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ABSTRACT
The current paper addresses the problem of Spacecraft Ren-
dezvous using Model Predictive Control (MPC). The Clohe-
ssy-Wiltshire-Hill equations are used to model the spacecraft
relative motion. Here the rendezvous problem is discussed
by trajectory control using MPC method. Two different sce-
narios are addressed in trajectory control. The first scenario
consist of position control with fuel constraint, secondly the
position control is performed in the presence of obstacles.
Here the problem of fuel consumption and obstacle avoid-
ance is addressed directly in the cost function. The proposed
methods are successfully analysed through simulations.

CCS Concepts
•Computer systems organization→ Robotic control;
Robotic autonomy; •Theory of computation → Con-
tinuous optimization;

Keywords
Spacecraft Rendezvous; Collision Avoidance; Model Predic-
tive Control.

1. INTRODUCTION
Autonomous operation of Spacecrafts have been a chal-

lenging and important problem for many of the space mis-
sions undertaken in the recent years. Specially the orbital
task requirements with rendezvous and docking are critical
in mission involving Autonomous Transfer Vehicle for cargo,
On-Orbit Refuelling, Capture of Orbital Debris, Collision
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Avoidance with Orbital Debris etc. In the future space mis-
sions there is an increasing demand for autonomous trajec-
tory control and requires efficient control methods to handle
various mission constraints.

In [6] an extensive survey about control of space ren-
dezvous missions can be obtained where as in [4] the au-
thor has provided a tutorial on application of Model Pre-
dictive Control for Rendezvous mission. In [5], [13] and [12]
Model Predictive Control (MPC) was used for rendezvous
and docking along with collision avoidance problem using
hard constraint method.

With respect to the above discussed papers we have im-
plemented the Model Predictive Control for Spacecraft Ren-
dezvous and Collision avoidance using soft constraint method.
In the soft constraint method the collision avoidance con-
straints are expressed implicitly in the Control Performance
cost function. The remainder of the article is organised as
follows: First the dynamic model of the Spacecraft Relative
motion problem is discussed followed by the Model Predic-
tive Control technique. Finally simulation studies are per-
formed to analyse the proposition using two scenarios such
as trajectory control with fuel efficiency and then collision
avoidance problem during trajectory control.

2. MODELLING
Here we will briefly discuss the Clohessy-Wiltshire-Hill

[11] equation which are used for the rendezvous problem.
But first we will have to define the Hill’s frame which can
be seen in Figure-1. Here ~R0 and ~R1 are distances of the ref-
erence satellite and second satellite from the central body or
Earth. The relative distance between the satellites is given
by ~R01 = ~R1 − ~R0. For small values of |~R01|, the relative
acceleration in the rotating frame can be given by [11]

~̈R01 =
µ

R3
0

[
− ~R01 + 3

(
~R0

R0
· ~R01

)
~R0

R0

]
+ ~F +O(R2) (1)

where R0 = |~R0|, µ is a gravitational constant, ~F is the ex-
ternal force vector. Under the assumption of circular orbit,
the linearized Clohessey-Wiltshire-Hill (CW) equation can
be used to represent the relative motion of a given space-
craft with respect to a virtual center [1, 11] as follows

ẍ− 2n0ẏ − 3n2
0x = ux (2)

ÿ + 2n0ẋ = uy (3)

z̈ + n2
0ż = uz (4)

where [x, y, z]T are the relative states for the spacecraft,
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Figure 1: Hill’s Frame

n0 =
√

(µ/R3
0) is the angular velocity of the reference orbit,

R0 as described before is the radius of the reference orbit,
[ux, uy, uz]

T are the external forces.

3. MODEL PREDICTIVE CONTROL
In the current section we will briefly discuss the Model

Predictive Control (MPC) method. In the MPC implemen-
tation an internal model is used to predict the behaviour of
the system in the horizon τ = [t, t+ T ] at each time instant
t. The control input is obtained by minimization of the con-
trol index J subject to constraints ~C ∈ Rmc . To summarize
an optimal control problem is solved at each time instant t
given by [7]:

min
u

J =ϕ(~xτ (T, t), ~p(T, t))

+

∫ t+T

t

L(~xτ (τ, t), ~uτ (τ, t), ~p(τ, t))dτ (5)

s.t. ~̇xτ (τ, t) =~f(~xτ (τ, t), ~uτ (τ, t), ~p(τ, t)), (6)

~xτ (0, t) =~x(t) (7)

~0 ≥~C(~xτ (τ, t), ~uτ (τ, t), ~p(τ, t)). (8)

where ϕ is the terminal cost, L is the current cost and ~xτ , ~uτ
are the predicted trajectories indexed by τ in the prediction
horizon. In the above optimal control problem the feedback
in the closed loop system is obtained by the equation (7),
where the actual state x(t) of the system is used as initial
state ~xτ (0, t).

In the current paper the continuation generalized mini-
mum residual method (CGMRES)[7] is used to solve the
optimal control problem. The CGMRES method has been
implemented and discussed in [8], [3], [9], [10] and [2].

4. SIMULATION

The application of Model Predictive Control (MPC) to the
problem of Spacecraft Rendezvous is discussed here. The
Clohessy-Wiltshire (CW) equation which was discussed ear-
lier is used for simulation with the constant n0 = 0.0011.
Two simulation scenarios are considered: First the MPC
technique is used for trajectory control with fuel efficiency
and secondly the trajectory control problem is handled in-
cluding collision avoidance in orbit.

4.1 Trajectory Control with Fuel Efficiency
The first scenario to be studied is the trajectory con-

trol problem. Here the spacecraft starts from initial con-
dition [xi, yi, zi] = [100, 100, 100] to a final rendezvous point
[xr, yr, zr] = [5, 5, 5] metres.

The cost function used in the current scenario is as follows:

J1 = eTpQep + uTRu− gv (9)

where ep is the position error, −50 ≤ u ≤ 50 is the con-
trol input and v is the vector of slack variables. Here Q =
diag[10, 10, 10, 10, 10, 10], R = diag[10, 10, 10, 0, 0, 0] are re-
spectively position and control performance gains and g is
the Lagrange multiplier gain.

The simulation results for the current trajectory control
scenario can be seen in Figure-2. We can respectively see the
position (x, y, z), velocity (ẋ, ẏ, ż) and control input (ux, uy,
uz) in Figure-2. In Figure-3 we can see the fuel consump-
tion for different penalty. We can observe that a higher fuel
efficiency can be obtained by larger penalty.

4.2 Trajectory Control with Collision Avoid-
ance

The second scenario is the case where trajectory control
problem is performed with collision avoidance. Here the
spacecraft starts from initial condition [xi, yi, zi] = [100, 100,
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ẋ

0 200 400
-15

-10

-5

0

5

u
x

0 200 400
0

50

100
y

0 200 400
-20

-10

0

ẏ

0 200 400
-15

-10

-5

0

5

u
y

0 200 400
Samples

0

50

100

z

0 200 400
Samples

-20

-10

0
ż
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Figure 2: Rendezvous control with high control penalty R = diag[10, 10, 10, 0, 0, 0].
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Figure 3: Rendezvous control: fuel efficiency

100] and has to reach a final rendezvous point [xr, yr, zr] =
[5, 5, 5] metres with an obstacle at position [50, 50, 50]. It is
assumed that the exact position of the obstacle is available
as measurement to the controller on the spacecraft.

The cost function used in the current trajectory control
with collision avoidance problem is as follows :

J1 = eTpQep + uTRu− gv + e−kγ (10)

where ep is the position error, −50 ≤ u ≤ 50 is the control
input and v is the vector of slack variables and γ is given by

γ = (x− xo)2 − x2c + (y − yo)2 − y2c + (z − zo)2 − z2c (11)
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Figure 4: Rendezvous control: Collision Avoidance
Trajectory, ◦ is the final position and × is the initial
point.

where (x, y, z) is the position of the spacecraft, (xo, yo, zo) is
the position of the obstacle, (xc, yc, zc) is the clearance value.
Here Q,R are respectively position and control performance
gains and g is the Lagrange multiplier gain and k is a tuning
gain used in the collision avoidance term e−kγ .

The simulation results for the current trajectory control
with collision avoidance scenario can be seen in Figure-5
and Figure-4. We can respectively see the position (x, y, z),
velocity (ẋ, ẏ, ż) and control input (ux, uy, uz) in Figure-5.
Similarly in Figure-4 we can see the trajectory plot with the
obstacle.
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Figure 5: Rendezvous control: Collision Avoidance

5. CONCLUSION
The problem of spacecraft rendezvous was discussed using

simulation studies on the Clohessy-Wiltshire equations. The
Model Predictive Control technique was used to perform tra-
jectory control with collision avoidance using soft constraint
method. The simulation studies successfully validated the
proposed control methodology.
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