
Imperial College London

Department of Computing

Trustless Communication Across Distributed
Ledgers: Impossibility and Practical Solutions

Alexei Zamyatin

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College, January 2022

Abstract

Since the advent of Bitcoin as the first decentralized digital currency in 2008, a plethora of

distributed ledgers have been created, differing in design and purpose. Considering the hetero-

geneous nature of these systems, it is safe to say there shall not be “one coin to rule them all”.

However, despite the growing and thriving ecosystem, blockchains continue to operate almost

exclusively in complete isolation from one another: by design, blockchain protocols provide no

means by which to communicate or exchange data with external systems. To this date, cen-

tralized providers hence remain the preferred route to exchange assets and information across

blockchains – undermining the very nature of decentralized currencies.

The contribution of this thesis is threefold. First, we critically evaluate the (im)possibilty,

requirements, and challenges of cross-chain communication by contributing the first system-

atization of this field. We formalize the problem of Cross-Chain Communication (CCC) and

show it is impossible without a trusted third party by relating CCC to the Fair Exchange

problem. With this impossibility result in mind, we develop a framework to design new and

evaluate existing CCC protocols, focusing on the inherent trust assumptions thereof, and derive

a classification covering the field of cross-chain communication to date.

We then present XCLAIM, the first generic framework for transferring assets and information

across permissionless distributed ledgers without relying on a centralized third party. XCLAIM

leverages so-called cryptocurrency-backed assets, blockchain-based assets one-to-one backed by

other cryptocurrencies, such as Bitcoin-backed tokens on Ethereum. Through the secure is-

suance, transfer, and redemption of these assets, users can perform cross-chain exchanges in

a financially trustless and non-interactive manner, overcoming the limitations of existing solu-

tions. To ensure the security of user funds, XCLAIM relies on collateralization of intermediaries

and a proof-or-punishment approach, enforced via smart contracts equipped with cross-chain

light clients, so-called chain relays. XCLAIM has been adopted in practice, among others by

the Polkadot blockchain, as a bridge to Bitcoin and other cryptocurrencies.

Finally, we contribute to advancing the state of the art in cross-chain light clients. We develop

TxChain, a novel mechanism to significantly reduce storage and bandwidth costs of modern

blockchain light clients using contingent transaction aggregation, and apply our scheme to

Bitcoin and Ethereum individually, as well as in the cross-chain setting.

3

4

Copyright

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are

licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC

BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format. You

may also create and distribute modified versions of the work. This is on the condition that:

you credit the author and do not use it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by naming

the licence and linking to the licence text. Where a work has been adapted, you should indicate

that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in

this licence or permitted under UK Copyright Law.

5

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

6

Statement of Originality

I declare that this thesis was composed by myself, and that the work that it presents is my own

except where otherwise stated.

7

8

Acknowledgements

I would like to thank

• My supervisor, Professor William J. Knottenbelt for his guidance and support throughout

this PhD. Under his supervision I had the freedom to explore as many research topics as

I could think of, while always being able to ask for help and feedback.

• Blockchain.com for funding my research and offering a glimpse into the industrial side of

the blockchain space.

• My second supervisor, Arthur Gervais for advising me on how to advance my research

career. Professor Edgar Weippl for his trust, support and enabling me to collaborate with

the great research group at SBA Research.

• My collaborators Mustafa Al-Bassam, Zeta Avarikioti, Ittay Eyal, Guillaume Felley, Peter

Gaži, Arthur Gervais, Lewis Gudgeon, Bernhard Haselhofer, Dominik Harz, Dragos Illie,

Aljosha Judmayer, Andreas Kern, Aggelos Kiayias, Rami Khalil, William J. Knottenbelt,

Elefterios Kokoris-Kogias, Joshua Lind, Sarah Meiklejohn, Pedro Moreno-Sanchez, Daniel

Perez, Matteo Rommiti, Itay Tsabary, Phillip Schindler, Iain Stewart, Nicholas Stifter,

Edgar Weippl, Sam Werner, Katinka Wolter, and Dionysis Zindros,

• ACE358 and the great people I got to know including Daniel, Dimitrios, Dominik, Dragos,

João, Katerina, Lewis, Paul, Rami, Sam, Sirvan, and Toshiko.

• Daniel for being a great friend, collaborator and ever so reliable companion at the pub -

and for spontaneously joining me on a trip to Japan making it one of my most memorable

journeys, not least due to fleeing a typhoon on the last train from Osaka, first class and

supplied with plenty of beers. My friend Sam, for all the fun memories and the many

conference trips worth remembering. Paul, for keeping up class during all the nights

out in London. My dear friend Zeta, for our amazing conference trips to Japan, Spain,

Switzerland, USA and the Caribbean, and enduring all the nonsense I conjured upon us.

• My trusted friend, collaborator, and co-founder Dominik Harz. In good times as in bad,

I could not have wished for a better companion. May our journey at Interlay be a success

worth remembering.

9

• My parents, Alla and Sergei, for their never ending support, trust and encouragement. It

is without doubt that I owe this PhD to you. My brother, Anton, for being thoughtful,

caring and reminding me not to sacrifice health for work. My sister, Alina, for always

being joyful and making me smile even in the saddest of moods. My sister Natasha and

my nephews and nieces, always remembering and welcoming despite the distance. My

grandparents, inspirational, encouraging, and always reminding me to stay focused on

completing this PhD. My friends Andi, Johann, Max, Raphael, Tino, Vincent, Weissi,

and the entire Viennese crew who made Vienna feel like home, no matter how long

I was abroad. And last, Sandra, my partner in crime, for her loving care, patience,

encouragement, and being there whenever I felt I could not go any further.

10

Dedication

To my grandfather J. F. for inspiring me to always explore beyond what we know today. You

taught me that an idea alone won’t change the world. Not unless it is written down and

explained in simple terms so it may stand the test of time and scrutiny of other, perhaps

brighter, minds. I wish you had lived to witness the conclusion of my academic journey.

May you rest in peace.

11

‘It is a magnificent feeling to recognize the unity of complex phenomena which appear to be
things quite apart from the direct visible truth.’

Albert Einstein

12

Contents

Abstract 3

Acknowledgements 9

1 Introduction 23

1.1 Motivation . 23

1.2 Contributions . 25

1.3 Statement of Originality . 26

1.4 Publications . 26

2 Background and Related Work 29

2.1 Fundamentals: Bitcoin, Blockchain, and Consensus 29

2.1.1 Transactions and Blocks . 29

2.1.2 Proof-of-Work and Nakamoto Consensus 30

2.1.3 Longest Chain Rule and Forks . 32

2.1.4 Incentives and Rewards . 34

2.1.5 Peer-to-Peer Network . 35

2.1.6 Alternative Consensus Mechanisms . 37

2.1.7 Blockchain Application Layer . 38

2.2 Related Work . 40

2.2.1 Formalization of Cross-Chain Communication 40

2.2.2 Interoperability via Cryptocurrency-Backed Assets 41

2.2.3 Chain Relays and Light Clients . 43

13

14 CONTENTS

3 Cross-Chain Communication: Formalization, Impossibility, Analysis 46

3.1 The Cross-Chain Communication Problem . 47

3.1.1 Historical Background: Distributed Databases 47

3.1.2 Distributed Ledger Model . 48

3.1.3 Cross-Chain Communication System Model 50

3.1.4 Formalization of Correct Cross-Chain Communication 51

3.1.5 The Generic CCC Protocol . 53

3.2 Impossibility of CCC without a Trusted Third Party 54

3.2.1 Strong Fair Exchange Definition . 55

3.2.2 What is a Trusted Third Party? . 56

3.2.3 Relating CCC to Fair Exchange. 57

3.2.4 Incentives and Rational CCC . 62

3.3 The CCC Design Framework . 63

3.3.1 (Pre-)Commit Phase . 63

3.3.2 Verification Phase . 67

3.3.3 Abort Phase . 69

3.4 Classification of Existing CCC Protocols . 71

3.4.1 Exchange Protocols . 71

3.4.2 Asset Migration Protocols . 73

3.4.3 Insights and General Observations . 76

3.5 CCC Challenges and Outlook . 77

3.5.1 Heterogeneous Models and Parameters Across Chains 77

3.5.2 Heterogeneous Cryptographic Primitives Across Chains 79

3.5.3 Collateralization and Exchange Rates . 79

3.5.4 Lack of Formal Security Analysis . 80

3.5.5 Lack of Formal Privacy Analysis. 81

3.6 Conclusion . 82

CONTENTS 15

4 XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets 83

4.1 System Overview . 86

4.1.1 Cryptocurrency-backed Assets (CbA) . 86

4.1.2 System Model and Actors . 87

4.1.3 Distributed Ledger Model . 87

4.1.4 Network Model . 88

4.1.5 Threat model . 88

4.1.6 System Goals . 89

4.2 Strawman Solution and Design Roadmap . 90

4.2.1 Strawman Solution . 90

4.2.2 Strawman Limitations and Properties . 93

4.2.3 XCLAIM Design Roadmap . 95

4.3 XCLAIM Secure Design . 95

4.3.1 XCLAIM Overview . 96

4.3.2 Chain Relays: Cross-Chain State Verification 97

4.3.3 Tribunal: Incentives via Collateralization 100

4.3.4 Mitigating Exchange Rate Fluctuations 102

4.3.5 Multi-vault System: Removing Single Points of Failure 104

4.3.6 Atomic vault Replacement . 105

4.4 Formal Protocol Specification . 106

4.4.1 XCLAIM Operations . 107

4.4.2 XCLAIM Protocols . 109

4.4.3 Blockchain Requirements for Implementing XCLAIM 110

4.5 Security Analysis . 112

4.5.1 Chain Relay Poisoning . 113

4.5.2 Replay Attacks on Inclusion Proofs . 113

4.5.3 Counterfeiting . 113

4.5.4 Permanent Blockchain Splits . 114

4.5.5 Denial-of-Service Attacks . 115

16 CONTENTS

4.5.6 Fee Model Security: Sybil Attacks and Extortion 115

4.6 XCLAIM(BTC,ETH) Implementation and Evaluation 116

4.6.1 Protocol Execution Costs . 116

4.6.2 Performance . 118

4.6.3 Comparison to HTLC Atomic Swaps . 119

4.7 Applications . 120

4.8 Conclusion . 122

4.9 Symbols and Notations . 124

5 Cross-Chain Light Clients: Problem, Overview, and Efficiency Improve-
ments 125

5.1 Model and Definitions . 129

5.1.1 System Model . 129

5.1.2 Protocol Goals . 131

5.2 Probabilistic Sampling: Cure or Curse? . 133

5.2.1 Probabilistic Sampling Dilemma . 133

5.2.2 Analysis . 135

5.3 TxChain Design . 136

5.3.1 Contingent Transactions . 137

5.3.2 TxChain: Contingent Transaction Aggregation 137

5.3.3 Hierarchical TxChain . 139

5.4 Security and Efficiency Analysis . 140

5.4.1 Security Analysis . 140

5.4.2 Efficiency Analysis . 141

5.5 Deploying TxChain in Practice . 144

5.5.1 Fork Free Deployment . 145

5.5.2 Deployment via Soft or Hard Forks. 147

5.5.3 Case-Study: TxChain for Cross-Chain Transactions 150

5.6 Conclusion . 151

6 Conclusion and Future Work 153

6.1 Summary of Thesis Achievements . 153

6.2 Applications . 154

6.3 Future Work . 155

6.3.1 Extending the CCC Framework to New Blockchain Paradigms 155

6.3.2 Extensions and Improvements to XCLAIM 156

6.3.3 Efficient Cross-Chain Light Clients . 158

Bibliography 158

A Systematization of Cross-Chain State Verification 189

A.1 Verification Classes . 189

A.2 Relation between Verification Classes . 193

B Proof-of-Work Light Client Model 194

17

18

List of Tables

3.1 A successful Fair Exchange, as defined in [Aso98, ASW98a, ASW98b, PG99]. . . 55

3.2 Classification of existing of Cross-Chain Communication protocols, in considera-
tion of the selected TTP model (cf. Section 3.3) at each protocol step (commit,
verify, abort). Notation for non-binary TTP values: uses a TTP, # fully re-
lies on synchrony and availability of participants, H# hybrid. We also highlight
if the TTP (committee) is static or changes dynamically, and whether collat-
eral is utilzed to incentivize correct behavior of TTPs. We use the following
abbreviations: EC for External Custodian, CC for Consensus Custodian, EE
for External Escrow, SC for Smart Contract, EV for External Validator, CM
for Consensus Committee, and DO for Direct Observation. 70

4.1 Required operations on backing (B) and issuing (I) chains including application
candidates. 112

4.2 Overview of execution costs and performance for the Issue, Transfer , Swap and
Redeem protocols in Xclaim (BTC,ETH). 118

4.3 Summary of used symbols and notations used for Xclaim protocol descriptions. 124

5.1 Expected number of additionally required block inclusion proofs (and hence block
headers) for different n in FlyClient and NIPoPoWs, before (E(|B|)) and after
(E(|B|)′) applying TxChain. Results provided for a blockchain size h = 100000
and c = 1000. 143

5.2 Storage and bandwidth costs of näıve SPV, Flyclient and NIPoPoWs, without
(“Vanilla”) and with a fork-free deployment of TxChain, for different numbers of
to-be-verified transactions n, for blockchain size h = 630000 (as of 5 May 2020)
and c = 1000. FlyClient/NIPoPoW numbers provided for soft and hard fork
deployment. 145

5.3 Estimates of storage and bandwidth costs of näıve SPV, Flyclient and NIPoPoWs,
without (“Vanilla”) and with a fork-based deployment of TxChain, for different
numbers of to-be-verified transactions n. FlyClient and NIPoPoW numbers pro-
vided for soft fork and hard fork deployment. Numbers provided for a blockchain
size h = 630000 (as of 5 May 2020) and c = 1000. 148

19

5.4 Estimates of storage and bandwidth costs of näıve SPV, Flyclient and NIPoPoWs,
without (“Vanilla”) and with a fork-based deployment of TxChain, for different
numbers of to-be-verified transactions n. FlyClient and NIPoPoW numbers pro-
vided for soft fork and hard fork deployment. Numbers provided for a blockchain
size h = 10000000 (as of 4 May 2020) and c = 1047. 150

20

List of Figures

2.1 Full nodes store the entire blockchain, including all transaction data. Light
clients (e.g. in mobile wallets) request and store only block headers and inclusions
proofs for relevant transactions. Chain relays, light clients encoded as smart
contracts on top of blockchain networks, await to receive and process data. . . . 37

3.1 CCC between X and Y . Process Q writes txQ only if P has written txP . We set
exemplary persistence delays for X and Y as kX = 4 and kY = 3, and liveness
delays as ux = uy = 0. We omit the optional the abort phase. 54

4.1 High-level overview of the Issue, Swap and Redeem protocols in Xclaim’s (un-
der successful execution). All parties interact with the iSC, creating a publicly
verifiable audit log. Correct behavior is enforced by (i) over-collateralizing the
vault and (ii) cross-chain transaction inclusion proofs. When issuing, the creator
proves the correctness of the lock making Issue non-interactive. Safety is ensured
by forcing the vault to proactively prove the correctness of the Redeem process.
As a result, Xclaim enforces Transfer and Swap occur consistently on the back-
ing (B) and issuing (I) blockchains. 91

4.2 High level overview of the architecture of the Xclaim smart contract (iSC) and
the interactions between its components. References to sections introducing each
component are provided. The treasury refers to the basic ledger functionality of I. 98

4.3 Comparison of BTC-ETH atomic swaps via Xclaim and via HTLC ACCS for
1000 individual swaps. Storage and execution costs (Left) are in USD8; perfor-
mance (Right, logarithmic y-axis) is measured in minutes10. We observe Xclaim
is 95.7% faster and 65.4% cheaper for 1000 swaps. 119

5.1 Visualization of TxChain: a contingent transaction txa is only valid and can
hence be included in the valid chain C at index i if all referenced transactions
tx1, . . . ,txn are included in C, and hence are valid. The inclusion proof γ(i,a)

for txa is hence also proves inclusion of tx1, . . . ,txn. 136

5.2 Effects of applying TxChain to FlyClient and NIPoPoWs. (a) Total number
of block headers required for verification of n transactions (π(C,Ch) + E(|B|)).
(b) Number of transaction inclusion proofs Γ in light clients before and after
applying TxChain (logarithmic y-axis). Numbers h = 100000 and c = 1000. . . 144

21

5.3 Comparison of gas costs for transaction inclusion verification and the necessary
block header verification for BTC Relay without (näıve) and with TxChain.
The block used has a total of 51 transactions. 151

5.4 Breakdown of gas costs for BTC Relay verification, for a total of 51 verified
Bitcoin transactions. USD costs computed with 5 Gwei gas price and 168.01
USD/ETH . 151

A.1 Venn diagram of cross-chain state verification classes. The red, dotted line
highlights the minimum requirement for correctly operating light clients, i.e.,
SPV/NIPoPoWs/FlyClient in the case of PoW blockchains. 193

22

Chapter 1

Introduction

1.1 Motivation

In 2008, out of the tumults of the collapse of the US housing market and the resulting economic

crisis emerged Bitcoin, a decentralized and trustless financial ledger secured by the computa-

tional power of thousands around the globe. Created by the, to this date, unknown Satoshi

Nakamoto, Bitcoin promised financial freedom for all - no central single controls the ledger,

and anyone can join or leave the system whenever they wish. Yet Bitcoin was designed ‘merely‘

as a currency, and soon the value of the underlying technology - blockchains - was discovered

as a tool to bring decentralization and censorship resistance to numerous applications, starting

with identity systems, all the way to universal computations and ‘programmable money‘.

As the first ‘alternative‘ distributed ledgers emerged, so did the first mechanisms to commu-

nicate between them. The first instance of cross-chain communication was deployed as early

as 2011. Led by Satoshi Nakamoto him-/herself, Namecoin, the first alternative cryptocur-

rency, implemented a mechanism to re-use the computational power securing Bitcoin for its

own consensus.

Communicating across distributed ledgers, however, proved to be a challenging problem. By

design, blockchains are secure within themselves, ensuring that the history of events is im-

23

24 Chapter 1. Introduction

mutable. Processing and correctly reacting to information from external sources, however, was

never envisioned in the design of Bitcoin, which lacked the functionality to implement anything

more complex than payments. While the early Bitcoin community was working on decentralized

communication concepts, the rapid growth of the cryptocurrency market demanded fast and

simple solutions. Centralized exchanges quickly emerged as the preferred route to exchange

cryptocurrency assets, despite requiring trust and lacking transparency. Despite millions of

dollars being lost in the infamous collapse of the Mt. Gox exchange (and the following fail-

ures of numerous other centralized platforms), the emergence of flexible and expressive systems

like Ethereum, and the global regulatory offensives against digital assets service providers -

centralized exchanged continued to dominate the cross-chain market.

In 2018 decentralized financial applications, spearheaded by the exponentially growing Ethereum

ecosystem, finally began to challenge the status quo. Over the next few years, billions of dollars

would be traded through decentralized exchanges on Ethereum, some of which outgrowing their

centralized counterparts. However, these applications are mainly available to Ethereum’s na-

tive assets. Other networks must either copy applications or, if the functionality is not natively

supported as in the case of Bitcoin, migrate assets onto Ethereum. In the former case, smaller

networks will often attempt to attract liquidity from larger networks by offering easy-to-use

cross-chain migration services.

This new, growing demand for secure cross-chain communication sparked a new wave of re-

search. Numerous academic papers, blog posts, standards, prototypes, even entire blockchain

networks, have emerged in the hunt for the holy grail of blockchain interoperability: a truly

trustless and decentralized cross-chain communication protocol. Comparable to a gold rush,

interoperability start-ups raised millions of dollars promising to solve this hard problem, hur-

rying to launch and competing for the market. The result reminds, of the dot-com bubble:

dozens of products promising decentralization, yet under the hood relying on the same central-

ized providers they hoped to replace. And so, communication across blockchains remains in

the hands of a few powerful institutions.

1.2. Contributions 25

1.2 Contributions

This thesis explores the problem of trustless blockchain interoperability from both the the-

oretical and practical perspectives, defining the underlying research problem, discovering its

theoretical impossibility, and proposing novel cross-chain asset transfer mechanisms as viable

solutions for interoperability in practice.

More specifically, the contributions of this thesis are the following:

• We define the problem of Correct Cross-Chain Communication (CCC) under the dis-

tributed ledger model extended from the Bitcoin backbone protocol [GKL16], analyze

its properties, and derive the step-by-step execution for a generic cross-chain protocol,

applicable to all interoperability approaches created to date. We identify parallels to

the fair exchange protocols and consequently derive an impossibility result for trustless

cross-chain communication by reduction to the Fair Exchange problem [ASW98a, PG99],

negating common assumptions about interoperability within the blockchain community.

• With the impossibility result in mind, we introduce the Cross-Chain Design framework as

a tool to create new and evaluate existing cross-chain protocols based on security and trust

assumptions. Specifically, we identify the main challenge of cross-chain communication as

selecting the most suitable trusted third party (TTP) model at each step of the protocol

based on the use case and system model, and enable protocol designers to pick and choose

from existing implementation techniques.

• We introduce XCLAIM, a first-of-its-kind financially trustless mechanism to move assets

across blockchains (e.g. Bitcoin to Ethereum), leveraging incentives and punishment

in alignment with rational exchange protocols [Syv98] to work around the theoretical

impossibility result in practice. We define the concept of cryptocurrency-backed assets and

use this mechanism to create e.g. 1:1 Bitcoin-backed assets on Ethereum, and guarantee

that users can always redeem the backed assets for the underlying asset (“physically”) or

be reimbursed in a collateral currency at a beneficial rate (“cash” redemption). XCLAIM

makes use of a fully permissionless set of collateralized intermediaries, who hold backing

26 Chapter 1. Introduction

assets in custody and must proactively prove correct behavior via a cross-chain light

client (chain relay) on the target/issuing blockchain. We introduce a series of protocols

to balance the ratio of collateral and issued cryptocurrency-backed assets, even in case

of attempted theft or significant exchange rate fluctuations. XCLAIM allows transferring

assets from all existing blockchains to systems with smart contract support. As a result,

XCLAIM has been adopted by major blockchains like Polkadot [Woo15] as a mechanism

to import assets from “traditional” cryptocurrencies like Bitcoin, enabling a wide range

of novel, decentralized financial applications.

• Finally, we address the issue of efficient cross-chain state verification. We introduce

TxChain, a novel mechanism to batch a large number of transaction inclusion proofs

into a single on-chain transaction, contingent on the existence and validity of the batched

transactions. We show how TxChain can be used to increase the efficiency of blockchain

light clients, improving in particular upon new techniques such as NiPoPoWs [KMZ17]

and FlyClient [BBB+17]. TxChain can be deployed on Bitcoin with and without protocol

changes, as a hard fork to Ethereum, and on top of chain relays e.g. to improve verification

of Bitcoin transactions on Ethereum.

1.3 Statement of Originality

I declare that this thesis was composed by myself and that the work that it presents is my own

except where otherwise stated.

1.4 Publications

Most of the work presented in this thesis is based on the following publications:

• SoK: Communication Across Distributed Ledgers. Alexei Zamyatin, Mustafa Al-Bassam,

Dionysis Zindros, Eleftherios Kokoris-Kogias, Pedro Moreno-Sanchez, Aggelos Kiayias,

https://eprint.iacr.org/2019/1128.pdf

1.4. Publications 27

and William J. Knottenbelt 25th International Conference on Financial Cryptography

and Data Security, 2021 (Chapters 3 and 5).

• XCLAIM: Trustless, Interoperable, Cryptocurrency-backed Assets. Alexei Zamyatin,

Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur Gervais, and William J.

Knottenbelt. IEEE Symposium on Security and Privacy, 2019 (Chapters 4 and 5).

• TxChain: Efficient Cryptocurrency Light Clients via Contingent Transaction Aggrega-

tion. Alexei Zamyatin, Zeta Avarikioti, Daniel Perez, William J. Knottenbelt. Inter-

national Workshop on Cryptocurrencies and Blockchain Technology, 2020 (Chapter 5).

The following works, not included in this thesis, arose from work conducted during the course

of this PhD:

• XCC: Theft-Resilient and Collateral-Optimized Cryptocurrency-Backed Assets. Theodore

Bugnet and Alexei Zamyatin. Technical Report. Online, 2022

• On the Deployment of FlyClient as a Velvet Fork: Chain-Sewing Attacks and Counter-

measures. Tristan Nemoz and Alexei Zamyatin. Cryptology ePrint Archive: Report

2021/782, 2021

• Commit-Chains: Secure, Scalable Off-Chain Payments. Rami Khalil, Alexei Zamyatin,

Guillaume Felley, Pedro Moreno-Sanchez, Arthur Gervais. Cryptology ePrint Archive:

Report 2018/642, 2019

• Pay-To-Win: Cheap, Crowdfundable, Cross-chain Incentive Manipulation Attacks on

Cryptocurrencies. Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary,

Ittay Eyal, Peter Gazi, Sarah Meiklejohn, and Edgar Weippl. Workshop on Trusted Smart

Contracts, Financial Cryptography and Data Security, Online, 2019

• SoK: Algorithmic Incentive Manipulation Attacks on Permissionless PoW Cryptocurren-

cies. Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal,

Peter Gazi, Sarah Meiklejohn, and Edgar Weippl. Workshop on Trusted Smart Contracts,

Financial Cryptography and Data Security, 2021

https://eprint.iacr.org/2018/643.pdf
https://eprint.iacr.org/2020/580.pdf
https://eprint.iacr.org/2020/580.pdf
https://docs.interlay.io/_assets/papers/XCC_paper.pdf
https://eprint.iacr.org/2021/782.pdf
https://eprint.iacr.org/2021/782.pdf
https://eprint.iacr.org/2018/642.pdf
https://eprint.iacr.org/2019/775.pdf
https://eprint.iacr.org/2019/775.pdf
https://eprint.iacr.org/2020/1614.pdf
https://eprint.iacr.org/2020/1614.pdf

28 Chapter 1. Introduction

• A Deep Dive into Bitcoin Mining Pools: An Empirical Analysis of Mining Shares. Matteo

Rommitti, Aljosha Judmayer, Alexei Zamyatin, and Bernhard Haselhofer. Workshop

on the Economics of Information Security. 2019

• Uncle Traps: Harvesting Rewards in a Queue-based Ethereum Mining Pool. Sam Werner,

Paul Pritz, Alexei Zamyatin, William J. Knottenbelt. EAI International Conference

on Performance Evaluation Methodologies and Tools (VALUETOOLS), 2019.

• Echoes of the Past: Recovering Blockchain Metrics From Merged Mining. Nicholas

Stifter, Philipp Schindler, Aljosha Judmayer, Alexei Zamyatin, Andreas Kern, and

Edgar Weippl. International Conference on Financial Cryptography and Data Security,

2019.

• Multisignatures for Cryptocurrency-Backed Tokens (Poster). Alexei Zamyatin, Do-

minik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur Gervais and William J. Knot-

tenbelt. International Workshop on Cryptocurrencies and Blockchain Technology, 2018.

• Committing to Quantum Resistance: A Slow Defence for Bitcoin Against a Fast Quantum

Computing Attack. Iain Stewart, Dragos Ilie, Alexei Zamyatin, Sam Werner, Maryam

F. Torshizi, and William J. Knottenbelt. Royal Society open science, 5(6), 180410, 2018.

• Flux: Revisiting Near Blocks for Proof-of-Work Blockchains. Alexei Zamyatin, Nicholas

Stifter, Philipp Schindler, Edgar Weippl, and William J. Knottenbelt. Cryptology ePrint

Archive: Report 2018/415, 2018.

• Agreement with Satoshi— On the Formalization of Nakamoto Consensus. Nicholas

Stifter, Aljosha Judmayer, Philipp Schindler, Alexei Zamyatin, and Edgar Weippl.

Cryptology ePrint Archive: Report 2018/400, 2018.

• A wild velvet fork appears! Inclusive blockchain protocol changes in practice (Short

Paper). Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar

Weippl, and William J. Knottenbelt. Workshop on Bitcoin and Blockchain Research,

Financial Cryptography and Data Security, 2018.

https://weis2019.econinfosec.org/wp-content/uploads/sites/6/2019/05/WEIS_2019_paper_30.pdf
https://eprint.iacr.org/2019/070.pdf
https://eprint.iacr.org/2018/1134.pdf
https://www.alexeizamyatin.me/assets/multisignatures-poster-abstract-pre-print.pdf
https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.180410
https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.180410
https://eprint.iacr.org/2018/415.pdf
https://eprint.iacr.org/2018/400.pdf
https://eprint.iacr.org/2018/087.pdf
https://eprint.iacr.org/2018/087.pdf

Chapter 2

Background and Related Work

In the following we provide the necessary background theory on blockchain-based distributed

ledgers, using Bitcoin as an example and highlighting alternative designs where relevant.

2.1 Fundamentals: Bitcoin, Blockchain, and Consensus

Bitcoin was introduced in a whitepaper released by the pseudonymous Satoshi Nakamoto in

2008 [Nak08], laying the groundwork for an entirely new field of research and industry.

Bitcoin’s innovation was the combination of a fully permissionless distributed system with

incentives created by an underlying digital currency: any consensus participant can join or

leave the system at any point in time, while correct behavior is rewarded with newly minted

units of fungible digital coins. Permissionless in this context means anyone can join or leave

the consensus protocol without requesting permission from any third party

2.1.1 Transactions and Blocks

A fundamental data structure underpinning many cryptocurrencies is the blockchain - an

append-only immutable record of digitally-signed transactions. Transactions encapsulate changes

29

30 Chapter 2. Background and Related Work

to the state of the distributed ledger, most frequently representing transfers of some token of

value. Each transaction is identified through a unique hash over the transaction data structure

containing the details of the state update. To determine the state of the ledger at a particular

point in time, transactions are consolidated into blocks - hundreds or even thousands at a time.

Each block is identified by a unique hash of all consolidated transactions (or transaction iden-

tifiers) and the block header, which among other information contains the hash of the previous

block. Referencing the hash of the predecessor in each block effectively chains blocks together.

Assuming the use of a cryptographically secure hash function, this structure makes it impossi-

ble to change the content of any block without updating all successors, if the chain of blocks is

to be preserved.

Participants of this network run nodes which store the entire history of blocks and communicate

in a peer-to-peer fashion using a gossip protocol. Blocks are broadcast, verified by recipients

and, if valid under the network’s consensus rules, propagated to other nodes.

2.1.2 Proof-of-Work and Nakamoto Consensus

Bitcoin has no single point of control. Since anyone can join the system and generate transac-

tions, a mechanism to agree on the state of the ledger at any point in time is required. To this

end, Bitcoin employs a distributed consensus mechanism to agree on the latest modifications to

the ledger state, i.e., the transactions contained in the latest block appended to the blockchain.

The mechanism, used in Bitcoin and most other cryptocurrencies, is termed Nakamoto con-

sensus – a random leader election protocol that requires nodes to compete in solving a hard

cryptographic puzzle, known as Proof-of-Work (PoW). Each time a node solves the puzzle it is

elected leader and may determine which transactions are included in the next block appended

to the blockchain.

More detailed, this puzzle involves guessing a hash over the content of the to-be-included block

and, by design, there exists no better strategy than enumerating all possible candidates. While

computing the hash of some data is trivial, PoW cryptocurrencies require that this hash fulfills

some criteria, e.g. contains a number of leading zeroes as in the case of Bitcoin. These criteria

2.1. Fundamentals: Bitcoin, Blockchain, and Consensus 31

can be adjusted to increase or decrease the difficulty of the puzzle. The more difficult the

puzzle, the longer it will take the network to find a solution candidate and generate a new

block. The verification of a potential solution candidate, on the other hand, is trivial.

The more computational power a node invests in this so-called ‘mining‘ process, the higher the

chance it will be the first to find a suitable solution – and as a result, the higher its voting

power in the network. Drawing analogies to mineral mining, participants are often referred to

as miners and their computational power is termed hash rate. As more miners join the network,

the overall computational power increases and so does the block generation rate. To ensure

the election process is somewhat predictable and to prevent the system for being overwhelmed

by too many blocks, the difficulty of the PoW puzzle is dynamically adjusted. In the case of

Bitcoin the difficulty, i.e., the required number of preceding zeroes, is adjusted approximately

every two weeks such that blocks are generated on average every ten minutes. If a miner finds

a solution that has a lower difficulty than required, the block is not considered valid by the

network.

Proof-of-Work, combined with the immutable nature of the underlying blockchain data struc-

ture, achieves two important properties, necessary for achieving a consistent view of the dis-

tributed ledger across all participants:

• First, it allows Bitcoin to operate in a permissionless setting. While anyone can join the

network at any time and create identities / run multiple consensus nodes, their voting

power is capped by the computational resources they allocate to the mining process –

yielding the system resilient to so-called Sybil attacks [Dou02].

• Second, it guarantees a total ordering of all transactions, mitigating the double spending

problem: if two transactions spend the same coin, only the first transaction to be included

in the blockchain will be considered valid.

32 Chapter 2. Background and Related Work

2.1.3 Longest Chain Rule and Forks

While miners determine the state of the global transaction ledger, they cannot simply include

invalid transactions (or attempt to alter the ledger history) in a block when they are elected

leaders. This would fail to pass the verification performed by other nodes in the network and

result in an invalid block, which would hence be rejected, i.e., not propagated to other nodes

in the network. The result is a so-called fork : the miner in question creates her own version of

the chain, while the rest of the network follows another.

However, forks can occur even if all involved miners are honest: since there can be hundreds

or thousands of miners competing to become leaders, sometimes two or more PoW solutions

can be found at or around the same time. As a result, multiple valid but conflicting blocks

(reference the same predecessor) are propagated to the network, creating forks. To handle

such disputes, Bitcoin’s code dictates that nodes follow the chain with the most Proof-of-Work,

meaning the chain which is approved and “mined” upon by the majority of the network. The

approval of each chain is measured by the cumulative sum of the PoW difficulty of included

blocks. Considering that the PoW difficulty is adjusted infrequently, this is often referred to as

the “longest chain rule”. As a result, the “main” chain is defined as the chain which is agreed

upon by the majority of computational power, and honest network participants will follow and

extend this main chain.

From the perspective of distributed systems theory, Nakamoto consensus falls into the class

of stabilizing consensus [AFJ06] protocols or protocols that reach eventual agreement [Fis83]:

all correct processes (nodes) reach agreement not in the same communication round but only

eventually, after a number of rounds. Applying this to the model of Bitcoin, a transaction

is considered stable if a number of blocks have been mined on top of the block it is con-

tained in [Nak08, GKL15, GKL16, PSs16]: the deeper a block (transaction) is included in the

blockchain, the less likely it is to be excluded from the chain by a fork. The number of the

necessary block “confirmations” to achieve sufficient confidence about a transaction’s stability

is a matter of dispute: while numerous community discussions suggest 6 confirmations in Bit-

coin, research argues that this number must be based on the economic value of the transaction

2.1. Fundamentals: Bitcoin, Blockchain, and Consensus 33

in question [SZ16].

Agreement on Network Upgrades

Forks also occur whenever the network’s protocol rules are upgraded, e.g. when protocol

improvements or consensus-relevant bug-fixes are introduced. We can thereby differentiate

between two main fork scenarios:

• Soft forks, where consensus rules are made more strict, i.e., upgraded miners accept fewer

blocks than non-upgraded (or legacy) miners. As long as the computational power of the

upgraded miners exceeds that of the non-upgraded miners, the network will converge to

a single, longest chain.

• Hard forks occur when consensus rules are expanded, i.e., upgraded miners accept blocks

that are rejected by legacy miners, or conflicting rules are introduced. As a result, two

incompatible versions of the chain are created. The outcomes of hard forks vary: some-

times, new cryptocurrencies are created, as in the case of Bitcoin and Bitcoin Cash; in

other cases, only one chain gains sufficient traction, forcing the “losing” miners to comply

with the network majority. It is also worth noting that a soft work that fails to gain the

support of the majority of computational power can also lead to a hard fork, i.e., if legacy

miners mine significantly more blocks than upgraded miners.

• Velvet forks, first described in [KMZ17], are a mechanism to extend the functionality

of existing blockchains without causing a consensus split. Upgraded miners accept both

upgraded and legacy blocks, while the upgraded functionality is encoded such that legacy

miners ignore it during the verification process, interpreting the additional information

as arbitrary data. However, velvet forks are only safely applicable to upgrades that do

not require the support of the consensus majority, limiting their usability in practice.

There exist other, more sophisticated mechanisms for network upgrades and we direct the

interested reader to our work on velvet forks, conducted in the course of this PhD [ZSJ+18].

34 Chapter 2. Background and Related Work

2.1.4 Incentives and Rewards

As a reward for investing computational effort, the winning miner is rewarded with newly

minted coins of the underlying cryptocurrency each time a block is generated. Furthermore,

transactions include a fee that serves as incentive for miners to include them in blocks, paid by

users. This ensures miners are motivated to behave correctly and follow the longest chain, as

creating a contentions blockchain fork bears the risk of losing out on rewards if the attack is

unsuccessful.

Bitcoin’s code specifies that there shall only exist 21 million Bitcoins, with an emission schedule

that halves the newly minted coins per block approximately every four years. As a result, the

block rewards will cease at some point in the future, leaving the transaction fees as the sole

incentive mechanism for miners. In light of security concerns raised by research [CKWN16],

other cryptocurrencies follow alternative approaches, e.g. unlimited supply and continuous

block rewards.

Depending on the network usage, transaction fees may outperform the block rewards and hence

play an important role in sustaining incentives for miners. Thereby, most blockchains maintain

a free fee market: each block can contain a maximum number of transactions (due to network

security and latency reasons), meaning that in times of high network utilization, some users may

have to wait for multiple blocks until their transaction is included in the blockchain. Thereby,

users can increase their fee to “bribe” miners to include their transactions earlier than that of

others. The result is an auction for “block space”. This self-regulating market is thereby both

cure and curse. On one hand, miners and users always find an equilibrium in terms of demand

and fee rates. On the other hand, in times of high network utilization, fees have been shown to

spike so high, that some users are unable to compete – leaving large numbers of transactions

unprocessed and creating a large processing backlog, effectively “congesting” the network.

2.1. Fundamentals: Bitcoin, Blockchain, and Consensus 35

2.1.5 Peer-to-Peer Network

Nodes in Bitcoin’s peer-to-peer network are globally distributed, each node (ideally) randomly

connecting to a set of “neighbors”. Each time a node receives a transaction or block, it verifies

it against the network’s consensus rules and, if valid, forwards it to its neighbor nodes. As

a result, different nodes in different locations in the network topology may temporarily have

different views of the blockchain. Eventually, however, all nodes converge to the same ledger

state, enforced by the longest chain rule discussed earlier.

An important assumption of Bitcoin is that the network is synchronous, i.e., messages are

propagated among honest nodes within a known delay [CDE+16, GKL15, PSs16]. Ensuring

timely propagation of information across the network is one of the reasons for limiting the

size of blocks: while larger blocks allow to stabilize more transactions per time unit, they also

incur a higher propagation delay due to network latency. Optimization of blockchain scalability

while maintaining security has been an active research topic ever since the early adoption of

Bitcoin [CDE+16, GMSR+19, GKW+16, KKJG+18, PD16, Chr15].

Full Nodes and Light Clients

By default, nodes download and store the entire history of transactions since the genesis block.

However, as time progresses and the network keeps growing, the storage and bandwidth re-

quirements for running a node may become too high for some use cases. The entire Bitcoin

blockchain, for example, amounts to 344 GB of data, while downloading the entire state of

Ethereum requires up to 5 TB of storage space. While feasible on most modern PC, this be-

comes a particular problem for nodes hosted on mobile, wearable, or IOT devices – which are

arguably necessary for better user experience.

To tackle this challenge, the original Bitcoin whitepaper introduced the Simplified Payment

Verification (SPV) or light client protocol – a scheme which allows nodes to download only a

few bytes of data per block (the block header), skipping most transnational data, while still

being able to verify that specific transactions have occurred. Specifically, a block header consists

36 Chapter 2. Background and Related Work

of the root hash of the Merkle tree containing the identifiers of all transactions included in the

block, the previous block hash, and other metadata relevant for PoW verification. To convince

a light client that a transaction has been included in a specific block one must only provide the

path to that transaction’s identifier in the block’s transaction Merkle tree – a list of hashes,

logarithmic in size given the number of all transactions contained in the block. As a result,

Bitcoin’s SPV clients today require merely 70 MB of storage space. In the case of Ethereum,

this number lies higher, at around 5 GB.

The security model of light clients, however, differs slightly from that of full nodes. By design,

light clients can:

• Given two chains, detect which is the chain with the most accumulated PoW/PoS, i.e.,

the main chain;

• Given a transaction identifier, verify that this identifier is indeed part of a block’s trans-

action Merkle tree.

However, a light client cannot check whether a transaction is fully valid under the network’s

consensus rule, as this requires access to the entire transactional history. As a result, light

clients operate under the assumption that if a block has been included in the main chain, then

it must hence be valid under the system’s consensus rules – otherwise, the honest majority of

network participants would have rejected a particular block. We provide a visualization of the

interaction between full nodes and light clients in Figure 2.1 and point the interested reader

to Appendix A for a in-depth analysis and classification blockchain state verification and light

clients.

Recently, two improved light client protocols have been introduced, aiming to further reduce the

storage and bandwidth requirements of blockchain nodes. FlyClient [BKLZ20] and Superblock

NiPoPoWs [KMZ17] require to download and store only a (poly-)logarithmic number of block

headers. Both protocols rely on probabilistic sampling techniques: instead of requesting all

block headers, such light clients randomly sample a logarithmic subset. By ensuring that

the sampled set is indeed random, these protocols ensure that a malicious full node cannot

2.1. Fundamentals: Bitcoin, Blockchain, and Consensus 37

Figure 2.1: Full nodes store the entire blockchain, including all transaction data. Light clients
(e.g. in mobile wallets) request and store only block headers and inclusions proofs for rele-
vant transactions. Chain relays, light clients encoded as smart contracts on top of blockchain
networks, await to receive and process data.

trick the light client into accepting an incorrect state of the ledger, as long as the majority of

computational power is honest.

We take a particular interest in blockchain light clients in this thesis. While initially designed

to target mobile devices, light clients play an important role in cross-chain communication,

where being able to verify the state of another chain is a useful property utilized by many

interoperability protocols. We formalize the requirements for Proof-of-Work cross-chain light

clients, so-called chain relays [But16, Con17a, ZHL+19], in Appendix B and present novel

efficiency improvements in Chapter 5.

2.1.6 Alternative Consensus Mechanisms

Nakamoto consensus is just but one possible option to achieve agreement on the state of the

distributed ledger. There exist numerous BFT agreement protocols that have been introduced

and tested before Bitcoin was launched and are applicable to blockchain networks [SJS+18,

BSAB+17, GK18] – yet BFT protocols typically operate over a predefined set of consensus

participants. Such protocols are termed permissioned implying that new consensus participants

38 Chapter 2. Background and Related Work

must first obtain the permission of the existing consensus committee before being able to partake

in voting.

Another, permissionless way of achieving consensus in blockchains is Proof-of-Stake (PoS)

[KRDO17, Mic16, DGKR18, PS16]. Instead of relying on computational power as a scarce

resource to calculate the voting power of each participant, Proof-of-Stake blockchains rely

on – as the name suggests – stake. Stake is defined as the amount of the cryptocurrency

underlying the system that a consensus participant puts down to insure the network against

their misbehavior. Should a consensus participant attempt a failed attack on the system,

the honest majority of the network will confiscate (or slash) the malicious node’s stake. The

more stake a participant locks, the more voting power they exhibit. Proof-of-Stake systems

typically use a source of randomness (e.g. verifiable random functions [MRV99, DY05]) to

sample temporary consensus committees for predefined intervals, which in turn run a variant

of a BFT agreement protocol.

2.1.7 Blockchain Application Layer

The sophisticated nuances of the network and consensus layer often remain hidden from users,

as they interact mainly with applications built on top of blockchains.

Accounts

The first interaction of a user with Bitcoin is the generation of an account – a public/private

key pair which is used to send, receive and authenticate transactions, most often payments.

However, instead of using public keys to receive payments, Bitcoin generally recommends the

use of so-called addresses – hash-based, alpha-numeric representations of the ECDSA secp256k1

public key [Bit20d].

We differentiate between two main types of accounting systems in blockchains:

• UTXO (Unspent Transaction Output) model. In the UTXO model, each transaction

2.1. Fundamentals: Bitcoin, Blockchain, and Consensus 39

consists of inputs and outputs, whereby each input is the output of another, existing

transaction. Each output consists of a number of coins and the rules of how these coins

can be spent. Thereby, outputs must always be spent as a whole. The amount of coins

a user controls is hence given by the sum of the value of all outputs this user can spend

from, e.g. by providing a digital signature using her private key.

• Account model. In the account-based model, e.g. as seen in Ethereum [Woo17, But14],

each user controls one or more accounts, which stores the number of coins owned by the

user – similar to the models used by traditional banks. The amount of sent/received coins

in a transaction is then simply subtracted/added to the account’s balance.

Smart Contracts

Transactions update the state of the distributed ledger. The simplest form of state update is

typically a payment: a transfer of ownership of coins from one user account to another. Most

cryptocurrencies, including Bitcoin, support the creation of conditional payments, i.e., allow to

specify conditions which must be met before a transaction is included in the blockchain. These

conditions are encoded in programs which are also referred to as smart contracts since their

execution is enforced by the entirety of the network’s consensus.

Smart contracts can take various forms. Systems like Bitcoin exhibit very limited scripting func-

tionality, allowing users to construct simple commit-reveal schemes at most. Newer systems,

such as Ethereum [But14, Woo17] or Polkadot [Woo15] provide near-Turing complete script-

ing functionality, enabling users to create more complex contracts and even reflect real-world

financial agreements.

Tokens, Colored Coins, and Overlay Protocols

In the majority of cases, blockchain-based distributed ledgers introduce their own, native digital

currency as part of the incentive mechanisms, including Bitcoin and Ethereum. However, de-

ploying a new distributed ledger is not ultimately necessary to bootstrap a new cryptocurrency:

40 Chapter 2. Background and Related Work

using the scripting support of distributed ledgers, it is possible to simulate the functionality of

a digital currency on top of an existing system. The most prominent example are the fungible

ERC-20 tokens on Ethereum [VB15], which are encoded via standardized smart contracts and

are supported by essentially all Ethereum applications.

While tokens are mainly observed on blockchains with smart contract functionality, they have

been first introduced as so-called overlay protocols for Bitcoin [ZSJ+18]: additional data was

included in transactions and interpreted by applications, e.g. to replicate the functionality of

tokens [Ros12].

2.2 Related Work

2.2.1 Formalization of Cross-Chain Communication

To the best of our knowledge, this work constitutes the first formalization of cross-chain commu-

nication and the derived impossibility result negates common assumptions about interoperabil-

ity of previous works. Existing surveys on blockchain interoperability mainly provide iterative

summaries of interoperability implementations, or focus on subsets of this space, supporting

our study.

The first work discussing cross-chain communication, excluding forum discussions, is a technical

report by Back et al. [BCD+14]. The authors introduce the term “sidechain” and present how

assets can be transferred between two chains using a committee of custodians or SPV proofs in

a homogeneous security model. A later report by Buterin discusses how cross-chain exchanges

can be achieved via custodians, escrows, HTLCs, and cross-chain state verification, and provides

a high-level discussion of possible failures in cross-chain communication [But16]. Belchior et

al. [BVGC21] provide another, more recent, iterative overview of cross-chain projects, discussing

numerous community-driven projects in-depth, yet without clear taxonomy or classification.

Siris et al. [SDF+19] provide an iterative overview of protocols for atomic cross-chain swaps

and “sidechains”, focusing mostly on community-driven efforts, rather than academic pub-

2.2. Related Work 41

lications. Similarly, Johnson et al. discuss open-source interoperability projects related to

Ethereum [JRB19], while Robinson evaluates Ethereum as a coordination platform for com-

munication among other blockchains [Rob20]. Bennik et al. [BGDE18] and similarly Miraz et

al. [MD19] summarize technical details of HTLC atomic cross-chain swaps. Avarikioti et al.

provide a thorough formal study of blockchain sharding protocols, although their focus does

not lie on the communication between shards [AKKW19].

Other works [XWS+17, TT17, CZDK17, ZJ18, VTPM18], mention the importance of blockchain

interoperability, e.g. for bootstrapping new blockchains, but do not provide classifications or

technical details.

2.2.2 Interoperability via Cryptocurrency-Backed Assets

Until 2019, the only mechanism believed to perform a trustless cross-chain transfer was atomic

cross-chain swaps (ACCS) based on hashed timelocks [Tie16, Bit21a, Bit20a, Her18]. However,

ACCS are interactive, i.e., they rely on all parties being online and monitoring the blockchain

throughout the exchange to ensure security. Each swap thereby incurs long waiting periods

to prevent fraud through exploiting blockchain reorganizations, which substantially hinders

performance and involves synchronizing clocks between independent blockchains. Moreover,

ACCS are vulnerable to packet and transaction memory-pool sniffing, allowing an adversary to

exploit blockchain race conditions to steal funds. Finally, ACCS rely on a pre-established out-of-

band communication channel between parties, required to exchange security-critical revocation

transactions [BJZ+17, TS15]. Xclaim not only avoids these problems, as discussed throughout

this work but is also more efficient in terms of execution costs and time.

The deployment of asset migration protocols opened a new way to exchange assets across

blockchains: cryptocurrency-backed assets (CbAs). However, most existing approaches towards

CbA systems require trust in intermediaries.

The most widely adopted CbA protocol today is wBTC (“wrapped Bitcoin”) [Kyb19b], a fully

custodial and centralized version of Bitcoin on Ethereum. Users entrust institutional service

42 Chapter 2. Background and Related Work

providers with custody over their BTC and are required to undergo KYC procedures before

interacting with the system. Similar approaches have been copied by prominent cryptocurrency

exchanges such as Binance [Bin19] and Huobi [Tea20]. RSK [Ler15] relies on merged-mining

with Bitcoin [JZS+17] and aims to leverage Bitcoin miners for moving BTC to its ledger - yet,

as of this writing, relies on an independent, centralized set of custodians. Summarizing, these

systems utilize External Custodians (cf. CCC classification in Section 3.3) and resemble cen-

tralized systems, upon which Xclaim introduces significant improvements in terms of security

and decentralization (cf. Section 4.2).

Liquid [DPW+16] is a permissioned blockchain that uses Bitcoin as its native asset via CbAs.

Thereby, Liquid uses its consensus participants as custodians to hold migrated BTC using

multisignatures (i.e., Consensus Custodians, cf.3.3). While arguably more robust to custodians

external to the involved blockchains, this approach still exhibits trust and centralization issues.

Since users rely on the custodians to not steal their BTC, they have no remedy in case of theft,

and cannot become custodians themselves. Numerous other approaches have implemented

similar mechanisms, including Proof-of-Stake sidechains [GKZ19a] and PoA Network[PoA18].

In the tBTC protocol, currently deployed between Bitcoin and Ethereum, External Custodi-

ans construct a jointly controlled deposit public key on Bitcoin via ECDSA threshold signa-

tures [GGN16], and insure users against theft by locking up ETH collateral - following a similar

approach to Xclaim. However, at the time of writing, the implemented threshold signature

scheme does not support fault attribution, i.e., it is impossible to distinguish between honest

and malicious members of the threshold signature committee in case of failures. As a result, if

an adversary is able to subvert a signing committee and commit theft by controlling the major-

ity of signers, tBTC seizes the collateral of all signing committee members to reimburse users,

even those who behaved honestly. To this end, tBTC, at the time of writing, utilizes a static

and restricted committee of signers, failing to achieve the decentralization (and censorship-

resistance) properties exhibited by Xclaim. RenVM [Ren20] follows a similar design as tBTC,

yet aims to replace threshold signatures with distributed key generation via secure multi-party

computation [Gol98]. However, to the best of our knowledge, RenVM utilizes centralized cus-

todians [Beh20] at the time of writing.

2.2. Related Work 43

Bentov et al. describe how to tokenize exiting cryptocurrencies via trusted execution envi-

ronments (TEEs) [BJZ+17]. TEEs, however, are known to be vulnerable to a wide range of

side-channel attacks [XCP15, WKPK16, GESM17] and require trust in the hardware man-

ufacturer. As a standalone solution, TEEs expose users to the same trust assumptions as

CentralClaim. TEEs, however, can be used as an additional layer of security of Xclaim

Vaults, improving the robustness of the implementation.

Dogecoin [TSB19], published online subsequently to Xclaim, describes a CbA protocol fol-

lowing the Xclaim design, yet under the assumption of constant exchange rates. As a result,

Dogecoin would have to adopt similar collateral balancing mechanisms as Xclaim to main-

tain the security of user funds under the fluctuating exchange rates of cryptocurrency assets

observed in practice.

Finally, synthetic assets are an alternative solution to cross-chain asset migration, relying purely

on collateralization. Synthetix [Syn20] allows users to create assets pegged to the price of exist-

ing, backing assets, such as BTC, by locking a significantly higher (500%) amount of collateral

using the Synthetix native token. The resulting sBTC token exhibits similar properties to

Xclaim CbAs in terms of decentralization since any user can become their own “Vault” by

contributing collateral to the Synthetix smart contract. The main difference between physi-

cally pegged Xclaim CbAs and synthetic assets is that CbAs can be “physically” redeemed

for the backing asset and “cash” redemption through collateral is used only in case of failure,

while synthetic assets can only be “cash” redeemed. This difference can be of relevance in

catastrophic failure scenarios, e.g. mass liquidation and user exits in case of severe exchange

rate fluctuations. Nevertheless, the similarities in terms of game-theoretic security and incen-

tives suggest synergies between Xclaim and purely synthetic mechanisms and represent an

interesting avenue for future research.

2.2.3 Chain Relays and Light Clients

Most existing cross-chain light clients, so-called chain relays [Con17a, Kyb17, Con17b], are

implemented in accordance with the design of naive SPV clients, storing all block headers of

44 Chapter 2. Background and Related Work

the verified blockchain, which can incur substantial cost on the blockchain they are deployed

on. In contrast to SPV clients implemented as blockchain nodes, data stored in chain relays,

which are typically implemented as smart contracts on top of another blockchain, cannot be

easily removed. Furthermore, while bandwidth is typically assigned no financial cost when

evaluating SPV clients, bandwidth is charged by the byte in smart contract environments such

as Ethereum.

New proposals for efficient light clients, leveraging concepts such as NiPoPoW [KMZ17, KZ19]

or FlyClient [BKLZ20] significantly reduce verification costs as they require to retrieve only

a (poly-)logarithmic number of block headers by implementing random sampling heuristics.

While the original works focus on single-chain applications, NiPoPoWs have been recently

studied in the cross-chain setting. Daveas et al. [DKKZ20] showcase how an efficient Bitcoin

light client can be implemented as an Ethereum smart contract, refining the NiPoPoW protocol

and suggesting the “hash-and-resubmit” design pattern which greatly reduces processing costs

for the Ethereum virtual machine. Interestingly, both NiPoPoWs and FlyClient require soft-

or hard forks to be securely deployed on Bitcoin [KPZ20] and similar blockchains, contrary to

the assumptions made in the original works. As a result, chain relays to this date implement

naive SPV light client techniques.

An alternative approach to random sampling is the use of the compression properties of non-

interactive zero-knowledge proof (ZKP) systems such as SNARKs [BCCT12], STARKs [BSBHR18]

or Bulletproofs [BBB+18] for light client verification. A concrete technique is zkRelay [WE20a],

which makes use of the Zokrates [ET18] framework to generate SNARK proofs for efficient light

client verification of Bitcoin.

The verification process of light clients can also be outsourced to users or dedicated opera-

tors [TR19, TSB19], with disputes handled via interactive games. However, existing schemes

have been shown to currently suffer security challenges [KGC+18].

Finally, deploying chain relays in trusted execution environments (TEEs) (e.g. Intel SGX [Int22])

may present a cheap and scalable approach to cross-chain state verification, at the cost of trust-

ing hardware manufacturers. However, recent vulnerabilities detected in well-known TEE im-

2.2. Related Work 45

plementations, in particular to side-channel attacks [XCP15, WKPK16, GESM17, VBMW+18],

highlight existing security risks and raise questions about current applicability to financial sys-

tems. Furthermore, deploying blockchain clients in trusted execution environments may require

modifications to the original implementation, increasing the long-term maintenance costs and

potentially introducing compatibility issues with protocol upgrades, e.g. hard forks.

Chapter 3

Cross-Chain Communication:

Formalization, Impossibility, Analysis

In this chapter, we set out to systematize the field of blockchain interoperability. We propose a

formal model of the underlying problem of cross-chain communication, prove its impossibility

by reduction from well-known problems in computer science, and construct a comprehensive

guide for designing protocols bridging the numerous distributed ledgers available today. The

aim of this work is to facilitate clearer communication between academia, community, and

industry – enabling users, developers and researchers to gain confidence about the security of

both new and existing solutions.

Contribution

In summary, the contribution of this chapter is as follows:

• We formalize the problem of Correct Cross-Chain Communication (CCC) (Section 3.1), trac-

ing CCC back to existing research on distributed systems and outlining a generic CCC protocol

encompassing existing solutions. We then relate CCC to the Fair Exchange problem and show

that contrary to common beliefs in the blockchain community, CCC is impossible without a

trusted third party (Section 3.2).

46

3.1. The Cross-Chain Communication Problem 47

• With the impossibility result in mind, we introduce a framework to design new and evaluate

existing CCC protocols, focusing on the inherent trust assumptions thereof (Sections 3.3).

• We apply our framework to classify the field of CCC protocols to date (Section 3.4), high-

lighting similarities and key differences.

• Finally, we outline general observations on current developments, provide an outlook on the

challenges of CCC research, and discuss the implications of interoperability on the security and

privacy of blockchains (Section 3.5).

3.1 The Cross-Chain Communication Problem

In this section, we relate cross-chain communication to existing research, introduce the model

for interconnected distributed ledgers, provide a formal definition of the Correct Cross-Chain

Communication (CCC) problem, and sketch the main phases of a generic CCC protocol.

3.1.1 Historical Background: Distributed Databases

The need for communication among distributed processes is fundamental to any distributed

computing algorithm. In databases, to ensure the atomicity of a distributed transaction, an

agreement problem must be solved among the set of participating processes. Referred to as

the Atomic Commit problem (AC) [BHG87], it requires the processes to agree on a common

outcome for the transaction: commit or abort. If there is a strong requirement that every

correct process should eventually reach an outcome despite the failure of other processes, the

problem is called Non-Blocking Atomic Commit (NB-AC) [BT93]. Solving this problem enables

correct processes to relinquish locks without waiting for crashed processes to recover.

As such, we can relate the core ideas of communication across distributed ledgers to NB-AC.

The key difference hereby lies within the security model of interconnected systems. While in

classic distributed databases all processes are expected to adhere to protocol rules and, in the

48 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

worst case, may crash, distributed ledgers, where consensus is maintained by a committee, must

also consider and handle byzantine failures.

3.1.2 Distributed Ledger Model

We use the terms blockchain and distributed ledger as synonyms and introduce some notation,

based on [GKZ19b] with minor alterations. Thereby, it is assumed the majority1 of consensus

participants in both X and Y are honest, namely, that they follow the designated protocol.

Ledgers and State Evolution

We assume the data structure underlying a distributed ledger X is a blockchain (or chain), i.e.,

an append-only sequence of blocks, where each block contains a reference to its predecessor(s).

The mechanism for maintaining a sequence of transactions is referred to as a ledger and we

denote the ledger of a system X as Lx. We define the state of a ledger L as the dynamically

evolving sequence of included transactions 〈tx1, ...,txn〉. We assume that the evolution of the

ledger state progresses in discrete rounds indexed by natural numbers r ∈ N. At each round r,

a new set of transactions (included in a newly generated block) is written to the ledger L. We

use LP [r] to denote the state of L at round r, i.e., after applying all transactions written to the

ledger since round r− 1, according to the view of some party P . A transaction can be written

to L only if it is consistent with the system’s consensus rules, given the current ledger state

LP [r]. This consistency is left for the particular system to define, and we describe it as a free

predicate valid(·) and we write valid(tx, LPx [r]) to denote that tx is valid under the consensus

rules of Lx at round r according to the view of party P . To denote that a transaction tx has

been included in/successfully written to a ledger L as position r, we write tx ∈ LP [r]. While

the ordering of transactions in a block is crucial for their validity, for simplicity, we omit the

position of transactions in blocks and assume correct ordering implicitly.

1In case of Proof-of-Work or Proof-of-Stake blockchains, the majority pertains to computational
power [Nak08] or stake [KRDO17] respectively.

3.1. The Cross-Chain Communication Problem 49

Persistence and Liveness

Each participant P adopts and maintains a local ledger state LP [t] at time t, i.e., her current

view of the ledger. The views of two distinct participants P1 and P2 on the same ledger L may

differ at time t (e.g., due to network delay): LP1 [t] 6= LP2 [t]. However, eventually, all honest

parties in the ledger will have the same view. This is captured by the persistence and liveness

properties of distributed ledgers [GKL16]:

Definition 1 (Persistence). Consider two honest parties P1, P2 of a ledger L and a persistence

(or “depth”) parameter k ∈ N. If a transaction tx appears in the ledger of party P1 at time t,

then it will eventually appear in the ledger of party P2 at a time t′ > t (“stable” transaction).

Concretely, for all honest parties P1 and P2, we have that ∀t ∈ N : ∀t′ ≥ t+ k : LP1 [t] 4 LP2 [t′],

where LP1 [t] 4 LP2 [t′] denotes that LP1 at time t is a (not necessarily proper) prefix of LP2 [t′] at

time t′.

As parties will eventually come to an agreement about the blocks in their ledgers, we use the

notation L[t] to refer to the ledger state at time t shared by all parties; similarly, we use the

notation L[r] for the shared view of all parties at round r. This notation is valid when t is at

least k time units in the past.

Definition 2 (Liveness). Consider an honest party P of a ledger L and a liveness delay pa-

rameter u. If P attempts to write a transaction tx to its ledger at time t ∈ N, then tx will

appear in its ledger at time t′, i.e., ∃t′ ∈ N : t′ ≥ t ∧ tx ∈ LP [t′]. The interval t′ − t is upper

bounded by u.

In our model, even honest parties are not guaranteed to be online. Instead they may experience

temporary offline periods during which they cannot send or receive messages. This corresponds,

for example, to temporary power/network outages. More specifically, the adversary can choose

to ”suspend” any honest party P at any time, but must eventually ”resume” that party at

some later time. While suspended, the Persistence and Liveness properties do not hold for

that party, indicated by a boolean “error variable” fP . For the sake of counting corruptions, a

suspended party is still considered honest, not corrupted.

50 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

Notion of Time

The state evolution of two distinct ledgers Lx and Ly may progress at different time intervals:

In the time that Lx progresses one round, Ly may, for example, progress forty rounds (e.g., as

in the case of Bitcoin [Nak08] and Ethereum [But14]). To correctly capture the ordering of

transactions across Lx and Ly, we define a clock function τ which maps a given round on any

ledger to the time on a global clock τ : r → t. We use this conversion implicitly in the rest

of this chapter. For conciseness, we will use the notation LP [t] to mean the ledger state in the

view of party P at the round r = τ−1(t) which corresponds to time t, namely LP [τ−1(t)].

Transaction Model

A transaction tx, when included, alters the state of a ledger L by defining operations to be

executed and agreed upon by consensus participants P1, ..., Pn. The expressiveness of operations

is thereby left for the particular system to define and can range from simple payments to

execution of complex programs [Woo17]. For generality, we do not differentiate between specific

transactions models (e.g. UTXO [Nak08] or account-based models [Woo17]).

3.1.3 Cross-Chain Communication System Model

When speaking of CCC, we consider the interaction between any two distributed systems X

and Y with underlying ledgers Lx and Ly that have Persistence and Liveness, as defined in

Section 3.1.2. We assume X and Y may employ different agreement protocols and make no as-

sumptions on the respective composition of consensus participants, i.e., we do not assume that

X and Y have the same participants. While the agreement protocol implemented by X will

require a (semi-) synchronous communication between participants of X to ensure Persistence

and Liveness [FLP85] (respectively for Y)2, we make no such assumptions for the communica-

tion channels across participants of any two different systems X and Y . Specifically, we assume

2We note that, in the anonymous blockchain setting, more synchrony requirements are imposed than in the
byzantine setting.

3.1. The Cross-Chain Communication Problem 51

no bounds on message delay or deviations between local clocks for communication channels

between participants P1, ..., Pn of X and participants Q1, ..., Qm of Y .

We assume a closed system model as in [Lam89] with two participants P and Q, who can be

any autonomous system, e.g. a process or even a human sitting in front of a computer. We

assume P is a participant of distributed system X and Q is a participant of chainY . Both P

and Q can influence the state evolution of the underlying system by (i) writing a transaction

tx to the underlying ledger L (commit), or (ii) by stopping to interact with the system (abort).

We assume that P possesses a transaction txP , which can be written to Lx, and Q possesses

txQ, which can be written to Ly. A function desc maps a transaction to some “description”

which can be compared to an expected description value, e.g., specifying the transaction value

and recipient (the description differs from the transaction itself in that it may not, for example,

contain any signature). P possesses a description dQ which characterizes the transaction txQ,

while Q possesses dP which characterizes txP . Informally, P wants txQ to be written to Ly

and Q wants txP to be written to Lx. Thereby, dP = desc(txP) implies txP is valid in X (at

time of CCC execution), as it cannot be written to Lx otherwise (analogous for dQ).

We assume P and Q know each other’s identity, e.g. public key, and no (trusted) third party

is involved in the communication between the two processes.

3.1.4 Formalization of Correct Cross-Chain Communication

The goal of cross-chain communication can be described as the synchronization of processes

P and Q such that Q writes txQ to Ly if and only if P has written txP to Lx. Thereby, it

must hold that desc(txP) = dP ∧ desc(txQ) = dQ. The intuition is that txP and txQ are

two transactions that must either both, or neither, be included in Lx and Ly, respectively. For

example, they can constitute an exchange of assets that must be completed atomically.

To this end, P must prove to Q that it created a transaction txP which was included in Lx.

Specifically, process Q must verify that at given time t the ledger state Lx[t] contains txP . A

cross-chain communication protocol that achieves this goal, i.e., is correct, must hence exhibit

52 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

the following properties:

Definition 3 (Effectiveness). If both P and Q behave correctly and txP and txQ match the

expected descriptions (and are valid), then txP will be included in Lx and txQ will be included

in Ly. If either of the transactions is not as expected, then both parties abort.

(desc(txP) = dP ∧ desc(txQ) = dQ ∧ fP = fQ = ⊥ =⇒ txP ∈ Lx ∧ txQ ∈ Ly)

∧ (desc(txP) 6= dP ∨ desc(txQ) 6= dQ =⇒ txP /∈ Lx ∧ txQ /∈ Ly)

Definition 4 (Atomicity). There are no outcomes in which P writes txP to Lx at time t but Q

does not write txQ before t′, or Q writes txQ to Ly at t′ but P did not write txP to Lx before

t.

¬((txP ∈ Lx ∧ txQ /∈ Ly) ∨ (txP /∈ Lx ∧ txQ ∈ Ly))

Definition 5 (Timeliness). Eventually, a process P that behaves correctly will write a valid

transaction txP , to its ledger L.

From Persistence and Liveness of L, it follows that eventually P writes txP to Lx and Q becomes

aware of and verifies txP .

Definition 6 (Correct Cross-Chain Communication (CCC)). Consider two systems X and Y

with ledgers Lx and Ly, each of which has Persistence and Liveness. Consider two processes,

P on X and Q on Y , with to-be-synchronized transactions txP and txQ. Then a correct

cross-chain communication protocol is a protocol which achieves txP ∈ Lx ∧ txQ ∈ Ly and has

Effectiveness, Atomicity, and Timeliness.

Summarizing, Effectiveness, and Atomicity are safety properties. Effectiveness determines the

outcome if transactions are not as expected or both transactions match descriptions and both

processes are behaving correctly. Atomicity globally restricts the outcome to exclude behaviors

that place a disadvantage on either process. Timeliness guarantees eventual termination of the

protocol, i.e., is a liveness property.

3.1. The Cross-Chain Communication Problem 53

3.1.5 The Generic CCC Protocol

We now describe the main phases of a generic CCC protocol, which can represent the transfer

of goods, assets, or objects, between any two blockchain-based distributed systems X and Y .

A visual representation is provided in Figure 3.1.

1) Setup. A CCC protocol is parameterized by the involved distributed systems X and Y

and the corresponding ledgers Lx and Ly, the involved parties P and Q, the transactions txP

and txQ as well as their descriptions dP and dQ. The latter ensure the validity of txP and

txQ and determine the application-level specification of a CCC protocol. For example, in the

case of an exchange of digital assets, dP and dQ define the asset types, transferred value, time

constraints, and any additional conditions agreed by parties P and Q. Typically, the setup

occurs out-of-band between the involved parties and we hence omit this step hereby.

2) (Pre-)Commit on X. Upon successful setup, a publicly verifiable commitment to execute

the CCC protocol is published on X: P writes3 transaction txP to its local ledger LPX at time

t in round r. Due to Persistence and Liveness of Lx, all honest parties of X will report txP as

stable (txP ∈ Lx) in round r + ux + kx.

3) Verify. The correctness of the commitment on X by P is verified by Q checking (or receiving

a proof from P) that (i) dP = desc(txP) and (ii) txP ∈ Lx hold. From Persistence and Liveness

of X we know the latter check will succeed at time t′ which corresponds to round r + ux + kx

on X, if P executed correctly.

4a) Commit on Y . Upon successful verification, a publicly verifiable commitment is published

on Y : Q writes transaction txQ to its local ledger LQY at time t′ in round r′ on Y . Due to

Persistence and Liveness of Ly, all honest parties of Y will report txQ as stable (txQ ∈ Ly) in

round r′ + uy + ky, where uy is the liveness delay and ky is the “depth” parameter of Y .

4b) Abort. If the verification fails and/or Q fails to execute the commitment on Y , a CCC

protocol can exhibit an abort step on X, i.e., “reverting” the modifications txP made to the

3In off-chain protocols [GMSR+19], the commitment can be done by exchanging pre-signed transactions or
channel states, which will be written to the ledger at a later point.

54 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

Figure 3.1: CCC between X and Y . Process Q writes txQ only if P has written txP . We
set exemplary persistence delays for X and Y as kX = 4 and kY = 3, and liveness delays as
ux = uy = 0. We omit the optional the abort phase.

state of Lx. As blockchains are append-only data structures, reverting requires broadcasting an

additional transaction txP ′ which resets X to the state before the commitment of txP .

It is worth noting that some CCC protocols, specifically those facilitating exchange of assets,

follow a two-phase commit design. In this case, steps 2 and 4a are executed in parallel, followed

by the verification and (optional) abort steps on both X and Y . A further observation is that

a CCC protocol necessarily requires a conditional state transition to occur on Y , given a state

transition on X. As such, we do not consider (oracle) protocols which merely relay data across

distributed ledgers [TE17, BCG15a, BGB17, Con17a, But16], as CCC protocols by themselves.

3.2 Impossibility of CCC without a Trusted Third Party

In this section, we show that CCC is impossible without a trusted third party by providing

a reduction from the Fair Exchange problem [Aso98, PG99]. We first recall the definition of

Fair Exchange and discuss the notion of trusted third parties. We then relate CCC to Fair

Exchange, presenting a concrete instance of a cross-chain fair exchange protocol, and provide

an outlook on incentives and economically rational behavior of parties.

3.2. Impossibility of CCC without a Trusted Third Party 55

3.2.1 Strong Fair Exchange Definition

On a high level, an exchange between two (or more) parties is considered fair if either both

parties receive the item they expect, or neither do [ASW98b]. Fair exchange can be considered

a sub-problem of fair secure computation [BK14], and is known to be impossible without a

trusted third party [PG99, Yao86, EY80, Eve82]. In the following, we recall the definition of

Fair Exchange.

Fair Exchange considers two processes (or parties) P and Q that wish to exchange two items

(or asset): aP owned by P against aQ owned by Q. There exists a function desc that maps any

exchangeable item (or asset) to a string describing it in ”sufficient” detail (e.g. the value and

recipient of a payment). The inputs of P to a Fair Exchange protocol are an item aP and a

description dQ of the desired item. Analogous, the inputs for Q are aQ and dQ. To indicate that

P is dishonest, an (boolean) error variable mP is introduced (analogous, mQ for Q) [Gär98]. A

successful Fair Exchange is shown in Table 3.1 below.

Table 3.1: A successful Fair Exchange, as defined in [Aso98, ASW98a, ASW98b, PG99].

P Q
Input : aP , dQ, Q Input : aQ, dP , P

fair exchange
←−−→

Output : aQ(desc(aQ) = dQ) Output : aP (desc(aP) = dP)
or

aborted aborted

A successful Fair Exchange protocol must thereby fulfill the following properties:

Definition 7 (Effectiveness). If both P and Q behave correctly, i.e., mP = mQ = false, and

the items aP and aQ match the expected descriptions, i.e., desc(aQ) = dQ ∧ desc(aP) = dP ,

then P will receive aQ and Q will receive aP . If the items are not as expected, i.e., desc(aQ) 6=

dQ ∨ desc(aP) 6= dP , then both parties will abort the exchange.

Definition 8 (Timeliness). Eventually P will transfer aP to Q or abort, and Q will transfer

aQ to P or abort.

56 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

Definition 9 (Strong Fairness). There are no outcomes in which Q receives aP but P does not

receive aQ (Q aborts), or P receives aQ but Q does not receive aP (P aborts).

Effectiveness determines the outcome of the exchange if P and Q are willing to perform the

exchange and the items match the expected descriptions, or the items do not match the ex-

pected descriptions. (Strong) Fairness restricts the outcomes of the exchange such that neither

party is left at a disadvantage. Timeliness ensures the eventual termination of the exchange

protocol. Note: we do not provide a definition for “Non-repudiability” as this property is not

a critical requirement for Fair Exchange protocols, but only becomes relevant in disputes after

an exchange [ASW98a, PG99].

3.2.2 What is a Trusted Third Party?

Numerous recent works use a single distributed ledger such as Bitcoin and Ethereum to con-

struct (optimistic) fair exchange protocols [BK14, And15, KB16, KZZ16, DEF18, KKAS+18].

They leverage smart contracts (i.e., programs or scripts), the result of which is agreed upon and

enforced by consensus participants, to ensure the correctness of the exchange. These protocols

thus use the consensus of the distributed ledgers as an abstraction for a trusted third party. If

the majority of consensus participants are honest, correct behavior of processes/participants of

the fair exchange is enforced – typically, the correct release of aQ to P if Q received aP .

A CCC protocol aims to achieve synchronization between two such distributed ledgers, both of

which are inherently trusted to operate correctly. As we show below, a (possibly additional)

TTP can be used to:

(i) Determine the outcome of the CCC protocol, i.e., confirm to the consensus participants

of Y that txP was included in Lx (and vice-versa);

(ii) Directly enforce correct behavior of Q (P), such that txQ ∈ Ly (txQ ∈ Ly).

In the first case, we observe similarities to the concept of failure detectors [CT96], a construction

used to introduce an implicit notion of time into distributed systems to solve consensus. In the

3.2. Impossibility of CCC without a Trusted Third Party 57

context of cross-chain communication, a failure detector - a trusted third party to the protocol

- indicates whether a participant has failed on their commitment.

Similar to the abstraction of TTPs used in fair exchange protocols, in CCC, it does not matter

how exactly the TTP is implemented, as long as it enforces the correct behavior of the partic-

ipants. Strictly speaking, from the perspective of CCC there is little difference between a TTP

consisting of a single individual and a committee where N out of M members must agree to

take action (even though a committee is, without question, more resilient against failures) –

contrary to the common assumptions made by the blockchain community.

3.2.3 Relating CCC to Fair Exchange.

We proceed to show that Correct Cross-Chain Communication is impossible without a trusted

third party (TTP), under the system model of distributed ledgers, by reducing CCC to Fair

Exchange [ASW98b, Aso98, PG99]. We recall, a fair exchange protocol must fulfill three

properties: Effectiveness, (Strong) Fairness and Timeliness [PG99, Aso98].

Lemma 1. Let M be a system model. Let C be a protocol that solves CCC in M . Then there

exists a protocol S which solves Fair Exchange in M .

Proof (sketch). Consider that the two processes P and Q are parties in a fair exchange. Specif-

ically, P owns an item (or asset) aP and wishes to exchange it against an item (or asset) aQ

owned by Q. Assume txP assigns ownership of aP to Q and txQ transfers ownership of aQ

to P (specified in the “descriptions” dP of txP and dQ of txQ). Then, txP must be included

in Lx and txQ must be included in Ly to correctly execute the exchange. In other words, if

txQ ∈ Ly and txP ∈ Lx, then P receives desired aQ and Q receives desired aP , i.e., P and Q

fairly exchange aP and aQ.

We observe the definition of Timeliness in CCC is equivalent to the definition of Timeliness in

fair exchange protocols, as defined in [PG99]. Effectiveness in fair exchange states that if P

and Q behave correctly and do not want to abandon the exchange (i.e., mP = mQ = ⊥), and

58 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

items aP and aQ are as expected by Q and P , then at the end of the protocol, P will own the

desired aQ and Q will own the desired aP [PG99]. It is easy to see Effectiveness in CCC achieves

exactly this property: if P and Q behave correctly and desc(txP) = dP and desc(txQ) = dQ,

i.e., txP transfers aP to Q and txQ transfers aQ to P , then P will write txP to Ly at time t

and Q will write txQ to Lx before time t′. From Persistence and Liveness of Lx and Ly we know

both transactions will eventually be written to the local ledgers of P and Q, consequently, all

other honest participants of X will report txP ∈ LX and honest participants of Y will report

txQ ∈ LY . From our model, we know that honest participants constitute majorities in both X

and Y . Hence, P will receive aQ and Q will receive aP .

Strong Fairness in fair exchange states that there is no outcome of the protocol, where P receives

aQ but Q does not receive aP , or, vice-versa, Q receives aP but P does not receive aQ [PG99].

In our setting, such an outcome is only possible if txP ∈ Lx∧txQ /∈ Ly or txP /∈ Lx∧txQ ∈ Ly,

which contradicts the Atomicity property of CCC.

We construct a protocol for Fair Exchange using CCC in Algorithms 1 - 4. Specifically, P and

Q exchange assets aP and aQ across chains X and Y , if transaction txP is written to Lx and

transaction txQ is written to Ly.

Algorithm 1 Fair Exchange using a CCC protocol
Result: txP ∈ Lx ∧ txQ ∈ Ly (i.e.,P has aP , Q has aQ) or txP /∈ Lx ∧ txQ /∈ Ly (i.e., no exchange)

setup(Lx,Ly,txP , txQ, dP , dQ) if mP = false then

commit(txP , Lx); // P transfers aP to Q

end

if (verify(txP , Lx, dP) = true) ∧mQ = false then

commit(txQ, Ly); // Q transfers aQ to P

else

abort(txQ, Ly); // Q does not transfer aQ to P

end

if verify(txQ, Ly, dQ) = false then

abort(txP , Lx); // P recovers aP

end

3.2. Impossibility of CCC without a Trusted Third Party 59

Algorithm 2 Commit(tx, L)

if valid(tx, L) then

Write tx to L;

end

Algorithm 3 Verify(tx, L, d)

if tx ∈ L ∧ desc(tx) = d then
return true

end

return false

Algorithm 4 Abort(tx, L)

if tx ∈ L then

Revert tx; // e.g. using a new transaction

else

//do nothing

end

It is left to show that CCC is defined under the same model as Fair Exchange. The distributed

ledger model [GKL16] used in CCC assumes the same asynchronous (explicitly) and deter-

ministic (implicitly) system model (cf. Section 3.1.3) as [PG99, FLP85]. Since P and Q by

definition can stop participating in the CCC protocol at any time, CCC exhibits the same crash

failure model as Fair Exchange [ASW98a, PG99] (and in turn Consensus [FLP85]). Hence, we

conclude:

Theorem 1. There exists no asynchronous CCC protocol tolerant against misbehaving nodes.

Proof. Assume there exists an asynchronous protocol C which solves CCC. Then, due to

Lemma 1 there exists a protocol that solves strong fair exchange. As this is a contradiction,

there cannot exist such a protocol C.

Our result currently holds for the closed model, as in [PG99, FLP85]. In the open model,

P and Q can be forced to make a decision by the system (or environment), i.e., transactions

60 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

can be written on their behalf if they crash [KKJG+18]. In the case of CCC, this means that

distributed system Y , or more precisely, the consensus of Y , can write txQ to Ly on behalf

of Q (if P wrote txP to Lx). We observe that the consensus of Y becomes the TTP in this

scenario: both P and Q must agree that the consensus of Y enforces correct execution of CCC.

In practice, this can be achieved by leveraging smart contracts, similar to blockchain-based fair

exchange protocols, e.g. [DEF18]. As such, we can construct a smart contract, the execution

of which is enforced by consensus of Y , that will write txQ to Ly if P includes txP in Lx, i.e.,

Q is allowed to crash.

However, it remains the question of how the consensus participants of Y become aware that

txP ∈ Lx. In practice, a smart contract can only perform actions based on some input. As such,

before writing txQ the contract/consensus of Y must observe and verify that txP was included

in Lx. A protocol achieving CCC must hence make one of the following assumptions. Either,

there exists a TTP that will ensure correct execution of CCC; or the protocol assumes P , or Q,

or some other honest, online party (this can again be the consensus of Y) will always deliver

a proof for txP ∈ Lx to Y within a known, upper-bounded delay, i.e., the protocol introduces

some form of synchrony assumption. As argued in [PG99], we observe that introducing a TTP

and relying on a synchrony assumption are equivalent :

Remark 1. When designing a CCC protocol,one must chose between introducing a trusted third

party, or, equivalently, assuming some synchrony on the network.

The intuition behind this result is as follows. If we assume that process P does not crash

and hence submits the necessary proof to the smart contract on Y , and that this message is

delivered to the smart contract within a know upper bound, then we can be sure that CCC

will occur correctly. Thereby, P intuitively represents its own trusted third party. However,

if we cannot make assumptions on when the message will be delivered to the smart contract,

as is the case in the asynchronous communication model between P (a participant of X) and

the participants of Y , a trusted third party is necessary to determine the outcome of the CCC:

the TTP observes txP ∈ Lx and informs the smart contract or directly enforces the inclusion

of txQ in Ly. This illustrates how a TTP can be leveraged to enforce synchrony, i.e., timely

3.2. Impossibility of CCC without a Trusted Third Party 61

delivery of messages, in CCC protocols. While the two models yield equivalent results, the

choice between a TTP and network synchrony impacts the implementation details of a CCC

protocol.

Special Case: P = X and Q = Y

So far, we considered P and Q as participants of X and Y respectively. A special case worthy of

closer analysis is one where P represents the entirety of the consensus participants of X and Q

the consensus participants of Y . While Theorem 1 holds even in this setting, the reduction from

Fair Exchange may appear less intuitive: since both X and Y have Persistence and Liveness we

can assume that neither P (= X) nor Q (= Y) will crash. Here, the challenge of establishing

CCC arises from ensuring that Y correctly verifies the state transition of X, i.e., the majority

of participants of Y obtain, validate and agree on a local view of Lx. While we defer a formal

treatment of this case to future work, we provide an intuition below.

The key to relating this case to the Fair Exchange impossibility is to distinguish between

communication models within and outside the system bounds of X and Y . Stemming from the

Persistence and Liveness properties, the communication channels within X and Y respectively

are (semi-)synchronous. However, CCC makes no such assumption beyond system bounds, i.e.,

there are no synchrony assumptions for communication channels between participants of X and

participants of Y .

As such, while it appears possible to create a CCC protocol between X (= P) and Y (= Q)

by requiring Y to collect and validate the state of X, (or vice-versa) it falls outside of the

CCC model. Specifically, such a protocol requires (semi-)synchronous communication channels

between participants of X and Y since the state validation of X is now subject to Persistence

and Liveness of Y . This assumption is outside of the CCC model and, in fact, in line with our

result. Intuitively, the existence of such a protocol between X and Y implies that consensus

participants of X and Y overlap or one is a subset of the other, which in turn contradicts the

CCC system model: arguably X and Y can no longer be considered two distinct systems in this

setting.

62 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

For generality, we can further dissect the composition of a distributed system’s participants

into consensus participants and node operators. While both have (semi-)synchronous channels

to other participants, maintain a local view of the ledger and can modify the latter, only

consensus participants can finalize state transitions, i.e., a network participant will only consider

transactions “stable” when signed off by a consensus participant 4. It becomes clear that for

Y to validate and agree on the state of X (requirement for CCC), there needs to be at least

one honest and online party that is a node operator (not necessarily a consensus participant)

of both X and Y and broadcasts the necessary the necessary state transition proof of Lx to Y .

3.2.4 Incentives and Rational CCC

Several workarounds to the fair exchange problem, including gradual release mechanisms, op-

timistic models, and partially fair secure computation [ASW98b, CC00, KL12, BK14], have

been suggested in the literature. These workarounds suffer, among others, from a common

drawback: they require some form of trusted party that does not collude with the adversary.

Further, in case of an adversary-caused abort, honest parties must spend extra efforts to restore

fairness, e.g., in the optimistic model, the trusted server must be contacted each time fairness

is breached.

First suggested in the context of rational exchange protocols [Syv98], the economic dimension

of blockchains enabled a shift in this paradigm: Rather than forcing an honest user to invest

time and money to achieve fairness, the malicious user is economically punished when breaching

fairness and the victim is reimbursed. This has paved the way to design economically trustless

CCC protocols that follow a game-theoretic model under the assumption that actors behave

rationally [ZHL+19]. We remark that malicious/altruistic actors can nevertheless breach CCC

properties: even if there is no economic damage to parties P or Q, the correct execution of the

communication protocol itself is not guaranteed.

4We consider accessing a node operated by someone else via a publicly exposed interface equivalent to being
a node operator

3.3. The CCC Design Framework 63

3.3 The CCC Design Framework

With the impossibility result 3.2 and CCC model (Section 3.1.2) in mind, we now introduce a

new framework for creating and evaluating CCC protocols.

A generic CCC protocol consists of three main phases: commit (on X), verify (and commit on

Y), and an optional abort. The main challenge of designing a CCC protocol is hence to determine

the necessary trust model for each phase, from one of the following: (i) relying outright on a

TTP, (ii) relying on an explicit synchrony assumption, or (iii) a hybrid approach, where a

TTP is only involved if synchrony is breached. The framework introduced below is structured

as follows: for each CCC phase (subsection), we systematize the three possible trust models

(TTP, synchrony, hybrid), outlining possible implementations and reasoning about practical

considerations.

3.3.1 (Pre-)Commit Phase

The commit phase(s) of a CCC protocol typically involves the locking and unlocking of assets

on chains X and Y , determined by the outcome of the protocol.

Model 1: Trusted Third Party (Coordinators) A coordinator is a TTP that is tasked

with ensuring the correct execution of a CCC protocol. We classify coordinator implementations

attending to two criteria: custody of assets and involvement in blockchain consensus. A coor-

dinator (committee) can thereby be static (pre-defined) or dynamic (any user can join). And,

finally, a CCC protocol can utilize collateral to incentivize correct behavior. We first introduce

the classification criteria and then detail possible implementations of coordinators.

• Custody of Assets. Custody determines with whom the control over assets of (honest) partic-

ipants resides. We differentiate between custodians and escrows. Custodians receive uncondi-

tional control over the participant’s funds and are thus trusted to release them as instructed by

the protocol rules. Escrows receive control over the participant’s funds conditional to certain

64 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

prearranged constraints being fulfilled. Contrary to custodians, escrows can fail to take action,

e.g. freeze assets, but cannot commit theft.

• Involvement in Consensus. Coordinators can optionally also take part in the blockchain

consensus protocol. Consensus-level coordinators refer to TTPs that are additionally consensus

participants in the underlying chain. This is the case, for example, if the commit step is

performed on chain X and enforced directly by the consensus participants of X, e.g. through

a smart contract or directly a multi-/threshold signature. External coordinators, on the other

hand, refer to TTPs which are not represented by the consensus participants of the underlying

blockchain. This is the case if (i) the coordinators are external to the chain X, e.g, the consensus

participants of chain Y or other parties, or (ii) less than the majority of consensus participants

of chain X are involved.

• Election. An important distinction to make is between static, i.e., unchanged over time

(usually permissioned), and dynamic coordinators. A dynamic coordinator can be chosen by

CCC participants for each individual execution or can be sampled by a pre-defined mechanism,

as e.g. studied in [DW14, KJG+16, KK19, PS16] for Proof-of-Work and in [Mic16, KRDO17,

DGKR18, BPS16] for Proof-of-Stake blockchains. We consider CCC protocols where any user

can become a coordinator as unrestricted [ZHL+19], while protocols that require coordinators

to register with some third party (or e.g. first acquire a token) as restricted [Kee19].

• Incentives and Collateralization. Instead of following a prohibitive approach, i.e., technically

preventing or limiting coordinators from deviating from protocol rules, a CCC protocol can

follow a punishable approach. That is, ensure misbehavior can be proven and penalized retro-

spectively. In the latter case, a coordinator will typically be required to lock collateral that can

be slashed and allocated to (financially) damaged CCC participants.

Coordinator Implementations. We now detail the different coordinator types according

to the aforementioned criteria and how they are implemented in practice.

• External Custodians (Committees). Instead of relying on the availability and honest behav-

3.3. The CCC Design Framework 65

ior of a single external coordinator, trust assumptions can be distributed among a set of N

committee members. Decisions require the acknowledgment (e.g. digital signature) of at least

M ≤ N members, whereby consensus can be achieved via Byzantine Fault Tolerant (BFT)

agreement protocols such as PBFT [CL+99, KJG+16]. External custodians can be both static

or dynamic, and collateralization can be added on involved blockchains to incentivize honest

behavior.

• Consensus-level Custodians (Consensus Committee) are identical to external custodians, ex-

cept that they are also responsible for agreeing on the state of the underlying ledger. This

model is typically used in blockchain sharding [KKJG+18, ABSB+18], where the blockchain X

on which the commit step is executed runs a BFT consensus protocol, i.e., there already exists

a static committee of consensus participants that must be trusted for the correctness of CCC

(Persistence and Liveness of X). Collateralization of Consensus Custodians is best handled on

another blockchain, i.e., where the coordinators have no influence on consensus.

• External Escrows (Multisignature Contracts). External Escrows are a special case of External

Custodians, where the coordinator is transformed from Custodian to Escrow by means of a

multisignature contract. Multisignature contracts require signatures of a subset (or majority)

of committee members and the participant P (e.g., the asset owner), i.e., P + M,M ≤ N .

The committee can thus only execute actions pre-authorized by the participant: it can at most

freeze assets, but not commit theft.

• Consensus-level Escrow (Smart Contracts) are programs stored in a ledger that are executed

and their result agreed upon by consensus participants [But14, C+16]. As such, trusting in

the correct behavior of a smart contract is essentially trusting in the secure operation of the

underlying chain, making this a useful construction for Escrows. Contrary to Consensus-level

Custodians, who must actively follow the CCC protocol and potentially run additional software,

with smart contracts consensus participants typically are not directly involved in the CCC

protocol: interaction with the CCC smart contract is, by default, treated like any other state

transition and no additional software/action is required. CCC protocols which rely on smart

contracts typically involve cross-chain state verification (cf. Appendix A) to enforce correct

66 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

execution on both X and Y , and typically do not need additional collateralization, except as

potential insurance against software bugs [KM20].

Model 2: Synchrony Assumptions (Lock Contracts) An alternative to coordinators

consists in relying on synchronous communication between participants and leveraging locking

mechanisms that harvest security from cryptographic hardness assumptions. In practice, so-

called lock contracts are typically used in CCC protocols that facilitate asset exchanges and

implement two-phase commit, where the same (symmetric) locks are created on both chains

and released atomically.

• Hash Locks. A protocol based on hash locks relies on the preimage resistance property of

hash functions: participants P and Q transfer assets to each other by means of transactions

that must be complemented with the preimage of a hash h := H(r) for a value r chosen by P –

the initiator of the protocol – typically uniformly at random [Bit13, Tie13, Her18, MMK+17].

• Signature-based Locks. Protocols based on hash locks have limited interoperability as they

require that both cryptocurrencies support the same hash function within their script language.

Unfortunately, this assumption does not hold in practice (e.g., Monero does not even support a

scripting language). Instead, P and Q can transfer assets to each other by means of transactions

that require to solve the discrete logarithm problem of a value Y := gy for a value y chosen

uniformly at random by P (i.e., the initiator of the protocol). In practice, it has been shown

that it is possible to embed the discrete logarithm problem in the creation of a digital signature,

a cryptography functionality used for authorization in most blockchains today [BN00, BBBF18,

MMSS+18, TMSM19, EMSM19, Poe17, MSRL+19].

• Timelock Puzzles and Verifiable Delay Functions. An alternative approach is to construct

(cryptographic) challenges, the solution of which will be made public at a predictable time in

the future. Thus, P and Q can commit to the cross-chain transfer conditioned on solving one of

the aforementioned challenges. Concrete constructions include timelock puzzles and verifiable

delay functions. Timelock puzzles [RSW96] build upon inherently sequential functions where

the result is only revealed after a predefined number of operations are performed. Verifiable

3.3. The CCC Design Framework 67

delay functions [BBBF18] improve upon timelock puzzles in that the correctness of the result for

the challenge is publicly verifiable. This functionality can also be simulated by releasing parts

of the preimage of a hash lock interactively bit by bit until it can be brute forced [BJZ+17].

Model 3: Hybrid (Watchtowers) Instead of fully relying on coordinators being available or

synchrony assumptions among participants holding, it is possible to employ so-called watchtow-

ers, i.e., service providers which act as a fallback if CCC participants experience crash failures.

We observe strong similarities to optimistic fair exchange protocols [ASW98b, ASW98a, CC00].

Specifically, watchtowers take action to enforce the commitment, if one of the parties crashes

or synchrony assumptions do not hold, i.e., after a pre-defined timeout [KNW19, ALS+18,

MBB+18, AKW19]. This construction was first introduced and applied to off-chain payment

channels [GMSR+19].

3.3.2 Verification Phase

The verification phase, during which the commitment on X is verified on Y (or vice-versa),

can similarly be executed under different trust models, as detailed in the following. Thereby,

it is also of relevance what exactly is being verified: the possibility or the consensus agreement

on a state, a specific state transition (e.g. a transaction), or actual validation of a state

under underlying consensus rules (we direct the interested reader to Appendix A for a detailed

classification).

Model 1: Trusted Third Party (Coordinators). The simplest approach to cross-chain

verification is to rely on a trusted third party (also referred to as validators [Woo15]) to handle

the verification of the state changes on interlinked chains during CCC execution.

• External Validators. A simple approach is to outsource the verification step to a (trusted)

third party, external to the verifying ledger (in our case Y), as in [TS15, Kyb19b]. The TTP

can then be the same as in the commit/abort steps.

• Consensus Committee / Smart Contracts. Alternatively, the verification can be handled by

68 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

the consensus participants of the verifying chain [KKJG+18, DPW+16, Ler15], leveraging the

assumption that misbehavior of consensus participants indicates a failure of the chain itself.

• Verification Games. Finally, rather than fully trusting coordinators, they can be used as a

mere optimistic performance improvement by introducing dispute handling mechanisms to the

verification process: users can provide (reactive) fraud proofs [ASB18] or accuse coordinators

of misbehavior requiring them to prove correct operation [TR19, HB18, KGC+18].

Model 2: Synchrony Assumption. Instead of explicitly relying on a TTP, the verification

phase can be implemented using:

• Direct Observation. Similar to the commit phase of CCC, one can require all participants

of a CCC protocol to execute the verification phase individually: i.e., to run (fully validating)

nodes in all involved chains. This is often the case in exchange protocols, such as atomic swaps

using symmetric locks such as HTLCs [Bit13, Her18], but also in parent-child settings where

one chain by design verifies or validates the other [BCD+14, GKZ19b, Ler18]. This relies on a

synchrony assumption, i.e., requires CCC participants to observe commitments and act within

a certain time, in order to complete the CCC.

• Smart Contracts (Chain Relays). The verification process can be encoded in smart contracts

capable of verifying the commitment on X, so-called chain relays, as in the case of BTC-

Relay [Con17a] – a smart contract on Ethereum which tracks the Bitcoin main chain and verifies

BTC payments. Recently, chain relays capable of verifying succinct proofs of knowledge [ET18,

WE20b] have been proposed, which can (theoretically) enable full validation of commitments

on X (i.e., similar properties as full nodes, see Appendix A).

Model 3: Hybrid (Watchtowers). Just like in the commit phase, synchrony and TTP

assumptions can be combined in the verification phase, such that a CCC protocol initially relies

on a synchrony assumption, but can fall back to a TTP (watchtowers, c.f Section 3.3.1) to

ensure correct termination if messages are not delivered within a pre-defined period.

3.3. The CCC Design Framework 69

3.3.3 Abort Phase

The abort of a CCC protocol is optional and is encountered typically in exchange protocols.

Most other CCC protocols assume that once a commit is executed on X, no abort will be

necessary.

Model 1: Trusted Third Party (Coordinators) Similar to the commit phase, an abort

can be handled by a trusted third party and the possible implementations are the same as in

Section 3.3.1. If a TTP was introduced in the commit phase, the abort phase will be typically

handled by the exact same TTP.

Model 2: Synchrony Assumptions (Timelocks) Alternatively, it is possible to enforce

synchrony by introducing timelocks, which abort the protocol after expiry. Specifically, to

ensure that assets are not locked up indefinitely in case of a crash failure of a participant or

misbehavior of a TTP entrusted with the commit step, all commit techniques can be comple-

mented with timelocks : after the expiry of the timelock, assets are returned to their original

owner. We differentiate between two types of timelocks:

• Absolute timelocks, where a transaction becomes valid only after a certain point in time,

defined by a timestamp or a block (ledger at index i, L[i]) located in the future.

• Relative timelocks, where a transaction tx2 becomes valid only after a given time value or

number of confirmations [bit18] have elapsed since the inclusion of another transaction tx1 in

the underlying ledger. Typically, tx1 and tx2 are related as tx2 spends assets transferred in

tx1 [PD16]. Although more practical than absolute timelocks (no need for external clock), we

are not aware of schemes allowing the creation of relative timelocks across ledgers.

Model 3: Hybrid (Watchtowers) As an additional measure of security, TTPs can be intro-

duced as a fallback to timelocks in case CCC participants experience crash failures, e.g. in form

of a watchtower [KNW19, ALS+18, MBB+18, AKW19] that recovers otherwise potentially lost

assets. This is specifically useful in the case of atomic swaps using Hashed Timelock Contracts

(HTLCs) [Bit13, Her18, Bit21a, PD16], when either party crashes after the hashlock’s secret

has been revealed.

70
C

h
ap

ter
3.

C
ross-C

h
ain

C
om

m
u
n
ication

:
F

orm
alization

,
Im

p
ossib

ility,
A

n
aly

sis

Table 3.2: Classification of existing of Cross-Chain Communication protocols, in consideration of the selected TTP model (cf. Section 3.3)
at each protocol step (commit, verify, abort). Notation for non-binary TTP values: uses a TTP, # fully relies on synchrony and
availability of participants, H# hybrid. We also highlight if the TTP (committee) is static or changes dynamically, and whether collateral
is utilzed to incentivize correct behavior of TTPs. We use the following abbreviations: EC for External Custodian, CC for Consensus
Custodian, EE for External Escrow, SC for Smart Contract, EV for External Validator, CM for Consensus Committee, and DO for
Direct Observation.

Protocol

Trust Model at each CCC Protocol Phase

Commit on chain X Verify & Commit on chain Y Abort on chain X (optinal)

TTP Dynamic? Collateral? Type TTP Type TTP Type

E
x
ch

a
n

g
e

P
ro

to
co

ls

(A
to

m
ic

S
w
a
p
s)

Traditional Custodial Exchanges (e.g., [Bin22, BJZ+17]) 7 7 EC (single, restricted) EV EC (single, restricted)

A2L [TMSM19] H# 7 3 EE (multisig + signature Lock) # DO H# EE + Timelock

Arwen [HLG19] H# 7 7 EE (multisig + Hash Lock) # DO H# EE + Timelock

Notarized HTLC Atomic Swaps [TS15] # - - Hash Lock EV H# EE + Timelock

HTLC Atomic Swaps [Bit13, Her18, Tie13, TS15] # - - Hash Lock # DO # Timelock

ECDSA/DLSAG Atomic Swaps [MMSS+18, MSRL+19] # - - Signature Lock # DO # Timelock

SPV Atomic Swaps [eth15, KZ18, ZHL+19, HLS19] # - - Standard payment # SC(chain relay) # Timelock

M
ig

ra
ti

o
n

P
ro

to
co

ls

C
r
y
p
t
o
c
u
r
r
e
n
c
y
-

b
a
c
k
e
d

A
s
s
e
t
s

(Bidirectional) Chain Relays [KZ18, GKZ19b] # - - SC # SC (chain relay) - -

XCLAIM [ZHL+19], Dogethereum [TSB19] 3 3 EC (single, unrestricted) # SC (chain relay) -? -

tBTC [Kee19] 7 3 EC (committee, restricted) # SC (chain relay) -? -

Custodial Wrapped Assets (e.g., [Kyb19b, Ren20, Pto20]) 7 7 EC (single, restricted) EV EC (single, restricted)

S
id

e
-

c
h
a
in

s Federated Sidechains/Pegs [BCD+14, DPW+16, GKZ19b] 7 7 EC (consensus of Y) CM -? -

RSK [Ler15, Ler18] 7 7 EC (consensus of Y) CM -? -

S
h
a
r
d
in

g

ATOMIX[KKJG+18],SBAC[ABSB+18], Fabric Channels[ACDCKK18] 7 7 CC (shard X) CM CC (shard X)

Rapidchain [ZMR18] 7 7 CC (shard X) CM -? -

XCMP [BCC+20] 7 7 EC (parent consensus) CM -? -

B
o
o
t-

st
r
a
p
p
in

g

Proof-of-Burn (Federated) [Ste12, KKZ20] # - - SC / Burn address CM - -

Proof-of-Burn (SPV) [KKZ20] # - - SC / Burn address # SC (chain relay) - -

Merged Mining/Staking [JZS+17, GKZ19b] 7 7 CC (consensus of X) CM - -

? While not explicitly considered by the protocol, the TTP used for the commitment on X can, at its discretion, abort the CCC protocol manually/out-of-band in case of failure on Y .

3.4. Classification of Existing CCC Protocols 71

3.4 Classification of Existing CCC Protocols

We now apply the CCC Design Framework introduced in Section 3.3 to classify existing CCC

protocols. All CCC protocols observed in practice follow the Generic CCC Protocol model

(cf. Section 3.1.5). For each protocol, we hence study and reason about the trust model (TTP,

synchrony, hybrid) selected for each phase of the CCC process, and summarize our classification

in Table 3.2.

In addition to applying the CCC Design Framework, we split existing proposals into two protocol

families, based on their design rationale and use case, which has direct implications on the design

choices: (i) exchange protocols, which synchronize the exchange of assets across two ledgers

(Section 3.4.1), and (ii) asset migration protocols, which allow moving an asset or object to a

different ledger (Section 3.4.2).

3.4.1 Exchange Protocols

Exchange protocols synchronize an atomic exchange of digital goods: x on chain X against y

on Y . In practice, such protocols implement a two-phase commit mechanism, where parties

first pre-commit to the exchange and can explicitly abort the protocol in case of disagreement

or failure during the commit step.

(Pre-)Commit. Trivially, the commit phase can be handled by External Custodians: tradi-

tional, centralized exchanges require to deposit (commit) assets with a TTP before trading.

The longest-standing alternative to centralized solutions are atomic swaps via symmetric locks

which rely on synchrony and cryptographic hardness assumptions. Counterparties P and Q

lock (pre-commit) assets in on-chain contracts with identical release conditions on X and Y :

spending from one lock releases the other, ensuring Atomicity of CCC. The first and most

adopted implementation of symmetric locks are hashed timelock contracts (HTLCs) [Tie13,

Bit13, Her18, TS15], where the same secret (selected by P) is used as a pre-image to identical

Hash Locks on X and Y . To improve cross-platform compatibility, Hash Locks, which require

72 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

both chains to support (the same) hash functions, can be replaced with Signature Locks e.g.,

using ECDSA [MMSS+18] or group/ring signature schemes [MSRL+19].

On blockchains that support (near) Turing complete programming languages (e.g., Ethereum

[But14]) the commitment on X can exhibit more complex locking conditions via smart con-

tracts. In SPV atomic swaps [eth15, KZ18, ZHL+19, HLS19], assets of a party P are locked

in a smart contract on X which is capable of verifying the state of chain Y (chain relay, cf.

Section 3.3.2) - and unlocked only if counterparty Q submits a correct proof for the expected

payment (commitment) on Y . The smart contract can be further extended to support collater-

alization and penalties for misbehaving counterparties (e.g., to mitigate optionally and improve

fairness [HLY19, ZHL+19]).

Both symmetric and SPV atomic swaps suffer from usability challenges impeding adoption:

they require users to be online and execute commitments in a timely manner to avoid financial

damage (built-in abort mechanisms will be discussed later). Hybrid protocols seek to combine

symmetric locks with TTP models to mitigate usability issues while avoiding full trust in a

central provider. In Arwen [HLG19], parties P and Q commit to-be-exchanged assets into

on-chain multisignature contracts on X and Y , establishing shared custody with an External

Escrow (EE). Trades are executed similar to HTLC swaps, yet utilize the escrow to ensure

correct and timely execution. A2L [TMSM19] follows a similar multisignature setup but utilizes

adaptor signatures [AEE+20] to ensure Atomicity of trades: the escrow only forwards P ’s assets

to Q if Q solves a cryptographic challenge, for which Q needs the help of P . Both Arwen and

A2L require a complex on-chain setup process (similar to payment channels [PD16]) and rely on

pre-paid fees (Arwen) or collateral (A2L) to protect the escrow from griefing attacks [CCLM09]

- yielding them inefficient for one-time exchanges.

Verify. Contrary to traditional exchanges, where the custodial (operator) is also responsible

for the verification phase, symmetric atomic swap protocols (including Arwen and A2L) require

users to directly observe all chains involved in the CCC to verify the correct execution of the

(pre-) commit phase. Notarized atomic swaps (e.g., as in InterLedger [TS15]) remove the

online requirement for users by entrusting an External Validator (EV) e.g., a set of notaries,

3.4. Classification of Existing CCC Protocols 73

with the verification of (and timely reaction to) the commitment on X- at the risk of the EV

colluding with the counterparty to commit theft. A more robust approach, implemented in

SPV atomic swaps, is the use of chain relays : the verification of the commit on X and the

correct finalization of the CCC protocol (commit on Y) is executed by a smart contract on Y ,

enforced by the consensus of Y .

Abort. Exchange CCC protocols typically add timelocks to the release conditions of the com-

mitments of X and Y to ensure an automatic abort of the CCC protocol after a pre-defined

delay. This is to prevent indefinite lock-up of assets, should a party crash or misbehave. How-

ever, CCC protocols implementing timelocks impose strict online requirements on participants

and expose them to race conditions. The initiator P of e.g., an HTLC swap can defraud coun-

terparty Q by recovering assets on X if they remain unclaimed upon expiry of the timelock (e.g.,

if Q crashed). Some protocols, including A2L and Arwen, partially outsource this responsibility

to TTPs [HLG19, TMSM19].

3.4.2 Asset Migration Protocols

Asset migration protocols temporarily or permanently move digital goods from one blockchain

to another. Typically, this is achieved by obtaining a “write lock” on an asset x on chain X,

preventing any further updates to x on chain X, and consequently creating a representation

y(x) on Y . The state of x can only be updated by modifying its “wrapped” version y(x) on

Y – comparable to the concept of mutual exclusion in concurrency control [Dij01]. The state

changes of y(x) will typically be reflected back to chain X by locking or destroying (“burning”)

y(x) and applying the updates to x when it is unlocked.

Migration protocols only require to execute CCC synchronization acrossX and Y twice: creating

and destroying y(x). The “wrapped” representation y(x) typically exhibits the same properties

as “native” assets y, allowing seamless integration with applications on Y . For comparison,

Exchange protocols require to set up and execute CCC for each trade. The main drawback of

Migration protocols is the requirement of giving up custody over x, in the majority of cases to

a TTP (cf. Table 3.2).

74 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

In practice, we identify four main use cases for Migration protocols: (i) cryptocurrency-backed

assets used for transfers across heterogeneous blockchains (e.g., “wrapped” Bitcoin on Ethereum),

(ii) communication across homogeneous chains (shards) in sharded blockchains, (iii) sidechains

where a child chain is “pegged” to a parent for feature extensions, and (iv) bootstrapping of

new block-chains using existing systems.

(Pre-)Commit. The simplest implementation of a Migration protocol (e.g., for cryptocurrency-

backed assets) relies on a single, static TTP which receives unrestricted custody over the to-be-

migrated assets during the commit phase (External Custodian) – for example, as implemented

by wBTC [Kyb19b], a custodial platform for migrating Bitcoin to Ethereum.

Instead of relying on a single TTP, most CCC rely on a TTP committee to improve robustness

against failures. Protocols connecting heterogeneous blockchains via cryptocurrency-backed

assets, notably tBTC [Kee19], utilize a set of External Custodians (EC). In the tBTC protocol,

currently deployed between Bitcoin and Ethereum, ECs construct a jointly controlled deposit

public key on X via (ECDSA) threshold signatures [GGN16], to which users send (commit)

to-be-migrated assets. The ECs must thereby lock up collateral on Y which is used to reimburse

users in case the EC committee commits theft or crashes. At the time of writing, the imple-

mented threshold signature scheme does not support fault attribution, i.e., it is impossible to

distinguish between honest and malicious committee members when slashing collateral, requir-

ing the EC set to be static and restricted. RenVM [Ren20] aims to replace threshold signatures

with distributed key generation via secure multi-party computation [Gol98] but implements a

centralized approach at the time of writing.

Sidechains [BCD+14, DPW+16, GKZ19b] establish a parent-child relationship between X and

Y : the consensus committee of X (Consensus Custodian, CC) or Y (External Custodian, EC)

is responsible for handling the correct deposit (commit) of x on X. In practice, implemen-

tations follow a similar approach to the heterogeneous setting: users deposit assets x to a

public key with shared control among committee members, implemented e.g., via threshold

/ multisignature [IN83] schemes. Liquid [BCD+14, DPW+16], which coined the “sidechain”

terminology, maintains an 11-of-15 multisignature, controlled by its consensus participants, to

3.4. Classification of Existing CCC Protocols 75

migrate (lock/unlock) Bitcoin to and from the Liquid blockchain. RSK [Ler15, Ler18], a merge-

mined [JZS+17] Bitcoin sidechain, currently follows the same approach as Liquid but envisions

a Bitcoin protocol upgrade enabling miners to vote on migrating assets to RSK.

Similarly, sharded blockchains, which consist of a set of homogeneous shard-chains with a homo-

geneous, shared security model, utilize the consensus committee(s) available within the system

for securing cross-shard migrations. While often considered as a separate topic in research,

sharded blockchains exhibit built-in CCC protocols [AKKW19]: Migrated assets x are locked

with the consensus of X (Consensus Custodian, CC) during the commit phase. A novelty com-

pared to heterogeneous systems is the explicit consideration of n-to-m CCC protocols, such as

ATOMIX [KKJG+18], SBAC [ABSB+18], and Fabric Channels [ACDCKK18], which require

an explicit abort step as part of the two-phase commit design.

Recently, a new family of protocols following a permissionless design was introduced. XCLAIM

[ZHL+19] and Dogethereum [TSB19] allow anyone to become a TTP and accept deposits (com-

mits) of x on X, establishing a dynamic and unrestricted set of coordinators (External Custo-

dians, ECs). The only requirement for registering as an EC is to lock collateral y on Y – the

amount of y locked thereby determines the amount of x deposits (and hence minted y(x)) an EC

can accept. While Dogethereum assumes a constant exchange rate between migrated x (equiv.

y(x)) and collateral asset y, XCLAIM utilizes a multi-stage over-collateralization scheme to re-

balance the economic value of committed x and locked collateral y. To enable ECs to join and

leave the system at any point in time, XCLAIM implements a replacement/auction mechanism

via cross-chain SPV atomic swaps, where collateral y can be exchanged for committed x held

in custody.

In cases where X and Y support smart contracts, specifically chain relays, bidirectional chain

relays [KZ18, GKZ19b] can be utilized, enabling non-custodial commitments on X and Y :

locking of x and unlocking/minting of y(x) is handled exclusively by smart contracts under the

assumption of synchrony.

Proof-of-Burn [Ste12, KKZ20] follows a similar design, yet implements a unidirectional protocol:

instead of being locked, x is provably destroyed (“burned”), and newly minted as y(x) on Y . As

76 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

such, Proof-of-Burn is mostly used for bootstrapping new blockchains. Merged mining [JZS+17]

was the first CCC protocol deployed in practice (2011 in Namecoin) and is used explicitly for

bootstrapping purposes. Miners (stakers) of X can reuse PoW solutions (stake) to progress

consensus on Y by including a commitment to Y ’s state in the ledger of X.

Verify. Asset migration protocols - with the exception of centralized, custodial services - rely on

the consensus of chain Y to correctly verify the commitment on X. We observe two main imple-

mentation techniques: (i) under synchrony assumptions by using chain relay smart contracts,

which cryptographically verify the correctness of the commitment on X, or (ii) by requesting

the consensus committee of Y to explicitly sign off on the CCC execution. XCMP [BCC+20],

a cross-shard protocol, adds an additional verification step: cross-shard transfers are verified

by and included in a hierarchically “superior” parent chain – which in turn is verified by the

target shard Y before commitment.

Abort. We observe that Asset migration protocols generally do not implement an explicit

abort phase. Instead, they assume that if the commitment on X is executed correctly it will

eventually be verified by chain Y , which in turn will result in a correct commitment on Y . An

exception hereof are n-to-m transfers in sharded blockchains (e.g., ATOMIX [KKJG+18] and

SBAC [ABSB+18]) which require an explicit abort phase. Such transfers follow a two-phase-

commit protocol: assets on all source shards X1, ..., Xn are pre-committed and verified on all

target shards Y1, ..., Yn, which in turn execute a pre-commitment. If a single target shard fails

to reply with a pre-commitment (within some period), the CCC protocol is aborted on all other

source and target shards.

3.4.3 Insights and General Observations

An interesting, yet expected insight is that performance and usability outweigh security con-

siderations from a user’s perspective. Decentralized and non-custodial CCC solutions have been

proposed as early as 2013 (symmetric swaps [Tie13]) and 2015 (SPV swaps [eth15]), yet cen-

tralized providers remain the dominant cross-chain asset exchange facilitator. The recent rise

of decentralized exchanges, which mostly operate within a single chain [Coi19], has boosted the

3.5. CCC Challenges and Outlook 77

adoption of cryptocurrency-backed assets, although predominantly via custodial approaches: at

the time of writing, 99% of “wrapped” Bitcoin on Ethereum has been issued through trusted,

custodial services [Pul22a].

Decentralized CCC protocols still suffer from practical drawbacks hindering adoption. Symmet-

ric atomic swaps impose strict online requirements on users. SPV atomic swaps, and similarly

migration protocols such as XCLAIM and tBTC, make use of chain relays which are only fea-

sible if Y supports smart contracts and the cryptographic primitives used in X. Orthogonal,

collateralization, which allows to protect users from financial damage (cf. Section 3.2), in-

curs high capital requirements and opportunity cost – leading most users to resort to trusted,

centralized solutions.

An interesting observation hereby is that sharded systems and sidechains do not necessarily

benefit from decentralized CCC protocols. In fact, due to the homogeneous nature of the security

models of X and Y in this setting, the use of the consensus committee(s) of X or Y as TTP for

CCC does not introduce any additional (external) trust assumptions to the underlying systems.

3.5 CCC Challenges and Outlook

In this section, we provide an outlook on the (open) problems faced by CCC protocols and

interesting avenues for future work.

3.5.1 Heterogeneous Models and Parameters Across Chains

Problems. Different blockchains leverage different system models and parameterizations,

which, if not handled correctly by CCC protocols, can lead to protocol failures. For instance,

the absence of a global clock across chains requires CCC participants to either agree on a trusted

third party as means of synchronization or to rely on a chain-dependent time definition (e.g.,

block generation rates [GKL16]) which are often non-deterministic and hence unsafe for strictly

78 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

time-bound protocols [GKL16, ZHL+19]. A practical example hereof are race-condition attacks

on symmetric exchange protocols such as HTLC atomic swaps, discussed in Section 3.4.

Another consideration are the security models of interconnected chains: while X and Y may

exhibit well-defined security models, these are typically independent and not easily comparable

(with the exception of sharding) – especially when combined within a CCC protocol. For

instance, X may rely on PoW and thus assume that adversarial hash rate is bounded by

α ≤ 33% [ES14, GKW+16, SSZ15]. On the other hand, Y may utilize PoS for consensus and

similarly assume that the adversary’s stake in the system is bound by β ≤ 33%. While similar

at first glance, the cost of accumulating stake [GKR18, FKO+18] may be lower than that of

accumulating computational power, or vice-versa [Bon16]. Since permissionless ledgers are not

Sybil resistant [Dou02], i.e., provide weak identities at best, quantifying adversary strength

is challenging even within a single ledger [AKWW19]. This task becomes nearly impossible

in the cross-chain setting: not only can consensus participants (i) “hop” between different

chains [MCJ17, KKSK19], destabilizing involved systems, but also (ii) be susceptible to bribing

attacks executed cross-chain, against which there currently exist no countermeasures [MHM18,

JSZ+19].

Following from different security models, the lack of homogeneous finality guarantees [SKK20]

across blockchains poses another challenge for CCC. Consider the following: X accepts a trans-

action as valid when confirmed by k subsequent blocks e.g., as in PoW blockchains [GKL16]; in-

stead, Y deems transactions valid as soon as they are written to the ledger (k = 1, e.g. [AGM18]).

A CCC protocol triggers a state transition on Y conditioned on a transaction included in X,

however, later an (accidental) fork occurs on X. While the state of X is reverted, this may not

be possible on Y according to consensus rules – likely resulting in an inconsistent state on Y

and financial damage to users.

Outlook. Considering the plethora of blockchain designs in practice, it is safe to assume a

heterogeneous ecosystem for at least the near future. Protocol designers must hence carefully

evaluate and consider the specifics of each interlinked chain when implementing CCC schemes:

introduction of conservative lower bounds on transaction (commit) finality (hours/days rather

3.5. CCC Challenges and Outlook 79

than minutes), analysis of computation and communication capabilities of consensus partici-

pants, and accounting for peer-to-peer network delays when utilizing a trusted third party as

a global clock.

3.5.2 Heterogeneous Cryptographic Primitives Across Chains

Problems. Interconnected chains X and Y may rely on different cryptographic schemes or

different instances of the same scheme. CCC protocols, however, often require compatible

cryptographic primitives: a CCC protocol between a system X using ECDSA [JMV01] as its

digital signature scheme and a system Y using Schnorr [Sch91] is only seamlessly possible if

both schemes are instantiated over the same elliptic curve [MMSS+18]. This is one of the

reasons Ethereum uses the same secp256k1 curve as Bitcoin [But20].

Similarly, CCC protocols using Hash Locks, e.g. HTLC swaps, require that the domain of the

hash function has the same size in both X and Y – otherwise, the protocol is prone to oversize

preimage attacks [Ja19], i.e., an attack where a transaction cannot be accepted by a chain

because the representation of the preimage requires more bits than those previously allocated

to store it.

Outlook. A design challenge in CCC protocols is thus the interoperability of chains in terms

of (cryptographic) primitives as required in CCC protocols. In cases where interlinked chains

implement different elliptic curves, zero-knowledge proofs may provide a workaround, yet at the

cost of increased protocol complexity, as well as computation and communication costs [Noe20].

Our observations suggest that this is one of the main reasons for the lack of interoperability

across current blockchain networks.

3.5.3 Collateralization and Exchange Rates

Problems. In recent works [ZHL+19, TSB19, KZ18, Kee19], we observe a trend towards

collateralizing coordinators to prevent financial damage to users and incentivize correct behavior

80 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

of TTPs. Thereby, it is crucial to ensure that the provided collateral has sufficient value

to outweigh potential gains from misbehavior. However, in the cross-chain setting, where

insured assets and collateral are typically different, collateralized CCC protocols are forced to (i)

implement measures against exchange rate fluctuations such as over-collateralization incurring

capital inefficiencies for participants, and (ii) rely on (typically centralized) price oracles.

Outlook. Current CCC protocols, if at all, only provide minimal protection against exchange

rate fluctuations, such as over-collateralization. An interesting avenue for future research is

hence the design of dynamic collateralization e.g., based on the volatility of the locked/collateral

assets. Decentralized price oracles already are an active field of research [RWG+18, ABV+18,

TE17, EJS17, ZMM+19], yet as of this writing, oracles remain single points of failure in col-

lateralized CCC protocols. Cryptocurrency-backed assets traded on decentralized exchanges,

where trading data is available on-chain, may thereby provide a valuable source of information

for cross-verification with centralized providers [ZHL+19].

3.5.4 Lack of Formal Security Analysis

Problems. While numerous CCC protocols have been deployed and used in practice, handling

value transfers worth millions, most lack formal and rigorous security analysis. This lack of for-

mal security guarantees opens the door to possible security threats. For instance, replay attacks

on state verification, i.e., where proofs are re-submitted multiple times or on multiple chains,

can result in failures such as double spending [MHM17] or counterfeited cryptocurrency-backed

assets [ZHL+19]. Another security issue arises with data availability. Protocols employing

cross-chain verification via chain relays typically rely on the timely arrival of proofs and meta-

data (block headers, transactions, ...). However, if an adversary can withhold this data from the

verifying chain [ASB18], such protocols not only become less efficient but potentially vulnerable

to double-spending and counterfeiting.

Outlook. This state of affairs calls for a rigorous and formal security analysis of existing CCC

protocol – least those deployed in practice. In the meantime, ad-hoc solutions to the afore-

mentioned security threats have been discussed in the community. For instance, protections

3.5. CCC Challenges and Outlook 81

against replay attacks involving the use of sequence numbers, or chains keeping track of previ-

ously processed proofs [MHM17, SBABD19, But18]. Similarly, first attempts to mitigate the

data availability problem via erasure coding have been suggested in [ASB18, AB19, YSL+19] –

yet at the cost of protocol complexity and communication overhead.

3.5.5 Lack of Formal Privacy Analysis.

Problems. Privacy is a crucial property of financial transactions and hence applies to CCC

protocols. Ideally, it should not be possible for an observer to determine which two events

have been synchronized across chains (e.g., which assets have been exchanged and by whom).

Unfortunately, CCC protocols deployed in practice lack formal privacy analysis, and numerous

privacy issues have already been detected. For instance, existing works [MMK+17, GM16]

leverage the fact that the same hash value is used on both chains involved in symmetric HTLC

atomic swaps to trivially link exchanged assets and accounts. Other de-anonymization tech-

niques enabled by CCC protocols include miner address clustering via blocks merge-mined

across different cryptocurrencies [JZS+17], cross-linking of miner and user accounts cross-chain

by analyzing blockchain forks [HH18, SSJ+19], and using public exchange datasets to trace

cross-ledger trades [YKM19].

Outlook. The academic community has developed formal frameworks that permit rigor-

ous analysis of the privacy properties in the context of exchange protocols [GM16, HAB+16,

TMSM19, MMK+17, MMSS+18]. First techniques towards privacy-preserving CCC Exchange

protocols via asymmetric and unlinkable locking techniques have been studied in [MMK+17,

MMSS+18, RNS14, DH20], yet, at the time of writing, we are not aware of privacy enhancements

for the more-widely adopted Migration protocols – an interesting avenue for future research.

82 Chapter 3. Cross-Chain Communication: Formalization, Impossibility, Analysis

3.6 Conclusion

Our systematic analysis of cross-chain communication as a new problem in the era of dis-

tributed ledgers allows us to relate (mostly) community-driven efforts to established academic

research in database- and distributed systems research. We formalized the cross-chain com-

munication problem and show it cannot be solved without a trusted third party – contrary to

the assumptions often made in the blockchain community. Following this result, we introduced

a framework for evaluating existing and designing new cross-chain communication protocols,

based on the inherent trust assumptions thereof. We then provide classification and compar-

ative evaluation, taking into account both academic research and the vast number of online

resources, allowing us to better understand the similarities and differences between existing

cross-chain communication approaches. Finally, by discussing implications and open challenges

faced by cross-chain communication protocols, as well as the implications of interoperability

on the security and privacy of blockchains, we offered a comprehensive guide for designing

protocols, bridging multiple distributed ledgers.

Chapter 4

XCLAIM: Trustless, Interoperable

Cryptocurrency-backed Assets

Blockchain-based cryptocurrencies enable secure and trustless transactions between parties. As

a result, they have gained widespread adoption and popularity in recent years; there are cur-

rently over 12 000 different cryptocurrencies in operation, with a total market cap of USD 1.7

trillion [Coi22]. However, despite a growing and thriving ecosystem, cryptocurrencies continue

to operate in complete isolation from one another: blockchain protocols provide no means by

which to communicate or exchange data with external systems. Hence, achieving interoperabil-

ity between blockchains remains an open challenge.

Centralized exchanges thus remain the preferred route to execute fund transfers and exchanges

across blockchains. However, these services require trust and therefore undermine the very na-

ture of the cryptocurrencies on which they operate, making them vulnerable to attacks [Moo13,

Bal, Pag14, ABC16]. To overcome this, decentralized exchanges [Aur19, Eth22a, WB17, Air22,

Kyb22] (DEXs) have recently emerged, removing the need to trust centralized intermediaries

for blockchain transfers. However, the vast majority of DEXs only enable the exchange of

cryptocurrency-assets within a single blockchain, i.e., they do not operate across blockchains

(cross-chain). As such, it is only a handful of platforms [Kom19, Dec17] that actually support

cross-chain exchanges through the use of atomic cross-chain swaps (ACCS) [Tie16, Bit20a,

83

84 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

BCD+14, Her18].

ACCS enable secure cross-chain exchanges, e.g. using hashed timelock contracts (HTLCs) [Bit21a,

Chr15]. At present, they are the only mechanism to do this without necessitating trust. Un-

fortunately, they require several strong assumptions to maintain security, thus limiting their

practicality: they are interactive, requiring all parties to be online and actively monitor all

involved blockchains during execution; they require synchronizing clocks between blockchains

and rely on pre-established secure out-of-band communication channels. In addition, they also

incur long waiting periods between transfers and suffer the limitation that for every cross-chain

swap, four transactions need to occur, two on each blockchain. This makes them expensive,

slow, and inefficient.

We therefore present Xclaim (pronounced cross-claim): the first generic framework for achiev-

ing trustless cross-chain exchanges using cryptocurrency-backed assets. In Xclaim, blockchain-

based assets can be securely constructed and one-to-one backed by other cryptocurrencies, for

example, Bitcoin-backed tokens on Ethereum. Through the secure issuance, swapping, and

redemption of these assets, users can perform cross-chain exchanges in a trustless and non-

interactive manner, overcoming the limitations of existing solutions.

To achieve this, Xclaim exploits publicly verifiable smart contracts to remove the need for

trusted intermediaries and leverages chain relays [But16, Con17a, KZ19, BCD+14] for cross-

chain state verification. Using these building blocks, Xclaim constructs a publicly verifiable

audit log of user actions on both blockchains and employs collateralization and punishments to

enforce the correct behavior of participants. Thereby, Xclaim follows a proof-or-punishment

approach, i.e., participants must proactively prove adherence to system rules.

Due to its simple and efficient design, Xclaim enables several novel applications, such as

(i) smart contract and application access for legacy cryptocurrencies, (ii) cross-chain payment

channels, where users can exchange payments off-chain across different blockchains in a trust-

less manner; (iii) temporary transaction offloading, where users temporarily tokenize their cryp-

tocurrency on other blockchains to overcome network congestion and high fees; and (iv) N-way

and multi-party atomic swaps allowing efficient and complex atomic swaps. Finally, as Xclaim

85

maintains compatibility with existing standardized asset interfaces [VB15, Dex17], the issued

assets are tradeable via existing decentralized exchanges, enabling these exchanges to operate

cross-blockchain.

Contribution

In summary, the contributions of this chapter are the following:

• We define the notion of cryptocurrency-backed assets for blockchains and formulate goals

for security and functionality (Section 4.1). We then present Xclaim, a practical and

secure system to construct cryptocurrency-backed assets without trusted intermediaries

(Section 4.2-4.3).

• We provide a formal protocol specification for Xclaim and analyze in detail the re-

quirements for the underlying blockchains (Section 4.4). While the blockchain used to

issue cryptocurrency-backed assets must support smart contracts, Xclaim requires only

base-ledger functionality on the backing side, supporting practically all cryptocurrencies.

• We implement Xclaim(btc,eth), to the best of our knowledge, the first system for trust-

lessly issuing, transferring, swapping, and redeeming Bitcoin-backed tokens on Ethereum

(Section 4.6). In our prototype, it costs USD 0.47 to issue, USD 0.04 to transfer, USD

0.19 to atomically swap, and USD 0.49 to redeem any given amount of cross-chain to-

kens5. We compare performance and costs to HTLC atomic swaps and show Xclaim is

95.7% faster and 65.4% cheaper for 1000 swaps.

• Finally, we present and describe several novel applications enabled exclusively by Xclaim,

such as cross-chain payment channels and efficient N-way and multi-party atomic swaps

(Section 4.7).

5According to exchange rates as of 30 November 2018.

86 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

4.1 System Overview

In this section, we first define cryptocurrency-backed assets. We then present the system model

and actors in Xclaim, as well as the network and threat models. Finally, we present Xclaim’s

system goals.

4.1.1 Cryptocurrency-backed Assets (CbA)

Definition. We define cryptocurrency-backed assets (CbAs) as assets deployed on top of a

blockchain I that are backed by a cryptocurrency on blockchain B. We denote assets in I as i

and cryptocurrency on B as b. We use i(b) to further denote when an asset on I is backed by

b.

We extend the definition of assets by Androulaki et al. [ACDCKK18] and describe a CbA

through the following fields:

• issuing blockchain, the blockchain I on which the CbA i(b) is issued.

• backing blockchain, the blockchain B that backs i(b) using cryptocurrency b.

• asset value, the units of the backing cryptocurrency b used to generate the asset i(b).

• asset redeemability, whether or not i(b) can be redeemed on B for b.

• asset owner, the current owner of i(b) on I.

• asset fungibility, whether or not units of i(b) are interchangeable.

We define a CbA as symmetric if the total amount of backing units b is equivalent to the total

amount of issued units i(b), i.e., |b| = |i(b)|, and as asymmetric if the CbA exhibits an alternate

backing rate, i.e., |b| 6= |i(b)|. In Xclaim, we restrict CbAs to be symmetric cryptocurrency-

backed assets. Moreover, CbAs can be divided and merged back together as necessary. We

defer the analysis of alternate CbAs, such as asymmetric and non-fungible CbAs, to future

work.

4.1. System Overview 87

4.1.2 System Model and Actors

Xclaim operates between a backing blockchain B of cryptocurrency b and an issuing blockchain

I with underlying CbA i(b). To operate CbAs, Xclaim further differentiates between the

following actors in the system:

• CbA Requester. Locks b on B to request i(b) on I.

• CbA Sender. Owns i(b) and transfers ownership to another user on I.

• CbA Receiver. Receives and is assigned ownership over i(b) on I.

• CbA Redeemer. Destroys i(b) on I to request the corresponding amount of b on B.

• CbA Backing Vault (vault). A (non-trusted) intermediary liable for fulfilling redeem

requests of i(b) for b on B.

• Issuing Smart Contract (iSC). A public smart contract responsible for managing the

correct issuing and exchange of i(b) on I. The iSC ensures the correct behavior of the

vault .

To perform these roles in Xclaim, actors are identified on a blockchain using their pub-

lic/private key pairs. As a result, the creator , redeemer , and vault must maintain key pairs for

both blockchains B and I. The sender and receiver only need to maintain key pairs for the

issuing blockchain I. iSC exists as a publicly verifiable smart contract on I.

4.1.3 Distributed Ledger Model

We use the terms distributed ledger and blockchain as synonyms and adapt the distributed

ledger model based on [ZABZ+19, GKL15], and as introduced in Section 3.1.2.

We consider two distributed systems B and I that each consist of a set of participants and

employ a consensus protocol to agree on a sequence of transactions. We assume the security

88 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

model (threat, network, and cryptographic assumptions) of the consensus protocol holds: the

fraction of consensus participants f or computational power α corrupted by an adversary is

bounded by the threshold necessary to ensure the security of the consensus protocol. For

Proof-of-Work blockchains, we therefore assume α ≤ 33% [ES14, GKW+16, SSZ15].

In this work, we only consider distributed systems that maintain robust transaction ledgers [GKL15],

meaning they satisfy persistence and liveness with high probability to the security parameters.

We refer to Section 3.1.2 for a detailed discussion of assumptions and notation.

4.1.4 Network Model

For the underlying network, we make the same assumptions as in prior work [KRDO17],

[KKJG+18], namely that (i) honest nodes are well connected and (ii) communication channels

between these nodes are (semi-)synchronous, i.e., messages sent between honest participants

will be received within a known maximum delay ∆ (∆B for B and ∆I for I). For simplicity,

we assume the liveness delay parameter u is hidden in ∆. Additionally, we assume that all

participants are aware of the smart contract iSC, and hence of the values publicly stored in it.

4.1.5 Threat model

We assume that the cryptographic primitives ofB and I are secure and that adversaries are com-

putationally bounded. Adversaries are fully adaptive, i.e, can freely choose controlled/corrupted

participants for each time window. Adversaries may also perform arbitrary actions to maxi-

mize their economic value, such as delay or withholding transactions on protocol-level, reading

unconfirmed transactions in the network, and performing Sybil attacks. Note that under these

assumptions (and the persistence and liveness properties of I) the adversary cannot tamper

with the correct execution of the smart contract iSC.

To keep track of and react to exchange rate fluctuations between i and b, we assume an oracle

O provides the iSC with the exchange rate ε(i, b) ∈ R≥0. We further assume that there exists a

4.1. System Overview 89

lower bound Ω(ε(i, b)) for the exchange rate of i to b, below which adhering to protocol rules no

longer represents the equilibrium strategy of rational adversaries [Nas51, NRTV07]. Therefore,

in case of extreme devaluation of i relative to b, we assume a delay ∆Ω(ε(i,b)) before this lower

bound is reached such that ∆Ω(ε(i,b)) < ∆I , i.e., an honest user can include a transaction in I

before ε(i, b) drops below Ω(ε(i, b)).

4.1.6 System Goals

Under the blockchain, network, and threat models specified above, in Sections 4.1.2-4.1.5, we

derive the following desirable security properties for Xclaim with regards to CbAs:

• Auditability. Any user with read-access to blockchains B and I can audit the operation

of Xclaim and detect protocol failures.

• Consistency. No CbA units i(b) can be issued without the equivalent amount of backing

currency b being locked, i.e., that |b| = |i(b)|.

• Redeemability. Any user can redeem CbAs i(b) for backing currency b on B, or be

reimbursed with equivalent economic value on I.

• Liveness. Any user in Xclaim can issue, transfer and swap CbAs without requiring a

third party, i.e., liveness relies only on the secure operation of B and I.

• Atomic Swaps. Users can atomically swap Xclaim CbAs against other assets on I or

the native currency i.

Furthermore, we derive the following desirable functional properties for Xclaim:

• Scale-out. The total amount of CbAs available for circulation increases with the total

amount6 of backing currency locked up in blockchain B. Any user can contribute to this

amount by assuming the role of the vault .

6Specifically, locked collateral. To become a vault , a user must provide at a pre-defined minimal amount of
collateral in i; cf. Section 4.3.5.

90 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

• Compatibility. Xclaim does not rely on a single cryptocurrency implementation with

a set of specific features. Instead, it allows issuing assets i(b) on any blockchain I that

supports smart contracts7, backed by any blockchain B that supports only basic fund

transfers between parties. This enables Xclaim to maintain backward compatibility

with existing blockchains that do not provide smart contract support, such as Bitcoin.

4.2 Strawman Solution and Design Roadmap

In this section, we present a strawman solution, CentralClaim, that outlines how a CbA-

based system with the actors defined in Section 4.1.2 might operate. We use CentralClaim to

highlight the challenges faced by Xclaim in achieving the goals from Section 4.1.6. Finally, we

lay out a design roadmap for the secure design of Xclaim. We present Xclaim in Section 4.3.

4.2.1 Strawman Solution

CentralClaim proposes the use of a single trusted intermediary on the backing blockchain B

that takes the role of the vault . The iSC is a smart contract deployed on the issuing blockchain

I. The vault is registered with the iSC, i.e., the iSC can verify the vault ’s digital signature and

knows the vault ’s public key. As defined in Section 4.1.2, I is responsible for managing the

correct issuing and exchange of i(b) on I.

We assume a user Alice controls units of b on a blockchain B, while a user Dave controls units

of i on a blockchain I. Alice wishes to create B-backed assets i(b) and transfer them to Dave

on I. Dave, at some later point in time, wishes to redeem his units of i(b) for the corresponding

amount of b.

To achieve this, CentralClaim offers four protocols: Issue, Transfer , Swap and Redeem. For

simplicity, we omit any processing fees charged by the vault or the iSC for the use of the service.

We also omit the cost of transaction fees on the underlying blockchains B and I.

7Turing completeness is not required, as discussed in Section 4.4.3.

4.2. Strawman Solution and Design Roadmap 91

Figure 4.1: High-level overview of the Issue, Swap and Redeem protocols in Xclaim’s (under
successful execution). All parties interact with the iSC, creating a publicly verifiable audit log.
Correct behavior is enforced by (i) over-collateralizing the vault and (ii) cross-chain transaction
inclusion proofs. When issuing, the creator proves the correctness of the lock making Issue
non-interactive. Safety is ensured by forcing the vault to proactively prove the correctness of
the Redeem process. As a result, Xclaim enforces Transfer and Swap occur consistently on
the backing (B) and issuing (I) blockchains.

92 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

Protocol: Issue. Alice (creator) locks units of b with the vault on B to create i(b) on I:

1. Setup. First, Alice verifies the iSC smart contract is available on chain I, i.e., the issuing

blockchain, and identifies the single backing intermediary on B, i.e., the vault .

2. Lock. Alice generates a new public/private key pair on I and locks funds b with the vault

on B in a publicly verifiable manner, i.e., by sending b to the vault . As part of locking

these funds with the vault , Alice also specifies where the to-be-generated i(b) should be

sent, i.e., Alice associates her public key on I with the transfer of b to the vault .

3. Create. The vault confirms to the issuing smart contract iSC via a signed message that

Alice has correctly locked her funds and forwards Alice’s public key on I to the iSC.

The iSC verifies the vault ’s signature, then creates and sends i(b) to Alice, such that

|i(b)| = |b|.

Protocol: Transfer. Alice (sender) transfers i(b) to Dave (receiver) on I:

1. Transfer. Alice notifies the iSC that she wishes to transfer her i(b) to Dave (public key)

on I. The state of the iSC is updated and Dave becomes the new owner of i(b).

2. Witness. The vault witnesses the change of ownership on I through iSC, and no longer

allows Alice to withdraw the associated amount of locked b on B. The process for any

further transfers from Dave to other users is analogous.

Protocol: Swap. Alice (sender) atomically swaps i(b) against Dave’s (receiver) i on I:

1. Lock. Alice locks i(b) with the iSC.

2. Swap. If Dave locks the agreed-upon units of i (or any other asset on I) with the iSC

within delay ∆swap , the iSC updates the balance of Dave, making him the new owner of

i(b), and assigns Alice ownership over i.

3. Revoke. If Dave does not correctly lock i with the iSC within ∆swap , the iSC releases

locked i(b) to Alice.

4.2. Strawman Solution and Design Roadmap 93

4. Witness. If the swap is successful, the vault witnesses the change of ownership of i(b) and

no longer allows Alice to redeem the associated amount.

Protocol: Redeem. Dave (redeemer) locks i(b) with the iSC on I to receive b from the vault

on B; i(b) is then destroyed:

1. Setup. Dave creates a new public/private key pair on B.

2. Lock. Next, Dave locks i(b) with the iSC on I and requests the redemption of i(b).

Thereby, Dave also specifies his new public key on B as the target for the redeem.

3. Release. The vault witnesses the locking and redemption request of i(b) on I and releases

funds b to Dave’s specified public key on B, such that |b| = |i(b)|.

4. Burn. Finally, the vault confirms with the iSC that b was redeemed on B, and the iSC

destroys, or burns, the locked i(b) on I.

4.2.2 Strawman Limitations and Properties

While CentralClaim, as presented in Section 4.2.1, already provides sufficient functionality

for issuing, transferring, swapping and redeeming CbAs, it does not achieve all the goals defined

in Section 4.1.6. Namely, it does not achieve Consistency, Redeemability and Liveness.

This is because CentralClaim is inherently centralized around a single vault , and trusts the

vault to behave correctly. This is fundamentally insecure, however, as the vault is economically

rational and therefore incentivized to misbehave.

For example, the vault is trusted to monitor the backing chain B for newly created locks of b

and notify the iSC via a signed transaction on I. Should the vault fail to do this, it can steal

the locked funds and violate Consistency. Similarly, the vault is trusted to release the correct

amount of b on B when a redeemer requests the redemption of i(b). Failing to do this allows the

vault to steal the locked b and break Redeemability. Finally, CentralClaim also inherently

violates Liveness; it exhibits a single point of failure, as backing-funds are locked with a single

94 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

intermediary, the vault . The vault is therefore assumed to be interactive, i.e., always online.

As such, even in the case that the vault behaves honestly, CentralClaim can fail to achieve

Liveness, e.g. due to denial-of-service and eclipse attacks [HKZG15] on the vault .

Surprisingly, however, CentralClaim already exhibits significant advantages over centralized

systems offering digital tokens backed by real-world assets, e.g. the US dollar [Tet16]. Specifi-

cally, CentralClaim achieves Auditability, allowing users to detect if any actors misbehave,

and Atomic Swaps, enabling secure swaps of assets and cryptocurrency.

It is easy to see how CentralClaim achieves Auditability: for successful execution, Issue,

Transfer , Swap and Redeem all require secure transaction inclusion in blockchains B and I with

security parameters kB and kI . Users can therefore detect both crash and Byzantine failures if

incorrect transactions are published or transactions are missing from each blockchain. As such,

an adversary could only interfere with this by (i) preventing transaction inclusion in B and I;

or (ii) stopping a user from receiving messages broadcast by other nodes on B and I. Both

attack vectors are not possible under the blockchain and (semi-)synchronous network models.

Likewise, it is easy to see how CentralClaim achieves Atomic Swaps: the Swap protocol

is exclusively executed by the iSC on I. Specifically, to initiate Swap, the sender locks i(b) in

the iSC via a transaction on I. By construction, the iSC will only release i(b) to the receiver if

the receiver locks the correct amount of i with the iSC within ∆swap. Otherwise, i(b) is released

back to the sender . An adversary cannot prevent the atomicity of Swap: this would require

tampering with the iSC, which is not possible under the assumptions of the blockchain and

threat models.

Finally, CentralClaim also provides Compatibility, as the only operation executed on the

backing chain B is a simple transfer of funds to the vault . A detailed overview of operational

requirements is provided in Section 4.4.3.

4.3. XCLAIM Secure Design 95

4.2.3 XCLAIM Design Roadmap

To address the security challenges and limitations of CentralClaim, we outline the design

roadmap for Xclaim and introduce the building blocks used in its construction:

1. In Section 4.3.2, we remove the trust required by the vault during the issuing of CbAs,

and make the issuing process non-interactive, thus achieving Consistency and Liveness.

For this, we use chain relays to allow programmatic verification of transaction inclusion

proofs for B on I and require all parties to proactively prove correct behavior.

2. In Section 4.3.3, we show how to incentivize the correct behaviour of the vault during

CbA redemption through the introduction of collateralization and punishments, enforcing

a proof-or-punishment model. We highlight race conditions during Issue due to collat-

eralization, and present two effective mitigations: (i) deferred collateral withdrawal and

(ii) collateralized issue commitments. Hence, we achieve Redeemability under a fixed

exchange rate ε(i, b).

3. In Section 4.3.4, we show how to prevent collateral deterioration due to exchange rate

fluctuations by introducing (i) over-collateralization, (ii) collateral adjustment and (iii)

automatic liquidation. As a result, Xclaim achieves Redeemability under non-constant

exchange rates.

4. Finally, in Section 4.3.5, we achieve Scale-Out by removing single points of failure in

CentralClaim. We do this by making Xclaim a multi-vault system where any user

can assume the role of the vault .

4.3 XCLAIM Secure Design

This section presents the secure design of Xclaim. We first provide the high-level overview

and intuition behind Xclaim, and then follow the technical roadmap outlined in Section 4.2

to provide a detailed system description.

96 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

4.3.1 XCLAIM Overview

Xclaim overcomes the limitations of CentralClaim through three primary techniques: (i)

constructing secure audit logs on both the backing blockchain B and the issuing blockchain I to

trace all actions in the system; (ii) transaction inclusion proofs via chain relays to prove correct

behavior on the backing blockchain B to the iSC; and (iii) collateralization to incentivize correct

behavior through proof-or-punishment. We provide a brief overview and intuition for Xclaim

below. Figure 4.1 illustrates the Issue, Transfer , Swap and Redeem protocols in Xclaim, while

the design of the issuing smart contract iSC is shown in Figure 4.2.

Similar to CentralClaim, in Xclaim, funds on the backing blockchain B are secured by

backing intermediaries, vaults . The vaults store locked coins b on blockchain B and handle issue

and redeem requests. To avoid necessitating trust in the vault however, Xclaim uses collateral

to incentivize behavior; Xclaim requires actors, such as the vault , to deposit collateral on

blockchain I, owned by the iSC. Every action in Xclaim is then logged securely via the iSC

and misbehaving actors, such as the vault , are punished by slashing collateral belonging to them,

and reimbursing wronged actors. Xclaim ensures deposited collateral is always sufficient, even

in case of exchange rate fluctuations between b and i.

For the iSC to ensure that correct behaviors have taken place on blockchain B, where the

iSC does not have direct visibility, Xclaim uses chain relays. Chain relays provide external

blockchain data, such as the transactions in blockchain B, to the iSC executing on I. As

such, the iSC can trace every action by every actor in the system across blockchains. Actors

in Xclaim therefore proactively prove their honest behavior to the iSC via the chain relay;

failure to do so results in punishment. By combining secure audit logs, chain relays, and

collateralization in this way, Xclaim can overcome the limitations of CentralClaim, and

achieve the properties defined in Section 4.1.6.

4.3. XCLAIM Secure Design 97

4.3.2 Chain Relays: Cross-Chain State Verification

As outlined in Section 4.3.1, Xclaim employs chain relays [But16, Con17a, KZ19] to provide

data from the backing blockchain B to the iSC on the issuing blockchain I. We use chain

relays to make the issuing of assets i(b) on I non-interactive. For this, Xclaim introduces a

chainRelay component to the smart contract iSC (cf. Figure 4.2). The chainRelay is capable of

interpreting the state of the backing blockchain B and provides functionality comparable to an

SPV or light client [Bit19, BCD+14, Wik20, Tec21]. That is, a chainRelay stores and maintains

block headers from blocks in B on I, and provides two functionalities to the iSC: Transaction

inclusion verification and Consensus verification:

• Transaction inclusion verification. The chainRelay stores every block header in the

backing blockchain B on I. Each block header in chainRelay contains the root of the

Merkle tree [Mer87] containing all transactions (or their identifiers) for that block. To

verify the correct inclusion of a transaction in a block in B, it is sufficient to provide

the Merkle tree path from the root to the leaf containing the transaction (identifier) and

the transaction data itself. This verification can then be performed in a non-interactive

manner by the chainRelay as part of the iSC.

• Consensus verification. The chainRelay can also verify that any given block header is

part of the backing blockchain B, i.e., has been agreed upon by the majority of consensus

participants. In Xclaim, consensus verification depends on the consensus mechanism

used by the backing blockchain B. For Nakamoto consensus [Nak08], the chainRelay must

(i) know the difficulty adjustment policy and (ii) verify that the received headers are

on the chain with the most accumulated Proof-of-Work [Con17a, KZ19]. For Proof-of-

Stake blockchains, e.g Ouroboros [KRDO17], the chainRelay must (i) be aware of the

protocol/staking epochs and (ii) verify the signature membership of elected leader(s) for

the threshold/multi-signatures of block headers [GKZ19a]. For permissioned (Proof-of-

Authority) systems, the verification is analogous, or simpler, if the consensus participants

are pre-defined [Vuk15]. We provide a formal definition for the necessary functionality of

Proof-of-Work chain relays in Appendix B.

98 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

Figure 4.2: High level overview of the architecture of the Xclaim smart contract (iSC) and
the interactions between its components. References to sections introducing each component
are provided. The treasury refers to the basic ledger functionality of I.

Xclaim uses the chainRelay to modify the Issue protocol presented in CentralClaim (Sec-

tion 4.2.1): after locking funds b with the vault , the creator must prove to the chainRelay that

funds were locked correctly by presenting the transaction generated when sending b to the vault

in B. The chainRelay can then verify that the given transaction has been securely included in B

and the funds were locked correctly. If successful, the chainRelay triggers the automatic issuing

of the corresponding amount of i(b) in the iSC.

Similarly, Xclaim also modifies the Redeem protocol: upon a redeem request being made by

the user, the vault is required to prove that (i) the funds b were released to the redeemer and (ii)

the released amount corresponds to the burnt CbA, i.e., |b| = |i(b)|. This is done by presenting

the chainRelay with the transaction that sends b to the redeemer within a maximum delay

∆I
redeem . Should the vault fail to comply, it incurs a financial penalty, and the iSC guarantees

reimbursement to the redeemer ; we discuss this in Sections 4.3.3 and 4.3.4.

We note that to correctly verify inclusion proofs, the chainRelay must be up to date with the

block headers of B. As Xclaim makes timing assumptions on inclusion proof submission during

4.3. XCLAIM Secure Design 99

Redeem, we must define an upper bound ∆relay for the delay between generation of a block

containing transaction txB on B and the submission of (i) the block header and (ii) the inclusion

proof for txB to the iSC via the chainRelay. Hence, we define ∆relay = ∆B + ∆submit + 2∆I ,

where ∆submit is the delay before a transaction submitting a B block header to the chainRelay

is broadcast. If batched submission of n block headers within a single transaction on I is

possible, the upper bound for the delay is increased to ∆submit +n(∆B +2∆I). This also applies

to compact proofing techniques, e.g. NiPoPoWs [KMZ17] or FlyClient [BKLZ20].

Security Arguments for Liveness

The chainRelay makes the Issue protocol non-interactive: instead of trusting the vault to confirm

the lock of b, the iSC accepts a transaction inclusion proof provided by the creator . To prevent

the creator from executing Issue, an adversary hence must control all funds i on I and/or

prevent inclusion of transactions in B or I. As Transfer and Swap only require interaction with

the iSC, to interfere, an adversary must modify the behavior of the iSC or prevent transaction

inclusion in I. This, however, is not possible under the assumptions of the blockchain and

threat models. Hence, Xclaim achieves Liveness.

Security Arguments for Consistency

By construction, the iSC only issues i(b) if the provided transaction inclusion proof shows

that the correct amount on b was locked on B, i.e., |b| = |i(b)|. From the blockchain and

threat models, we know an adversary cannot tamper with the iSC. Hence, Xclaim achieves

Consistency.

We note that for the vault to have a realistic time window to provide a proof, we must consider

the security parameters for B and I, as well as the block generation rates when parameterizing

∆redeem , i.e., it must hold that ∆redeem > ∆B +∆relay .

100 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

4.3.3 Tribunal: Incentives via Collateralization

We next modify CentralClaim by introducing collateral as a means to incentivize honest

behavior in Xclaim and impose punishment on misbehaving parties through the iSC. We

refer to this component of the iSC as the tribunal (cf. Figure 4.2). Specifically, we modify

CentralClaim by requiring the vault to lock up units of i as collateral when registering with

the iSC, which we denote as icol. If the vault fails to prove correct execution of the Redeem

protocol, the collateral is automatically used by the iSC to compensate the redeemer and to

pay an additional punishment fee.

For collateralization of the vault to be effective in terms of maintaining incentives to behave

honestly, the collateral must be at least equal to the funds locked on backing chain B. One

challenge faced by this approach in Xclaim is that the vault ’s collateral is locked in currency

i, while the value it is balanced against is measured in currency b. To this end, we must ensure

icol ≥ block ·ε(i, b) holds, where block refers to the units of b locked with the vault on B and ε(i, b)

is the exchange rate provided by oracle O. For ease of explanation, at this point, we assume

the exchange rate ε(i, b) is constant. We discuss challenges of non-constant exchange rates and

mitigation thereof in Section 4.3.4.

To ensure Redeemability, users must only initiate the Issue protocol, if sufficient collateral

is provided by the vault in the iSC. However, the naive Issue protocol of CentralClaim

exhibits vulnerabilities to race conditions : (i) the vault can attempt to withdraw collateral

before the creator can finalize the issuing process, i.e., provide the transaction inclusion proof

to the chainRelay, and (ii) multiple creators can attempt to simultaneously issue for the same

amount of the vault ’s collateral, triggering a race where the loser’s locked funds block are not

secured by collateral. We present mitigations for the above attacks in Xclaim:

• Deferred Collateral Withdrawal. The vault may exploit race conditions due to net-

work latency, delays ∆B and ∆I or DoS attacks against the creator to attempt collateral

withdrawal after a lock on B is executed, committing unpunished theft. We derive a

simple announce-delay-withdraw scheme to prevent such attacks. Specifically, we require

4.3. XCLAIM Secure Design 101

the vault to announce collateral withdrawal publicly via the iSC. The iSC allows users

to finalize (in theory also to initiate new) issue processes within a delay ∆withdraw , af-

ter which the vault may withdraw the remaining unused collateral. Thereby, the lower

bound for ∆withdraw is the upper bound on transaction inclusion proofs ∆relay defined in

Section 4.3.2, i.e., ∆withdraw > ∆relay .

• Collateralized Issue Commitments. To prevent multiple creators from concurrently

locking funds b using the same amount of the vault ’s collateral, we introduce a registration

step to the setup phase of the Issue protocol. Specifically, a creator must register an issue

request for i(b) with the iSC, which temporarily locks the corresponding amount of the

vault ’s collateral. Within the following delay ∆commit > ∆B + ∆relay the creator can

then safely execute the remaining steps of the Issue protocol. The iSC therefore only

accepts pre-registered issuing attempts. To avoid griefing attacks by malicious creators ,

i.e., continuous locks of the vault ’s collateral, we require the creator to commit to issuing

by providing collateral herself. The latter is used to reimburse the vault in case of failure.

We note that multiple collateralized commitments can be created in parallel, of which

only a single one will be accepted by the iSC, on a first-come-first-served basis. In this

worst-case scenario, the losses faced by creators are hereby limited to a transaction fee

on I.

Security Arguments for Redeemability under constant ε(i, b)

By introducing collateralization in Xclaim we ensure that an economically rational vault has

no incentive to misbehave. Specifically, by construction, the iSC only accept issue requests if

collateral icol ≥ b · ε(i, b) is locked by the vault . During the Redeem protocol, the vault is

required to include a transaction in B, sending b to the redeemer such that |b| = |i(b)| and

provide an inclusion proof to the iSC. If the vault misbehaves, it will lose collateral icol , which

the iSC uses to reimburse the redeemer , and miss out on fees for honest behavior. Meaning, a

vault gains negative utility from misbehaving and does not execute its equilibrium strategy.

Deferred collateral withdrawal and collateralized issue commitments, therefore, prevent the

102 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

vault from exploiting network-related race conditions to defraud users. It is also easy to see

that collusion of malicious vault and redeemer yields no benefits, as issuing and redeeming in

Xclaim is a zero-sum game. In fact, transaction fees on B and I lead to negative utility in

such scenarios. Hence, under the economically rational adversaries as per our threat model,

Xclaim achieves Redeemability under constant exchange rates.

4.3.4 Mitigating Exchange Rate Fluctuations

Until now, we have assumed that both the exchange rate ε(i, b) and the collateral icol provided

by the vault remain unchanged. However, real-world observations show that the exchange rate

ε(i, b) between the two cryptocurrencies may be susceptible to strong fluctuations. To ensure

Redeemability under non-constant exchange rates, we hence (i) over-collateralize the vault ,

(ii) enable adjustment of the vault ’s locked collateral and (iii) introduce automatic liquidation

to prevent financial loss in case of extreme devaluation of i.

Over-collateralization helps mitigate failures due to sudden drops of ε(i, b). We over-collateralize

the vault by a factor rcol ∈ R≥1, creating a buffer to account for possible exchange rate fluctu-

ations. For secure operation, the following must hold for the lifecycle of Xclaim:

icol ≥ block · (rcol · ε(i, b)) ≥ block (4.1)

As a result, the over-collateralization factor rcol becomes a security parameter in Xclaim. The

combination of rcol with the exchange rate ε(i, b) then defines how many units of the backing

cryptocurrency b a creator can safely lock with the vault , i.e., the maximum amount of safely

issuable i(b):

max(i(b)) =
icol

rcol · ε(i, b)
(4.2)

For clarity, we denote blocked collateral, i.e., collateral already used to securely issue i(b), as

i−col = i(b) · rcol · ε(i, b) and free collateral as i+col = icol − i−col.

While over-collateralization helps mitigate extreme fluctuations in the short term, it may be

4.3. XCLAIM Secure Design 103

insufficient to securely handle long-term issuing. To this end, we enable the adjustment of

the vault ’s collateral and introduce the notion of automatic liquidation of i(b) by the iSC. We

derive a simple multi-stage system for collateral icol. The latter defines the behavior of the iSC,

based on the observed collateral rate r∗col =
i−col+i

+
col

block·ε(i,b)
and the (parameterized) ideal rate rcol.

Specifically, we introduce thresholds rcol > rliqcol > 1.0. For ease of explanation, we assume an

exemplary collateral rate rcol = 2.0. We define the multi-stage system for collateral as follows:

• Secure Operation : The vault has locked more collateral than necessary to ensure

Redeemability in Xclaim, i.e., new i(b) can be issued correctly. Similarly, the available

free collateral i+col can be withdrawn by the vault , as long as r∗col ≥ rcol holds.

• Buffered Collateral: The collateral rate r∗col has dropped below the ideal rate rcol,

however, there is sufficient buffer to ensure secure operation of Xclaim. However, as

defined in Eq. 4.2, no new i(b) can be issued.

• Liquidation: The collateral rate is critically close to the lower bound of 1.0 (e.g. rliqcol =

1.05). If the vault does not re-balance r∗col by increasing icol, the iSC automatically initiates

Redeem for all existing i(b). The remaining collateral buffer r∗col − 1.0 > ε(i, b) is thereby

used to cover transaction fees. This measure is necessary to prevent users from facing

financial loss, should r∗col drop below 1.0.

Security Arguments for Redeemability under non-constant ε(i, b)

Through over-collateralization of the vault , we use a buffer to tolerate sudden exchange rate

drops. As the vault can update collateral, it can, in the optimistic case, maintain the secure

operation of Xclaim even if the buffer is depleted. Should the latter fail, the iSC ensures users

do not face financial losses via automatic liquidation. Specifically, an economically rational vault

will only misbehave if icol < b · ε(i, b). By construction, the iSC automatically reimburses icol to

a redeemer before icol < b ·ε(i, b). Hence, misbehaving only becomes the equilibrium strategy of

the vault , if it can alter the behavior of the iSC. As this is not possible under the assumptions

104 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

of the blockchain and threat model, it follows that Xclaim achieves Redeemability under

non-constant exchange rates ε(i, b).

Note: from ∆Ω(ε(i,b)) < ∆I it follows the redeemer can either initiate the Redeem protocol or,

in case of automatic liquidation, withdraw i from the iSC before ε(i, b) < Ω(ε(i, b)).

It is worth noting that while private information of a vault may suggest that the value of b will

exceed the value of the liquidated collateral icol in the future, this does not affect the security

of Xclaim. If vault decides to steal b in exchange for the collateral icol while the value of the

collateral exceeds the value of b, the redeemer can use the received icol to acquire lost b on a

secondary market, e.g. a centralized or decentralized exchange, avoiding financial damage.

4.3.5 Multi-vault System: Removing Single Points of Failure

Until now, we have assumed a single vault . However, the design of Xclaim allows it to be easily

extended to a multi-vault system. Hence, we allow any user to become a vault by registering

with the iSC and providing collateral. The list of vaults is maintained in a public registry in

the iSC. By allowing both creators and redeemers to freely choose which vault they wish to

use for issuing and redeeming, we create a free market driven by charged fees and the observed

collateral rate rcol∗ of each vault . The availability of multiple vaults further allows a redeemer ,

upon a failed Redeem caused by a vault , to choose between: (i) being reimbursed from the

slashed collateral icol or (ii) retrying the Redeem using a different vault .

One challenge that arises from a multi-vault system is ensuring correct automatic liquidation.

Deterioration of collateral of a single vault does not affect the entire system, but only the

corresponding fraction of issued i(b). In a first step, the iSC offers beneficial liquidation, i.e.,

redemption of i(b) against the corresponding amount of block and an additional small premium

in i, deducted from the vault ’s available collateral (r∗col− 1.0). Should insufficient users wish to

execute Redeem, the iSC, as a final fallback, equally distributes the liquidation among all users

of Xclaim. Note: tracing CbAs back to the vault they were issued makes CbAs non-fungible,

which is contrary to the desired functional properties.

4.3. XCLAIM Secure Design 105

Arguments for Scale-Out

By construction, any user can register as a vault with the iSC on I by locking collateral icol , i.e.,

the set of vaults can change dynamically and is not pre-defined. It is easy to see any user can

hence increase the total amount of safely issuable CbAs, max(i(b)). We note that to prevent

registration of new vaults , an adversary must: (i) control all funds i on I and/or (ii) prevent

inclusion of transactions in I. Both scenarios are not possible under the assumptions of the

blockchain and threat models. Hence, under secure operation of B and I, Xclaim achieves

Scale-Out.

4.3.6 Atomic vault Replacement

Until now, we have assumed a vault cannot lock funds block on B and must remain in Xclaim

until the latter is fully redeemed by users. In a real-world scenario, the vault may wish to leave

and transfer their role to another party earlier, or move funds to a different account on B for

practical purposes. To this end, we describe Replace, a non-interactive atomic cross-chain swap

(ACCS) protocol based on cross-chain state verification, which allows vaults to move funds on

B without being punished by the iSC.

Protocol: Replace. vault migrates locked funds b to vault ′, who replaces vault ’s collateral in

the iSC.

1. Setup. The vault submits a replacement request to the iSC and locks up collateral ireplacecol ,

sufficient to cover costs of a transaction on I.

2. Lock. A new candidate vault ′ can lock the corresponding amount of collateral for a pre-

defined period ∆replace with the iSC on I, such that |ivaultcol | = |ivault
′

col |, providing their public

key on backing chain B.

3. Migrate. Within ∆replace > ∆relay , the still active vault must migrate the locked block to

the public key of vault ′ on B and submit the corresponding transaction inclusion proofs

to the chainRelay on I.

106 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

4. Release. The chainRelay verifies the migration was executed correctly on B and the iSC

releases the old vault ’s collateral, i.e., both ivaultcol and ireplacecol . If the vault does not execute

the migration on B within ∆replace, the iSC releases the new candidate’s collateral, while

using ireplacecol to reimburse wasted transaction fees.

We can further use the Replace protocol to enable re-balancing of collateral among vaults .

Assume a vault ’s observed collateralization rate r∗col has dropped significantly below ideal rate

rcol. To prevent automatic liquidation, the vault must contribute additional collateral to the

iSC on I. Alternatively, the vault can execute Replace to migrate a fraction of total locked coins

block to vault ′, so as to re-balance her collateralization rate r∗col. Should no single vault have

sufficient free collateral to complete the re-balancing, the Replace protocol can be executed

iteratively with multiple vaults , e.g. until r∗col ≥ rcol holds. This procedure is specifically useful

if a vault cannot provide additional collateral due to insufficient funds on I but intends to

ensure secure operation of iSC.

4.4 Formal Protocol Specification

This section presents a formal specification Xclaim’s Issue, Transfer , Swap and Redeem pro-

tocols, as well as the requirements imposed on the backing and issuing blockchains.

Extended Notation

We differentiate between state changing and non-state changing operations in Xclaim; state

changing operations result in new transactions (T) in the underlying blockchain, while non-

state changing operations, such as verifying operations, are “read-only”, returning boolean

values (>|⊥). We use txBid to refer to a transaction included in the ledger LB of chain B with an

identifier id (txBid ∈ LB) and txIid for transactions on I respectively (txIid ∈ LI). The execution

of an operation on input in that produces an output out is denoted as operation(in) → out .

To indicate that an operation is executed by a user user , we write user .operation. We identify

4.4. Formal Protocol Specification 107

a user user in Xclaim by her public key pkXu (with corresponding private key skXu), where X

can be either blockchain B or I. For readability, we often write userX when referring to pkXu .

We use cond to refer to locking and unlocking conditions for funds on both B and I, e.g. a

condition for a transaction may be the digital signature of user u on chain X with private key

skXu , denoted as σXuser . A summary of symbols is provided in Section 4.9.

We parameterize Xclaim, using: (i) the blockchain security parameters kB and kI ; (ii) block

generation rates τB and τ I ; (iii) collateral rate rcol and the automatic liquidation threshold

rliqcol ; and (iv) the delays ∆redeem, ∆withdraw, ∆commit, ∆swap used in the Issue, Redeem and Swap

protocols. The algorithms specifying Xclaim’s Issue, Transfer , Swap and Redeem protocols,

as well as the necessary operations exhibited by Xclaim on the underlying blockchains B and

I are provided in Section 4.9.

4.4.1 XCLAIM Operations

First, we overview the operations exhibited by Xclaim on the backing blockchain B and issuing

blockchain I.

Backing Blockchain

For the backing blockchain B, operations are executed by the creator and the vault . We

differentiate between the two:

Operations performed by the creator :

• lockB(b, cond)→ txBlock which locks coins b on chain B under conditions cond .

Operations performed by the vault :

• verifyIOp(operation,txIop [, ∆op]) → >|⊥ which verifies that operation was executed on I,

i.e., that txIop is securely included in I according to kI and within optional delay ∆op as

per Xclaim parameters.

108 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

• redeemB(b, userB)→ txBredeem that releases locked coins b to userB .

• transferB(b, userB)→ txBtransfer which transfers ownership of b to user userB .

Issuing Blockchain

For the issuing blockchain I, operations are executed by the iSC:

• lock(x , cond)→ txIlock which locks x under conditions cond on I, where x can be i(b) or

i.

• release(x , user I)→ txIrelease that releases asset or coin x to user I , where x can be i(b) or

i.

• slash(x , user I , user I
∗) → txIslash that destroys or slashes collateral funds x of user I and

reimburses them to user I
∗ , where x can be i(b) or i.

• commit(b, userB , vault , i) → txIcommit which commits userB to calling lockB(b, σBvault)

within ∆commit . Locks i as collateral conditioned on the iSC’s signature via lock(i, σISC).

• verifyBOp(operation,txBop [, ∆op])→ >|⊥ which verifies operation was executed on B, i.e.,

securely included in B via txBop according to kB and within optional delay ∆op as per

Xclaim parameters.

• issue(b, user I)→ txIissue which creates and allocates i(b) to user I , such that |i(b)| = |b|.

• transfer(x, user I) → txItransfer which transfers ownership of x to user user I , where x can

be i(b) or i.

• swap(x, user I
x , y, user I

y) → txIswap which transfers ownership of x to user I
y and y to user

user I
x atomically; x and y can be i(b) or i.

• burn(i(b))→ txIburn that destroys i(b).

4.4. Formal Protocol Specification 109

4.4.2 XCLAIM Protocols

In the following, we present the algorithms specifying Xclaim’s Issue, Transfer , Swap and

Redeem protocols for cryptocurrency-backed assets.

Algorithm 5 Xclaim Issue protocol

Result: creator locks units of b with the vault on B to create i(b) on I

vault .lock(icol)

creator .commit(block , pk
B
creator , pk

I
vault , i

commit
col)

creator .lockB(block , σvault) /*→ txBlock*/

creator submits txBlock to iSC calling verifyBOp

if iSC.verifyBOp(lockB,txBlock , ∆commit) = > then

iSC.issue(block , pk
I
creator)

iSC.release(icommit
col , pkIcreator)

else

iSC.slash(icommit
col , pkIcreator , pk

I
vault)

end

Algorithm 6 Xclaim Swap protocol

Result: sender atomically swaps i(b) against receiver ’s i on I

sender .lock(i(b), σISC)

receiver .lock(i, σISC) /*→ txIlock*/

if iSC.verifyIOp(lock,txIlock , ∆swap) = > then

iSC.swap(i(b), pkIreceiver , i, pk
I
sender)

else

iSC.release(i(b), pkIsender)

end

Algorithm 7 Xclaim Transfer protocol

Result: sender transfers i(b) to Dave receiver on I

sender calls iSC.transfer(i(b), pkIreceiver)

Implicit: vault .verifyIOp(transfer,txItransfer)

110 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

Algorithm 8 Xclaim Redeem protocol

Result: redeemer locks i(b) with the iSC on I to receive b from the vault on B; i(b) is then

destroyed.

redeemer calls iSC.lock(i(b), pkBredeemer) /*→ txIlock*/

iSC signals |b| = |i(b)| is to be released to redeemer on B

if vault.verifyIOp(lock,txIlock) = > then

vault .redeemB(block , pk
B
redeemer) /*→ txBredeem*/

vault submits txBredeem to iSC calling verifyBOp

if iSC.verifyBOp(redeemB,txBredeem , ∆redeem) = > then

iSC.release(icol , pk
I
vault)

else

slash(icol , pk
I
vault , pk

I
redeemer)

end

iSC.burn(i(b))

end

4.4.3 Blockchain Requirements for Implementing XCLAIM

Using the system operations performed by Xclaim as defined in Section 4.4.1, we derive the

requirements for the underlying blockchains B and I. We summarize our findings in Table 4.1

and provide examples for backing and issuing chains currently supported by Xclaim. We note

that neither B nor I require a Turing-complete instruction set.

Backing Blockchain (B)

On the backing blockchain B we need to lock and redeem funds based on conditions cond , i.e.,

a user’s digital signature. Boolean operations are required to verify cond are either true or

false. Moreover, conditions for locking and redeeming from different users require (i) a stack to

store intermediary values, (ii) read and write operations for the current stack, and (iii) public-

key encryption and signature verification. Flow control operations do not have to be available

4.4. Formal Protocol Specification 111

to users and can be expressed by stack states (empty / not empty) [Bit21b]. In addition,

while public-key encryption and signatures can be implemented using basic arithmetic and

bitwise operations, both script complexity and execution cost can be reduced if cryptographic

operations, including hash and signature verification functions, are supported by the scripting

language as dedicated operations. Finally, B requires a method to store data, necessary to e.g.

include the target public key of the creator for issuing on I.

Issuing Blockchain (I)

To support issuing of CbAs in a smart contract, the issuing chain I requires a method to create

custom assets, which are part of the consensus protocol. This can be realized by permanent

storage, i.e., storage read and storage write operations. In accordance to our definitions (cf.

Section 4.1.1), the CbA attributes, issuing chain, backing chain, and asset value are represented

as integers; integer balances are assigned to the asset owner ’s public keys (or digests thereof).

Modification of asset balances can be realized using arithmetic operations on integers, and the

authorization of changes via boolean operations.

For transaction verification, the chainRelay requires (i) permanent storage to store block header,

transaction, and proof data and (ii) arithmetic, bitwise, and boolean operations for proof veri-

fication. Verifying Merkle tree inclusion requires traversing the data structure (both of block

headers and transaction lists), i.e., I must support finite loops or recursion. If I supports the

same (or super-) set of cryptographic operations used on B (specifically hash functions and

signature schemes), the verification may be executed at a lesser cost. Next, I requires more

complex conditional locks than B, i.e., flow control must be supported (in addition to arithmetic

and boolean operations). Since Issue and Redeem require checking delays (blocks or based on

timestamps), I must allow access to Xclaim parameters via global parameters (integers).

112 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

Table 4.1: Required operations on backing (B) and issuing (I) chains including application
candidates.

Operations

R
eq

u
ir

em
en

ts

A
ri

th
m

et
ic

B
oo

le
an

B
it

w
is

e

C
ry

pt
og

ra
ph

ic
†

F
lo

w
co

n
tr

ol

L
oc

al
st

ac
k

F
in

it
e

lo
op

s
or

re
cu

rs
io

n

P
er

m
an

en
t

st
or

ag
e

G
lo

ba
l

pa
ra

m
et

er
s

Examples for supported
blockchains

Backing
chain B

3 3 (3‡) (3) 7? 3 7 3 7

Bitcoin[Nak08], ZCash[BSCG+14],
Namecoin[Nam22], Litecoin[Lit21],

Ethereum[But14]

Issuing
chain I

3 3 3 (3) 3 3 3 3 3

Ethereum[But14], Polkadot[Woo15],
Cardano[Car22], Cosmos[KB15],

Solana[Yak18], RSK[Ler15]
† Not strictly required, but reduces script complexity.
‡ Not necessary if native support for cryptographic operations (hash and signature verification) is available.
? Can be represented as stack states (empty / not empty).

Discussion

One of the main challenges overcome by the design of Xclaim is backward compatibility:

any blockchain supporting the minimum requirement of transferring funds between users can

act as backing blockchain B. However, there are cases where B may support a similar set

of operations to I, i.e., B may also allow the deployment of a smart contract bSC. More

specifically, programmatic verification of transaction inclusion proofs via chainRelay components

is supported bilaterally, i.e., the verifyIOp operation in Issue and Redeem can be executed

directly by bSC rather than by an intermediate vault . The rest of the system remains unchanged.

The use of collateralized intermediaries in this scenario, while no longer necessary for secure

operation, can act as a performance and cost improvement. Examples are Ethereum and

Ethereum Classic, where inclusion proofs can be verified via PeaceRelay [Kyb17].

4.5 Security Analysis

In this section we provide an informal security analysis to supplement the design choices and

security propositions presented in Sections 4.2 and 4.3. We discuss attack vectors, potential

impacts, and their mitigations.

4.5. Security Analysis 113

4.5.1 Chain Relay Poisoning

An adversary may attempt to poison the chainRelay with false information regarding blockchain

B. Such attacks can be considered equivalent to successful selfish mining [ES14] attacks, as

the adversary must trigger a chain reorganization according to the underlying consensus rules.

Even though in our model we assume f < n/3 (or α < 33%), if the assumptions regarding data

availability of the chainRelay do not hold (cf. Section 4.3.2), a poisoning attack can be successful

well below this threshold. While an adversary cannot prevent the inclusion of transactions in

I under our model, the lack of honest block headers submitted to the chainRelay may have

alternate reasons, e.g. high cost. To mitigate relay poisoning due to temporary lack of block

header data, we can introduce a maturity period ∆maturity for newly generated CbAs [BCD+14],

similar to that of newly minted coins in PoW blockchains. If a (correct) conflicting chain is

submitted within ∆maturity, the pending CbAs are not issued.

4.5.2 Replay Attacks on Inclusion Proofs

Without adequate protection, inclusion proofs for transactions on B can be replayed by: (i)

the creator to trick the iSC into issuing duplicate i(b) and (ii) the vault to reuse a single

transaction on B to falsely prove multiple redeem requests. A simple and practical mitigation is

to introduce unique identifiers for each execution of Issue and Redeem and require transactions

on B submitted to the chainRelay of these protocols to contain the corresponding identifier.

4.5.3 Counterfeiting

A vault which receives block from a creator during Issue could use these coins to re-execute

Issue itself, creating counterfeit i(b), i.e., |block | < |i(b)|. To this end, the iSC forbids vaults

to move locked funds block received during Issue. From Auditability we know that any user

with read-access to B can detect misbehavior and can submit a transaction inclusion proof to

the iSC showing the vault spent locked funds block . To restore Consistency, the iSC slashes

114 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

the vault ’s entire collateral and executes automatic liquidation, following the steps described in

Sections 4.3.4 and 4.3.5, yielding negative utility for the vault . To allow economically rational

vaults to move funds on B, Xclaim utilizes the Replace protocol, a non-interactive atomic

cross-chain swap (ACCS) mechanism based on cross-chain state verification, as described in

Section 4.3.6.

4.5.4 Permanent Blockchain Splits

Permanent chain splits or hard forks occur where consensus rules are loosened or conflicting

rules are introduced [ZSJ+18], resulting in multiple instances of the same blockchain. Thereby,

a mechanism to differentiate between the two resulting chains (replay protection) is necessary

for secure operation [MHM17].

Backing Chain

If replay protection is provided after a permanent split of B, the chainRelay must be updated

to verify the latter for B (or B′ respectively). If no replay protection is implemented, the

chainRelay will behave according to the protocol rules of B for selecting the “main” chain. For

example, it will follow the chain with the most accumulated PoW under Nakamoto consensus.

Issuing Chain

A permanent fork on the issuing blockchain results in two chains I and I ′ with two instances

of the iSC identified by the same public key. To prevent an adversary exploiting this to execute

replay attacks, both creator and vault must be required to include the public key of the iSC (or

a digest thereof) in the transactions published on B as part of Issue and Redeem (in addition

to the identifiers introduces in 4.5.2). Next, we identify two possibilities to synchronize i(b)

balances on I and I ′: (i) deploy a chain relay for I on I ′ and vice-versa to continuously

synchronize iSC [Kyb17] and iSC′ states or (ii) redeploy the iSC on both chains and require

users and vaults to re-issue i(b), explicitly selecting I or I ′.

4.5. Security Analysis 115

4.5.5 Denial-of-Service Attacks

Xclaim is decentralized by design, thus making denial-of-service (DoS) attacks difficult. Given

that any user with access to B and I can become a vault , an adversary would have to target

all vaults simultaneously. Where there are a large number of vaults , this attack would be

impractical and expensive to perform. Alternatively, an attacker may try to target the iSC.

However, performing a DoS attack against the iSC is equivalent to a DoS attack against the

entire issuing blockchain or network, which conflicts with our assumptions of a resource-bounded

adversary and the security models of B and I. Moreover, should an adversary perform a Sybil

attack and register as a large number of vaults and ignore service requests to perform a DoS

attack, the adversary would be required to lock up a large amount of collateral to be effective.

This would lead to the collateral being slashed by the iSC, making this attack expensive and

irrational.

4.5.6 Fee Model Security: Sybil Attacks and Extortion

While the exact design of the fee model lies beyond the scope of this work, we outline the

following two restrictions, necessary to protect against attacks by malicious vaults .

Sybil Attacks

To prevent financial gains from Sybil attacks, where a single adversary creates multiple low

collateralized vaults , the iSC can enforce (i) a minimum necessary collateral amount and (ii)

a fee model based on issued volume, rather than “pay-per-issue”. In practice, users can in

principle easily filter out low-collateral vaults .

Extortion

Without adequate restrictions, vaults could set extreme fees for executing Redeem, making

redeeming of i(b) unfeasible. To this end, the iSC must enforce that either (i) no fees can be

116 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

charged for executing Redeem or (ii) fees for redeeming must be pre-agreed upon during Issue.

4.6 XCLAIM(BTC,ETH) Implementation and Evalua-

tion

We instantiate Xclaim as Xclaim (BTC,ETH) to issue Bitcoin-backed tokens on Ethereum.

Ethereum’s virtual machine provides Turing completeness [Woo17], fulfilling the requirements

(Section 4.4.3) for the issuing chain I. Bitcoin, due to the limited operation set of its Script

language [Bit21b] only qualifies as a backing blockchain (Section 4.4.3). Both Bitcoin and

Ethereum use ECDSA with the secp256k1 Koblitz curve [Kob91, BWQ99], providing native

support for the corresponding cryptographic operations. Ethereum further makes the SHA-

256 and RIPEMD-160 hash functions, which are used in Bitcoin, available as pre-compiled

contracts [Woo17].

We implement the iSC smart contract on Ethereum in Solidity v0.4.24 [Eth22b] in approxi-

mately 820 lines of code. On Bitcoin, we use regular P2PKH [Bit20b] transactions. We use

the existing Serpent [Eth17] implementation of BTCRelay [Con17a] for the chainRelay compo-

nent of the iSC. Bitcoin-backed tokens per our implementation are compliant with the ERC20

token standard [VB15], and hence usable in most services on Ethereum, including decentralized

exchanges. To evaluate the cost and performance of Xclaim (BTC,ETH), we deploy the iSC on

the Ethereum Ropsten test network [Eth22c]. For evaluations, we assume a vault is registered

with the iSC and has locked in collateral on Ethereum.

4.6.1 Protocol Execution Costs

We define on-chain execution costs measured in USD as the amount of Bitcoin and Ethereum

transaction fees required to execute each of the protocols: Issue, Transfer , Swap, Redeem and

Replace. The costs are calculated using exchange rates at the time of implementation8. It is

8Storage and execution costs are in USD as per exchange rates of 30 Nov. 2018: BTC/USD 3717.38 and
ETH/USD 105.71

4.6. XCLAIM(BTC,ETH) Implementation and Evaluation 117

worth noting that the USD costs are subject to change, in line with fluctuations of the Bitcoin

and Ethereum USD exchange rates, as well as network utilization.

In Bitcoin, transaction fees are calculated based on the transaction size, i.e., the number of

consumed inputs and generated outputs. To ensure transactions are included in the next

generated block without delays, we calculate fees with 40 Satoshis (10−8 BTC) per byte [ear22].

In Ethereum, transaction fees are measured in gas, depending on both on the transaction size

and the cost of executed smart contract operations [Woo17]. We assume a gas cost of 9 Gwei

based on the network fees for fast transaction inclusion at the time of implementation (30

November 2018) [Sta22].

We summarize our measurement results in Table 4.2. In our measurements, we refer to the

complete process of issuing (Issue), executing a trade (Swap), and then redeeming (Redeem)

an arbitrary amount of Bitcoin-backed tokens on Ethereum as a round. Our experiments

show a full protocol execution round only costs USD 1.15. The main cost factor thereby are

Bitcoin transaction fees (53.9%). As such, transferring ownership over units of Bitcoin via

Xclaim Bitcoin-backed tokens on Ethereum costs only USD 0.04, in contrast to USD 0.31 if

the transfer is executed natively on Bitcoin (87.1% cheaper). Additional costs are incurred for

keeping BTCRelay up to date with the current state of the Bitcoin blockchain, amounting to

approximately USD 27 per day (not included in the table). These costs are fixed and shared

among all users of Xclaim; each user’s share decreases with higher adoption of Xclaim.

We further note this number constitutes an upper bound given current prices: (i) the existing

implementation of BTCRelay is non-optimal9 and (ii) our measurements consider the worst-case

scenario where batched block header submissions are not available (cf. Section 4.3.2).

9The Serpent language is not actively maintained (last commit on 1 October 2017) and is not optimized
to the current version of the EVM, resulting in higher execution costs. More efficient proofing techniques can
further reduce costs [KMZ17, BKLZ20, TR19, KGC+18].

10Performance is measured in minutes and includes security parameters: 6 confirmations, each 10 minutes for
Bitcoin (kB); 12 confirmations, each 14 seconds for Ethereum (kI).

118 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

Table 4.2: Overview of execution costs8 and performance10 for the Issue, Transfer , Swap and
Redeem protocols in Xclaim (BTC,ETH).

Protocols Transactions
Cost (USD) Duration

Ethereum Bitcoin Total (minutes)

Issue 2Eth 1Btc 0.16 0.31 0.47 75.98
Swap 2Eth 0.19 0.19 5.98
Redeem 2Eth 1Btc 0.18 0.31 0.49 75.98

Total 6Eth 2Btc 0.53 (46.1%) 0.62 (53,9%) 1.15 157.94

Transfer 1Eth 0.04 0.04 2.99
Replace † 3Eth 2Btc+ 0.13 0.62 0.75 148.97+
†
Duration and costs of Replace depend on the number of Bitcoin UTXOs which need to be migrated. Provided numbers are

lower bounds.

4.6.2 Performance

We evaluate the performance of Xclaim (BTC,ETH) with respect to the duration of the Is-

sue, Transfer , Swap, Redeem, and Replace protocols (measurements provided in Table 4.2).

Thereby, we adhere to the recommended security parameters regarding transaction confirma-

tions based on our threat model (α ≤ 33%): kB = kBTC = 6 and kI = kETH = 12. Recall, we

consider a transaction in the block at position j as securely included when the blockchain tip

reaches position h, with h − j ≥ k. At the time of writing, the average block time in Bitcoin

amounts to 10 minutes, and in Ethereum to 14 seconds.

One execution round of issuing, atomically swapping, and redeeming of Bitcoin-backed token

on Ethereum requires 2 Bitcoin transactions (1 user transaction and 1 vault transaction) and

6 Ethereum transactions (5 user transactions and 1 vault transaction). The end-to-end process

is securely completed after 158 minutes; a Swap only takes 6 minutes, while Issue and Redeem

account for the greater part of the delay due to Bitcoin transaction processing (96,2%). Note:

we can use off-chain payment channels [MBKM17, KZF+18] on the issuing chain (Ethereum)

to significantly reduce execution cost and make Swap real-time (see Section 4.7).

4.6. XCLAIM(BTC,ETH) Implementation and Evaluation 119

Figure 4.3: Comparison of BTC-ETH atomic swaps via Xclaim and via HTLC ACCS for
1000 individual swaps. Storage and execution costs (Left) are in USD8; performance (Right,
logarithmic y-axis) is measured in minutes10. We observe Xclaim is 95.7% faster and 65.4%
cheaper for 1000 swaps.

4.6.3 Comparison to HTLC Atomic Swaps

We compare the performance and execution costs of Xclaim (BTC,ETH) to that of atomic

cross-chain swaps (ACCS) based on hashed-timelock contracts (HTLCs) [Tie16, Bit20a, Bit21a].

Both implementations are tested under identical conditions, including fee calculation and se-

curity parameters. We visualize the results of our experiments in Figure 4.3.

Each interactive atomic swap requires users to create two transactions on both Bitcoin and

Ethereum (4 in total). Including a minimum necessary delay to prevent race conditions, an

atomic swap takes approximately 146.5 minutes to execute securely. Note: we omit the addi-

tional necessary time to establish out-of-band channels and exchange revocation transactions

in ACCS; hence the ACCS measurements are lower bounds.

In Xclaim, after an initial Issue process, each additional Swap requires only 2 Ethereum

transactions. As such, using Xclaim to atomically exchange BTC against ETH is already

more efficient than ACCS after the second swap; for 1000 swaps Xclaim is 95.7% faster.

Similarly, Xclaim (including BTCRelay fees) outperforms ACCS cost-wise after the second

trade; for 1000 trades Xclaim is 65.4% cheaper than ACCS. Note, that a significant cost

120 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

factor in Xclaim (BTC,ETH) are the non-optimized BTCRelay maintenance fees, which e.g.

account for 49.3% of the incurred cost for 1000 swaps.

4.7 Applications

This section provides a brief overview of several new and novel applications enabled by Xclaim

cryptocurrency-backed tokens. These applications illustrate how Xclaim paves the way for

usable and scalable cross-chain communication.

Smart Contract and Application Access for Legacy Blockchains

The primary application of cryptocurrency-backed assets is to provide “legacy” cryptocurrencies

like Bitcoin with access to smart contract functionality on blockchain platforms like Ethereum.

At the time of writing, the Etheruem blockchain exhibits a flourishing ecosystem of decentral-

ized financial applications, enabling users to trade, borrow, lend, invest in structured financial

products, and more without trusting centralized intermediaries. The total value locked across

various applications on Ethereum is surpasses USD 50 billion [Pul22b], while another estimated

30 billion is spread across platforms such as Solana, Polkadot, Polygon, and Avalanche [Lla22].

The market size of all decentralized financial applications combined is, however, still dwarfed by

the market capitalization of Bitcoin (USD 367 billion) [Coi22]. It is hence not surprising that

centralized providers have already deployed versions of Bitcoin on Ethereum, termed ”wrapped

Bitcoin”, including wBTC [Kyb19b], hBTC [Tea20] and renBTC [Ren20]. At the time of

writing, these centralized Bitcoin-backed assets hold an estimated USD 6 billion worth of Bitcoin

- requiring users to give away custody and fully trust the intermediaries.

Xclaim offers users a decentralized alternative, enabling them to mint Bitcoin-backed assets

secured by collateral insurance. When using centralized Bitcoin-backed assets, BTC can be

lost due to a single party failing - either due to a security or regulatory incident - leaving users

without remedy. In the case of Xclaim, in the worst-case scenario, are reimbursed in the

4.7. Applications 121

collateral asset(s), bearing no or very limited financial damage. End-users are not the only risk

bearers in this case: decentralized financial protocols integrating centralized Bitcoin-backed

assets exhibit a long-term dependency on the security and reliability of the intermediaries

holding Bitcoin in custody. For example, at the time of writing 14% of MakerDAO’s DAI

stablecoin [Mak14] is backed by centralized wBTC, amounting to USD 3.89 billion.

Cross-Chain Payment Channels

Cryptographic payment channels [Chr15, MBKM17, DEFM17, LEK+17, KZF+18] address the

performance limitations of blockchain protocols [GKCC14, CDE+16] by avoiding the need to

publish every transaction on the blockchain. Instead, transactions are executed directly be-

tween participants off-chain, and only the final balances of the participants are published on

the blockchain. Despite improving transaction throughput and latency considerably, payment

channels cannot execute payments across different blockchains. As such, users are required to

set up and instantiate multiple channels, one for every blockchain they wish to participate in.

With Xclaim, however, payment channels deployed on a blockchain capable of issuing Xclaim

CbAs become cross-blockchain compatible automatically; users can transfer CbAs as per nor-

mal in a payment channel network, and later redeem those CbAs for native coins. As such,

Xclaim allows existing issuing blockchains, such as Ethereum, to process transactions of any

backing cryptocurrency off-chain, without requiring changes to the underlying code. Xclaim

can therefore be used to provide novel contributions to state-of-the-art payment channels.

Temporary Transaction Offloading

The design of Xclaim allows for both long-term and short-term issuance of CbAs. As such,

during temporary periods of high network congestion [Blo22] or transaction fee spikes [Eth21],

Xclaim CbAs can be used to temporarily switch to another blockchain for secure payment

processing. Moreover, users can temporarily leverage this technique in Xclaim to exploit

features or benefits that may be present in the issuing chain, but not on the backing chain. For

example, Bitcoin users may temporarily switch to Bitcoin-backed tokens on Ethereum to avoid

122 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

long transaction processing times, or to leverage more complex transaction scripts and smart

contracts in Ethereum. Once such periods have passed, users may exchange their CbA back

to coins on the native blockchain securely, without requiring trust.

N-Way and Multi-Party Atomic Swaps

Xclaim is more efficient than atomic cross-chain swaps (ACCS), both in terms of performance

and cost (see Section 4.6). In addition, Xclaim can be leveraged to perform more complex and

intricate swap constructions. For example, Xclaim enables N-way atomic swaps : by extending

the Swap protocol in Xclaim, users can swap multiple different units of cryptocurrencies for

others, e.g. trading units of cryptocurrency x and y against units of w and z atomically within

a single swap. Comparing this to ACCS, N -way swaps are impractical, as they would require

the creation of N locking and spending transactions while monitoring all involved chains for

failures.

In addition, Xclaim also enables multi-party atomic swaps. Assume Alice owns coin x and

wants to acquire coin y owned by Bob. Bob, however, will only trade y for coin z owned

by Carol. Attempting to resolve this situation with ACCS would require Alice to separately

swap with Carol and then with Bob, i.e., this process would not be atomic, resulting in 8

transactions on 3 different chains [Bit20a]. However, with Xclaim, if x, y, and z are CbAs,

Alice can construct a non-interactive multi-party swap via the iSC, where a single transaction

can change the ownership of all 3 coins in iSC, atomically.

4.8 Conclusion

In this chapter, we formalized the notion of cryptocurrency-backed assets. We presented

Xclaim, a system for issuing, transferring, swapping and redeeming cryptocurrency-backed

assets between blockchains in a financially trustless manner. That is, users can always re-

deem their CbAs for the backing asset, or claim reimbursement in a collateral currency. This

4.8. Conclusion 123

approach allows us to work around the impossibility result presented in Chapter 3 in prac-

tice. We provided a detailed analysis of Xclaim’s design, present a formal protocol specifica-

tion and identified requirements for the underlying blockchains. Xclaim is general in design

and supports many existing cryptocurrencies without modification. We implemented Xclaim

(BTC,ETH) to construct Bitcoin-backed tokens on Ethereum and evaluated the performance

and execution costs; Xclaim achieves a significant improvement over atomic cross-chain swaps.

Finally, we outlined several novel and interesting applications enabled by Xclaim.

124 Chapter 4. XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets

4.9 Symbols and Notations

Table 4.3 provides an overview of symbols and variables used in this Chapter.

Table 4.3: Summary of used symbols and notations used for Xclaim protocol descriptions.

Symbol Description

B Backing blockchain
LB Ledger of backing blockchain B
b Cryptocurrency unit underlying the backing blockchain

B
block Units of b locked by a creator with a vault during Issue
I Issuing blockchain
LI Ledger of backing blockchain B
i Cryptocurrency unit underlying the issuing blockchain

I
icol Units of i locked by a user with the iSC
i(b) Unit of a CbA on I backed by units of b on B
kX Security parameter of blockchain X. Defines how many

confirmations are necessary for secure transaction inclu-
sion

∆X Maximum delay from transaction broadcast to secure
inclusion in blockchain X

rτ Upper bound for deviations of expected and observed
ratio between block generation rates of B and I.

∆X
tx Maximum delay from transaction broadcast to receipt

by honest consensus participants in X
ε(i, b) Exchange rate of i to b, given by oracle O

min ε(i, b) Lower bound for ε(i, b) below which econ. rational ad-
versaries are incentivized to misbehave

∆min(ε) Delay before ε(i, b) falls below lower bound min(ε(i, b))
τX Block generation rate of blockchain X

(pkXu , sk
X
u) Public / private key pair of user u on blockchain X

σXu Digital signature of user u on chain X, i.e., via skXu
txXid Transaction included in the ledger LX of blockchain X

with identifier id
operation(in)→ out Operation taking in as input an generating output out

operation Short for operation with default inputs and outputs
cond Conditions used to lock coins, e.g. presenting a user’s

digital signature σuser
∆id Time delay introduced in Xclaim’s protocols with iden-

tifier id
rcol Ideal (parameterized) collateralization rate of vaults
r∗col Observed collateralization rate of a vault in Xclaim

rliqcol Collateralization threshold for automatic liquidation

Chapter 5

Cross-Chain Light Clients: Problem,

Overview, and Efficiency Improvements

With decentralized cryptocurrencies finding more and more applications in industry, the need

to deliver digital payments on resource-constrained devices, such as mobile phones, wearable-

and Internet-of-things (IoT) devices, is steadily increasing. Even within the cryptocurrency

ecosystem, the need for efficient payment verification is becoming imminent. One example are

multi-currency wallets, which track the state of multiple cryptocurrencies and hence face high

storage and bandwidth requirements. Another are the growing number of cross-cryptocurrency

applications [ZHL+19, BCD+14, ZABZ+19]. Here, verification of correct payments happens

cross-chain and is often executed by smart contracts, where storage and bandwidth are priced

by the byte.

We present TxChain, a novel scheme to improve the efficiency of transaction verification,

which improves upon recent work on optimized light clients [KMZ17, BKLZ20]. Thereby,

we do not rely on complex cryptographic schemes, but rather leverage the security properties

offered by the consensus of decentralized cryptocurrencies – making TxChain compatible with

the majority of existing systems.

125

126 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

Blockchain and Light Clients (SPV)

Most widely-used cryptocurrencies, such as Bitcoin and Ethereum, maintain an append-only

transaction ledger, the blockchain. The blockchain consists of a sequence of blocks chained

together via cryptographic hashes. Each block thereby consists of a block header and a batch of

valid transactions. The block header contains (i) a pointer to the previous block, (ii) a vector

commitment over all included transactions, and (iii) additional metadata (e.g. timestamp,

version, etc.). Each block is uniquely identified by a hash over its block header.

Vector commitments are employed by users to verify transactions without downloading the en-

tire blockchain. For example, Simplified Payment Verification (SPV) clients in Bitcoin [Nak08]

only maintain a copy of the block headers of the longest (valid) proof-of-work chain, where each

header includes the root of a Merkle tree that contains the identifiers of the block’s transactions

as leaves. To verify a transaction is included in a block, an SPV client requires (i) the block

header of the block that contains the transaction (to extract the Merkle root), and (ii) the

Merkle tree path to the leaf containing the transaction identifier (given the Merkle root). The

size of the Merkle path, i.e., the number of hashes, is thereby logarithmic in the number of

transactions in the block.

Sublinear Light Clients

Recently, two proposals for so-called sublinear light clients were made: non-interactive proofs of

proof-of-work (NIPoPoW) [KMZ17] and FlyClient [BKLZ20]. In contrast to näıve SPV clients,

NIPoPoWs and FlyClient only require to download a fraction of the block headers to verify

that a given chain is the valid chain11. Both mechanisms sample a subset of block headers at

random, such that a fake chain produced by an adversary corrupting at most 33% of consensus

participants or total computational power will be detected with overwhelming probability –

and hence rejected.

NIPoPoWs [KMZ17] sample block headers which exceed the minimum Proof-of-Work target –

11The chain with the most accumulated Proof-of-Work in PoW blockchains.

127

the so-called superblocks. Due to the design of PoW, statistically, 1/2 of the generated blocks

will exceed the minimum target (level-1 superblocks), 1/4 will exceed the target by a higher

number (level-2 superblocks), etc. By only sampling superblocks, the number of block headers

NIPoPoW clients need to download is polylogarithmic in the blockchain size. Unless deployed

as a non-backward compatible hard fork [ZSJ+18], NIPoPoWs require block headers to contain

an additional interlink data structure (pointers to previous superblocks) for secure verification

of the valid chain.

FlyClient [BKLZ20] samples block headers based on an optimized heuristic, which takes as input

a random number, e.g. generated using the latest PoW block hash. Similar to NIPoPoWs, a

backward-compatible deployment of FlyClient requires additional data to be stored in block

headers: the root of a Merkle Mountain Range commitment – an efficiently-updatable Merkle

tree variant that supports logarithmic subtree proofs. The leaves of the MMR contain block

hashes of all blocks generated so far.

Both protocols also provide mechanisms to verify that a block header, not sampled as part of

the (poly)logarithmic valid chain proof, is indeed part of the valid chain. In NIPoPoWs, this is

achieved via so-called infix proofs, which link the blocks in question to the sampled superblocks

via the so-called “interlink” structure. In FlyClient, this is achieved by a Merkle tree path from

the MMR root to the leaf containing the hash of the block in question. Note that additional

block inclusion checks are not necessary in näıve SPV clients, since all block headers are already

downloaded.

Probabilistic Sampling Dilemma

To the best of our knowledge, all sublinear light client verification protocols only reduce the

block-header data submitted to the client, i.e., the protocols provide efficient valid chain proofs.

The ultimate goal of light clients, however, is not only to efficiently determine the valid (or

“main”) chain but to verify the inclusion of transactions in the latter. As such, to prove

the inclusion of n transactions in the blockchain, both super-block NIPoPoWs and FlyClient

require n block headers and n Merkle tree membership proofs to be submitted to the client – on

128 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

top of the valid chain proof. Therefore, for large n, transaction inclusion verification becomes

the performance bottleneck of sublinear light clients. Considering the additional data stored

in block headers, performance may even be worse than that of näıve SPV clients for high

transaction volumes. We term this problem the Probabilistic Sampling Dilemma.

Contribution

In summary, we make the following contributions:

• We introduce the Probabilistic Sampling Di-lemma and provide a formal analysis, deriving

the expected overhead of payment verification in sublinear light clients (Section 5.2).

• We introduce TxChain as a new technique for compressing transaction inclusion proofs,

leveraging the security assumptions of the underlying blockchain (Section 5.3). In par-

ticular, to prove the inclusion of n transactions, TxChain creates dn
c
e contingent (on-

chain) transactions, where c is a constant dependent on the block/transaction size of the

blockchain. Contingent transactions are only valid if each of the referenced n transactions

exists in the blockchain. Proving the inclusion of a contingent transaction hence proves

the inclusion of the n referenced transactions. To circumvent block size limitations, we

further show how to construct hierarchies of contingent transactions. As a result, to prove

the existence of n transactions, TxChain requires a single contingent transaction in the

best case (n ≤ c) and dn
c

+ logc(n)e in the worst case (n > c).

• We prove TxChain’s security and formally analyze its efficiency (Section 5.4). Under

high transaction volumes, TxChain reduces the number of downloaded block headers by

up to a factor of 977x for FlyClient, and 973x for NIPoPoWs, for c = 1000 as in Bitcoin.

In terms of transaction inclusion proofs, TxChain achieves an improvement of up to

1190x across all types of light clients.

• We show how TxChain can be deployed (i) in Bitcoin without requiring changes to

the underlying protocol and as a soft fork, (ii) and as a hard fork in Ethereum. We

5.1. Model and Definitions 129

show TxChain’s performance improvement when added as an extension to NIPoPoWs,

FlyClient and even näıve (linear) SPV clients (Section 5.5.1 and 5.5.2).

• To demonstrate effectiveness in resource-constrained environments, we implement Tx-

Chain as a smart contract on Ethereum which efficiently verifies Bitcoin payments (Sec-

tion 5.5.3)12.

5.1 Model and Definitions

5.1.1 System Model

Our setting consists of three types of users: miners, full nodes, and light clients.

Miners participate in the consensus protocol that orders the blocks, e.g., in Proof-of-Work

blockchains the miners are the users that create the blocks by solving the computationally

difficult puzzles. The miners essentially determine which is the valid chain.

Full nodes verify and store a copy of the entire valid (honest) chain13. Since a blockchain is a

distributed system, the valid chain is the one agreed by the honest miners. To verify that a

blockchain is a valid chain, a user can download a copy of the entire chain from one full node

(or miner, ideally multiple), and verify all blocks. However, this is quite costly, both in terms

of space and computation.

Light clients allow for fast synchronization and transaction verification, under the assumption

that the valid chain follows the rules of the network. Specifically, light clients only maintain

the following: (i) the necessary data to verify chain validity, i.e., for SPV clients all block

headers, while for sublinear light clients a (random) sample of block headers with cardinality

polylogarithmic to the length of the valid chain, (ii) for each transaction to-be-verified, the

corresponding block header to extract the vector commitment (and optionally a proof that this

12Open source implementation available at https://github.com/txchain/txchain
13Miners are also full nodes, while full nodes are miners with zero “voting power”.

https://github.com/txchain/txchain

130 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

block header is indeed part of the valid chain), and inclusion proof, e.g., for Bitcoin the Merkle

tree root and path.

Assumptions

We make the usual cryptographic assumptions: all users are computationally bounded; crypto-

graphically-secure communication channels, hash functions, signatures, and encryption schemes

exist. Further, we assume the underlying blockchain maintains a distributed transaction ledger

that has the properties of persistence and liveness as defined in [GKL15]. Persistence states

that once a transaction is included “deep” enough in an honest miner’s valid chain it will be

included in every honest miners’ valid chain in the same block, i.e., the transaction will be

“stable”.

We assume persistence is parametrized by a “depth” parameter k, meaning that we assume the

finality of transactions after k blocks. Liveness states that a transaction that is given as input

to all honest miners for a “long” enough period will eventually become stable. Lastly, we note

that TxChain does not require any synchrony assumptions since it is a non-interactive proof

scheme. Hence, we assume the same network model of the underlying blockchain system. We

note, however, that each client is assumed to be connected to at least one honest full node or

miner and is hence not prone to eclipse attacks [HKZG15].

Threat Model

We assume a rushing and fully adaptive adversary, meaning that the adversary can reorder the

delivery of messages, but cannot modify or drop them, and corrupt users on the fly. However,

the proportion of corrupted miners (consensus participants) is bounded by the threshold neces-

sary to ensure safety and liveness for the underlying system [Fuz08]. For Nakamoto consensus,

we bound the fraction of computational power α
1+α

controlled by the adversary at any moment

by α
1+α
≤ 1/3 [GKL15], where α is a security parameter. In Byzantine fault-tolerant settings,

e.g. Proof-of-Stake such as [KRDO17], the fraction of corrupted consensus participants f is

5.1. Model and Definitions 131

bounded by f < 1/3.

Blockchain Notation

We denote a block header, i.e., a block without the included transactions, at position i in chain

C as Ci. The genesis block header is, therefore, C0, while Ch denotes the block header at the tip

of the chain, where h is the current “length” (or height) of chain C. Each block header includes

(at least) a vector commitment over the set of transactions included in block and the hash of

the previous block header in chain C. This hash acts as a reference to the previous block and

thus the hash-chain is formed. The vector commitment, on the other hand, is a cryptographic

accumulator over an ordered list of transactions or a position binding commitment, which can

be opened at any position with a proof sublinear in the length of the vector.

We use txid to refer to a transaction with identifier id. Furthermore, we denote by γ(·,·) the

inclusion proof of a transaction in a block. Specifically, γ(i,id) denotes an inclusion proof of

transaction txid in the block at position i of the chain. If there exists a proof γ(i,id), we write

txid ∈ Ci Typically, the transaction inclusion proof employs the vector commitment on the

block header. We define as β(Ci,C) the inclusion proof of the block header Ci in chain C. A

näıve block inclusion proof is the entire hash chain C: the hash-chain that includes the block

Ci points back correctly to the genesis block C0 (ground truth). Lastly, we denote as π(C,Ch)

a chain validity proof: a proof that a chain C at some round ending in a specific block Ch at

position h (the tip of the chain) is the valid chain, i.e, the chain agreed by the honest miners.

We denote by |S| the cardinality of a set S. Further, we abuse the block header notation Ci to

also refer to the block.

5.1.2 Protocol Goals

We use the prover–verifier model from [KMZ17]. In TxChain, the prover (full node) wants to

convince the verifier (client) that a set of transactions T are included in the valid chain C. To

do so, the prover(s) must provide three types of proofs to the verifier:

132 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

1. Chain validity proof π(·,·): A proof that chain C is the valid chain. Both NIPoPoW and

FlyClient provide succinct proofs that the given chain is valid.

2. Transaction inclusion proofs Γ: For each transaction in T , a proof of inclusion in a specific

block γ(·,·).

3. Block inclusion proofs B: For each block that contains a transaction of T , a proof of

inclusion β(·,·) that the block is in the valid chain C. The structure of this proof is specific

to the protocol used to verify that chain C is the valid chain.

These proofs are not necessarily distinct, meaning that the data the prover sends to the verifier

for all three proofs may overlap. For instance, in an SPV client, the proof of block inclusion

requires no additional data since all block headers are stored and verified as part of the veri-

fication process of the chain validity. Therefore, if the block inclusion proof is already part of

the chain validity proof, we do not send the data twice.

Desired Properties

Our goal is to design a protocol that is secure and efficient :

• Security in TxChain encapsulates the correctness of the protocol, meaning that a verifier

only accepts the proofs, i.e., terminates correctly, if the prover is honest and knows the

valid chain. In other words, the verifier will terminate correctly if all transactions in T

are included in the valid chain C.

• Efficiency captures the storage cost of the protocol, i.e., how much data must be sent to

the verifier as part of the verification steps (1-3). To evaluate the efficiency of TxChain,

we calculate these storage costs and compare them against existing solutions for different

sets of transactions (increasing cardinality).

5.2. Probabilistic Sampling: Cure or Curse? 133

5.2 Probabilistic Sampling: Cure or Curse?

In this section, we highlight the practical challenges of light clients based on probabilistic sam-

pling. We demonstrate that these light clients offer only optimistic performance improvements

when the transactions to-be-verified are many, and in the worst case, can perform worse than

näıve SPV clients. We term this problem the Probabilistic Sampling Dilemma. We first provide

an intuition, and then a formal analysis to measure efficiency.

5.2.1 Probabilistic Sampling Dilemma

Chain Validity Proof

Existing sublinear light clients, such as superblock NIPoPoWs [KMZ17] and FlyClient [BKLZ20]

use probabilistic sampling to reduce the number of block headers necessary to prove knowledge

of the valid chain (chain validity proof). FlyClient relies on a pre-defined heuristic for sampling

blocks, while superblock NIPoPoWs sample headers of blocks that exceed the minimum PoW

difficulty. Due to the nature of Proof-of-Work (and specifically hash functions modeled as ran-

dom oracles), the appearance of such blocks is considered random. In both cases, the prover

cannot predict upfront which blocks to provide to the verifier as part of the requested chain

validity proof. This property yields the probability of the prover defrauding the verifier with

respect to the chain validity proof negligible, within our model as described in Section 5.1.

Block Inclusion Proof

In näıve SPV clients, the block inclusion proof is trivial, as the verifier already has the hash-

chain for the chain validity proof. However, this is not the case in sublinear light clients that use

probabilistic sampling: For a given set of transactions, the prover must provide to the verifier

(a) the block headers and block inclusion proofs for the chain validity proof ((poly)logarithmic

in cardinality), and (b) for any block including a transaction of the input set that is not sampled

for the chain validity proof, the corresponding block header, and block inclusion proof.

134 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

The reason for the additional block headers is that the probabilistic sample of block headers is

independent of the transactions the client wants to verify. Therefore, in addition to the chain

validity proof (e.g., NIPoPoW) and the transaction inclusion proof for every transaction, the

prover must also persuade the verifier that the block header corresponds to the transaction

inclusion proof of each transaction is part of the valid chain. This implies that the cost of the

probabilistic NIPoPoWs is also dependent on the number of transactions to-be-verified and how

they are distributed in the blockchain.

Probabilistic Sampling Dilemma

An additional overhead of probabilistic NIPoPoW is the increase of the block header size –

especially if deployed in the blockchain without major modification to the underlying consen-

sus rules. This results in the following phenomenon: the storage and bandwidth cost of both

superblock NIPoPoWs and FlyClient can exceed that of näıve SPV clients for high transaction

volumes (as shown in the experimental evaluations in Section 5.5.1). In particular, in proba-

bilistic sampling clients, the cost is proportional to the number of different block headers (and

block inclusion proofs) that are given to the verifier, multiplied by the block header size. If

transactions are distributed across many different blocks of the chain, which are not sampled in

the chain validity proof, the cost, i.e., the additive data for the three proofs (c.f. Section 5.1.2)

sent to the verifier / light client, increases.

As a result, a dilemma arises for clients with constrained resources: Clients can either (a)

anticipate a high transaction volume and use a näıve SPV client, accepting a higher cost for

chain validity proofs, or (b) rely on a probabilistic sampling (NIPoPoWs, FlyClient), saving

costs on downloaded block headers under low transaction volumes, but under high transaction

volumes end up with overall higher storage and bandwidth costs. We call this the Probabilistic

Sampling Dilemma.

5.2. Probabilistic Sampling: Cure or Curse? 135

5.2.2 Analysis

In this section, we show that given a set of transactions to-be-verified T , the cost of probabilistic

sampling light clients grows proportionally to the number of transactions n = |T | and sublinear

to the length of the chain. As such, when the number of transactions is large, the costs of the

protocol is dominated by the cost of the block inclusion proofs, instead of the chain validity

proof.

To that end, suppose C1, . . . , Cσ is the set of blocks sampled for the chain validity proof. The

selected set is expressed via a random variable X which follows the probability distribution

defined in the light client protocol – e.g. uniformly-random distribution with respect to the

length of the chain in FlyClient. This means, that Xi = 1 if the block header Ci is chosen to

be part of the chain validity proof. Now, suppose σ is the size of the probabilistic sample and

h the length of the valid chain, then if X follows a discrete uniform distribution, it holds that

Pr[Xi = 1] = σ
h
, for all i ∈ {0, 1, . . . , h−1}. As mentioned in Section 5.2, we assume the prover

cannot influence or bias this random variable for security reasons.

On the other hand, we define the discrete random variable Yi,j = 1 if transaction txj ∈ T

is included in block Ci. For the purpose of our analysis, we assume Yi,j follows a discrete

uniform distribution on the length of the chain h as well. Thus, Pr[Yi,j = 1] = 1
h
, for all

i ∈ {0, 1, . . . , h − 1} and j ∈ {1, 2, . . . , n}. We further define the discrete random variable

Yi to express if a block contains at least one of the transactions in T ; Yi = 1 if for any

j ∈ {1, 2, . . . , n}, Yi,j = 1. Each trial is independent as a transaction’s inclusion in a block

has no influence on which block will contain another transaction (for block size large enough)

Therefore, Pr[Yi = 1] = 1− Pr[Yi,1 = 0] · Pr[Yi,2 = 0] . . . P r[Yi,n = 0] = 1−
(
1− 1

h

)n
.

For every block that includes at least one transaction from T , the prover must provide to the

verifier the block header and a block inclusion proof, even if this block is not sampled for the

chain validity proof. To determine the overhead on the cost, we have to count the number of

blocks that include at least one transaction and are not sampled for the chain validity proof.

To that end, we define Zi = 1 if Yi = 1 ∧ Xi = 0. Since Yi and Xi are independent random

136 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

variables,

Pr[Zi = 1] = Pr[Yi = 1] · Pr[Xi = 0] =
(
1− (1− 1

h
)n
)
·
(
1− σ

h

)
.

Thus, the expected number of additional block headers are

E(Z) = E

(h−1∑
i=0

Zi

)
= h · Pr[Zi = 1] = (h− σ) ·

(
1− (1− 1

h
)n
)
≥
(

1− σ

h

)
· n

We observe that the smaller the sample for the chain validity proof, the larger the expected

number of additional transactions. Furthermore, we notice that for a given chain length and

sample size, the expected number of additional blocks grows with the number of transactions

to be verified.

5.3 TxChain Design

In this section we present the design of TxChain. We first define the concept of contingent

transactions and then present how this mechanism can be used to circumvent the Probabilistic

Sampling Dilemma.

Figure 5.1: Visualization of TxChain: a contingent transaction txa is only valid and can
hence be included in the valid chain C at index i if all referenced transactions tx1, . . . ,txn
are included in C, and hence are valid. The inclusion proof γ(i,a) for txa is hence also proves
inclusion of tx1, . . . ,txn.

5.3. TxChain Design 137

5.3.1 Contingent Transactions

Smart contracts in blockchains allow us to define under which conditions a transaction can be

included in the underlying ledger, i.e., specify when the transaction becomes valid under the

blockchain’s consensus rules. In TxChain, we leverage a fairly simple type of smart contract:

contingent payments (or transactions). Thereby, a transaction txa is constructed such that it

becomes valid – and hence can be included in the underlying ledger – if and only if a set of

transactions T = tx1, . . . ,txn was already included in the underlying ledger. Formally,

Definition 10 (Contingent Transaction). A transaction txa is contingent on a set of transac-

tions T = tx1, . . . ,txn if txa can only be included in Ci iff C already contains tx1, . . . ,txn.

Formally: txa ∈ Ci =⇒ ∀j ∈ {1, 2, . . . , n} ∃m ∈ {0, . . . , i}s.t.txj ∈ Cm.

When checking validity of a contingent transaction txa, full nodes look up the referenced

transactions tx1, . . . ,txn in their local copy of the full valid chain, and only accept txa if all

transactions were indeed found, as illustrated in Figure 5.1.

5.3.2 TxChain: Contingent Transaction Aggregation

We now apply the concept of contingent transactions to reduce the storage and bandwidth

requirements of light clients when verifying n transaction inclusion proofs. Consider the follow-

ing setting: A prover wants to convince a verifier that a set of transactions T = tx1, . . . ,txn

was included in the valid chain C. The transactions are thereby distributed across h different

blocks, h ≤ n. In TxChain, the prover creates a contingent transaction txa, referencing trans-

actions tx1, . . . ,txn and includes it in the blockchain at position i, i.e., txa ∈ Ci. Following

Definition 10, by convincing the verifier that txa ∈ Ci, the prover also proves that for every

tx1, . . . ,txn there is a block Cm (m ∈ {0, . . . , h}) that includes the transaction, and all these

blocks are part of the valid chain C (i.e., ∀m ∈ {0, . . . , h} ∃β(Cm,C)).

Specifically, the prover has a valid chain of h + 1 blocks C0, . . . , Ch and receives a query for

a set of transactions T = tx1, . . . ,txn from the verifier. The prover creates transaction txa,

138 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

contingent on T and includes it in the valid chain in block Ci (i > h). Once included, the prover

computes the valid chain proof π(C,Ci+k), the block inclusion proof β(Ci,C) and the transaction

inclusion proof γ(i,c) and sends these proofs to the verifier, alongside txa. The verifier checks

the provided proofs and that txa is indeed contingent on T . Once txa has k confirmations,

the verifier accepts txa as proof that transactions T are in the valid chain.

Algorithm 9 TxChain Prover / Verifier Protocol for Inclusion Verification of n Transactions

Prover

1. Has valid chain of h+ 1 blocks C0, . . . , Ch

2. Receives query for transactions T = tx1, . . . ,txn from verifier

3. Creates transaction txa contingent on the set of transactions T

4. Includes it in the valid chain at position Ci, i > h

5. Waits k blocks until txa is stable

6. Computes:

(a) the valid chain proof π(C,Ci+k)

(b) the block inclusion proof β(Ci,C)

(c) the transaction inclusion proof γ(i,c)

7. Sends π(C,Ci+k), β(Ci,C), γ(i,c) and txa to the verifier

Verifier

1. Has transactions T = tx1, . . . ,txn

2. Queries prover for a proof that transactions T are included in the valid chain

3. Receives proof π(C,Ci+k), β(Ci,C), γ(i,c) and txa from the prover

4. Verifies

(a) the valid chain proof π(C,Ci+k)

(b) the block inclusion proof for β(Ci,C)

(c) the transaction inclusion proof γ(i,c)

(d) that transaction txa is contingent on transactions T

5. If everything checks out accepts the transaction inclusion proof for T

5.3. TxChain Design 139

5.3.3 Hierarchical TxChain

So far, we have assumed that a single transaction txa can be contingent on an arbitrary number

n of pre-existing transactions. Including references to T = {tx1, . . . ,txn} in txa, however,

comes at a cost: each additional reference means additional data must be attached to txa.

However, blockchains typically exhibit block or transaction size limits due to network latency

concerns: the larger a transaction, the slower it will be propagated across the network, and the

more susceptible it is to double-spending attacks [GRKC15].

Depending on the size of these identifiers, which in turn depends on the design of the underlying

blockchain as well as the means of deployment of TxChain (c.f. Section 5.5), the number of

transactions referenced by a single contingent transaction txa can be limited. We capture this

by a constant c > 1. As long as n ≤ c, verifying n transactions requires only a single contingent

transaction.

Consider, however, a scenario where n > c, i.e., a prover wants to convince the verifier that a

large number of transactions are included, but cannot reference them all within a single con-

tingent transaction. To circumvent this problem, the prover splits transactions tx1, . . . ,txn

across multiple contingent transactions txa(1), . . . ,txa(n/c). Next, the prover constructs an

hierarchical dependency across the “first-layer” contingent transactions by creating transac-

tions txa(n/c), . . .txa(n/c2). In simple terms, the prover creates a N-arry tree of contingent

transactions, where each node is a contingent transaction acting as inclusion proof for c nodes

(transactions) in that branch.

As a result, the prover can apply TxChain to an arbitrary number of transactions, at the cost

of including in the blockchain and sending to the verifier n
c

+ dlogc(n)e contingent transactions.

For example, for n = 1000 and c = 100, the number of contingent transactions would be 11.

This yields a 91x reduction in the required transaction and block inclusion proofs. If c ≥ n

(e.g. c = 1000), the reduction in the example is 1000x. That is, the number of transactions c

that can be referenced by contingent transactions directly impacts the improvement offered by

TxChain.

140 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

5.4 Security and Efficiency Analysis

In this section we show how TxChain achieves the two protocol goals: security and efficiency

(see Section 5.1.2).

5.4.1 Security Analysis

TxChain achieves security when the verifier terminates correctly if and only if the prover is

honest.

[⇒] If the prover is honest then, all transactions are included in the valid chain C, and the

proofs are generated according to the protocol specifications. Therefore, the verification of all

proofs will be successful by the verifier and thus will terminate correctly.

[⇐] For the opposite direction, we will prove the statement by contradiction. Let us assume the

verifier terminates correctly but the prover is malicious. This implies that the prover deviated

from the protocol specification. Given that the verifier terminated, the verifier received the

corresponding proofs from the prover. Since the security of the generation of the proofs is

guaranteed by the underlying light client verification protocol, the prover must have deviated

from the protocol during the creation of the contingent transaction. However, the verifier has

the block inclusion proof for the contingent transaction and also the last k blocks headers of the

chain; therefore, the prover can only deviate during the creation of the contingent transaction.

However, during the verification of the transaction inclusion proof the verifier ensures that all

requested transaction identifiers are tied to this transaction. Thus, the prover cannot create an

incorrect contingent transaction. Contradiction. We conclude that TxChain achieves security.

Hierarchical TxChain

The security of the hierarchical TxChain construction follows the security analysis of Tx-

Chain. Now assume T encapsulates all to-be-proven transactions tx1, ...txn, as well as the

set of contingent transactions txa(1), ...txa(x) where x is upper-bound by n
c

+ logc(n), i.e.,

5.4. Security and Efficiency Analysis 141

T = {tx1, ...txn} + {txa(1), ...txa(x)}. If the contingent transaction txa(x), which is the root

of the created N-arry tree of contingent transactions, is included in valid chain C, this means

that the subset of contingent transactions {txa(x−1−c), ...txa(x−1)} was also included in C. The

same holds for the predecessors of each transaction txj with j ∈ {x − 1 − c, ..., x − 1}. We

continue this process recursively until we observe that {tx1, ...txn} must also be included in

C, for txa(x) to be valid and hence included in C.

5.4.2 Efficiency Analysis

We now discuss how TxChain achieves efficiency by comparing the storage costs of näıve

(SPV) and sublinear (NIPoPoWs and FlyClient) light clients with and without applying Tx-

Chain. We assume a secure hash function H and denote its size as |H|. We analyze the cost

of each proof (see Section 5.1) below.

Valid Chain Proofs: The size of the valid chain proof in näıve SPV is linear in h. The size of

the valid chain proof in sublinear light clients depends on two parameters: (i) λ, which defines

the probability 2−λ of a verifier terminating correctly on an invalid proof, (ii) α, which defines

the strength of the adversary α/(1 + α), e.g. the hash rate in PoW blockchains , and (iii) the

“depth” parameter k. The NIPoPoW π(C,Ch) size [KMZ17, BKLZ20] is given by

log1/α(2)λ · ((log2(h) + 1) · C + log2(h) · dlog2(log2(h))e · |H|).

The FlyClient π(C,Ch) size [BKLZ20] is given by

λlog1/α(2)ln(h) · (C + |H|).

Note the increased block header size due to the additionally required number of hashes |H| in

NIPoPoWs (interlink structure) and FlyClient (MMR root).

Block Inclusion Proofs (B): Since näıve SPV clients store all block headers, no extra block

inclusion proofs β(·,·) are required. Both NIPoPoW and FlyClient require block inclusion proofs

142 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

for blocks not sampled as part of π(C,Ch) – for both mechanisms, the size of β(·,·) is log(h) · |H|

per block header.

Transaction Inclusion Proofs (Γ): A transaction inclusion proof γ(i, id) is a list of hashes

(Merkle tree path), logarithmic in the number of transactions contained in block Ci. Hence,

the size of each proof is log(t) · |H|, where t is the total number of transactions included in the

block containing a transaction of T .

TxChain Efficiency

In Section 5.2, we determined the expected number of additional block headers and block inclu-

sion proofs E(|B|) required in NIPoPoW and FlyClient to verify the inclusion of n transactions

for any given blockchain size h:

E(|B|) = (h− σ) · (1− (1− 1

h
)n),

where σ is the number of blocks sampled for the chain validity proof. When applying TxChain

to such probabilistic sampling clients, this number decreases to:

E(|B′|) =
E(|B|)
c

+ logc(E(|B|)).

We observe that the improvement achieved by TxChain is most significant for large c, since

limc→∞E(|B′|) = 1.

To evaluate the theoretical improvement we can achieve in TxChain, we apply TxChain as

an extension to both NIPoPoW and FlyClient. Figure 5.2 overviews the expected number of

(a) additional block inclusion proofs (and hence block headers) and (b) required transaction

inclusion proofs, before and after applying TxChain, for blockchain size h = 100000 and

c = 1000.

5.4. Security and Efficiency Analysis 143

Table 5.1: Expected number of additionally required block inclusion proofs (and hence block
headers) for different n in FlyClient and NIPoPoWs, before (E(|B|)) and after (E(|B|)′) applying
TxChain. Results provided for a blockchain size h = 100000 and c = 1000.

n=|Γ|
FlyClient Superblock NIPoPoWs

Vanilla TxChain
Improvementfactor

Vanilla TxChain
Improvementfactor

E(|B|) % E(|B|)′ % E(|B|) % E(|B|)′ %

1 1 100.0 1 100.0 1.0 1 100.0 1 100.0 1.0
10 10 100.0 1 10.0 10.0 10 100.0 1 10.0 10.0
100 99 99.0 2 2.0 49.5 99 99.0 2 2.0 49.5
1000 989 98.9 2 0.2 494.5 986 98.6 2 0.2 493.0
10000 9461 94.61 11 0.11 860.09 9432 94.32 11 0.11 857.45
50000 39120 78.24 42 0.08 931.43 39000 78.0 42 0.08 928.57
100000 62848 62.85 65 0.07 966.89 62655 62.66 65 0.07 963.92
200000 85968 42.98 88 0.04 976.91 85704 42.85 88 0.04 973.91

A more detailed cost breakdown is provided in Table 5.1. We observe that as expected, Tx-

Chain becomes more effective as n increases, up until n = |T | = h. Statistically, given a

blockchain size of 100000 and 50000 to-be-verified transactions, FlyClient on average requires

the submission of 39120 block inclusion proofs and block headers, on top of the blocks sampled

as part of the chain validity proof. NIPoPoWs, which sample 40% more blocks as part of the

chain validity proof [BKLZ20], require 39000 additional block headers. If we apply TxChain’s

contingent transaction aggregation to FlyClient and NIPoPoWs, assuming a realistic c = 1000

(e.g. one that corresponds to a transaction with 1000 inputs in Bitcoin), we only need to

download 42 additional block headers, achieving an improvement factor of 931x over FlyClient

and 928x over NIPoPoWs.

TxChain achieves even higher improvement factors for higher values of Γ = n in FlyClient

and NIPoPoW, since E(|B|) ≤ n. For 50000 to-be-verified transactions and a blockchain size

of 100000, the use of TxChain improves over both “Vanilla” FlyClient and NIPoPoW by a

factor of 1190x: instead of 50000, we require only 42 transaction inclusion proofs. It is worth

mentioning that the same improvement identically applies to näıve SPV clients, as visualized

in Figure 5.2(b).

We note the actual improvement in terms of storage and bandwidth costs depends on how Tx-

Chain, and specifically contingent transactions, are implemented in the underlying blockchain,

as we discuss in Section 5.5.

144 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

(a) (b)

Figure 5.2: Effects of applying TxChain to FlyClient and NIPoPoWs. (a) Total number of
block headers required for verification of n transactions (π(C,Ch) + E(|B|)). (b) Number of
transaction inclusion proofs Γ in light clients before and after applying TxChain (logarithmic
y-axis). Numbers h = 100000 and c = 1000.

Limitations

While the design of TxChain is simple and avoids complex cryptographic schemes, making it

compatible with the majority of existing blockchain systems, it also exhibits limitations. The

requirement of including additional transactions in the blockchain results in additional transac-

tion fees for the prover (c.f. Section 5.5.1). Further, TxChain may not be applicable in times

of high network congestion, i.e., if a prover is unable to reliably include a contingent transac-

tion in the blockchain. This in turn, in the worst case, may yield TxChain not applicable to

instant or day-to-day payments. To summarize, TxChain is most effective in settings where

the storage and especially bandwidth requirements of the verifier are the main bottleneck of

a protocol, or even priced by byte – as is the case when verification is performed in on-chain

smart contracts, as we show in Section 5.5.3.

5.5 Deploying TxChain in Practice

In this section, we discuss how TxChain can be added to light clients of the two major

blockchains Bitcoin and Ethereum, and evaluate the achieved improvements. Note: we evaluate

5.5. Deploying TxChain in Practice 145

both NIPoPoW and FlyClient under constant difficulty since NIPoPoW currently does not

support variable difficulty [KMZ17, BKLZ20].

5.5.1 Fork Free Deployment

We first discuss how TxChain can be deployed in a fully backward compatible manner without

requiring forks in Bitcoin (and similar systems). In blockchains like Ethereum, which rely on

an account-based model, TxChain requires a soft or hard fork.

Bitcoin: Dust Output Spending

Bitcoin operates a so-called Unspent Transaction Output model (UTXO). Each new transaction

consists of inputs and outputs, where inputs spend outputs of existing transactions. Outputs

specify rules for how the coins locked in the unspent output (UTXO) can be spent, i.e. via smart

contracts. In Bitcoin, these contracts are written in Script [Bit21b], a stack-based scripting

language. UTXOs can only be spent as a whole. As of this writing, the only way to create

conditional relations across transactions in Bitcoin is by creating spending relationships.

Table 5.2: Storage and bandwidth costs of näıve SPV, Flyclient and NIPoPoWs, without
(“Vanilla”) and with a fork-free deployment of TxChain, for different numbers of to-be-verified
transactions n, for blockchain size h = 630000 (as of 5 May 2020) and c = 1000. Fly-
Client/NIPoPoW numbers provided for soft and hard fork deployment.

n
näıve SPV

FlyClient Superblock NIPoPoWs
Soft Fork Hard Fork Soft Fork Hard Fork

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

1 50.4 50.4 1.0 0.51 0.51 1.0 0.1 0.1 1.0 0.77 0.77 1.0 0.15 0.15 1.0
10 50.41 50.4 1.0 0.52 0.51 1.02 0.1 0.1 1.04 0.78 0.77 1.01 0.15 0.15 1.03
100 50.49 50.4 1.0 0.62 0.51 1.21 0.15 0.1 1.5 0.88 0.77 1.14 0.2 0.15 1.33
1000 51.32 50.4 1.02 1.61 0.51 3.16 0.59 0.1 6.03 1.88 0.77 2.43 0.64 0.15 4.33
10000 59.58 50.42 1.18 11.51 0.53 21.58 5.05 0.11 44.04 11.77 0.8 14.81 5.1 0.16 30.97
50000 96.3 50.66 1.9 54.42 0.8 68.11 24.67 0.36 69.17 54.67 1.06 51.56 24.72 0.41 60.8
100000 142.2 51.39 2.77 105.69 1.5 70.68 48.84 1.03 47.61 105.92 1.76 60.31 48.89 1.08 45.46

To deploy TxChain in Bitcoin without consensus changes we can use dust output spending for

the creation of contingent transactions. When creating transactions tx1, . . . ,txn the prover

includes an additional output in each transaction, containing at least the minimum possible

value transferable in Bitcoin (54.60 · 10−6 BTC which is approx. USD 0.4 as of 5 May 2020).

146 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

The contingent transaction txa then spends outputs of tx1, . . . ,txn and, due to Bitcoin’s

consensus rules, can hence only be included in the blockchain if all spent UTXOs already exist.

A practical limitation is that the prover must be able to spend from the outputs of transactions

tx1, . . . ,txn when creating txa. In the simplest case, the prover is the author of tx1, . . . ,txn

(i.e., controls the signing keys), and can hence spend from the corresponding outputs. For the

case where tx1, . . . ,txn are authored by different users, we outline two simple coordination

schemes. A straightforward approach is for the prover to publicly announce his public key,

e.g. on a public bulletin board (can also be Bitcoin or Ethereum), such that users can create

dust outputs spendable via the prover’s signing key. The value accumulated from the dust

outputs can thereby serve as means to cover the prover’s costs for broadcasting txa. An

approach without additional communication overhead is to use anyone-can-spend outputs and

allow miners to aggregate tx1, . . . ,txn when claiming the dust outputs as fees. In both cases,

the dust outputs of tx1, . . . ,txn can be supplemented with pre-defined timelocks, allowing

transaction aggregation, e.g. only once every 6 hours. This contributes to provers/miners

aggregating multiple transactions, rather than spending from each tx1, . . . ,txn as they are

broadcast by users. Other, more complex and costly designs involving HTLCs [Bit21a] and

zero-knowledge contingent payments [Bit20c] are left to future work.

Evaluation. In our evaluation, we use Bitcoin P2WPKH [Lib18] transactions. In Bitcoin, C = 80

bytes and |H| = 32 bytes. The average transaction size in 2019 was 534 bytes, while the average

size of the coinbase transaction was 259 bytes, the average depth of the transaction Merkle tree

was 12. The coinbase transaction is the first transaction of every block and is used by NIPoPoWs

and FlyClient to include the interlink data / MMR root required for block inclusion proofs when

deployed as a backward-compatible soft or velvet instead of a hard fork [ZSJ+18].

Summarizing, each block inclusion proof in NIPoPoW and FlyClient requires additionally 259+

12 · |H| = 643 bytes, and each transaction inclusion proof 384 bytes - avoidable when applying

TxChain. However, multi-input Bitcoin transactions that make use of TxChain incur some

additional cost: 93 bytes per input and 45 bytes flat per contingent transaction (assuming one

5.5. Deploying TxChain in Practice 147

P2WPKH output). Thereby, Bitcoin full nodes will relay transactions of up to 100kb14, thus

c ≈ 1000.

We overview the storage and bandwidth costs of näıve SPV, FlyClient and NIPoPoWs with

and without TxChain in Table 5.2, for a Bitcoin block height h = 630000 (as of 5 May 2020)

and c = 1000. We observe that with TxChain the storage and verification costs remain nearly

constant, offering a significant improvement over “Vanilla” light client implementations, e.g.

achieving an improvement factor of 71x for FlyClient and 60x for NiPoPoWs for n = 100000.

However, fork-free deployment comes at a cost: dust outputs increase the size of contingent

transactions by 93 bytes per referenced input - hence, preventing TxChain from achieving the

theoretical improvements outlined in Section 5.4.2. The costs for including a transaction with

c = 1000 inputs in Bitcoin, at a fee of 3 · 10−6 BTC per byte, amount to USD 21.2 (as of 5 May

2020).

5.5.2 Deployment via Soft or Hard Forks.

Considering both FlyClient and NIPoPoWs require a soft or hard fork to be deployed in Bitcoin

and Ethereum, the minor modifications to transaction validity rules necessary for TxChain

could arguably be added in parallel – if FlyClient or NIPoPoW are indeed deployed in practice.

In both Bitcoin and Ethereum, TxChain can be deployed as a hard fork by introducing a

new TXEXISTS instruction with the following semantics: (i) Pop one argument, representing the

hash of a transaction, from the stack, (ii) push 1 to the stack if the transaction was found

or 0 otherwise. Interestingly, Bitcoin allows re-purposing of unused instructions (“OpCodes”),

enabling deployment via a soft fork.

Bitcoin: Soft Fork by Re-purposing OP NOP

Bitcoin allows to introduce new instructions by re-purposing “reserved” OpCodes, e.g. OP NOP10.

These OpCodes are currently ignored during execution, allowing to add additional rules with-

14github.com/bitcoin/bitcoin/blob/eb7daf4/src/policy/policy.h#L24

github.com/bitcoin/bitcoin/blob/eb7daf4/src/policy/policy.h#L24

148 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

out causing conflicts between upgraded and non-upgraded nodes. Specifically TXEXISTS can be

implemented using the following sequence: OP PUSHDATA1 20 <TXID> OP NOP10 OP VERIFY.

On non-upgraded nodes, OP NOP10 will be ignored and OP VERIFY will evaluate to true, as

the top element of the stack will be non-empty/non-zero (the transaction ID). On upgraded

nodes, OP NOP10 will be interpreted as TXEXISTS, popping the transaction ID from the stack and

pushing back 1 if the transaction exists or 0 otherwise. Therefore, OP VERIFY will fail if and

only if the node has been upgraded and the transaction ID does not exist, which enables a soft

fork deployment.

A soft fork deployment in Bitcoin avoids the requirement to actually spend UTXOs in contingent

transactions. This not only simplifies coordination for provers (no construction needed for the

prover to spend from UTXOs), but also reduce the costs per referenced transaction / UTXO

from 93 bytes (per input) to 32 bytes per transaction identifier (SHA256 hash) plus 4 bytes for

the OpCode flags. This results in an expected 2.8x improvement over the fork-free deployment

of TxChain. Detailed numbers are provided in Table 5.3. However, considering the simple

deployment of TxChain in Bitcoin without consensus changes, we defer the implementation

of TXEXISTS to future work.

Table 5.3: Estimates of storage and bandwidth costs of näıve SPV, Flyclient and NIPoPoWs,
without (“Vanilla”) and with a fork-based deployment of TxChain, for different numbers of
to-be-verified transactions n. FlyClient and NIPoPoW numbers provided for soft fork and hard
fork deployment. Numbers provided for a blockchain size h = 630000 (as of 5 May 2020) and
c = 1000.

n
näıve SPV

FlyClient Superblock NIPoPoWs
Soft Fork Hard Fork Soft Fork Hard Fork

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

1 50.4 50.4 1.0 0.51 0.51 1.0 0.1 0.1 1.0 0.77 0.77 1.0 0.15 0.15 1.0
10 50.41 50.4 1.0 0.52 0.51 1.02 0.1 0.1 1.04 0.78 0.77 1.01 0.15 0.15 1.03
100 50.49 50.4 1.0 0.62 0.51 1.21 0.15 0.1 1.5 0.88 0.77 1.14 0.2 0.15 1.33
1000 51.32 50.4 1.02 1.61 0.51 3.16 0.59 0.1 6.04 1.88 0.77 2.43 0.64 0.15 4.34
10000 59.58 50.41 1.18 11.51 0.53 21.87 5.05 0.11 47.03 11.77 0.79 14.94 5.1 0.16 32.4
50000 96.3 50.51 1.91 54.42 0.65 84.18 24.67 0.2 120.84 54.67 0.91 60.21 24.72 0.25 97.28
100000 142.2 50.77 2.8 105.69 0.92 114.92 48.84 0.45 108.49 105.92 1.18 89.7 48.89 0.5 97.78

Ethereum: New Instruction (Hard Fork)

Unlike Bitcoin which uses the UTXO model, Ethereum does not provide a native way of im-

plementing transaction dependencies. Furthermore, the ID of a transaction cannot be accessed

5.5. Deploying TxChain in Practice 149

from within smart contracts, making it impossible to implement TXEXISTS purely as a smart con-

tract. To deploy TxChain on Ethereum, we hence propose a hard fork introducing TXEXISTS

as a new instruction. We implement TXEXISTS in Geth (v1.9.15), the most commonly used

Ethereum implementation, using Go 1.14.4 and construct a Solidity (v0.6.7) smart contract

to perform TxChain transaction verification using the newly added instruction: the contract

takes as input n transaction identifiers and returns true if all are in the valid chain, and reverts

otherwise. This way, the (contingent) transaction calling the contract will only succeed if the

n to-be-verified transactions are indeed in the main chain.

In Geth, Ethereum transactions are already indexed by hash: checking the existence of a trans-

action does not require any further indexing, but only a single random read in the underlying

LevelDB database. This is equivalent to EXCODESIZE or BALANCE in terms of IO access [PL20].

However, given that the total number of transactions is vastly higher than the number of ad-

dresses, chances of cache miss are higher with TXEXISTS than with BALANCE. Therefore, we assign

a conservative price of 2000 gas to the instruction, i.e., more than twice as expensive as the 900

gas of EXCODESIZE and BALANCE. Finding optimal pricing would require further benchmarking

and is left to future work.

Evaluation. Using our modified version of the Geth client, we measure the cost of a transaction

contingent on c = 1147 other transactions - deriving a conservative value for c by assuming a

block gas limit of 5 million [PL20], i.e., 50% of the block gas limit. Given the 168.01 USD/ETH

exchange rate as per 24 April 2020 and a 5 Gwei gas, this results in an upper limit of ≈ USD 12.6

per (full) contingent transaction. In more detail, the base costs for the contingent transaction

amount to 26,633 gas (0.022 USD), and every additional referenced transaction adds 4,333 gas

(0.0036 USD) to the cost. To measure the overall storage and bandwidth improvements when

applied to NiPoPoWs and FlyClient, we assume the 2019 average Ethereum transaction size

of 499 bytes. We note that storing a single hash in a smart contract on Ethereum, necessary

to include the interlink data (NIPoPoW) or MMR root (FlyClient) in a block, requires a 167

byte transaction. Given Ethereum’s block height h = 10000000 (as of 4 May 2020), n = 100000

transactions and c = 1147, TxChain achieves a 24x improvement over a soft fork deployment of

FlyClient (28x for a hard fork) and a 17x improvement over a soft fork deployment of NIPoPoWs

150 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

(20x for a hard fork). We provide a detailed breakdown of the storage and bandwidth costs in

Table 5.4.

Table 5.4: Estimates of storage and bandwidth costs of näıve SPV, Flyclient and NIPoPoWs,
without (“Vanilla”) and with a fork-based deployment of TxChain, for different numbers of
to-be-verified transactions n. FlyClient and NIPoPoW numbers provided for soft fork and hard
fork deployment. Numbers provided for a blockchain size h = 10000000 (as of 4 May 2020) and
c = 1047.

n
näıve SPV

FlyClient Superblock NIPoPoWs
Soft Fork Hard Fork Soft Fork Hard Fork

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

1 5,080.0 5,080.0 1.0 5.79 5.79 1.0 3.04 3.04 1.0 8.71 8.71 1.0 4.57 4.57 1.0
10 5,080.01 5,080.0 1.0 5.81 5.79 1.0 3.05 3.04 1.0 8.73 8.71 1.0 4.58 4.57 1.0
100 5,080.09 5,080.0 1.0 5.94 5.79 1.02 3.13 3.04 1.03 8.85 8.71 1.02 4.66 4.57 1.02
1000 5,080.88 5,080.0 1.0 7.23 5.79 1.25 3.96 3.04 1.3 10.15 8.71 1.16 5.49 4.57 1.2
10000 5,088.83 5,080.01 1.0 20.21 5.81 3.48 12.27 3.05 4.02 23.13 8.73 2.65 13.8 4.58 3.01
50000 5,124.15 5,080.08 1.01 77.78 5.92 13.13 49.15 3.14 15.63 80.69 8.84 9.12 50.68 4.68 10.84
100000 5,168.3 5,080.29 1.02 149.51 6.17 24.22 95.14 3.37 28.22 152.4 9.09 16.76 96.66 4.9 19.72

5.5.3 Case-Study: TxChain for Cross-Chain Transactions

Reducing the number of downloaded block headers and transaction inclusion proofs can be

especially useful in the cross-chain setting, where storage and bandwidth costs are priced by

the byte. To showcase the applicability of TxChain, we use contingent transactions to verify

Bitcoin transactions on Ethereum, e.g. useful in protocols such as Xclaim [ZHL+19] where ef-

ficient cross-chain transaction inclusion proofs are imperative for secure operation. Specifically,

we extend Interlay’s BTC-Relay Solidity implementation [ZH19], a Bitcoin SPV client imple-

mented as an Ethereum Solidity smart contract, with the TxChain functionality as described

in Section 5.3.2 using the fork-free deployment in Bitcoin as presented in Section 5.5.1.

We compare the gas costs when verifying multiple transactions using BTC-Relay before and

after applying TxChain: we are able to save up to 66.94% on the Ethereum gas costs. A

detailed breakdown of the costs and improvements over the näıve SPV BTC Relay are given in

the full paper version; the code is available as open source12. The measured cost improvements

are thereby limited by Ethereum’s memory pricing function: the costs are linear only up to

724 bytes (equiv. to txa with n = 16 contingent transactions), after which polynomial pricing

is applied. Also, we are only able to parse txa with up to 90 contingent transactions in the

smart contract due to Ethereum’s block gas limit. As such, the savings achieved by TxChain

5.6. Conclusion 151

can be even higher on blockchain platforms with alternative memory pricing models and better

support for Bitcoin primitives (e.g. Polkadot [Woo15] and RSK [Ler15]). Furthermore, applying

TxChain to cross-chain SPV clients supporting FlyClient or NIPoPoWs - which, at the time

of writing, do not yet exist - would further increase the cost savings, as discussed in Section 5.4.

Figure 5.3: Comparison of gas costs for transaction inclusion verification and the necessary
block header verification for BTC Relay without (näıve) and with TxChain. The block used
has a total of 51 transactions.

Action
Cost

Gas USD

Base function call cost 21,000 0.018
Merkle proof 38,038 0.032
Block inclusion 1,109 0.001
BTC Relay total 90,075 0.076

TxChain mean overhead, first 20 transactions 27,025 0.227

TxChain mean overhead 42,560 0.036

Figure 5.4: Breakdown of gas costs for BTC Relay verification, for a total of 51 verified Bitcoin
transactions. USD costs computed with 5 Gwei gas price and 168.01 USD/ETH

5.6 Conclusion

We introduced the Probabilistic Sampling Dilemma, stating that light clients relying on prob-

abilistic sampling suffer from inefficiency under high transaction volumes. We then presented

152 Chapter 5. Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements

TxChain, a novel mechanism to reduce the number of transactions- and block inclusion proofs

in blockchain light clients, leveraging contingent transaction aggregation. We showed Tx-

Chain is secure and offers significant efficiency improvements when applied as an extension to

NIPoPoWs, FlyClient, and even näıve SPV clients. We implemented TxChain (i) on Bitcoin

without requiring any consensus modifications, (ii) in Ethereum as a hard fork, and (iii) in a

cross-chain Bitcoin light client in an Ethereum smart contract, showing the practicability of

TxChain even in resource-constrained environments.

Chapter 6

Conclusion and Future Work

6.1 Summary of Thesis Achievements

In this thesis, we explored the problem of communication across distributed ledgers with-

out requiring trusted intermediaries. We introduced the first formal definition of the Correct

Cross-Chain Communication problem building upon the distributed ledger model of Garay et

al [GKL16] and derived a generic protocol for cross-chain communication. Consequently, we

proved the impossibility of Correct Cross-Chain Communication without a trusted third party

by reduction from the Fair Exchange problem, refuting assumptions and claims commonly

made within the blockchain community. Thereby, we identified the rationality and incentives

of participants as the key to working around this theoretical result in practice.

Next, we introduced the Cross-Chain Design framework as a guide to designing new and evalu-

ating existing blockchain interoperability protocols, focusing on security and trust assumptions,

and applying it to classify existing cross-chain protocols. Based on our observations, we iden-

tified the main challenges of blockchain interoperability protocols in terms of security, privacy,

and practicability and outlined potential avenues for future research.

Following the idea of incentivizing correct behavior of rational participants, we introduced

Xclaim, the first financially trustless protocol to connect crypto-currencies like Bitcoin with

153

154 Chapter 6. Conclusion and Future Work

blockchain platforms like Ethereum and Polkadot. By imposing incentives via collateral insur-

ance and ensuring public verifiability of misbehavior through cross-chain light clients, XCLAIM

guarantees users can always redeem their cryptocurrency-backed assets for the backing asset on

the underlying blockchain or will be reimbursed in a collateral currency at a beneficial rate. We

showcased how Xclaim enables users to create 1:1 Bitcoin-backed assets on Ethereum leverag-

ing the concept of cryptocurrency-backed assets, first formalized in our work. Xclaim requires

no modifications to the underlying blockchain network and hence can be used for cross-chain

transfers of the majority of existing cryptocurrencies. On a high level, cryptocurrency-backed

assets created using Xclaim resemble algorithmic stablecoins [KMHG+20], such as Maker-

DAO’s DAI [Mak14], pegged to decentralized crypto- rather than fiat currencies and extended

to support physical redemption for the underlying asset.

Finally, we presented TxChain, a novel mechanism to improve the efficiency of blockchain

light clients, particularly useful in the cross-chain settings where bandwidth and storage costs

are priced by the byte. TxChain batches a large number of transaction inclusion proofs

into a single on-chain transaction, contingent on the existence and validity of the batched

transactions. We showed how TxChain can be used to increase the efficiency of blockchain

light clients, improving in particular upon new techniques such as NiPoPoWs [KMZ17] and

FlyClient [BBB+17]. TxChain can be deployed on Bitcoin with and without protocol changes

and as a hard fork to Ethereum. Concluding, we showed how TxChain can be used to optimize

chain relays between Bitcoin and Ethereum, particularly useful for systems like Xclaim which

require reliable, timely, and efficient cross-chain verification of transaction inclusion proofs.

6.2 Applications

The work presented in this thesis has found its way into industrial applications. Specifically, the

Xclaim protocol, presented in Chapter 4 has been adopted by several existing smart contract

capable blockchains as a means to bridge Bitcoin and similar cryptocurrencies. Most notably,

the Polkadot [Woo15] and Kusama [Web22a] blockchain networks have selected Xclaim as

6.3. Future Work 155

the officially recommended technique for connecting to Bitcoin and similar systems [Web22b].

Another blockchain in the process of adopting Xclaim as the bridging mechanism is Har-

mony [Har21]. Similarly, a Bitcoin-backed asset system [Ane21], based on the Xclaim protocol,

is being developed for the Cardano [Car22] and Ergo [Erg22] blockchains.

Finally, Interlay, a startup founded by the author of this thesis, is further pursuing the devel-

opment of Xclaim as part of its decentralized network [Int20a, Int20b] and has deployed a

production-ready version on the Kusama blockchain.

6.3 Future Work

Communication across decentralized blockchains is a relatively new field of research, only re-

cently seeing first industrial applications deployed in practice. In this thesis, we have explored

merely the tip of the iceberg of this emerging field of research and industry, attempting to lay

the groundwork for what is yet to be discovered over the next years. Below, we outline what

we believe to be fruitful avenues for future work, building upon this thesis.

6.3.1 Extending the CCC Framework to New Blockchain Paradigms

Interoperability Blockchains

Interoperability Blockchains are specialized sharded distributed ledgers that aim to serve as

a communication layer between other blockchains [KB15, Woo15, Roc18, SN18, VTPM18,

HHK+18, Wan17] and exhibit implementations of existing CCC protocols. Individual shards,

which are coordinated via a parent chain running a BFT agreement protocol, connect to

and import assets from existing blockchains via Migration CCC protocols, most commonly

cryptocurrency-backed assets [Int20b]. A formal treatment of this design, also considering

distributed computations, is presented in [LXS+19]. Cosmos [KB15] and Polkadot [Woo15]

also implement new standards for (internal) cross-shard communication (IBC [Cos19] and

XCMP [BCC+20] respectively). As of this writing, the aforementioned systems are under

156 Chapter 6. Conclusion and Future Work

active development, making it difficult to argue about their security, feasibility, and long-term

adoption - leaving room for future analysis.

Off-Chain Protocols

One of the most actively developed fields in blockchain research are off-chain (“L2”) commu-

nication networks [GMSR+19], which aim to improve scalability (and privacy) of distributed

ledgers: most transactions are executed off-chain and only channel opening and closure are writ-

ten to the ledger. The influx of L2 solutions is thereby creating a new field for CCC research:

(i) communication across off-chain channels [MMK+17, MMSS+18, TMSM19, HAB+16], and

(ii) communication between off-chain and on-chain networks [Ale21, Lig22]. While similar to

conventional CCC protocols, the “off-chain” nature of L2 solutions requires more complex tech-

niques for the verification phase of CCC: intermediate states in off-chain protocols cannot be

verified by existing chain relays, which only support verification of on-chain commitments, and

must hence resort to cryptographic techniques such as adaptor signatures [AEE+20] or succinct

proofs of knowledge [BCCT12, BSBHR18, BBB+17].

6.3.2 Extensions and Improvements to XCLAIM

Capital Efficiency

Xclaim is the first financially trustless cross-chain communication protocol, leveraging over-

collateralization and cross-chain transaction inclusion proofs to incentivize correct behavior

of network participants (in particular, Vaults) and reimburse users in case of failure. What

collateralization adds in terms of security improvements, it introduces challenges in the form of

capital efficiency. Vaults, who receive the backing asset (e.g. BTC) into custody, must lock up

capital as collateral insurance against their own misbehavior for indefinite periods, considering

it is unknown how long the created cryptocurrency-backed assets will remain in use. In practice,

this means the annual fees earned by Vaults must exceed the opportunity costs of the locked-up

capital, i.e., Vaults must earn more from Xclaim than from investing their capital into other

6.3. Future Work 157

financial products. We identify multiple paths for future work exploring different approaches

to improve capital efficiency:

• Non-custodial XCLAIM. The reason Vaults must lock collateral is that they receive

custody over the backing asset and could, in theory, commit theft. A solution is hence

to explore mechanisms to avoid Vaults receiving full custody over users’ assets. This can

be achieved, for example, by employing multisignatures to share custody between Vault

and the user. The challenge that remains to be solved is fungibility: multisignatures

ultimately create a link between the Vault and the created cryptocurrency-backed asset,

i.e., each CbA is uniquely tied to the Vault it was created with yielding it non-compatible

with the majority of existing decentralized financial protocols. We have made a first step

in this direction in follow-up work [BZ22] by combining Xclaim with concepts from our

work on off-chain blockchain scaling [KZF+18] and techniques used in Bitcoin payment

channels [PD16].

• Re-using Vault Collateral. An alternative approach is to find ways to re-use the

collateral locked by Vaults, without interfering with the incentives of Xclaim. Ideas in-

clude using interest-bearing assets, i.e., assets representing investment positions in other

financial products, as collateral and adding native exchange and over-collateralized lend-

ing functions to the Xclaim smart contract, enabling Vaults to trade and loan their

collateral while the underlying economic value remains locked in Xclaim.

Multi-Collateral Support

Another useful improvement to Xclaim is to extend the collateral system to support more

than one collateral asset. On one hand, this allows Vaults to diversify their collateral position,

providing them with more flexibility to protect Xclaim against exchange rate fluctuations. On

the other hand, this is a prerequisite to accepting interest-bearing assets as collateral means to

improve capital efficiency.

158 Chapter 6. Conclusion and Future Work

6.3.3 Efficient Cross-Chain Light Clients

Cross-chain state verification via chain relays is a fundamental part of robust CCC protocols.

While current light/SPV clients suffice for e.g., mobile devices, they often remain infeasible for

deployment on top of blockchains for CCC protocols, where storage and bandwidth are priced by

the byte. Recent works on sub-linear light clients, including TxChain presented in this work,

have achieved first significant theoretical [KMZ17, BKLZ20, KPZ20] and practical performance

improvements [DKKZ20, ZAPK20, WE20b]. A potential direction for future research is the

applicability of zero-knowledge cryptography [BCCT12, BSBHR18, BBB+17] as means to pave

the way towards (near)constant verification times and costs for chain relays. First schemes for

blockchains with built-in support for such proof systems have been proposed in [MS18, BBF18,

BSCS16] but are yet to be tested in practice.

Bibliography

[AB19] Mustafa Al-Bassam. Lazyledger: A distributed data availability ledger with

client-side smart contracts. arXiv preprint arXiv:1905.09274, 2019.

[ABC16] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on

ethereum smart contracts. Cryptology ePrint Archive, Report 2016/1007, Oct

2016. Accessed: 2016-11-08.

[ABSB+18] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and

George Danezis. Chainspace: A sharded smart contracts platform. In 2018

Network and Distributed System Security Symposium (NDSS), 2018.

[ABV+18] John Adler, Ryan Berryhill, Andreas Veneris, Zissis Poulos, Neil Veira, and

Anastasia Kastania. Astraea: A decentralized blockchain oracle. arXiv preprint

arXiv:1808.00528, 2018.

[ACDCKK18] Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-

Kogias. Channels: Horizontal scaling and confidentiality on permissioned

blockchains. In European Symposium on Research in Computer Security, pages

111–131. Springer, 2018.

[AEE+20] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. Gen-

eralized bitcoin-compatible channels. IACR Cryptol. ePrint Arch., 2020:476,

2020.

159

160 BIBLIOGRAPHY

[AFJ06] Dana Angluin, Michael J Fischer, and Hong Jiang. Stabilizing consensus in

mobile networks. In Distributed Computing in Sensor Systems, pages 37–50,

2006.

[AGM18] Ittai Abraham, Guy Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-

resilience, one-message bft devil. arXiv:1803.05069, 2018.

[Air22] Airswap. Airswap. https://www.airswap.io/, 2022. Accessed 2021-07-30.

[AKKW19] Georgia Avarikioti, Eleftherios Kokoris-Kogias, and Roger Wattenhofer. Divide

and scale: Formalization of distributed ledger sharding protocols. arXiv preprint

arXiv:1910.10434, 2019.

[AKW19] Georgia Avarikioti, Eleftherios Kokoris Kogias, and Roger Wattenhofer. Brick:

Asynchronous state channels. arXiv preprint arXiv:1905.11360, 2019.

[AKWW19] Georgia Avarikioti, Lukas Käppeli, Yuyi Wang, and Roger Wattenhofer. Bitcoin

security under temporary dishonest majority. In 23rd Financial Cryptography

and Data Security (FC), 2019.

[Ale21] Alexei Bosworth et al. Submarine swaps service. Online. https://github.com/

submarineswaps/swaps-service, 2021. Accessed: 2022-01-23.

[ALS+18] Georgia Avarikioti, Felix Laufenberg, Jakub Sliwinski, Yuyi Wang, and Roger

Wattenhofer. Towards secure and efficient payment channels. arXiv preprint

arXiv:1811.12740, 2018.

[And15] Marcin Andrychowicz. Multiparty computation protocols based on cryptocur-

rencies, 2015. Accessed: 2017-02-15.

[Ane21] AnetaBTC. AnetaBTC Litepaper. https://medium.com/@anetaBTC/

anetabtc-litepaper-v1-0-171f29b3276a, 2021. Accessed: 2022-01-08.

[ASB18] Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. Fraud proofs: Max-

imising light client security and scaling blockchains with dishonest majorities.

CoRR, abs/1809.09044, 2018.

https://www.airswap.io/
https://github.com/submarineswaps/swaps-service
https://github.com/submarineswaps/swaps-service
https://medium.com/@anetaBTC/anetabtc-litepaper-v1-0-171f29b3276a
https://medium.com/@anetaBTC/anetabtc-litepaper-v1-0-171f29b3276a

BIBLIOGRAPHY 161

[Aso98] Nadarajah Asokan. Fairness in electronic commerce. 1998.

[ASW98a] Nadarajah Asokan, Victor Shoup, and Michael Waidner. Asynchronous pro-

tocols for optimistic fair exchange. In Proceedings. 1998 IEEE Symposium on

Security and Privacy (Cat. No. 98CB36186), pages 86–99. IEEE, 1998.

[ASW98b] Nadarajah Asokan, Victor Shoup, and Michael Waidner. Optimistic fair ex-

change of digital signatures. In International Conference on the Theory and

Applications of Cryptographic Techniques, pages 591–606. Springer, 1998.

[Aur19] Aurora Labs. Idex whitepaper. https://blog.idex.io/resources/

idex-whitepaper, 2019. Accessed 2022-01-13.

[Bal] Clare Baldwin. Bitcoin worth $72 million stolen from bitfinex exchange in hong

kong. Reuters. Accessed 2021-05-23.

[BBB+17] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,

and Greg Maxwell. Bulletproofs: Efficient range proofs for confidential transac-

tions, 2017. Accessed:2017-11-10.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,

and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and

more. In Bulletproofs: Short Proofs for Confidential Transactions and More.

IEEE, 2018.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay

functions. In CRYPTO, 2018.

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumu-

lators with applications to iops and stateless blockchains. Cryptology ePrint

Archive, Report 2018/1188, 2018. https://eprint.iacr.org/2018/1188.

[BCC+20] Jeff Burdges, Alfonso Cevallos, Peter Czaban, Rob Habermeier, Syed Hosseini,

Fabio Lama, Handan Kilinç Alper, Ximin Luo, Fatemeh Shirazi, Alistair Stew-

https://blog.idex.io/resources/idex-whitepaper
https://blog.idex.io/resources/idex-whitepaper
https://eprint.iacr.org/2018/1188

162 BIBLIOGRAPHY

art, et al. Overview of polkadot and its design considerations. arXiv preprint

arXiv:2005.13456, 2020.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From ex-

tractable collision resistance to succinct non-interactive arguments of knowledge,

and back again. In Proceedings of the 3rd Innovations in Theoretical Computer

Science Conference, pages 326–349. ACM, 2012.

[BCD+14] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,

Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling

blockchain innovations with pegged sidechains, 2014.

[BCG15a] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public

randomness source. IACR Cryptol. ePrint Arch., 2015:1015, 2015.

[BCG15b] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public

randomness source. IACR Cryptology ePrint Archive, 2015:1015, 2015.

[BDM93] Josh Benaloh and Michael De Mare. One-way accumulators: A decentralized

alternative to digital signatures. In Workshop on the Theory and Application of

of Cryptographic Techniques, pages 274–285. Springer, 1993.

[Beh20] Alexander Behrens. A massive honeypot: Ren holds $100m in bit-

coin in centralized wallet. Decrypt. https://decrypt.co/40110/

massive-honeypot-ren-holds-100m-bitcoin-centralized-wallet, 2020.

Accessed: 2022-01-30.

[BGB17] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. Proofs-of-delay and

randomness beacons in ethereum. IEEE Security and Privacy on the blockchain

(IEEE S&B), 2017.

[BGDE18] Peter Bennink, Lennart van Gijtenbeek, Oskar van Deventer, and Maarten

Everts. An analysis of atomic swaps on and between ethereum blockchains

using smart contracts. Tech. report, 2018. https://work.delaat.net/rp/

2017-2018/p42/report.pdf.

https://decrypt.co/40110/massive-honeypot-ren-holds-100m-bitcoin-centralized-wallet
https://decrypt.co/40110/massive-honeypot-ren-holds-100m-bitcoin-centralized-wallet
https://work.delaat.net/rp/2017-2018/p42/report.pdf
https://work.delaat.net/rp/2017-2018/p42/report.pdf

BIBLIOGRAPHY 163

[BHG87] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency

control and recovery in database systems, volume 370. Addison-wesley New

York, 1987.

[Bin19] Binance. Bitcoin-Pegged Token on Binance Chain.

https://www.binance.com/en/blog/347360878904684544/

introducing-bitcoinpegged-token-on-binance-chain, 2019. Accessed

2021-04-05.

[Bin22] Binance. Binance exchange. Online, 2022. https://www.binance.com/en,

Accessed 2022-01-13.

[Bit13] Bitcoin Community. Atomic swap. Bitcoin Wiki, 2013.

[Bit15] Bitcoin Community. Bitcoin wiki: Merged mining specification. https://en.

bitcoin.it/wiki/Merged_mining_specification, 2015. Accessed: 2022-01-

13.

[bit18] Confirmations. https://en.bitcoin.it/wiki/Confirmation, 2018. Accessed

2021-11-28.

[Bit19] Bitcoin Community. Bitcoin Developer Guide: Simplified Payment Veri-

fication (SPV). https://en.bitcoinwiki.org/wiki/Simplified_Payment_

Verification, 2019. Accessed 2021-05-16.

[Bit20a] Bitcoin Community. Bitcoin Wiki: Atomic cross-chain trading. https://en.

bitcoin.it/wiki/Atomic_cross-chain_trading, 2020. Accessed 2021-05-16.

[Bit20b] Bitcoin Community. Pay-to-Pubkey Hash. https://en.bitcoinwiki.org/

wiki/Pay-to-Pubkey_Hash, 2020. Accessed 2022-01-09.

[Bit20c] Bitcoin Community. Zero Knowledge Contingent Payments. en.bitcoin.it/

wiki/Zero_Knowledge_Contingent_Payment, 2020. Accessed 2022-01-30.

[Bit20d] Bitcoin Wiki. Invoice address. https://en.bitcoin.it/wiki/Invoice_

address, 2020. Accessed: 2022-07-25.

https://www.binance.com/en/blog/347360878904684544/introducing-bitcoinpegged-token-on-binance-chain
https://www.binance.com/en/blog/347360878904684544/introducing-bitcoinpegged-token-on-binance-chain
https://www.binance.com/en
https://en.bitcoin.it/wiki/Merged_mining_specification
https://en.bitcoin.it/wiki/Merged_mining_specification
https://en.bitcoin.it/wiki/Confirmation
https://en.bitcoinwiki.org/wiki/Simplified_Payment_Verification
https://en.bitcoinwiki.org/wiki/Simplified_Payment_Verification
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://en.bitcoinwiki.org/wiki/Pay-to-Pubkey_Hash
https://en.bitcoinwiki.org/wiki/Pay-to-Pubkey_Hash
en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Invoice_address
https://en.bitcoin.it/wiki/Invoice_address

164 BIBLIOGRAPHY

[Bit21a] Bitcoin Community. Bitcoin Wiki: Hashed Time-Lock Contracts. https://en.

bitcoin.it/wiki/Hashed_Timelock_Contracts, 2021. Accessed 2021-05-16.

[Bit21b] Bitcoin Community. Script. https://en.bitcoin.it/wiki/Script, 2021. Ac-

cessed 2021-11-28.

[BJZ+17] Iddo Bentov, Yan Ji, Fan Zhang, Yunqi Li, Xueyuan Zhao, Lorenz Breidenbach,

Philip Daian, and Ari Juels. Tesseract: Real-time cryptocurrency exchange

using trusted hardware. Cryptology ePrint Archive, Report 2017/1153, 2017.

Accessed:2017-12-04.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols.

In Advances in Cryptology–CRYPTO 2014, pages 421–439, 2014.

[BKLZ20] Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-

light clients for cryptocurrencies. In 2020 IEEE Symposium on Security and

Privacy (SP). IEEE, 2020.

[Blo22] Blockchain.com. Bitcoin transaction fees. https://www.blockchain.com/en/

charts/transaction-fees?timespan=all, 2022. Accessed 2022-01-13.

[BN00] Dan Boneh and Moni Naor. Timed commitments. In Annual International

Cryptology Conference, pages 236–254. Springer, 2000.

[Bon16] Joseph Bonneau. Why buy when you can rent? bribery attacks on bitcoin

consensus. In BITCOIN ’16: Proceedings of the 3rd Workshop on Bitcoin and

Blockchain Research, February 2016.

[BPS16] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of

stake. Cryptology ePrint Archive, Report 2016/919, 2016. Accessed: 2016-11-08.

[BSAB+17] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick

McCorry, Sarah Meiklejohn, and George Danezis. Consensus in the age of

blockchains. arXiv:1711.03936, 2017. Accessed:2017-12-11.

https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Script
https://www.blockchain.com/en/charts/transaction-fees?timespan=all
https://www.blockchain.com/en/charts/transaction-fees?timespan=all

BIBLIOGRAPHY 165

[BSBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,

transparent, and post-quantum secure computational integrity. Cryptol. ePrint

Arch., Tech. Rep, 46:2018, 2018.

[BSCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian

Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous

payments from bitcoin. In Security and Privacy (SP), 2014 IEEE Symposium

on, pages 459–474. IEEE, 2014.

[BSCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle

proofs. In Theory of Cryptography Conference, pages 31–60. Springer, 2016.

[BT93] Ozalp Babaoglu and Sam Toueg. Understanding non-blocking atomic commit-

ment. Distributed systems, pages 147–168, 1993.

[But14] Vitalik Buterin. Ethereum: A next-generation smart contract and decen-

tralized application platform. https://github.com/ethereum/wiki/wiki/

White-Paper, 2014. Accessed: 2016-08-22.

[But16] Vitalik Buterin. Chain interoperability. Tech. report, https://www.r3.com/

wp-content/uploads/2017/06/chain_interoperability_r3.pdf, 2016. Ac-

cessed: 2017-03-25.

[But18] Vitalik Buterin. Cross-shard contract yanking. Online, https://ethresear.

ch/t/cross-shard-contract-yanking/1450, 2018.

[But20] Vitalik Buterin. Why does ethereum use secp256k1? Ethereum Community Fo-

rum. https://forum.ethereum.org/discussion/comment/53/#Comment_53,

2020. Accessed: 2021-04-02.

[BVGC21] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. A

survey on blockchain interoperability: Past, present, and future trends. ACM

Computing Surveys (CSUR), 54(8):1–41, 2021.

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.r3.com/wp-content/uploads/2017/06/chain_interoperability_r3.pdf
https://www.r3.com/wp-content/uploads/2017/06/chain_interoperability_r3.pdf
https://ethresear.ch/t/cross-shard-contract-yanking/1450
https://ethresear.ch/t/cross-shard-contract-yanking/1450
https://forum.ethereum.org/discussion/comment/53/#Comment_53

166 BIBLIOGRAPHY

[BWQ99] S Blake-Wilson and M Qu. Standards for efficient cryptography (sec) 2: Rec-

ommended elliptic curve domain parameters. Certicom Research, Oct, 1999.

[BZ22] Theodore Bugnet and Alexei Zamyatin. XCC: Theft-Resilient and Collateral-

Optimized Cryptocurrency-Backed Assets. Online. https://docs.interlay.

io/_assets/papers/XCC_paper.pdf, 2022.

[C+16] Christian Cachin et al. Architecture of the hyperledger blockchain fabric. In

Workshop on distributed cryptocurrencies and consensus ledgers, volume 310,

pages 1–4. Chicago, IL, 2016.

[Car22] Cardano. Cardano blockchain. https://cardano.org/, 2022. Accessed: 2022-

01-08.

[CC00] Christian Cachin and Jan Camenisch. Optimistic fair secure computation. In

Annual International Cryptology Conference, pages 93–111. Springer, 2000.

[CCLM09] Thomas Chesney, Iain Coyne, Brian Logan, and Neil Madden. Griefing in virtual

worlds: causes, casualties and coping strategies. Information Systems Journal,

19(6):525–548, 2009.

[CDE+16] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed

Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, and Emin Gün. On scaling

decentralized blockchains. In 3rd Workshop on Bitcoin and Blockchain Research,

Financial Cryptography 16, 2016.

[CDFZ17] Alexander Chepurnoy, Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. Twinscoin:

A cryptocurrency via proof-of-work and proof-of-stake, 2017. Accessed: 2017-

03-22.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications.

In International Workshop on Public Key Cryptography, pages 55–72. Springer,

2013.

https://docs.interlay.io/_assets/papers/XCC_paper.pdf
https://docs.interlay.io/_assets/papers/XCC_paper.pdf
https://cardano.org/

BIBLIOGRAPHY 167

[Chr15] Christian Decker and Roger Wattenhofer. A fast and scalable payment network

with bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing

Systems, pages 3–18. Springer, 2015.

[CKWN16] Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind Narayanan.

On the instability of bitcoin without the block reward. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security,

pages 154–167. ACM, 2016.

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In

OSDI, volume 99, pages 173–186, 1999.

[Coi19] Coinmarketcap. Top Cryptocurrency Decentralized Exchanges. https://

coinmarketcap.com/rankings/exchanges/dex/, 2019. Accessed 2021-04-05.

[Coi22] CoinMarketCap. CoinMarketCap. https://coinmarketcap.com/, 2022. Ac-

cessed: 2022-01-09.

[Con17a] Consensys. BTC Relay Serpent Implementation. https://github.com/

ethereum/btcrelay, 2017. Accessed 2022-01-09.

[Con17b] Consensys. Project alchemy. https://github.com/ConsenSys/

Project-Alchemy, 2017. Accessed 2022-01-09.

[Cos19] Cosmos Community. Inter-blockchain communication protocol (ibc) specifica-

tion. Online. https://github.com/cosmos/ibc, 2019. Accessed: 2021-04-02.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable

distributed systems. volume 43, pages 225–267, 1996.

[CZDK17] Zhi-dong CHEN, YU Zhuo, Zhang-bo DUAN, and HU Kai. Inter-blockchain

communication. DEStech Transactions on Computer Science and Engineering,

(cst), 2017.

[Dec17] Decred. Decred cross-chain atomic swapping. https://github.com/decred/

atomicswap, 2017. Accessed 2021-05-16.

https://coinmarketcap.com/rankings/exchanges/dex/
https://coinmarketcap.com/rankings/exchanges/dex/
https://coinmarketcap.com/
https://github.com/ethereum/btcrelay
https://github.com/ethereum/btcrelay
https://github.com/ConsenSys/Project-Alchemy
https://github.com/ConsenSys/Project-Alchemy
https://github.com/cosmos/ibc
https://github.com/decred/atomicswap
https://github.com/decred/atomicswap

168 BIBLIOGRAPHY

[DEF18] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. Fairswap: How to fairly

exchange digital goods. In Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security, pages 967–984. ACM, 2018.

[DEFM17] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Pe-

run: Virtual payment channels over cryptographic currencies. Cryptology ePrint

Archive, Report 2017/635, 2017. Accessed:2017-11-20.

[Dex17] Dexaran. Erc223: Token standard. https://github.com/ethereum/EIPs/

issues/223, 2017. Accessed 2021-06-27.

[DFZ16] Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. 2-hop blockchain: Combining

proof-of-work and proof-of-stake securely. Cryptology ePrint Archive, Report

2016/716, 2016. Accessed: 2017-02-06.

[DGKR18] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros

praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In An-

nual International Conference on the Theory and Applications of Cryptographic

Techniques, pages 66–98. Springer, 2018.

[DH20] Apoorvaa Deshpande and Maurice Herlihy. Privacy-preserving cross-chain

atomic swaps. In International Conference on Financial Cryptography and Data

Security, pages 540–549. Springer, 2020.

[Dij01] Edsger W Dijkstra. Solution of a problem in concurrent programming control.

In Pioneers and Their Contributions to Software Engineering, pages 289–294.

Springer, 2001.

[DKKZ20] Stelios Daveas, Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. A

gas-efficient superlight bitcoin client in solidity. In Proceedings of the 2nd ACM

Conference on Advances in Financial Technologies, pages 132–144, 2020.

[Dog21] Dogethereum. Dogerelay. https://github.com/dogethereum/dogerelay,

2021. Accessed 2022-01-09.

https://github.com/ethereum/EIPs/issues/223
https://github.com/ethereum/EIPs/issues/223
https://github.com/dogethereum/dogerelay

BIBLIOGRAPHY 169

[Dou02] John R Douceur. The sybil attack. In International Workshop on Peer-to-Peer

Systems, pages 251–260. Springer, 2002.

[DPW+16] Johnny Dilley, Andrew Poelstra, Jonathan Wilkins, Marta Piekarska, Ben Gor-

lick, and Mark Friedenbach. Strong federations: An interoperable blockchain

solution to centralized third party risks. arXiv preprint arXiv:1612.05491, 2016.

[DW14] Christian Decker and Roger Wattenhofer. Bitcoin transaction malleability and

mtgox. In Computer Security-ESORICS 2014, pages 313–326, 2014.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with

short proofs and keys. In International Workshop on Public Key Cryptography,

pages 416–431. Springer, 2005.

[ear22] earn.com. Predicting bitcoin fees for transactions. https://bitcoinfees.

earn.com/, 2022. Accessed 2021-11-28.

[EJS17] Steve Ellis, Ari Juels, and Nazarov Sergey. Chainlink: A decentralized oracle

network. Online, 2017. https://research.chain.link/whitepaper-v1.pdf,

Accessed 2021-09-19.

[EMSM19] Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. Atomic multi-

channel updates with constant collateral in bitcoin-compatible payment-channel

networks. In CCS, 2019.

[Erg22] Ergo platform. Ergo. https://ergoplatform.org, 2022. Accessed: 2022-01-08.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is

vulnerable. In Financial Cryptography and Data Security, pages 436–454, 2014.

[ET18] Jacob Eberhardt and Stefan Tai. Zokrates-scalable privacy-preserving off-chain

computations. In 2018 IEEE International Conference on Internet of Things

(iThings) and IEEE Green Computing and Communications (GreenCom) and

IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data

(SmartData), pages 1084–1091. IEEE, 2018.

https://bitcoinfees.earn.com/
https://bitcoinfees.earn.com/
https://research.chain.link/whitepaper-v1.pdf
https://ergoplatform.org

170 BIBLIOGRAPHY

[eth15] ethers. Ethereum contract allowing ether to be obtained with bitcoin. https:

//github.com/ethers/EthereumBitcoinSwap, 2015. Accessed: 2018-10-30.

[Eth17] Ethereum. Serpent programming language. https://github.com/ethereum/

serpent, 2017. Accessed 2022-01-09.

[Eth21] Etherscan.io. Ethereum BlockSize History. https://etherscan.io/chart/

blocksize, 2021. Accessed 2021-11-28.

[Eth22a] EtherDelta. Etherdelta. https://etherdelta.com/, 2022. Accessed 2021-07-

30.

[Eth22b] Ethereum. Solidity progamming language. https://github.com/ethereum/

solidity, 2022. Accessed 2022-01-09.

[Eth22c] Etherscan. Ropsten testnet explorer, 2022.

[Eve82] Shimon Even. A protocol for signing contracts. Technical report, Computer

Science Department, Technion. Presented at CRYPTO’81, 1982.

[Eve18] EveripediaNetwork. Eth-eos-relay. https://github.com/EveripediaNetwork/

eth-eos-relay, 2018. Accessed 2019-08-15.

[EY80] Shimon Even and Yacov Yacobi. Relations among public key signature systems.

Technical report, Computer Science Department, Technion, 1980.

[FGKJ18] Bryan Ford, Linus Gasser, Eleftherios Kokoris Kogias, and Philipp Jovanovic.

Cryptographically verifiable data structure having multi-hop forward and back-

wards links and associated systems and methods. Google Patents, December 13

2018. US Patent App. 15/618,653.

[Fis83] Michael J Fischer. The consensus problem in unreliable distributed systems

(a brief survey). In International Conference on Fundamentals of Computation

Theory, pages 127–140, 1983.

https://github.com/ethers/EthereumBitcoinSwap
https://github.com/ethers/EthereumBitcoinSwap
https://github.com/ethereum/serpent
https://github.com/ethereum/serpent
https://etherscan.io/chart/blocksize
https://etherscan.io/chart/blocksize
https://etherdelta.com/
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://github.com/EveripediaNetwork/eth-eos-relay
https://github.com/EveripediaNetwork/eth-eos-relay

BIBLIOGRAPHY 171

[FKO+18] Giulia Fanti, Leonid Kogan, Sewoong Oh, Kathleen Ruan, Pramod Viswanath,

and Gerui Wang. Compounding of wealth in proof-of-stake cryptocurrencies.

arXiv preprint arXiv:1809.07468, 2018.

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of

distributed consensus with one faulty process. volume 32, pages 374–382, 1985.

[Fuz08] Rachele Fuzzati. A formal approach to fault tolerant distributed consensus. PhD

thesis, 2008.

[Gär98] Felix C Gärtner. Specifications for fault tolerance: A comedy of failures. 1998.

[GESM17] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache

attacks on intel sgx. In Proceedings of the 10th European Workshop on Systems

Security, page 2. ACM, 2017.

[GGJ+20] Ariel Gabizon, Kobi Gurkan, Philipp Jovanovic, Georgios Konstantopoulos, Asa

Oines, Marek Olszewski, Michael Straka, and Eran Tromer. Plumo: Towards

scalable interoperable blockchains using ultra light validation systems. 2020.

[GGN16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal

dsa/ecdsa signatures and an application to bitcoin wallet security. In Interna-

tional Conference on Applied Cryptography and Network Security, pages 156–

174. Springer, 2016.

[GK18] Juan Garay and Aggelos Kiayias. Sok: A consensus taxonomy in the blockchain

era. Cryptology ePrint Archive, Report 2018/754, 2018.

[GKCC14] Arthur Gervais, Ghassan Karame, Srdjan Capkun, and Vedran Capkun. Is

bitcoin a decentralized currency? volume 12, pages 54–60, 2014.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone proto-

col: Analysis and applications. In Advances in Cryptology-EUROCRYPT 2015,

pages 281–310, 2015.

172 BIBLIOGRAPHY

[GKL16] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone

protocol with chains of variable difficulty, 2016. Accessed: 2017-02-06.

[GKO20] Alberto Garoffolo, Dmytro Kaidalov, and Roman Oliynykov. Zendoo: a zk-

snark verifiable cross-chain transfer protocol enabling decoupled and decentral-

ized sidechains. arXiv preprint arXiv:2002.01847, 2020.

[GKR18] Peter Gaži, Aggelos Kiayias, and Alexander Russell. Stake-bleeding attacks on

proof-of-stake blockchains. Cryptology ePrint Archive, Report 2018/248, 2018.

Accessed:2018-03-12.

[GKW+16] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert

Ritzdo rf, and Srdjan Capkun. On the security and performance of proof of

work blockchains. In Proceedings of the 2016 ACM SIGSAC, pages 3–16. ACM,

2016.

[GKZ19a] Peter Gaži, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains.

In To appear in the Proceedings of the IEEE Symposium on Security & Privacy.

IEEE Computer Society Press, 2019.

[GKZ19b] Peter Gazi, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains.

IEEE Security and Privacy. IEEE, 2019.

[GM16] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for de-

centralized currencies. Cryptology ePrint Archive, Report 2016/701, 2016. Ac-

cessed: 2017-08-07.

[GMSR+19] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and

Arthur Gervais. Sok: Off the chain transactions. Cryptology ePrint Archive,

Report 2019/360, 2019. https://eprint.iacr.org/2019/360.

[Gol98] Oded Goldreich. Secure multi-party computation. Manuscript. Preliminary

version, 78, 1998.

https://eprint.iacr.org/2019/360

BIBLIOGRAPHY 173

[GRKC15] Arthur Gervais, Hubert Ritzdorf, Ghassan O Karame, and Srdjan Capkun. Tam-

pering with the delivery of blocks and transactions in bitcoin. In Proceedings of

the 22nd ACM SIGSAC Conference on Computer and Communications Secu-

rity, pages 692–705. ACM, 2015.

[HAB+16] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and

Sharon Goldberg. Tumblebit: An untrusted bitcoin-compatible anonymous pay-

ment hub, 2016. Accessed: 2017-09-29.

[Har21] Harmony. Kusama Guide. https://github.com/harmony-one/onebtc, 2021.

Accessed: 2022-01-08.

[HB18] Dominik Harz and Magnus Boman. The scalability of trustless trust. In Interna-

tional Conference on Financial Cryptography and Data Security, pages 279–293.

Springer, 2018.

[Her18] Maurice Herlihy. Atomic cross-chain swaps. In Proceedings of the 2018 ACM

symposium on principles of distributed computing, pages 245–254, 2018.

[HH18] Abraham Hinteregger and Bernhard Haslhofer. An empirical analysis of monero

cross-chain traceability. arXiv preprint arXiv:1812.02808, 2018.

[HHK+18] Dr Hosp, Toby Hoenisch, Paul Kittiwongsunthorn, et al. Comit-

cryptographically-secure off-chain multi-asset instant transaction network. arXiv

preprint arXiv:1810.02174, 2018.

[HKZG15] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse

attacks on bitcoin’s peer-to-peer network. In 24th USENIX Security Symposium

(USENIX Security 15), pages 129–144, 2015.

[HLG19] Ethan Heilman, Sebastien Lipmann, and Sharon Goldberg. The arwen trading

protocols. Whitepaper, 2019. https://www.arwen.io/whitepaper.pdf.

[HLS19] Maurice Herlihy, Barbara Liskov, and Liuba Shrira. Cross-chain deals and ad-

versarial commerce. arXiv preprint arXiv:1905.09743, 2019.

https://github.com/harmony-one/onebtc
https://www.arwen.io/whitepaper.pdf

174 BIBLIOGRAPHY

[HLY19] Runchao Han, Haoyu Lin, and Jiangshan Yu. On the optionality and fairness

of atomic swaps. Cryptology ePrint Archive, Report 2019/896, 2019. https:

//eprint.iacr.org/2019/896.

[IN83] Kazuharu Itakura and Katsuhiro Nakamura. A public-key cryptosystem suitable

for digital multisignatures. NEC Research & Development, (71):1–8, 1983.

[Int20a] Interlay. interBTC Open Source Implementation. https://github.com/

interlay/interbtc, 2020. Accessed: 2022-01-08.

[Int20b] Interlay. InterBTC Specification. https://spec.interlay.io/, 2020. Ac-

cessed: 2022-01-08.

[Int22] Intel. Intel software guard extensions (intel R© sgx) sdk. https://github.com/

intel/linux-sgx, 2022. Accessed 2022-01-13.

[Ja19] John Jones and abitmore. Optional htlc preimage length and hash160 addition.

BSIP 64, blog post, 2019. https://github.com/bitshares/bsips/issues/

163.

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digi-

tal signature algorithm (ecdsa). International journal of information security,

1(1):36–63, 2001.

[JRB19] Sandra Johnson, Peter Robinson, and John Brainard. Sidechains and interop-

erability. arXiv preprint arXiv:1903.04077, 2019.

[JSZ+19] Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal,

Peter Gaži, Sarah Meiklejohn, and Edgar Weippl. Pay-to-win: Incentive attacks

on proof-of-work cryptocurrencies. Cryptology ePrint Archive, Report 2019/775,

2019. https://eprint.iacr.org/2019/775.

[JZS+17] Aljosha Judmayer, Alexei Zamyatin, Nicholas Stifter, Artemios G. Voyiatzis,

and Edgar Weippl. Merged mining: Curse or cure? In CBT’17: Proceedings

https://eprint.iacr.org/2019/896
https://eprint.iacr.org/2019/896
https://github.com/interlay/interbtc
https://github.com/interlay/interbtc
https://spec.interlay.io/
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
https://github.com/bitshares/bsips/issues/163
https://github.com/bitshares/bsips/issues/163
https://eprint.iacr.org/2019/775

BIBLIOGRAPHY 175

of the International Workshop on Cryptocurrencies and Blockchain Technology,

Sep 2017.

[KB15] Jae Kwon and Ethan Buchman. Cosmos: A network of distributed ledgers.

https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md, 2015.

[KB16] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penal-

ties. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, pages 418–429. ACM, 2016.

[Kee19] Keep Network. tbtc: A decentralized redeemable btc-backed erc-20 token. http:

//docs.keep.network/tbtc/index.pdf, 2019. Accessed: 2022-01-13.

[KGC+18] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and

Edward W Felten. Arbitrum: Scalable, private smart contracts. In Proceed-

ings of the 27th USENIX Conference on Security Symposium, pages 1353–1370.

USENIX Association, 2018.

[KJG+16] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Li-

nus Gasser, and Bryan Ford. Enhancing bitcoin security and performance with

strong consistency via collective signing. In 25th USENIX Security Symposium

(USENIX Security 16), Austin, TX, August 2016.

[KK19] Eleftherios Kokoris-Kogias. Robust and scalable consensus for sharded dis-

tributed ledgers. Technical report, Cryptology ePrint Archive, Report 2019/676,

2019.

[KKAS+18] Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Sandra Deepthy Siby, Nicolas

Gailly, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford. Calypso:

Auditable sharing of private data over blockchains. Technical report, Cryptology

ePrint Archive, Report 2018/209, 2018.

[KKGK+16] Lefteris Kokoris-Kogias, Linus Gasser, Ismail Khoffi, Philipp Jovanovic, Nicolas

Gailly, and Bryan Ford. Managing identities using blockchains and CoSi. In 9th

https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md
http://docs.keep.network/tbtc/index.pdf
http://docs.keep.network/tbtc/index.pdf

176 BIBLIOGRAPHY

Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs 2016),

2016.

[KKJG+18] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa

Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via

sharding. In 2018 IEEE Symposium on Security and Privacy (SP), pages 583–

598. IEEE, 2018.

[KKSK19] Yujin Kwon, Hyoungshick Kim, Jinwoo Shin, and Yongdae Kim. Bitcoin vs.

bitcoin cash: Coexistence or downfall of bitcoin cash? arXiv:1902.11064, 2019.

[KKZ20] Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. Proof-of-burn. In

International Conference on Financial Cryptography and Data Security, pages

523–540. Springer, 2020.

[KL12] Alptekin Küpçü and Anna Lysyanskaya. Usable optimistic fair exchange. Com-

puter Networks, 56(1):50–63, 2012.

[KLS16] Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. Proofs

of proofs of work with sublinear complexity. In International Conference on Fi-

nancial Cryptography and Data Security, pages 61–78. Springer, Springer, 2016.

[KM20] Hugh Karp and Reinis Melbrandis. Nexus mutual: A peer-to-peer discretionary

mutual on the ethereum blockchain. Online, 2020. https://nexusmutual.io/

assets/docs/nmx_white_paperv2_3.pdf, Accessed 2021-09-19.

[KMHG+20] Ariah Klages-Mundt, Dominik Harz, Lewis Gudgeon, Jun-You Liu, and An-

dreea Minca. Stablecoins 2.0: Economic foundations and risk-based models. In

Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,

pages 59–79, 2020.

[KMZ17] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive

proofs of proof-of-work. Cryptology ePrint Archive, Report 2017/963, 2017.

Accessed:2017-10-03.

https://nexusmutual.io/assets/docs/nmx_white_paperv2_3.pdf
https://nexusmutual.io/assets/docs/nmx_white_paperv2_3.pdf

BIBLIOGRAPHY 177

[KNW19] Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer. Outpost: A

responsive lightweight watchtower. 2019.

[Kob91] Neal Koblitz. Cm-curves with good cryptographic properties. In Annual inter-

national cryptology conference, pages 279–287. Springer, 1991.

[Kom19] Komodo. Barterdex. https://docs.komodoplatform.com/whitepaper/

chapter6.html, 2019. Accessed 2022-01-13.

[KPZ20] Aggelos Kiayias, Andrianna Polydouri, and Dionysis Zindros. The velvet path

to superlight blockchain clients. IACR Cryptology ePrint Archive, 2020:1122,

2020.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual

International Cryptology Conference, pages 357–388. Springer, 2017.

[Kyb17] Kyber Network. Peace relay. https://github.com/KyberNetwork/

peace-relay, 2017. Accessed 2022-01-09.

[Kyb19a] Kyber Network. Eos-eth relay. https://github.com/KyberNetwork/bridge_

eth_smart_contracts, 2019. Accessed 2022-01-17.

[Kyb19b] Republic Protocol Kyber Network, BitGo Inc. Wrapped bitcoin. https:

//www.wbtc.network/assets/wrapped-tokens-whitepaper.pdf, 2019. Ac-

cessed: 2018-05-03.

[Kyb22] Kyber Network. Kyber swap. https://docs.kyberswap.com/, 2022. Accessed

2022-01-13.

[KZ18] Aggelos Kiayias and Dionysis Zindros. Proof-of-work sidechains. In International

Conference on Financial Cryptography and Data Security. Springer, 2018.

[KZ19] Aggelos Kiayias and Dionysis Zindros. Proof-of-work sidechains. In International

Conference on Financial Cryptography and Data Security, pages 21–34, 2019.

https://docs.komodoplatform.com/whitepaper/chapter6.html
https://docs.komodoplatform.com/whitepaper/chapter6.html
https://github.com/KyberNetwork/peace-relay
https://github.com/KyberNetwork/peace-relay
https://github.com/KyberNetwork/bridge_eth_smart_contracts
https://github.com/KyberNetwork/bridge_eth_smart_contracts
https://www.wbtc.network/assets/wrapped-tokens-whitepaper.pdf
https://www.wbtc.network/assets/wrapped-tokens-whitepaper.pdf
https://docs.kyberswap.com/

178 BIBLIOGRAPHY

[KZF+18] Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-Sanchez, and

Arthur Gervais. Commit-chains: Secure, scalable off-chain payments. Cryptology

ePrint Archive, Report 2018/642, 2018.

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-

party computation using a global transaction ledger. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques, pages

705–734. Springer, 2016.

[Lam89] Leslie Lamport. A simple approach to specifying concurrent systems. Commu-

nications of the ACM, 32(1):32–45, 1989.

[LEK+17] Joshua Lind, Ittay Eyal, Florian Kelbert, Oded Naor, Peter Pietzuch, and

Emin Gun Sirer. Teechain: Scalable blockchain payments using trusted exe-

cution environments. arXiv preprint arXiv:1707.05454, 2017.

[Ler15] S Demian Lerner. Rootstock: Bitcoin powered smart contracts. https://docs.

rsk.co/RSK_White_Paper-Overview.pdf, 2015.

[Ler18] Sergio Demian Lerner. Drivechains, sidechains and hybrid 2-way peg designs.

Technical report, Tech. Rep. [Online], 2018.

[Lib18] Libbitcoin developers. P2WSH Transactions. https://github.com/

libbitcoin/libbitcoin-system/wiki/P2WPKH-Transactions, 2018. Ac-

cessed 2022-01-30.

[Lig22] Lightning Labs. Lightning loop. Online. https://github.com/lightninglabs/

loop, 2022. Accessed: 2022-01-23.

[Lit21] Litecoin community. Litecoin reference implementation. github.com/

litecoin-project/litecoin, 2021. Accessed 2021-06-30.

[Lla22] DeFi Llama. DeFi Dashboard. https://defillama.com/, 2022. Accessed:

2022-01-09.

https://docs.rsk.co/RSK_White_Paper-Overview.pdf
https://docs.rsk.co/RSK_White_Paper-Overview.pdf
https://github.com/libbitcoin/libbitcoin-system/wiki/P2WPKH-Transactions
https://github.com/libbitcoin/libbitcoin-system/wiki/P2WPKH-Transactions
https://github.com/lightninglabs/loop
https://github.com/lightninglabs/loop
github.com/litecoin-project/litecoin
github.com/litecoin-project/litecoin
https://defillama.com/

BIBLIOGRAPHY 179

[LXS+19] Zhuotao Liu, Yangxi Xiang, Jian Shi, Peng Gao, Haoyu Wang, Xusheng Xiao,

and Yih-Chun Hu. Hyperservice: Interoperability and programmability across

heterogeneous blockchains. arXiv preprint arXiv:1908.09343, 2019.

[Mak14] MakderDAO. Maker Protocol Documentation. https://makerdao.com/en/

whitepaper/, 2014. Accessed: 2022-01-09.

[MBB+18] Patrick McCorry, Surya Bakshi, Iddo Bentov, Andrew Miller, and Sarah Meikle-

john. Pisa: Arbitration outsourcing for state channels. IACR Cryptology ePrint

Archive, 2018:582, 2018.

[MBKM17] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. Sprites:

Payment channels that go faster than lightning, 2017. Accessed: 2017-03-22.

[MCJ17] Dmitry Meshkov, Alexander Chepurnoy, and Marc Jansen. Revisiting difficulty

control for blockchain systems. Cryptology ePrint Archive, Report 2017/731,

2017. Accessed: 2017-08-03.

[MD19] Mahdi Miraz and David C Donald. Atomic cross-chain swaps: Development,

trajectory and potential of non-monetary digital token swap facilities. Annals

of Emerging Technologies in Computing (AETiC) Vol, 3, 2019.

[Mer87] Ralph C Merkle. A digital signature based on a conventional encryption function.

In Conference on the Theory and Application of Cryptographic Techniques, pages

369–378. Springer, 1987.

[MHM17] Patrick McCorry, Ethan Heilman, and Andrew Miller. Atomically trading with

roger: Gambling on the success of a hardfork. In CBT’17: Proceedings of the

International Workshop on Cryptocurrencies and Blockchain Technology, Sep

2017.

[MHM18] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart contracts for

bribing miners. In 5th Workshop on Bitcoin and Blockchain Research, Financial

Cryptography and Data Security 18 (FC). Springer, 2018.

https://makerdao.com/en/whitepaper/
https://makerdao.com/en/whitepaper/

180 BIBLIOGRAPHY

[Mic16] Silvio Micali. Algorand: The efficient and democratic ledger, 2016. Accessed:

2017-02-09.

[Mil12] Andrew Miller. The high-value-hash highway, bitcoin forum post, 2012.

[MMK+17] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Sri-

vatsan Ravi. Concurrency and privacy with payment-channel networks. In CCS,

pages 455–471, 2017.

[MMSS+18] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and

Matteo Maffei. Multi-hop locks for secure, privacy-preserving and interoperable

payment-channel networks. Cryptology ePrint Archive, Report 2018/472, 2018.

[Moo13] Moore, Tyler and Christin, Nicolas. Beware the middleman: Empirical analysis

of bitcoin-exchange risk. In International Conference on Financial Cryptography

and Data Security, pages 25–33. Springer, 2013.

[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random func-

tions. In 40th annual symposium on foundations of computer science (cat. No.

99CB37039), pages 120–130. IEEE, 1999.

[MS18] Izaak Meckler and Evan Shapiro. Coda: Decentralized cryp-

tocurrency at scale. https://cdn.codaprotocol.com/v2/static/

coda-whitepaper-05-10-2018-0.pdf, 2018.

[MSRL+19] Pedro Moreno-Sanchez, Randomrun, Duc V. Le, Sarang Noether, Brandon

Goodell, and Aniket Kate. Dlsag: Non-interactive refund transactions for in-

teroperable payment channels in monero. Cryptology ePrint Archive, Report

2019/595, 2019. https://eprint.iacr.org/2019/595.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec 2008.

Accessed: 2015-07-01.

[Nam22] Namecoin community. Namecoin reference implementation. https://github.

com/namecoin/namecoin-core, 2022. Accessed 2022-01-09.

https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://eprint.iacr.org/2019/595
https://github.com/namecoin/namecoin-core
https://github.com/namecoin/namecoin-core

BIBLIOGRAPHY 181

[Nas51] John Nash. Non-cooperative games. Annals of mathematics, pages 286–295,

1951.

[NKKJ+] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Li-

nus Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford. CHAINIAC: Proac-

tive software-update transparency via collectively signed skipchains and verified

builds.

[Noe20] Sarang Noether. Discrete logarithm equality across groups. Online. https:

//www.getmonero.org/resources/research-lab/pubs/MRL-0010.pdf, 2020.

Accessed: 2022-01-23.

[NRTV07] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic

game theory. Cambridge University Press, 2007.

[Pag14] Jose Pagliery. Another bitcoin exchange goes down. CNN Tech, http://money.

cnn.com/2014/02/11/technology/bitcoin-bitstamp/, 2014. Accessed 2021-

05-23.

[Par20] Parity Technologies. Parity-Bridge. https://github.com/paritytech/

parity-bridge, 2020. Accessed 2022-01-09.

[PD16] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network. https://

lightning.network/lightning-network-paper.pdf, 2016. Accessed: 2016-

07-07.

[PG99] Henning Pagnia and Felix C Gärtner. On the impossibility of fair exchange

without a trusted third party. Technical report, Technical Report TUD-BS-

1999-02, Darmstadt University of Technology . . . , 1999.

[PL20] Daniel Perez and Benjamin Livshits. Broken metre: Attacking resource metering

in evm. In Network and Distributed System Security Symposium (NDSS), 2020.

[PoA18] PoA Network. Poa bridge. https://github.com/poanetwork/poa-bridge,

2018. Accessed 2021-05-23.

https://www.getmonero.org/resources/research-lab/pubs/MRL-0010.pdf
https://www.getmonero.org/resources/research-lab/pubs/MRL-0010.pdf
http://money.cnn.com/2014/02/11/technology/bitcoin-bitstamp/
http://money.cnn.com/2014/02/11/technology/bitcoin-bitstamp/
https://github.com/paritytech/parity-bridge
https://github.com/paritytech/parity-bridge
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://github.com/poanetwork/poa-bridge

182 BIBLIOGRAPHY

[Poe17] Andrew Poelstra. Scriptless scripts. Presentation slides, 2017.

https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/

2017-03-mit-bitcoin-expo/slides.pdf.

[PS16] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the per-

missionless model. Cryptology ePrint Archive, 2016.

[PSs16] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol

in asynchronous networks, 2016. Accessed: 2016-08-01.

[Pto20] Ptokens.io. Provable ptokens. Online, 2020. https://ptokens.io/

ptokens-rev5b.pdf ,Accessed 2021-09-19.

[Pul22a] DeFi Pulse. Bitcoin at Work. https://defipulse.com/btc, 2022. Accessed:

2022-01-09.

[Pul22b] DeFi Pulse. The Decentralized Finance Leaderboard. https://defipulse.

com/, 2022. Accessed: 2022-01-09.

[Ren20] Ren. Renvm. Online, 2020. https://renproject.io/litepaper.pdf, Accessed

2021-09-19.

[RNS14] Jeremy Rubin, Manali Naik, and Nitya Subramanian. Merkelized abstract

syntax trees. http://www.mit.edu/~jlrubin/public/pdfs/858report.pdf,

2014.

[Rob20] Peter Robinson. The merits of using ethereum mainnet as a coordination

blockchain for ethereum private sidechains. The Knowledge Engineering Re-

view, 35, 2020.

[Roc18] Team Rocket. Snowflake to avalanche: A novel metastable consensus protocol

family for cryptocurrencies. 2018. Accessed: 2022-01-23.

[Ros12] Meni Rosenfeld. Overview of colored coins. https://bitcoil.co.il/

BitcoinX.pdf, 2012. Accessed: 2016-03-09.

https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://ptokens.io/ptokens-rev5b.pdf
https://ptokens.io/ptokens-rev5b.pdf
https://defipulse.com/btc
https://defipulse.com/
https://defipulse.com/
https://renproject.io/litepaper.pdf
http://www.mit.edu/~jlrubin/public/pdfs/858report.pdf
https://bitcoil.co.il/BitcoinX.pdf
https://bitcoil.co.il/BitcoinX.pdf

BIBLIOGRAPHY 183

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and

timed-release crypto. 1996.

[RWG+18] Hubert Ritzdorf, Karl Wüst, Arthur Gervais, Guillaume Felley, et al. Tls-n:

Non-repudiation over tls enabling ubiquitous content signing. In Network and

Distributed System Security Symposium (NDSS), 2018.

[SBABD19] Alberto Sonnino, Shehar Bano, Mustafa Al-Bassam, and George Danezis. Re-

play attacks and defenses against cross-shard consensus in sharded distributed

ledgers. arXiv preprint arXiv:1901.11218, 2019.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of

cryptology, 4(3):161–174, 1991.

[SDF+19] Vasilios A. Siris, Dimitrios Dimopoulos, Nikos Fotiou, Spyros Voulgaris, and

George C. Polyzos. Interledger smart contracts for decentralized authorization

to constrained things, 2019.

[SJS+18] Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Alexei Zamyatin, and

Edgar Weippl. Agreement with satoshi - on the formalization of nakamoto

consensus. Cryptology ePrint Archive, Report 2018/400, 2018.

[SKK20] Alistair Stewart and Eleftherios Kokoris-Kogia. Grandpa: a byzantine finality

gadget. arXiv preprint arXiv:2007.01560, 2020.

[SN18] Matthew Spoke and Nuco Engineering Team. Aion: The third-generation

blockchain network. https://aion.network/media/2018/03/aion.network_

technical-introduction_en.pdf, 2018. Accessed 2021-04-17.

[SSJ+19] Nicholas Stifter, Philipp Schindler, Aljosha Judmayer, Alexei Zamyatin, Andreas

Kern, and Edgar Weippl. Echoes of the past: Recovering blockchain metrics

from merged mining. In Proceedings of the 23nd International Conference on

Financial Cryptography and Data Security (FC). Springer, 2019.

https://aion.network/media/2018/03/aion.network_technical-introduction_en.pdf
https://aion.network/media/2018/03/aion.network_technical-introduction_en.pdf

184 BIBLIOGRAPHY

[SSZ15] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish

mining strategies in bitcoin, 2015. Accessed: 2016-08-22.

[Sta22] ETH Gas Station. Ethereum fee estimates, 2022.

[Ste12] Iain Stewart. Proof of burn. https://en.bitcoin.it/wiki/Proof_of_burn,

2012. Accessed 2021-05-10.

[Syn20] Synthetix. Synthetix System Documentation. https://docs.synthetix.io/

litepaper, 2020. Accessed 2021-04-05.

[Syv98] Paul Syverson. Weakly secret bit commitment: Applications to lotteries and fair

exchange. In Proceedings. 11th IEEE Computer Security Foundations Workshop

(Cat. No. 98TB100238), pages 2–13. IEEE, 1998.

[SZ16] Yonatan Sompolinsky and Aviv Zohar. Bitcoin’s security model revisited. arXiv

preprint arXiv:1605.09193, 2016.

[SZ18] Yonatan Sompolinsky and Aviv Zohar. Phantom: A scalable blockdag protocol.

Cryptology ePrint Archive, Report 2018/104, 2018. Accessed:2018-01-31.

[TE17] Jason Teutsch and TrueBit Estsblishment. On decentralized oracles for data

availability. 2017.

[Tea20] Huobi Blockchain Team. H-Tokens White Paper. https://www.htokens.

finance/static/pdf/whitepaper-en.pdf, 2020. Accessed 2021-04-05.

[Tec21] Parity Technologies. The parity light protocol - wiki. https://github.com/

ethereum/devp2p/blob/master/caps/pip.md, 2021. Accessed 2021-10-30.

[Tet16] Tether. Tether: Fiat currencies on the bitcoin blockchain. https://tether.

to/wp-content/uploads/2016/06/TetherWhitePaper.pdf, 2016.

[Tie13] TierNolan (pseudonym). Alt chains and atomic transfers. https://

bitcointalk.org/index.php?topic=193281.msg2003765#msg2003765, 2013.

https://en.bitcoin.it/wiki/Proof_of_burn
https://docs.synthetix.io/litepaper
https://docs.synthetix.io/litepaper
https://www.htokens.finance/static/pdf/whitepaper-en.pdf
https://www.htokens.finance/static/pdf/whitepaper-en.pdf
https://github.com/ethereum/devp2p/blob/master/caps/pip.md
https://github.com/ethereum/devp2p/blob/master/caps/pip.md
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://bitcointalk.org/index.php?topic=193281.msg2003765#msg2003765
https://bitcointalk.org/index.php?topic=193281.msg2003765#msg2003765

BIBLIOGRAPHY 185

[Tie16] TierNolan. Atomic swaps using cur and choose. https://bitcointalk.org/

index.php?topic=1364951, 2016. Accessed 2021-05-16.

[TMSM19] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2l: Anonymous

atomic locks for scalability and interoperability in payment channel hubs. Cryp-

tology ePrint Archive, Report 2019/589, 2019. https://eprint.iacr.org/

2019/589.

[TR19] Jason Teutsch and Christian Reitwießner. A scalable verification solution for

blockchains. arXiv preprint arXiv:1908.04756, 2019.

[TS15] Stefan Thomas and Evan Schwartz. A protocol for interledger payments. URL

https://interledger. org/interledger. pdf, 2015.

[TSB19] Jason Teutsch, Michael Straka, and Dan Boneh. Retrofitting a two-way peg

between blockchains. arXiv preprint arXiv:1908.03999, 2019.

[TT17] Paolo Tasca and Claudio J Tessone. Taxonomy of blockchain technologies. prin-

ciples of identification and classification. arXiv preprint arXiv:1708.04872, 2017.

[VB15] Fabian Vogelsteller and Vitalik Buterin. Erc20: Token standard. https://

github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md, 2015. Accessed

2021-06-27.

[VBMW+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,

Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and

Raoul Strackx. Foreshadow: Extracting the keys to the intel {SGX} kingdom

with transient out-of-order execution. In 27th {USENIX} Security Symposium

({USENIX} Security 18), pages 991–1008, 2018.

[VTPM18] Gilbert Verdian, Paolo Tasca, Colin Paterson, and Gaetano Mondelli. Quant

overledger whitepaper. https://www.quant.network/, 2018.

https://bitcointalk.org/index.php?topic=1364951
https://bitcointalk.org/index.php?topic=1364951
https://eprint.iacr.org/2019/589
https://eprint.iacr.org/2019/589
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

186 BIBLIOGRAPHY

[Vuk15] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. bft

replication. In International Workshop on Open Problems in Network Security,

pages 112–125. Springer, 2015.

[Wan17] Wanchain. Wanchain whitepaper. https://www.wanchain.org/files/

Wanchain-Whitepaper-EN-version.pdf, 2017.

[WB17] Will Warren and Amir Bandeali. 0xproject whitepaper. https://0xproject.

com/pdfs/0x_white_paper.pdf, 2017. Accessed 2021-05-23.

[WE20a] Martin Westerkamp and Jacob Eberhardt. zkrelay: Facilitating sidechains using

zksnark-based chain-relays. In Workshop on the Security & Privacy on the

Blockchain. IEEE, 2020.

[WE20b] Martin Westerkamp and Jacob Eberhardt. zkrelay: Facilitating sidechains using

zksnark-based chain-relays. Contract, 1(2):3, 2020.

[Web22a] Web3 Foundation. Kusama Guide. https://guide.kusama.network/, 2022.

Accessed: 2022-01-08.

[Web22b] Web3 Foundation. Polkadot Wiki - Bridging Methods. https://wiki.

polkadot.network/docs/learn-bridges#bridging-methods, 2022. Accessed:

2022-01-08.

[Wik20] Ethereum Wiki. Light client protocol. https://eth.wiki/en/concepts/

light-client-protocol, 2020. Accessed 2021-11-20.

[WKPK16] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. Async-

shock: Exploiting synchronisation bugs in intel sgx enclaves. In European Sym-

posium on Research in Computer Security, pages 440–457. Springer, 2016.

[Woo15] Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain framework.

White Paper, https: // polkadot. network/ PolkaDotPaper. pdf , 2015.

https://www.wanchain.org/files/Wanchain-Whitepaper-EN-version.pdf
https://www.wanchain.org/files/Wanchain-Whitepaper-EN-version.pdf
https://0xproject.com/pdfs/0x_white_paper.pdf
https://0xproject.com/pdfs/0x_white_paper.pdf
https://guide.kusama.network/
https://wiki.polkadot.network/docs/learn-bridges#bridging-methods
https://wiki.polkadot.network/docs/learn-bridges#bridging-methods
https://eth.wiki/en/concepts/light-client-protocol
https://eth.wiki/en/concepts/light-client-protocol
https://polkadot.network/PolkaDotPaper.pdf

BIBLIOGRAPHY 187

[Woo17] Gavin Wood. Ethereum: A secure decentralised generalised transaction

ledger eip-150 revision (759dccd - 2017-08-07). https://ethereum.github.

io/yellowpaper/paper.pdf, 2017. Accessed: 2018-01-03.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks:

Deterministic side channels for untrusted operating systems. In Security and

Privacy (SP), 2015 IEEE Symposium on, pages 640–656. IEEE, 2015.

[XWS+17] Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch, Len Bass, Ce-

sare Pautasso, and Paul Rimba. A taxonomy of blockchain-based systems for

architecture design. In Software Architecture (ICSA), 2017 IEEE International

Conference on, pages 243–252. IEEE, 2017.

[Yak18] Anatoly Yakovenko. Solana: A new architecture for a high per-

formance blockchain v0. 8.13. Whitepaper, https: // solana. com/

solana-whitepaper. pdf , 2018.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual

Symposium on Foundations of Computer Science (sfcs 1986), pages 162–167.

IEEE, 1986.

[YKM19] Haaroon Yousaf, George Kappos, and Sarah Meiklejohn. Tracing transac-

tions across cryptocurrency ledgers. In 28th {USENIX} Security Symposium

({USENIX} Security 19), pages 837–850, 2019.

[YSL+19] Mingchao Yu, Saeid Sahraei, Songze Li, Salman Avestimehr, Sreeram Kannan,

and Pramod Viswanath. Coded merkle tree: Solving data availability attacks

in blockchains. arXiv preprint arXiv:1910.01247, 2019.

[ZABZ+19] Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-

Kogias, Pedro Moreno-Sanchez, Aggelos Kiayias, and William J Knottenbelt.

Sok: Communication across distributed ledgers. Technical report, IACR Cryp-

tology ePrint Archive, 2019: 1128, 2019.

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://solana.com/solana-whitepaper.pdf
https://solana.com/solana-whitepaper.pdf

188 BIBLIOGRAPHY

[ZAPK20] Alexei Zamyatin, Zeta Avarikioti, Daniel Perez, and William J Knottenbelt.

Txchain: Efficient cryptocurrency light clients via contingent transaction aggre-

gation. Sep 2020.

[ZH19] Alexei Zamyatin and Dominik Harz. BTC Relay Solidity Implementation.

https://github.com/crossclaim/btcrelay-sol, 2019. Accessed 2022-01-09.

[ZHL+19] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur

Gervais, and William Knottenbelt. Xclaim: Trustless, interoperable,

cryptocurrency-backed assets. IEEE Security and Privacy. IEEE, 2019.

[ZJ18] Kaiwen Zhang and Hans-Arno Jacobsen. Towards dependable, scalable, and per-

vasive distributed ledgers with blockchains (technical report). Technical report,

2018.

[ZMM+19] Fan Zhang, Sai Krishna Deepak Maram, Harjasleen Malvai, Steven Goldfeder,

and Ari Juels. Deco: Liberating web data using decentralized oracles for tls.

arXiv preprint arXiv:1909.00938, 2019.

[ZMR18] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling

blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC Confer-

ence on Computer and Communications Security, pages 931–948, 2018.

[ZSJ+18] Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar

Weippl, and William J. Knottebelt. (Short Paper) A Wild Velvet Fork Appears!

Inclusive Blockchain Protocol Changes in Practice. In 5th Workshop on Bitcoin

and Blockchain Research, Financial Cryptography and Data Security 18 (FC).

Springer, 2018.

https://github.com/crossclaim/btcrelay-sol

Appendix A

Systematization of Cross-Chain State

Verification

As described in Section 3.1.5, a critical component of cross-chain communication is the veri-

fication of the state “evolution” of a chain X from within another chain Y , i.e., that X is in

a certain state after the commit step. In this section we discuss the different elements of the

chain that can be verified during the process, to complement the process of verifying state evo-

lution. We show that there is a classification for what is verified (Section A.1), overview existing

techniques for each class, and discuss the relation between the verification classes (Section A.2).

A.1 Verification Classes

If a party P on X is misbehaving, it may withhold information from a party Q on Y (i.e., not

submit a proof), but it should not be able to trick Q into accepting an incorrect state of Lx

(e.g., convince Q that tx1 ∈ Lx although tx1 was never written).

Verification of State. The simplest form of cross-chain verification is to check whether a spe-

cific state exists, i.e., is reachable but has not necessarily been agreed upon by the consensus

participants. A representative example is the verification of Proof-of-Work in merged min-

189

190 Appendix A. Systematization of Cross-Chain State Verification

ing [Bit15, JZS+17]: the child chain Y only parses a given X block and verifies that the hash of

the Y candidate block was included, and checks that the PoW hash exceeds the difficulty target

of Y . Note that Y does not care whether the block is actually part of Lx. Another example is

the use of blockchains as a public source of randomness [BCG15b, BGB17, DFZ16, CDFZ17].

Verification of State Agreement. In addition to the existence of a state, a proof can

provide sufficient data to verify that consensus has been achieved on that state. Typically,

the functionality of this verification is identical to that of blockchain light clients [Nak08,

Bit19, Tec21]: instead of verifying the entire blockchain of X, all block headers and only

transactions relevant to the CCC protocol are verified (and stored) on Y . The assumption

thereby is that an invalid block will not be included in the verified blockchain under correct

operation [Nak08, BKLZ20]. Block headers can be understood as the meta-data for the block,

including a commitment to all the transactions in the block, which are typically referenced using

a vector commitment [CF13] (or some other form of cryptographic accumulator [BDM93]),

e.g. Merkle trees[Mer87]. We discuss how proofs of state agreement differ depending on the

underlying consensus mechanism below (non-exhaustive):

• Proof-of-Work. To verify agreement in PoW blockchains, a primitive called (Non-

interactive) Proofs of Proof-of-Work [KLS16, KMZ17], also referred to as SPV (simplified

payment verification) [Nak08] is used. Thereby, the verifier of a proof must at least check

for each block that (i) the PoW meets the specified difficulty target, (ii) the specified target

is in accordance with the difficulty adjustment, and (iii) the block contains a reference

to the previous block in the chain [Bit19, ZHL+19]. The first known implementation of

cross-chain state agreement verification (for PoW blockchains) is BTCRelay [Con17a]: a

smart contract that allows verifying the state of Bitcoin on Ethereum15.

• Proof-of-Stake. If the verified chain uses Proof-of-Stake in its consensus, the proofs

represent a dynamic collection of signatures, capturing the underlying stake present in

the chain. These are referred to as Proofs of Proof-of-Stake (PoPoS) and a scheme in this

direction was put forth in [GKZ19b].

15Similar contracts have been proposed for other chains [Con17b, Kyb17, Dog21, Kyb19a, Par20, Eve18].

A.1. Verification Classes 191

• BFT. In case the blockchain is maintained by a BFT committee, the cross-chain proofs

are simplified and take the form of a sequence of signatures by 2f + 1 members of the

committee, where f is the number of faulty nodes that can be tolerated [CL+99]. If the

committee membership is dynamically changing, the verification process needs to capture

the rotating configuration of the committee [NKKJ+].

Sub-linear State Agreement Proofs. Verifying all block headers results in proof complexity

linear in the size of the blockchain. However, there exist techniques for achieving sub-linear

(logarithmic in the size of the chain) complexity, which rely on probabilistic verification. For

PoW blockchains, we are aware of two approaches: Superblock (Ni)PoPoWs [Mil12, BCD+14,

KLS16, KMZ17] and FlyClient [BKLZ20]. Both techniques rely on probabilistic sampling

but differ in the selection heuristic. Superblock (Ni)PoPoWs sample blocks which exceed the

required PoW difficulty16, i.e., randomness is sourced from the unpredictability of the mining

process, whereas FlyClient suggests sampling blocks using an optimized heuristic after the

chain has been generated (using randomness from the PoW hashes [BCG15b]). For blockchains

maintained by a static BFT committee, the verified signatures can be combined into aggregate

signatures [KJG+16, KK19] for optimization purposes. These signature techniques are well

known and have been invented prior to blockchains, and we hence do not elaborate further

on these schemes. In the dynamic setting, skipchains [FGKJ18, NKKJ+, KKGK+16], i.e.,

double-linked skiplists which enable sub-linear crawling of identity chains, can reduce costs

from linear to logarithmic (to the number of configurations). Recently, a number of light client

protocols that leverage the compression properties of zero-knowledge proof systems have been

proposed [GKO20, GGJ+20, WE20b].

Verification of State Evolution. Once verified by some chain Y that chain X has reached

agreement on a ledger state Lx[r], it is then possible for (users on) Y to verify that certain

transactions have been included in Lx. As mentioned, block headers typically reference included

transactions via vector commitments. As such, to verify that tx ∈ Lx[r] the vector commitment

on Lx[r] needs to be opened at the index of that transaction, e.g. by providing a Merkle tree

16It is a property of the PoW mining process that a certain percentage of blocks exceeds or fall short of the
required difficulty.

192 Appendix A. Systematization of Cross-Chain State Verification

path to the leaf containing tx (e.g. as in Bitcoin). Thereby, multiple transactions can be

aggregated in a single proof [ZAPK20].

Verification of State Validity. Even though a block is believed to have consensus, it may

not be a valid block if it contains invalid transactions or state transitions (e.g. a PoW block

meeting the difficulty requirements, but containing conflicting transactions). Fully validating

nodes will reject these blocks as they check all included transactions. However, in the case of

cross-chain communication, where chains typically only verify state agreement but not validity,

detection is not directly possible. We classify two categories of techniques to enable such chains,

and non-full nodes (i.e., light clients), to reject invalid blocks:

• In proactive state validation, nodes ensure that blocks are valid before accepting them.

Apart from requiring participants to run fully validating nodes, this can be achieved by

leveraging “validity proofs” through succinct proofs of knowledge, using systems such as

SNARKs [BCCT12], STARKs [BSBHR18] or Bulletproofs [BBB+17]. First schemes for

blockchains offering such proofs for each state transition are put forth in [MS18, BBF18,

BSCS16]. Informally speaking, this is a “guilty until proven innocent model”: nodes

assume blocks that have consensus are invalid until proven otherwise.

• In reactive state validation, nodes follow an “innocent until proven guilty” model. It is

assumed that blocks that have consensus only contain valid state transition unless a state

transition “fraud-proof” [ASB18] is created. Fraud proofs typically are proofs of state

evolution, i.e., the opening of the transaction vector commitment in the invalid block

at the index of the invalid transaction, e.g. via Merkle tree paths. Depending on the

observed failure, more data may be necessary to determine inconsistencies (e.g. Merkle

paths for conflicting transactions in a double spend).

Verification of Data Availability. Consensus participants may produce a block header, but

not release the included transactions, preventing other participants from validating the correct-

ness of the state transition. To this end, verification of state validity can be complemented by

verification of data availability. A scheme for such proofs was put forth in [ASB18, YSL+19],

A.2. Relation between Verification Classes 193

which allows verifying with high probability that all the data in a block is available, by sampling

chunks in an erasure-coded version of a block.

A.2 Relation between Verification Classes

Verification of State Agreement requires to first verify a specific state exists or has been pro-

posed (Verification of State). To verify a transaction was included at L[r] (State Evolution), it

is first necessary to verify that the ledger state at L[r] is indeed agreed upon (State Agreement).

Finally, to verify that a state (transition) is indeed valid (State Validity), one must first verify

that all associated transactions were indeed included in the ledger (State Evolution). Verifi-

cation of Data Availability serves as a complementary security measure, and can be added to

any of the classes to protect against data withholding attacks. We illustrate this relationship

in Figure A.1.

Figure A.1: Venn diagram of cross-chain state verification classes. The red, dot-
ted line highlights the minimum requirement for correctly operating light clients, i.e.,
SPV/NIPoPoWs/FlyClient in the case of PoW blockchains.

Appendix B

Proof-of-Work Light Client Model

A blockchain light client, sometimes referred to as an SPV-Client [Bit19], is a program capable

of reading and verifying the state of a blockchain. That is, a light client stores and maintains

block headers and allows to verify transaction inclusion proofs.

In the following, we provide a formal model for the requirements of a program π to represent

a functioning light client for a proof-of-work blockchain Cpow 17.

Notation. We denote H(x) as the output of a cryptographic hash function over some input

x. Further, Ci shall denote the block header of the block at position i in the blockchain,

represented by the tuple 〈Si−1, τi,Mi,Ni, ti〉, where

• Si−1 is the reference to the PoW hash (i.e., solution) of the predecessor of block i,

• τi is the (expected) PoW difficulty target at block i as defined by consensus rules,

• Mi is the root hash of the Merkle tree of the hashes of all transactions (tx0,tx1, ...,txn)

included in i,

• Ni is the random nonce used to generate the PoW solution hash Si = H(Ci),

• and ti is the timestamp specifying when block i was generated.

17Verification for alternate structures, such as direct acyclic graphs (DAGs) [SZ18], is analogous. The reduc-
tion of DAG to a chain is trivial: a chain is a DAG where each vertex only has one predecessor.

194

195

We refer to the header of the first (i = 0), so called, genesis block as G. We assume protocol rules

of C require that the PoW difficulty target τ is adjusted every r blocks based on the relation

of the time between each two adjustments and some pre-defined desired block generation rate.

Note, while potentially useful for more extensive block validity checks, for simplification we

ignore other information usually included in the block headers. Furthermore, as it is not of

greater relevance to our model, we assume the same cryptographically secure hash function H()

is used to calculate both the hashes of block headers and transactions.

We require a chain relay program π to support the following functionalities with regards to the

state of a Proof-of-Work blockchain Cpow :

Functionality 1 (Difficulty Adjustment). Program π has knowledge of the difficulty adjustment

rate r and ideal block generation rate and, given Ci and Ci+r, where i (mod i) = 0, outputs the

new difficulty target τi+r according to consensus rules of Cpow .

Functionality 2 (Block Validation). Program π has a function checkBlock which takes as

input a block header Ci and returns True if and only if Ci is the pre-image of Si, τi is the

difficulty target required at block i and it holds that Si ≤ τi.

Functionality 3 (Chain Validation). Program π has a function checkChain which takes as

input the genesis block G, a list of consecutive block headers (C1, C2, ..., Cn) and returns True

if and only if it holds that ∀i ≤ n : checkBlock(Ci) = True and for each two consecutive block

headers Ci and Ci+1 it holds that Si ∈ Ci+1, i.e., Ci is the predecessor of Ci+1.

Definition 11 (Valid Chain). We define the tuple 〈G, (C1, ..., Cn)〉 as a valid chain if checkChain

outputs True given this tuple as input.

Functionality 4 (Main Chain Detection). Program π provides a function denoted mainChain

which takes as input two valid chains

〈G, (C1, ..., Ci, Ci+1, ..., Cn)〉 and

〈G, (C1, ..., Ci, C
′
i+1, ..., C

′
m)〉 where n 6= m and for every j ≥ i it holds that Cj 6= C ′j, and outputs

the main chain according to the consensus rules of Cpow , e.g., the longest chain in the case of

Nakamoto consenus.

196 Appendix B. Proof-of-Work Light Client Model

Functionality 5 (Transaction Inclusion Verification). Program π has a function checkTransaction

which, if given a valid chain 〈G, (C1, ..., Cn)〉, a block header Ci, a transaction tx and a Merkle

tree path p, outputs True if and only if H(tx) is contained in the Merkle tree with root Mi ∈ Ci

at the position defined by p, Ci ∈ (C1, ..., Cn) s.t. i ≤ n and the provided chain is the main

chain of Cpow .

Definition 12 (Light Client). A program π is a light client of a Proof-of-Work blockchain

Cpow , if it satisfies Functionalities 1-5 with regards to Cpow .

The presented model focuses on Proof-of-Work blockchains but can be easily extended to other

consensus mechanisms, such as Proof-of-Stake-based models, and is left to future work. The

modifications required mainly revolve around replacing the PoW difficulty adjustment verifi-

cation with knowledge of the qualifying signers at each signing epoch, and the verification of

signatures rather than the PoW target τ .

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Contributions
	Statement of Originality
	Publications

	Background and Related Work
	Fundamentals: Bitcoin, Blockchain, and Consensus
	Transactions and Blocks
	Proof-of-Work and Nakamoto Consensus
	Longest Chain Rule and Forks
	Incentives and Rewards
	Peer-to-Peer Network
	Alternative Consensus Mechanisms
	Blockchain Application Layer

	Related Work
	Formalization of Cross-Chain Communication
	Interoperability via Cryptocurrency-Backed Assets
	Chain Relays and Light Clients

	Cross-Chain Communication: Formalization, Impossibility, Analysis
	The Cross-Chain Communication Problem
	Historical Background: Distributed Databases
	Distributed Ledger Model
	Cross-Chain Communication System Model
	Formalization of Correct Cross-Chain Communication
	The Generic CCC Protocol

	Impossibility of CCC without a Trusted Third Party
	Strong Fair Exchange Definition
	What is a Trusted Third Party?
	Relating CCC to Fair Exchange.
	Incentives and Rational CCC

	The CCC Design Framework
	(Pre-)Commit Phase
	Verification Phase
	Abort Phase

	Classification of Existing CCC Protocols
	Exchange Protocols
	Asset Migration Protocols
	Insights and General Observations

	CCC Challenges and Outlook
	Heterogeneous Models and Parameters Across Chains
	Heterogeneous Cryptographic Primitives Across Chains
	Collateralization and Exchange Rates
	Lack of Formal Security Analysis
	Lack of Formal Privacy Analysis.

	Conclusion

	XCLAIM: Trustless, Interoperable Cryptocurrency-backed Assets
	System Overview
	Cryptocurrency-backed Assets (CbA)
	System Model and Actors
	Distributed Ledger Model
	Network Model
	Threat model
	System Goals

	Strawman Solution and Design Roadmap
	Strawman Solution
	Strawman Limitations and Properties
	XCLAIM Design Roadmap

	XCLAIM Secure Design
	XCLAIM Overview
	Chain Relays: Cross-Chain State Verification
	Tribunal: Incentives via Collateralization
	Mitigating Exchange Rate Fluctuations
	Multi-vault System: Removing Single Points of Failure
	Atomic vault Replacement

	Formal Protocol Specification
	XCLAIM Operations
	XCLAIM Protocols
	Blockchain Requirements for Implementing XCLAIM

	Security Analysis
	Chain Relay Poisoning
	Replay Attacks on Inclusion Proofs
	Counterfeiting
	Permanent Blockchain Splits
	Denial-of-Service Attacks
	Fee Model Security: Sybil Attacks and Extortion

	XCLAIM(BTC,ETH) Implementation and Evaluation
	Protocol Execution Costs
	Performance
	Comparison to HTLC Atomic Swaps

	Applications
	Conclusion
	Symbols and Notations

	Cross-Chain Light Clients: Problem, Overview, and Efficiency Improvements
	Model and Definitions
	System Model
	Protocol Goals

	Probabilistic Sampling: Cure or Curse?
	Probabilistic Sampling Dilemma
	Analysis

	TxChain Design
	Contingent Transactions
	TxChain: Contingent Transaction Aggregation
	Hierarchical TxChain

	Security and Efficiency Analysis
	Security Analysis
	Efficiency Analysis

	Deploying TxChain in Practice
	Fork Free Deployment
	Deployment via Soft or Hard Forks.
	Case-Study: TxChain for Cross-Chain Transactions

	Conclusion

	Conclusion and Future Work
	Summary of Thesis Achievements
	Applications
	Future Work
	Extending the CCC Framework to New Blockchain Paradigms
	Extensions and Improvements to XCLAIM
	Efficient Cross-Chain Light Clients

	Bibliography
	Systematization of Cross-Chain State Verification
	Verification Classes
	Relation between Verification Classes

	Proof-of-Work Light Client Model

