
for analysis of whole aeroengine dynamics with imperfect bifurcations and isolated
solutions. Nonlinear Dynamics, 86, 11 2016.

[159] C. Sanderson and R. Curtin. Armadillo: A template-based c++ library for linear
algebra. Journal of Open Source Software, 1:26, 07 2016.

[160] C. Sanderson and R. Curtin. An Adaptive Solver for Systems of Linear Equations.
In 2020 14th International Conference on Signal Processing and Communication Systems
(ICSPCS). IEEE, 12 2020.

[161] C. Sanghavi. FETI methods for acoustic problems with porous materials. PhD thesis, Le
Mans Université, 09 2020.

[162] S. Scalvini. Nonlinear vibration of bladed discs. Master’s thesis, Politecnico di Torino,
2021.

https://cupdf.com/document/domain-decomposition-solvers-feti-domain-decomposition-solvers-feti-a-random.html
https://cupdf.com/document/domain-decomposition-solvers-feti-domain-decomposition-solvers-feti-a-random.html
https://cupdf.com/document/domain-decomposition-solvers-feti-domain-decomposition-solvers-feti-a-random.html

BIBLIOGRAPHY 179

[163] O. Schenk. Scalable parallel sparse LU factorization methods on shared memory multipro-
cessors. PhD thesis, ETH Zurich, 2000.

[164] O. Schenk and K. Gärtner. PARDISO. In Encyclopedia of Parallel Computing, pages
1458–1464. Springer US, Boston, MA, 2011.

[165] H. Schwarz. Ueber einige abbildungsaufgaben. Journal für die reine und angewandte
Mathematik, 1869(70):105–120, 1869.

[166] E. Seinturier. Forced Response Computation for Bladed Disks Industrial Practices
and Advanced Methods. World Congress in Mechanism and Machine Science, 2007.

[167] W. Slaughter. The Linearized Theory of Elasticity. Birkhäuser Boston, 2002.

[168] I. Smith, D. Griffiths, and L. Margetts. Programming the Finite Element Method: Fifth
Edition. 06 2015.

[169] P. Sonneveld. Cgs, a fast lanczos-type solver for nonsymmetric linear systems. SIAM
Journal on Scientific and Statistical Computing, 10(1):36–52, 1989.

[170] N. Spillane and D. J. Rixen. Automatic spectral coarse spaces for robust finite ele-
ment tearing and interconnecting and balanced domain decomposition algorithms.
International Journal for Numerical Methods in Engineering, 95, 2013.

[171] K. Sze, S. Chen, and J. Huang. The incremental harmonic balance method for non-
linear vibration of axially moving beams. Journal of Sound and Vibration, 281:611–626,
03 2005.

[172] The European Union. models, EXperiments and high PERformance computing for
Turbine mechanical Integrity and Structural dynamics in Europe. https://cordis.
europa.eu/project/id/721865.

[173] The Trilinos Project Team. The Trilinos Project Website. https://trilinos.github.io.

[174] O. Thomas, A. Sénéchal, and J.-F. Deü. Hardening/softening behavior and reduced
order modeling of nonlinear vibrations of rotating cantilever beams. Nonlinear Dy-
namics, 86:1293–1318, 2016.

[175] J. Thomsen. Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer
Berlin Heidelberg, 2013.

[176] J. Toivanen, P. Avery, and C. Farhat. A multilevel feti-dp method and its performance
for problems with billions of degrees of freedom. International Journal for Numerical
Methods in Engineering, 116(10-11):661–682, 2018.

[177] J.-C. Tournier, V. Donde, and Z. Li. Comparison of direct and iterative sparse linear
solvers for power system applications on parallel computing platforms. 17th Power
Systems Computation Conference, PSCC 2011, 01 2011.

https://cordis.europa.eu/project/id/721865
https://cordis.europa.eu/project/id/721865
https://trilinos.github.io

180 BIBLIOGRAPHY

[178] C. Touzé and A. Vizzaccaro. Model order reduction methods for geometrically non-
linear structures: a review of nonlinear techniques. Nonlinear Dynamics, accepted, 07
2021.

[179] M. Urabe and A. Reiter. Numerical computation of nonlinear forced oscillations by
galerkin’s procedure. Journal of Mathematical Analysis and Applications, 14:107–140,
1966.

[180] M. Urabe and Wisconsin University Madison Mathematics Research Center. Galerkin’s
Procedure for Nonlinear Periodic Systems. MRC technical summary report. Defense
Technical Information Center, 1964.

[181] A. Vašatová, J. Tomčala, R. Sojka, M. Pecha, J. Kružı́k, D. Horák, V. Hapla, and
M. Čermák. Parallel strategies for solving the feti coarse problem in the permon
toolbox. In Programs and Algorithms of Numerical Mathematics 18, pages 154–163, 06
2017.

[182] H. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge Mono-
graphs on Applied and Computational Mathematics. Cambridge University Press,
2003.

[183] H. A. van der Vorst. Bi-cgstab: A fast and smoothly converging variant of bi-cg for
the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical
Computing, 13(2):631–644, 1992.

[184] A. Vizzaccaro. Reduced Order Modelling of Large Finite Element Structures with Geometric
and Contact Nonlinearities: Application to Blade-Casing Interaction in Aircraft Engines.
PhD thesis, Imperial College London, 2 2021.

[185] A. Vizzaccaro, Y. Shen, L. Salles, J. Blahoš, and C. Touzé. Direct computation of
nonlinear mapping via normal form for reduced-order models of finite element non-
linear structures. Computer Methods in Applied Mechanics and Engineering, 384:113957,
10 2021.

[186] O. Vysocký, J. Zapletal, and L. Řı́ha. A simple framework for energy efficiency eval-
uation and hardware parameter tuning with modular support for different hpc plat-
forms. In The Eighth International Conference on Advanced Communications and Compu-
tation, 06 2018.

[187] D. Wakam and A. K. Guy Antoine. Parallel gmres with a multiplicative schwarz pre-
conditioner. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées,
Volume 14 - 2011 - Special..., 08 2010.

[188] C. Wang, D. Zhang, Y. Ma, Z. Liang, and J. Hong. Dynamic behavior of aero-engine
rotor with fusing design suffering blade off. Chinese Journal of Aeronautics, 30(3):918–
931, 2017.

BIBLIOGRAPHY 181

[189] F. Wenneker. Component Mode Synthesis for geometrically nonlinear structures. PhD
thesis, Delft University of Technology, 11 2013.

[190] F. Wenneker and P. Tiso. A substructuring method for geometrically nonlinear struc-
tures. In Dynamics of Coupled Structures, Volume 1, pages 157–165. Springer Interna-
tional Publishing, 03 2014.

[191] P. Wesseling. An Introduction to Multigrid Methods. An Introduction to Multigrid
Methods. R.T. Edwards, 2004.

[192] L. Xie, S. Baguet, B. Prabel, and R. Dufour. Bifurcation tracking by harmonic balance
method for performance tuning of nonlinear dynamical systems. Mechanical Systems
and Signal Processing, 88:445–461, 05 2017.

[193] J. Xu and X.-C. Cai. A preconditioned gmres method for nonsymmetric or indefinite
problems. Mathematics of Computation, 59:311–319, 1992.

[194] X. Yang, J. Du, and Z. Wang. An effective speedup metric for measuring productivity
in large-scale parallel computer systems. The Journal of Supercomputing, 56:164–181,
05 2011.

[195] W. Yao, J. Jin, and P. T. Krein. A 3d finite element analysis of large scale nonlinear
dynamic electromagnetic problems by harmonic balancing and domain decomposi-
tion. International Journal of Numerical Modelling-electronic Networks Devices and Fields,
29:166–180, 2016.

Appendix A

Cantilever beam response study

In section 6.3.3 a testcase was presented showing FRCs for an industry-like fan blade ge-
ometry. It can be seen in Figures 6.14 and 6.15 that the exact choice of harmonics impacts
the results greatly. This appendix provides a supporting testcase for a better understanding
of how such a difference in results can in principle be explained.

The testcase is a cantilever beam excited at its free end, similar to the one in Table 6.5.
This testcase was chosen because it can be analysed more clearly compared to the complex
shaped geometry of the blade. It can however be still used to demonstrate the difference
that choosing different sets of harmonics makes. The diagram of the testcase is copied here
for clarity (see Figure A.1). There are a few minor differences from the original cantilever
testcase presented in 6.2. First, the mesh here has 1× 1× 80 regular HEXA20 elements.
Second, the excitation force at the free end is equally split among the 4 corner nodes but
still adding up to the same 2N in total (see Figure A.2). Numerical parameters for each
testcase are shown in table A.1. Tangent predictor was used in all cases.

Figure A.1: Diagram of the cantilever beam testcase for the appendix, same as in Figure
6.2.

Direct solver (meaning MUMPS) was used for its better performance for smaller meshes.
FRCs were computed around the first resonant frequency using several sets of harmon-
ics - H1, H01, H012, H0123, H012345, H01234567 and H0123456789. The amplitude was
measured on a node at the free end of the beam. Full FRCs were computed unlike in the
results in 6.3.1 because a newer version of the code was used. All FRCs together can be
seen in Figure A.3. The following figures then show zoomed version of this figure. Figure
A.4 highlights FRCs for harmonics 1 and 01. Figure A.5 emphasizes differences between

182

183

Figure A.2: Diagram of the cantilever beam testcase for the appendix, highlighting the
distribution of the excitation force. The total excitation magnitude is 2N.

Testcase AFT Newton tol. Newton it. cont. step size cont. step scaling
H1 24 4× 10−5 10 〈10−5, 0.08, 0.08〉 0.4, 1.1
H01 24 5× 10−4 24 〈10−5, 0.1, 0.1〉 0.4, 1.1
H012 48 5× 10−4 24 〈10−5, 0.1, 0.4〉 0.4, 1.1
H0123 48 5× 10−4 24 〈10−5, 0.1, 0.4〉 0.4, 1.1
H012345 64 5× 10−4 24 〈10−5, 0.1, 0.4〉 0.4, 1.1
H01234567 96 5× 10−4 24 〈10−5, 0.1, 0.4〉 0.4, 1.1
H0123456789 96 5× 10−4 24 〈10−5, 0.1, 0.4〉 0.4, 1.1

Table A.1: Numerical parameters for the cantilever beam continuation testcases. Contin-
uation step size is in format 〈stepmin, stepinit, stepmax〉. Continuation step scaling are
constants to scale down and up the continuation step size (see Algorithm 2).

harmonics 012 and both 0123 and 012345. The final Figure A.6 zooms in at the difference
between harmonics 0123 and 012345.

The two highest harmonic cases - H01234567 and H0123456789 - were used for verification.
Figure A.7 shows comparison of the H012345 case with those two cases. It can be seen that
all 3 FRCs are nearly identical.

Besides the standard FRCs projections on modes have also been computed. Specifically, the
solutions were projected on modes 2 and 20 (sorted by corresponding eigenfrequency in
ascending order). These two modes can be seen in Figure A.8 together with the first mode
which is the most excited mode. This is due to the location of the excitation force and
the range of analysed frequencies being around the first mode’s resonance. Each solution
vector in frequency domain ũ of an FRC was first split into individual harmonics. For each
harmonic i the projection on mode k was computed as:

qi,k =

√[
(ũc

i)
T Mvk

]2
+
[
(ũs

i)
T Mvk

]2
vT

k Mvk
(A.1)

with qi,k being the modal amplitude for the i-th harmonic of the solution related to mode
vk. The modes vk were normalised so that their largest element in absolute value is 1. From
Figure A.8 in can be seen that in both cases this maximum value is located at the free end
of the beam.

184 Appendix A. Cantilever beam response study

Figure A.3: Cantilever FRCs for various sets of harmonics.

Figure A.4: Cantilever FRCs for various sets of harmonics. Highlight of the results for
harmonics 1 and 01.

185

Figure A.5: Cantilever FRCs for various sets of harmonics. Highlight of the difference
between harmonics 012 and 0123.

Figure A.6: Cantilever FRCs for various sets of harmonics. Highlight of the difference
between harmonics 0123 and 012345.

186 Appendix A. Cantilever beam response study

Figure A.7: Cantilever FRCs for the 3 highest harmonic counts - H012345, H01234567 and
H0123456789.

Figure A.8: Cantilever beam modes - 1st, 2nd and 20th.

First, a comparison of projection on mode 2 between harmonic cases 012 and 0123 is shown
in Figures A.9 and A.10. The second comparison is on mode 20 between harmonic cases
0123 and 012345 shown in Figures A.11 and A.12. The corresponding qi,k values are plotted
for all harmonics. The last figure (Figure A.12) does not have uniform Y axis scaling. It
additionally includes a 10% line marking 10% of the maximum amplitude and markers
where that threshold is crossed by the FRC on each harmonic.

187

Figure A.9: Modal amplitudes of the 2nd mode for individual harmonics for the H012
testcase.

188 Appendix A. Cantilever beam response study

Figure A.10: Modal amplitudes of the 2nd mode for individual harmonics for the H0123
testcase.

189

Figure A.11: Modal amplitudes of the 20th mode for individual harmonics for the H0123
testcase.

190 Appendix A. Cantilever beam response study

Figure A.12: Modal amplitudes of the 20th mode for individual harmonics for the H012345
testcase. The red line marks the 10% amplitude level with respect to the peak value. The
black circles mark where that red line is crossed by the FRC.

191

A.0.1 Discussion

The first and most straightforward observation that can be made is that the set of used har-
monics has significant impact on the shape of the FRCs. In particular, using only harmonic
1 or harmonics 01 yields completely different results from the rest of the cases (Figures A.3
and A.4). It should also be noted that the addition of the 0th harmonic on its own makes
a large impact and therefore it was present for all the other cases. It can also be seen that
adding more harmonics is only meaningful up to a certain point. As seen in Figure A.7,
going beyond the 5th harmonic seems to make no further difference on the FRC. This study
therefore focuses on differences between cases up to the H012345 case.

The next case to study is the H012 one. As can be seen in Figure A.5, this FRC already
follows what is assumed to be the correct FRC (based on the higher harmonic cases), but
only to a certain amplitude. When the amplitude reaches values around 0.1 metres, the
H012 FRC starts to strongly deviate, exhibiting a significant stiffening effect. This stiffening
effect can be likened to the one observed in the fan blade testcase as seen in Figure 6.14,
even though in the fan blade case the curve turns more sharply.

The next point of interest is the difference between FRCs for cases H0123 and H012345.
The H0123 case follows the higher harmonic FRC much better compared to the H012 case.
The ratio between the frequencies at the FRC peaks for the H0123 and H012345 cases
is 1.0047, meaning that there is only 0.47% difference between the curves at their peak
values. However, a clear difference in the curves can still be observed visually. Starting at
amplitude of around 0.35 metres, the H0123 curves departs to the right, exhibiting again a
stronger stiffening effect compared to its H012345 counterpart.

The analysis of modal projections follows next. The presence of the geometric nonlinearity
in the model introduces couplings between different modes. The problematic of modal
coupling was studied for example in [127, 178]. The 20th mode, which is a longitudinal
mode, is quadratically coupled with the first (bending) mode. This coupling can be seen in
Figures A.11 and A.12. Figure A.10 shows how significant is the contribution of the 20th
mode on the 2nd harmonic. This explains why the H1 and H01 cases, which don’t include
this, deviate so sharply. Additionally, the importance of quadratic couplings generally
becomes significant at lower amplitudes compared to cubic couplings. Figure A.12 then
shows that besides the 2nd harmonic the 4th harmonic is also excited, albeit with a much
lower amplitude. The circle marks in this plot show that the influence of the 2nd harmonic
is a lot broader in terms of frequency range compared to the 4th harmonic which has its
influence on the complete FRC more centralised around the resonance frequency.

The second comparison was made on the 2nd mode. This mode, which is the second bend-
ing mode, is known to be cubically coupled with the first mode. As mentioned previously,
this coupling generally grows in significance later in terms of the amplitude. Figures A.9
and A.10 show projections on this mode for the H012 and H0123 cases respectively. Figure
A.10 shows that the 3rd harmonic’s contribution for this mode is quite significant, with its

192 Appendix A. Cantilever beam response study

amplitude being only about 5× lower than of the 1st harmonic.

In conclusion, this study shows the importance that various higher harmonics have in
relation to coupling between various modes. Neglecting these higher harmonics in the
model can introduce artificial stiffening effects to the results as the structure is effectively
not allowed to undergo certain types of motion. Noting that this level of complexity is
already present in this relatively simple cantilever beam testcase, it not surprising that a
more complex geometry like the fan blade exhibits a similar behaviour. The shape and
curvature of the blade can lead to many significant coupling terms between various modes
that require use of higher harmonics to be captured properly.

	Originality statement
	Copyright declaration
	Abstract
	Acknowledgements
	Introduction
	Motivation
	EXPERTISE network
	Objectives
	Outline

	Physics and discretisation
	State of the art
	Problem physics
	Linear deformations
	Nonlinear deformations
	Boundary conditions

	Finite elements
	Boundary conditions
	Evaluating the mesh integrals
	C tensor, symmetries and Voigt notation

	Conclusion

	Vibration modelling
	State of the art
	Harmonic balance and continuation
	Reduced order modelling
	Linear and nonlinear solvers

	Harmonic Balance Method
	Newton-Raphson
	Alternating Frequency Time (AFT)
	Boundary conditions
	Continuation
	Linear analysis and modes
	Conclusion

	FETI for HBM
	State of the art
	Parallel linear solvers
	Domain decomposition methods
	FETI method
	Parallel HBM

	Domain decomposition of the nonlinear HBM problem
	Treatment of corners
	Linearised problem - Newton step
	Solving the linearised problem
	Preconditioning
	Choice of artificial coarse space
	Continuation
	Conclusion

	Code
	Structure
	Input and output

	Linear algebra
	DOF ordering
	Global solvers
	Notes about MUMPS

	FETI implementation
	Primal and dual maps
	Application of the dual problem operator
	Projectors
	Convergence

	Conclusion

	Results
	Hardware overview
	Testcase overview
	Note on parameters

	Global solvers results
	Code verification
	Scalability
	Blade FRC
	GMRES performance on global system

	FETI solver results
	Coarse space and preconditioner effect
	Scalability
	Projected dual problem equations
	Frequency Response Curve

	Conclusion

	Conclusion
	Research work conclusion
	Global system with direct solver
	Global system with GMRES
	FETI

	Scientific contributions
	Future work

	Bibliography
	Cantilever beam response study
	Discussion

