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Abstract
Today’s distributed tracing frameworks are ill-equipped to

troubleshoot rare edge-case requests. The crux of the prob-
lem is a trade-off between specificity and overhead. On the
one hand, frameworks can indiscriminately select requests to
trace when they enter the system (head sampling), but this
is unlikely to capture a relevant edge-case trace because the
framework cannot know which requests will be problematic
until after-the-fact. On the other hand, frameworks can trace
everything and later keep only the interesting edge-case traces
(tail sampling), but this has high overheads on the traced ap-
plication and enormous data ingestion costs.

In this paper we circumvent this trade-off for any edge-case
with symptoms that can be programmatically detected, such as
high tail latency, errors, and bottlenecked queues. We propose
a lightweight and always-on distributed tracing system, Hind-
sight, which implements a retroactive sampling abstraction:
instead of eagerly ingesting and processing traces, Hindsight
lazily retrieves trace data only after symptoms of a problem
are detected. Hindsight is analogous to a car dash-cam that,
upon detecting a sudden jolt in momentum, persists the last
hour of footage. Developers using Hindsight receive the ex-
act edge-case traces they desire without undue overhead or
dependence on luck. Our evaluation shows that Hindsight
scales to millions of requests per second, adds nanosecond-
level overhead to generate trace data, handles GB/s of data per
node, transparently integrates with existing distributed trac-
ing systems, and successfully persists full, detailed traces in
real-world use cases when edge-case problems are detected.

1 Introduction
Troubleshooting failures and performance problems in large-
scale distributed systems is crucial. On one side, tiny per-
formance misbehavior in a production system could be
costly [1, 2, 20]. On the other side, exacerbated by growing
system complexity, diagnosing problems takes onerous effort
from system developers and requires significant engineering
resources. Distributed tracing is invented as the solution of
troubleshooting distributed systems by recording detailed,
end-to-end traces of requests executions, and are proved help-
ful for a wide range of use cases [60, 63].

Prior distributed tracing works have demonstrated a wide
range of use cases. Common-case analysis focuses on ag-
gregated system behaviors, such as monitoring resource us-
age [48, 60, 61, 63, 71]. In contrast, edge-case troubleshooting
(§2.1), the topic of this paper, focuses on rare and outlier
system behavior, such as tail latency [19, 40, 49, 70, 75].

Since an edge case is rare by definition, tracing edge cases
requires trace coverage of all requests. In typical production
environments, tracing every request—including transmitting,
processing, and storing comprehensive telemetry—requires
enormous backend infrastructure and storage that is unaccept-
able to infrastructure operators. State-of-the-art tracing frame-
works manage this overhead by collecting a small sample
(0.001%) of traces [9,36,39,65]. Though previous works prac-
tically reduce tracing overhead through head sampling [36,65]
and tail sampling [38, 39] techniques, they cannot trace edge
cases at scale (§2.3).

In this paper, we resolve the problem of tracing edge-case
requests in production environments. To achieve this, we
focus our attention on symptomatic edge cases, where the
performance effects of the problem manifest shortly after its
causes and where the impacts can be observed programmati-
cally. We propose retroactive sampling to collect telemetry
data back in time from the present moment of detection from
all machines that serviced the request. The key idea is to
generate all trace data but only collect useful data through a
retrieval mechanism.

To implement retroactive sampling, we built Hindsight—
an always-on, lightweight distributed tracing system that is
compatible with existing tracing APIs—as a practical tool
for edge-case analysis. Under retroactive sampling, all trace
data is recorded locally but only reported when a symptom
is detected, allowing applications to generate copious trace
data in case they are needed without encumbering the trac-
ing system’s backend collection infrastructure. Retroactive
sampling ultimately reports the same volume of trace data
as other sampling methods, but ensures that edge-case traces
are not missed. To provide efficient and coherent retroactive
sampling, Hindsight’s design separates its dataplane, e.g. gen-
erating trace data into fast local memory, from control logic,
e.g. for indexing metadata, coordinating among machines, and
triggering collection for symptomatic requests on demand.
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As demonstration, we apply Hindsight on three use cases
corresponding to our running examples. We run experi-
ments on the DeathStar Microservices Benchmark [25], the
Hadoop Distributed File System [64], an Alibaba benchmark
derived from production traces [44], and on several micro-
benchmarks. We have integrated Hindsight with OpenTeleme-
try [53] and as a replacement collection component for X-
Trace [24]. Our experimental results show that Hindsight im-
poses nanosecond-level overhead when generating trace data,
can scale to GB/s of data per node, rapidly reconstructs traces
when triggered, and effectively captures problematic traces,
as well as related lateral traces, within tens of milliseconds of
identifying a symptom.

In summary, our paper makes the following contributions.
• We describe the retroactive sampling abstraction for cap-

turing traces of symptomatic edge-cases.
• We present the design of Hindsight, a distributed tracing

system that implements retroactive sampling. Hindsight
is compatible with existing tracing APIs and can be
transparently integrated with existing applications.

• We apply Hindsight on real-world use cases and show
that efficiently collecting edge-case requests is practical.

• We evaluate Hindsight on multiple benchmarks and real
systems, showing that it can achieve nanosecond-level
overhead on trace data generation and handle GB/s data
per node while collecting coherent traces.

• We illustrate that Hindsight is compatible and performs
better than state-of-the-art tracing systems (X-Trace and
Jaeger) with more efficient trace-data generation and
lower overhead, while providing edge-case tracing.

2 Motivation
2.1 Edge-Case Troubleshooting
Consider the following three examples of real-world use cases
UC1–UC3 of edge-case troubleshooting from prior work.

Error diagnosis (UC1). Hardware failures, component er-
rors, exceptions, and programming mistakes abound in large
production systems [74]. Application developers often play
the role of detective, to identify root causes of errors. An error
might only arise due to a specific, rare combination of factors
and code paths exercised; the symptoms of a problem often
manifest far from the root causes [23, 43, 47], and the poten-
tial root causes are manifold, perhaps combined software or
hardware problems on many nodes or network links [37].

Tail-latency troubleshooting (UC2). Distributed systems
track a wide range of high-level health metrics, such as API
distributions, latency percentiles, resource utilization, and
many others [35, 36]. An operator may observe an unusual
metric jump, say the 99th percentile latency has spiked for
some important API. However, knowing about the spike is not
enough; the application developer must identify the specific
service, code paths, or conditions that contribute to the peak
to address any underlying problems [19, 40, 49].

Temporal provenance (UC3). Many modern distributed
systems respond to requests through an architecture of loosely
coupled microservices [63]. Application developers need
tools for tracking queuing issues when the number of compo-
nents in a distributed system is large [3–6, 8], since a request
R exhibiting symptoms (e.g. prolonged queueing time) may
not be the true culprit for the backlogged queue. Rather, the
developer wants to follow the temporal provenance of R to
determine lateral traces of other related requests with which
R interacted through shared components and queues [73].

2.2 Distributed Tracing
Distributed tracing frameworks are in widespread use in both
open-source [33,53,79] and major internet companies [36,59,
65] to chronicle end-to-end requests. A trace is a recording
of one request, and each trace contains spans, events, and
annotations, along with timing and ordering, generated from
every machine visited by the request. Compared to traditional
logs and metrics, the key distinction of distributed tracing
is that a trace captures the full end-to-end structural flow of
request execution across all components visited.

Advantages. Distributed tracing is thus particularly useful
for troubleshooting cross-component problems in large sys-
tems, since the request traces explicitly tie together the indi-
vidual slices of work performed across different machines,
enabling an operator to observe how the work done by one
machine influences, and is influenced by, work done on oth-
ers [24,59,65,69]. Prior research on distributed tracing demon-
strates a range of use cases, including common-case analyses
centered on aggregate system behavior, distributions over data,
and relationships between system components [36,60,61,63].

Limitations. Since edge-case troubleshooting concerns rare
and outlier system behavior, the symptoms and evidence of
a problem might only manifest in a very small fraction of re-
quests. Unfortunately for the operator, this sparsity may yield
exceptionally few exemplar traces of edge-case behaviors and
symptoms, owing to the design of modern distributed tracing
frameworks. Let us look closer at how traces are captured
before returning to this problem.

Current designs. Fig. 1 depicts a typical distributed tracing
framework [36, 53, 59]. When a new request arrives at the
application, the tracing framework assigns it a uniquetraceId
(À). Every request is assigned atraceId, but not every request
is actually traced; the framework sets a per-request sampled
flag to indicate as such. From this starting point, the applica-
tion then propagates the traceId and sampled flag alongside
the request at the application level and includes them with all
inter-process communication (Á).

Any component that handles the request can generate trace
data (e.g. spans, events) using the tracing framework’s client
library (e.g. OpenTelemetry [53])—trace data is only gener-
ated ifsampled is set. Trace data gets explicitly annotated with
the traceId, thereby associating the data with the request (Â).
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Fig. 1: Distributed tracing (§2.2). A request (solid black line) tra-
verses system processes, depositing trace data that is eagerly ingested
into the trace collector backends. End-to-end trace objects are con-
structed from trace data, processed, and stored in a database.

Ultimately there may be many components and machines that
handled the request and contribute trace data. At the same
time, many requests may execute concurrently (e.g. in differ-
ent server handler threads), generating temporally-interleaved
data with different traceIds.

The framework’s client library eagerly enqueues, serializes,
and transmits trace data (Ã) to its centralized backend col-
lection infrastructure, or backend for short (Ä). The backend
is distinct from the traced applications and is responsible for
continually receiving, processing (Å), and storing (Æ) trace
data generated across all of the application’s components.
The backend uses the traceId to join data that was dispersed
across many machines but belongs to same request into a
single coherent trace object. The backend finally persists that
trace object in a database if it decides to retain the trace.

Overhead vs. incompleteness. Traces can be detailed and
produced at high volume, risking overheads. Traces at Google,
for instance, are typically more detailed than debug-level log-
ging [65]; each traced request at Facebook, similarly, gener-
ates several MBs of tracing data and approximately 1 billion
traces are captured per day [36]. At high rates, tracing frame-
works may encounter several potential bottlenecks: when gen-
erating data within the traced application (Â); when transmit-
ting trace data over the network (Ã); and in backend process-
ing and storage (Ä–Æ).

To reduce overheads, the de facto practice is to capture
fewer traces. Here, operating at the granularity of an entire
trace maintains trace coherence: if a request is sampled, then
the whole trace is kept including all data across all machines;
otherwise nothing is kept. Coherent traces are essential for
distributed tracing – a partial or fragmented trace has limited
value in diagnosis [24, 31, 32, 65] because it loses the end-to-
end visibility that makes the trace useful in the first place [59,
60, 69]. There are two main approaches for foregoing traces
coherently: the system may decide to omit a request at À
before tracing and ingestion (head sampling) or the traces
may be filtered after collection at Å (tail sampling).

Head sampling reduces overheads by simply tracing fewer
requests in the first place, i.e. by setting the sampled flag for
only a small fraction of requests (À). By leaving sampled un-
set for the majority of requests, trace data will not be recorded

for most requests, thus avoiding application overheads to gen-
erate data, ingestion overheads to transmit and process data,
and storage overheads (Â–Æ). Head sampling is widely used
in practice; it is enabled by default in Jaeger [33] with a 0.1%
sampling probability, and some production systems sample
as few as 0.001% [36, 65].

Tail sampling is used to drop traces at the trace backends
(Å). Unlike head sampling, the application will still trace
all requests and will incur all expenses of generating and
ingesting the trace data (Â–Ä). Tail-based sampling primarily
allows backends to lower the trace storage costs by selectively
dropping traces after combining them into trace objects but
before committing them to storage [38, 39, 54].

2.3 Edge-Case Troubleshooting Troubles
Recall that edge-case problem symptoms only manifest in a
small fraction of requests, which are undetermined until the
problem takes place. We argue that current approaches are
ineffectual at getting traces of edge-cases.
Head sampling sacrifices edge-cases. Indiscriminate sam-
pling decisions made at the beginning of a request (À), while
useful for curbing overhead, cannot know a priori whether a
request will encounter a rare edge-case problem and should be
traced. For edge-case troubleshooting this presents an obsta-
cle: a low head-sampling probability (e.g. 0.1%) means a trace
of the problem will exist with low probability (i.e. 0.1%). The
developer may thus have reports that errors took place (UC1)
yet the corresponding ‘rare’ requests were not sampled when
those requests began—they lack the detailed cross-machine
data necessary for finding the error’s root cause. Likewise,
the application’s high-level metric monitoring may indicate a
spike in end-to-end tail-latency (UC2); the developer is thus
aware that these high-latency outliers exist, yet without a trace,
they cannot localize the problem to a particular component or
request class. The situation is even more problematic when
investigating bottlenecked queues via temporal provenance
(UC3): since each request was sampled independently, the
tracing system will have only a vanishing probability that
traces of all relevant requests in the queue were captured.
Tail sampling sacrifices overheads and scalability. Practi-
tioners have long pointed out a discord between what traces
are interesting and what traces get head-sampled [7, 9, 12,
55, 56]. Fortunately, many common edge-case symptoms,
including error codes (UC1) and high end-to-end response
time (UC2), can be recorded directly within the trace data
itself. This enables tail-samplers to explicitly seek out edge-
case traces, because at this point (Å) they can directly in-
spect the constructed trace object. Today’s tail-samplers
support filtering traces based on span attributes or metrics,
thereby targeting a range of outlier symptoms such as high
tail latency, unexpected error codes, uncommon attributes,
rare code paths, and undesirable behavior such as RPC re-
tries [7, 10, 34, 42, 50, 54, 59, 68].

Tail-sampling entails enormous costs, however: they must

3



trace all requests and ingest all trace data in order to make
informed decisions. Application latency and throughput can
suffer if tracing libraries lack optimization (e.g. 2× through-
put reduction using OpenTelemetry tail-sampling (§6.4.1)).
Ingesting all traces consumes substantial network band-
width between applications and collectors, interfering with
latency-sensitive application traffic (e.g. up to 200 MB/s per
node (§6.4.1)). Tail-sampling demands large backend infras-
tructure investment, deploying enough collectors to receive
and process all incoming traces (e.g. even one chatty RPC
server can overwhelm an OpenTelemetry collector (§6.4.1)).
Even assuming perfect horizontal scaling, tail-sampling re-
quires e.g. 100× the collector capacity of 1% head-sampling.
Lastly, tracing frameworks are also not robust to bottlenecks
mid-way through ingestion (e.g. network backpressure) and
quickly lose trace coherence when overloaded.
Practitioners sacrifice edge-cases. The justified pragma-
tism of avoiding large overheads means that head sam-
pling reigns supreme in real-world distributed tracing de-
ployments [22, 28, 32, 36, 65]. Even tail-sampling features
of commercial products have low thresholds on data inges-
tion (e.g. <350 kB/s per host [66], <34 spans/s per host [51],
<6 MB/s per collector [41]) after which vendors will auto-
matically enable head-sampling or incoherently drop spans.
Ultimately, the operator who wishes to troubleshoot edge
cases is left unfulfilled.

3 Approach
Hindsight aims to overcome today’s trade-off between over-
heads and edge cases. Our goal is to enable practitioners to tar-
get edge-case traces with the flexible criteria of tail sampling,
while retaining overheads similar to that of head-sampling, i.e.
without high application overheads or substantial additional
backend infrastructure. We now describe several insights that
lead us to Hindsight’s retroactive sampling approach.
It is not expensive to generate trace data. We don’t know
a priori whether a request will be an interesting edge-case;
only after symptoms manifest. Paradoxically once we ob-
serve symptoms, it is too late to just enable tracing from that
point on, as we have already missed the events that led to
the anomaly. The only sure-fire way of obtaining coherent
traces for any edge-case is to record trace data from the very
beginning of the request, for every request.

Tail-sampling does just that – with high overheads and
steep infrastructure costs. However, this is primarily because
today’s tracing frameworks tightly couple trace generation
with trace ingestion. Ingesting data is expensive, incurring
network and backend infrastructure costs. Generating data
into local memory is not – outside of distributed tracing, e.g.,
we observe new technology like Intel PT can generate 100–
200 MB/s of processor telemetry per core at 5–15% runtime
overhead [30]; likewise method-tracing techniques for An-
droid applications exhaustively record all function entries
and exits with <1 ns per tracepoint and <3% runtime over-

head [45]. We believe that comparable overheads should be
possible for distributed tracing. With careful client library
design, applications should be able to generate detailed trace
data locally into memory, in anticipation of that data being
useful if a problem occurs.
Retroactive sampling: nodes generate, but do not ingest, all
trace data.

Symptoms are locally observable. Although root causes
are many, varied, and difficult to predict, the same is not true
of symptoms of problems. For example, error codes, tail la-
tency, and exceptions are easily-observed indicators of poten-
tial problems. Many symptoms are localized, programmati-
cally detectable, and manifest quickly at some point during or
shortly after a request was served [29, 54, 59]. For example,
tail sampling techniques, by definition, require that some span
in the trace was explicitly annotated with the symptom of an
anomaly, and typically wait only 10 seconds to accumulate
trace data [52,54]. For these common cases it is not necessary
to ingest and construct full trace objects when the symptom is
so readily detectable at the source. Moreover, since symptoms
can be detected independent of traces in the first place, we do
not need the expensive indirection of writing symptoms into
trace data only to later extract and filter them. We believe that
the key to capturing edge-cases is to decouple detection of
symptoms from collection of traces.
Retroactive sampling: applications embed triggers that pro-
grammatically observe symptoms and signal after-the-fact
that a trace is an edge-case.

Triggers are local but trace data is distributed. Prior dis-
tributed tracing frameworks ingest traces eagerly. We instead
believe that traces should be lazily ingested, only in response
to a trigger fired at some point during or soon after a request.
However, triggers are local – only one machine might detect
a symptom, yet the trace data for the request will be dispersed
across memory of all machines that serviced it. To splice to-
gether a coherent end-to-end trace, all of these other machines
need to learn of the trigger and send their slice of the trace
to the backend collectors. To identify and notify all relevant
machines of a trigger, we thus need the ability to back-track
the end-to-end path of a request.
Retroactive sampling: requests propagate and deposit bread-
crumbs so triggers can be shared with all relevant machines.

Trace data will eventually expire. Applications generate
trace data into local memory where it incurs no further pro-
cessing. We only send trace data to collector backends if a
trigger fires. However, we cannot predict when a trigger might
fire – even if a request has finished executing locally, we
cannot easily know that the request isn’t still executing on
some other machine(s) or that a trigger won’t fire remotely.
Thus, trace data must remain in memory on each machine
indefinitely. Over time this will fill memory and eventually
we will need to free up space. The intuitive choice is thus
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to expire trace data for the least-recently-seen request. We
call the implicit time duration between generating data and
overwriting it the event horizon. We believe that retroactive
sampling should not require a large event horizon – as low as
tens of seconds is reasonable – because triggers are automatic
and shared quickly. In the majority of cases a machine should
learn of a trigger within a matter of seconds or milliseconds.
Thus retroactive sampling should be feasible even with large
and detailed traces or constrained memory.

Retroactive sampling: triggers are best effort; we assume we
will see triggers quickly if at all.

4 Design
Overview. Hindsight is a distributed tracing framework that
implements retroactive sampling. Whereas typical distributed
tracing frameworks eagerly ingest trace data, Hindsight lazily
ingests data only after a trigger, thus allowing retroactive sam-
pling of edge-case traces without paying the overhead costs
of ingesting all trace data. Hindsight remains compatible with
existing head-sampling and tail-sampling policies. Hindsight
trivially implements head-sampling policies by firing an im-
mediate trigger upon a positive head-sampling decision (or
if the sampled flag is set). Hindsight is opaque to backend
trace collectors and tail-sampling policies, and existing in-
gestion pipelines require no changes. Likewise, Hindsight is
transparently compatible with existing OpenTelemetry APIs
and instrumentation [53], and piggybacks breadcrumbs with
OpenTelemetry’s context propagation.

Walkthrough. Fig. 2 shows a high-level diagram of Hind-
sight’s main components.
À On request arrival (solid black line) Hindsight generates a

unique traceId and thereafter propagates it alongside the
request, as done by existing frameworks (§2.2).

Á Applications record trace data (e.g. events, spans) using
Hindsight’s tracepoint client API. This leaves the re-
quest’s trace data scattered across the machines it visited.

Â A Hindsight agent runs on each machine to manage trace
data. Hindsight agents do not inspect, process, or eagerly
report trace data to backends – instead, agents index meta-
data by traceId and await further instruction. For most
traces nothing further happens, the trace is not reported,
and agents eventually evict old trace data.

Ã If an application node observes an outlier symptom (e.g.
erroneous response, high latency, or a bottlenecked queue)
it invokes Hindsight’s trigger API and passes the request’s
traceId.

Ä The local Hindsight agent receives the triggered traceId.
The full trace remains dispersed across many Hindsight
agents, so the local agent informs Hindsight’s logically
centralized coordinator service of the traceId. Hind-
sight’s coordinator recursively contacts the set of ma-
chines that serviced this request, soliciting breadcrumbs
deposited by the request at each machine; a breadcrumb is

traceIdÀ breadcrumb traversalÄ
Coordinator

Ãtrigger

Hindsight
Client Lib

Application Á
tracepoint

da
ta metadata Hindsight

Agent

Â

tId
.
... evict

index

Backend
Trace

Collectors

Ålazy trace reporting

Fig. 2: The end-to-end lifecycle of a trace in Hindsight (§4).

a pointer to another machine involved in the request (e.g.
to the RPC caller or callee).

Å Each agent contacted will set aside its slice of data be-
longing to the traceId, and asynchronously send it to the
backend collector.

Design decisions. Hindsight is most shaped by three key
design choices. First, to prioritize trace coherence as a primary
objective throughout the architecture. Second, to maintain an
efficient data and control plane split to enable tracing 100% of
requests. Finally, to support lightweight programmatic trigger
mechanisms.

4.1 Trace Coherence
Coherence is a top-level requirement for distributed tracing
(§2.2). As soon as any machine drops data for a trace, the
trace is incoherent and effectively useless for troubleshooting.
Hindsight’s design avoids incoherence in several places.

At Â, agents continually evict old trace data to free up space
for new data. Agents do this atomically at the granularity of
a trace; there is no point in only dropping part of a trace.
However, for a single trace, its data is non-contiguous and
fragmented in memory. Agents carefully organize and index
metadata about where each trace’s data resides and do not
simply evict old data in a LIFO manner.

At Ä, the coordinator must contact all agents that handled a
request before those agents overwrite their slice of trace data.
Breadcrumbs are a lightweight and scalable solution – the
coordinator recursively follows breadcrumbs and only con-
tacts the specific agents known to have serviced the request.
This approach takes only a few milliseconds in our evaluation.
Breadcrumb traversal is independent of reporting the trace
data; agents set aside and asynchronously send trace data to
the collector backends after learning of a trigger.

At Å, agents can potentially experience network conges-
tion or backpressure from the collector backends, such as in
response to a trigger-happy application that fires too many
triggers and causes a backlog of unreported trace data on
many, or all, agents. Eventually even triggered data must be
dropped. Hindsight agents do not drop data arbitrarily (e.g.,
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skipping a full queue) because different agents would then tar-
nish different victim traces—it only takes one agent dropping
its slice of a trace to render the remaining data on other agents
practically worthless due to incoherence. Instead, in several
places agents use priority queues, with priority determined by
consistent hashing of traceIds. A given traceId will enjoy
the same priority across all agents and queues, and the same
traces will be dropped by all agents in the face of a bottleneck.

Finally, at Ã, applications may fire multiple different trig-
gers for a diverse range of symptoms, using a developer-
provided triggerId to distinguish different trigger types.
Hindsight will prevent a profuse trigger from stifling trace
collection of other, low-frequency triggers: agents implement
weighted fair sharing for reporting and evicting trace data,
with user-defined weights and rate-limits for each triggerId.

4.2 Efficient Data Management
Lazy ingestion significantly reduces the volume of trace data
sent from agents to the backend trace collection infrastruc-
ture. However, within an individual machine, retroactive sam-
pling requires the application generate trace data into local
memory for all requests (Â). The most sensitive performance
bottleneck for Hindsight is thus between client applications
generating data (tracepoint) and the local Hindsight agent
that manages trace metadata. Our design establishes a clear
split between control and data activities, which congregates
general-purpose data and efficiency in the data plane, and
embeds all logic in the control plane.

Data plane. Hindsight’s data plane is concerned with ef-
ficiently writing trace data from client applications. Using
tracepoint, applications write trace data to a large shared
memory pool subdivided into buffers. Different threads write
to different buffers; each buffer may only belong to one tra-
ceId at a time, and threads acquire new buffers when full or
when the active traceId changes. Consequently, the buffer
pool is not consumed sequentially and a single trace may be
fragmented across several non-contiguous buffers.

Control plane. Hindsight’s agent process encapsulates con-
trol plane activities, continually circulating metadata about
buffers to the application, via two shared memory queues.
Applications poll for available buffers and push full buffers;
agents poll for full buffers, index metadata of full buffers
grouped by traceId, and push evicted buffers back to the
application. Agents receive triggers and communicate with
Hindsight’s coordinator, manage breadcrumbs linking the
trace data that is strewn across many agents, extract triggered
trace data, and report data asynchronously to the backend
trace collection infrastructure. Hindsight’s control and data
distinction yields an efficient agent implementation because
agents only touch metadata.

4.3 Triggers
Applications initiate retroactive sampling via Hindsight’s trig-
ger API (Ä). In the common case, symptoms are easy to detect

and localize: top-level error codes; high latency; increased
queue time. Such symptoms can be readily recognized and
cheaply computed without the trigger mechanism needing the
trace data itself. For example, this may entail adding a trigger
call within a service’s exception handler, or after checking
for outlier latency upon a request’s completion. Hindsight
provides a library of automatic triggers based on metric per-
centiles, categorical features, and exceptions. All of our use
cases (UC1–UC3) can be implemented using Hindsight’s au-
totriggers. Likewise all existing tail-sampling policies can
be implemented using autotriggers, as span-local attribute
and metric filters directly translate to metric and categorical
autotriggers.

By separating triggers from traces, developers can also
implement custom symptom detectors to explicitly decide the
conditions for triggering. It further leads to a straightforward
integration of triggers into existing metric-monitoring and
outlier-detection systems regardless of their architecture.

Lateral traces. Outlier behavior may not map directly to a
single request; instead there may be several other related lat-
eral requests. For example, to diagnose a bottlenecked queue
(UC3), a trigger needs to capture traces for the previous N
requests to understand what led to queue buildup [73]; to
diagnose a write-ahead log, we desire all requests blocking on
a log sync [4, 8]; to diagnose resource contention we require
all requests contending for a slow disk or network [3,5,6]. By
separating triggers from traces, we enable more comprehen-
sive trigger conditions based on factors beyond just a single
trace, and triggers that can capture multiple related traces
simultaneously. Hindsight enables an application to atomi-
cally trigger a group of related lateral traceIds; internally
Hindsight will ensure that the group as a whole is coherently
collected. By comparison, tail sampling cannot easily express
cross-trace triggers or sample lateral traces, because traceId-
based sharding in collector backends is fundamentally at odds
with sharing state between traces.

5 Implementation
We have implemented Hindsight’s client library in ≈4KLOC
of C and Hindsight’s agent and coordinator in ≈5.5KLOC of
Go. We chose C for dataplane efficiency and Go for its ease
of use for the more complex control plane logic.

5.1 Data Plane Buffer Pool
Each Hindsight agent pre-allocates a fixed-size buffer pool in
shared memory for applications to directly write trace data.
Hindsight logically subdivides the buffer pool into fixed-size
buffers (default 32 kB). Client applications write trace data to
buffers via Hindsight’s client API. The agent process does not
touch data in the buffer pool except when reporting triggered
traces. At each point in time, a buffer can only contain trace
data of a single request; no two different requests will write
trace data to the same buffer at the same time. A single trace
will thereby comprise (1) multiple non-contiguous buffers on
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begin(traceId) Request begins in the current thread.
tracepoint({payload}) Record data for the current trace; pay-

load is of arbitrary size in bytes.
breadcrumb(address) Adds a breadcrumb to the current trace,

pointing to some other node address.
serialize() Obtain the current traceId and a bread-

crumb to the current node.
end() Request ends processing in current

thread; flush and remove buffers.
trigger(traceId,triggerId,
lateralTraceIds...)

Instruct Hindsight to collect traceId and
zero or more lateralTraceIds

Table 1: Hindsight client API. Applications can invoke the API
directly, or indirectly using Hindsight’s OpenTelemetry [53] tracer.

each agent and (2) many buffers scattered across numerous
agents. Buffers are the granularity of data management within
Hindsight. Within clients and agents, a buffer is addressable
by its bufferId—its offset into the buffer pool.

5.2 Client Library
Table 1 outlines Hindsight’s client API. Applications can inter-
act with this API directly, or use Hindsight’s OpenTelemetry
tracer which acts as a wrapper.

Writing trace data. When a request begins executing in
a thread, it must call begin; subsequently it may call tra-
cepoint an arbitrary number of times; and finally when it
completes executing in a thread, it must call end. This usage
pattern is typical of distributed tracing frameworks. trace-
point accepts an arbitrary byte payload if called directly;
conversely Hindsight’s OpenTelemetry tracer serializes trace
events as payload. Hindsight internally maintains thread-local
state including the current traceId and a pointer to a buffer.
tracepoint writes directly to the thread-local buffer with-
out synchronization. Synchronization is only required when
acquiring or returning buffers; these operations touch shared-
memory queues but are infrequent. A buffer is acquired during
begin, returned during end, and replaced when filled.

Communicating with agents. The client library acquires
bufferIds by polling a shared-memory available queue; if
the queue is empty clients immediately return and instead
write trace data to a special ‘null buffer’ that is simply dis-
carded. When the client fills a buffer, it writes its traceId
and the bufferId to a shared-memory complete queue. The
agent continually drains the complete queue, and likewise con-
tinually returns fresh buffers to the available queue. Shared
memory queues are lock-free and support batch operations;
using batch operations, agents are robust to queue contention
from multiple client writer threads.

This paired channel design forms a natural separator
between control and data with two desirable properties:
(1) queues only communicate metadata—a single integer
bufferId represents, by default, a 32 kB buffer; (2) communi-
cation is infrequent, occurring only when buffers are filled or
a thread switches over to execute a different request, thereby
minimizing synchronization. From the client library’s per-
spective, it cheaply and blindly writes trace data into shared

PercentileTrigger(p) Clients call addSample(traceID, measurement). Trig-
ger fires for measurements >percentile p. (e.g. high
latency or resource consumption)

CategoryTrigger( f) Clients call addSample(traceID, label). Trigger on
categorical data that is less frequent than threshold
f (e.g. rare API calls or attributes)

ExceptionTrigger Trigger on an exception or error code
TriggerSet(T,N) Tracks the most recent N traceIds and includes as

lateralTraceIds when T fires.

Table 2: Hindsight autotrigger API can automatically trigger traces
based on certain conditions.

memory and forwards only the control metadata to agents;
conversely agents are agnostic to buffer contents—they do
not inspect data in the shared memory pool and use only the
metadata communicated via the complete queue.

Depositing breadcrumbs. A breadcrumb is an address of a
Hindsight agent. When a request arrives at a node, it carries
the breadcrumb of the previous node. During trace context
deserialization, the traceId and breadcrumb is written to a
shared memory breadcrumb queue. Agents poll this queue
and index breadcrumbs alongside buffer metadata. Agents do
not forward or act upon breadcrumbs until a trace is explicitly
collected with a trigger. When a request departs a node, it
takes that node’s breadcrumb. Clients can additionally estab-
lish forward-breadcrumbs to a named destination node prior
to communication. By following breadcrumbs, we can recon-
struct the full request graph starting from any node, including
for requests with arbitrary concurrency and fan-out.

Triggering trace collection. Applications initiate trace
collection by invoking trigger, which writes the traceId,
triggerId and zero or more lateralTraceIds to a shared-
memory trigger queue. In addition, Hindsight will propagate
the fired trigger with the request similar to the sampled flag
(cf. Fig. 1) so that later nodes immediately learn of the trigger.

A developer can implement custom outlier detection and
invoke trigger directly, or they can make use of Hindsight’s au-
totrigger library (Table 2), a separate collection of triggers that
track simple conditions over time and automatically invoke
trigger when a condition is met. TriggerSet is noteworthy as
a building block for lateral tracing; it includes N most recent
traces whenever T fires.

5.3 Agent
Trace index. The trace index is a map of metadata, keyed
by traceId. The metadata for a traceId includes a list of
bufferIds and a list of breadcrumbs. Agents also maintain
metadata of the triggers that have fired. Agents continually
update the trace index with recently-written buffers, by polling
traceIds and bufferIds from the complete queue. The agent
will evict traces when the index exceeds a threshold of buffer
pool capacity (default 80%) by removing the least-recently
used untriggered traceId and returning all of its bufferIds to
the available queue.

Local triggers. Agents poll the local trigger queue and im-
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mediately forward triggers to the coordinator. Agents include
the breadcrumbs of the triggered traceId, enabling the co-
ordinator to begin recursively disseminating the trigger to
other agents. Meanwhile the agent schedules the trigger to be
reported. In the case of a spammy local trigger, if the trigger
exceeds a per-triggerId rate-limit, the agent will immediately
discard the trigger instead of forwarding and scheduling it.

Remote triggers. Agents receive remote triggers fired by
other agents via the coordinator. To facilitate rapid trigger
dissemination, the agent immediately responds to a remote
trigger by providing any breadcrumbs it has for the traceId
andlateralTraceIds. Unlike local triggers, agents do not rate-
limit remote triggers—they are all scheduled for reporting.

Reporting traces. When a trigger is scheduled for report-
ing, its traceId and lateral traceIds are can no longer be
evicted by the regular buffer eviction cycle. The trigger is
inserted into a per-triggerId reporting queue. In the normal
case when an agent is not backlogged, the reporting queue
will be empty. The agent asynchronously pulls triggers from
the queues; reads buffers of the traceId and lateralTraceIds
from the buffer pool; sends the buffer contents to the backend
collectors; and finally returns the bufferIds to the available
queue. A trace remains triggered even after reporting its data,
in case the request is still generating trace data locally.

Ignoring triggers during overload. If the network or back-
end collectors are overloaded, reporting queues in an agent
can fill up. During overload, the agent continues to report
traces as described above for the normal case. The agent im-
plements weighted fair queueing over the reporting queues
and supports global and per-triggerId reporting rate lim-
its. From a reporting queue, the agent dequeues the highest-
priority trigger, by using consistent hashing of traceId, and
reports its data as described above for the normal case.

Simultaneously, past a configured threshold, the agent must
begin abandoning triggers to free up buffers. Abandoning
a trigger entails removing it from its reporting queue and
returning buffers to the available queue. Agents coherently se-
lect the lowest-priority trigger to abandon, by using the same
consistent hashing of traceId. In the case of multiple report-
ing queues, agents will ensure that a well-behaved triggerId
is not impacted by a spammy triggerId: agents implement
weighted max-min fair-sharing across reporting queues to
choose a queue from which to drop triggers.

Trigger priority ensures coherence during overload. Re-
porting queues are priority queues that use consistent hashing
of traceId to determine priority. Across all agents, a given
traceIdwill enjoy the same priority relative to othertraceIds.
Thus if multiple agents experience overload, they will coher-
ently bias towards reporting the same high-priority traceIds
and abandoning the same low-priority traceIds.

6 Evaluation
We now evaluate how effectively Hindsight overcomes the
fundamental problem of head-based tracing methods in exam-
ples (UC1)–(UC3) and meets the goals of retroactive sampling
to provide lightweight and effective request tracing.

Systems. We evaluate Hindsight on three distributed sys-
tems. To validate our motivating use cases (UC1–UC3), we
integrate Hindsight with the Hadoop Distributed File System
(HDFS) [64](with a ≈300LOC JNI-based Java client library)
and the DeathStar Social Network Microservices Benchmark
(DSB) [25]. To assess Hindsight at greater scale and load,
we develop a flexible, configurable RPC benchmark called
MicroBricks.

MicroBricks is a microservice benchmark written in
≈3KLOC C++ using gRPC’s high-performance async library.
A MicroBricks deployment comprises a topology of RPC
services such that each client request will traverse multiple
services. A call to a service will execute for some amount
of time, then concurrently call zero or more other RPC ser-
vices with some probability. Each service is independently
configured with its own set of APIs, each with their own exe-
cution times, child dependencies, and child call probabilities.
We evaluate using several different topologies. In particular,
we use Alibaba’s microservice trace dataset [44] to derive
realistic topologies by calculating per-service execution time
distributions, service dependencies, child call probabilities,
and client workloads.

Baselines. We configure OpenTelemetry [53] with
Jaeger [33] under head-sampling (1% unless indicated) and
tail-sampling.

Instrumentation. We instrument MicroBricks with Open-
Telemetry to create spans and events for RPC calls and child
calls. We use DSB’s existing OpenTracing instrumentation
and add support for Hindsight. We use Hadoop’s existing
X-Trace instrumentation [24] and update X-Trace to write its
trace data to Hindsight.

Summary. Our experiments demonstrate the following:
• Hindsight effectively addresses the overhead vs. edge-cases

trade-off faced by existing tracing frameworks.
• Hindsight captures relevant edge-case traces across real

use-cases (UC1–UC3).
• Hindsight is lightweight and not a bottleneck for client

applications, unlike OpenTelemetry [53] and Jaeger [33].
Hindsight’s trace API imposes nanosecond overheads;
Hindsight’s impact on end-to-end application latency and
throughput is <3.5% when tracing 100% of requests and
generating >200 MB/s of trace data per node.

• Hindsight’s control/data split provides up to 55 GB/s write
throughput.

6.1 Overheads vs. Edge-Cases
In this experiment, we evaluate Hindsight in a large-scale
setting with a realistic microservice topology derived from
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Fig. 3: Overhead vs. edge-cases on a 93-service Alibaba Micro-
Bricks topology with 1% edge-cases (§6.1). For different tracing con-
figurations we show: (a) application end-to-end latency-throughput
curves; (b) the rate of coherent edge-trace cases captured; and (c)
network bandwidth.

Alibaba request traces [44]. We show that Hindsight over-
comes the limitations of head-sampling and tail-sampling.

We deploy MicroBricks with a 93-service Alibaba topology
in a 544-core private cluster (comprising 10×Dell R920 48-
core 1.5 TB machines and 4×Dell M620 16-core 256 GB
machines). We deploy each service in a separate container.
We use separate machines to (i) generate workload and (ii) run
the OpenTelemetry collector/Hindsight coordinator+collector.

To directly control the number of edge-case traces, we ran-
domly decide with low probability (1%) to designate a request
an edge-case when it completes (later experiments consider
autotriggers). We annotate the root span of edge-cases with
an additional attribute so that tail-sampling can filter traces on
this attribute. Hindsight directly fires a trigger for edge-cases
from within MicroBricks. We repeat the experiment multiple
times, analyzing results under four tracing configurations:

Head Sampling (Jaeger 1%-Head). Fig. 3a shows the av-
erage request latency and throughput as we vary the offered
load from 0 to 14,000 requests/sec (r/s). Jaeger 1%-Head
has comparable peak throughput and latency as No Trac-
ing, since it traces only 1% of requests, thus amortizing the
tracing overhead. Fig. 3b plots the percentage of coherent
edge-case traces captured per second. Since head-sampling
cannot discriminate, it only captures ≈1% of all edge-case
traces, peaking at 1.64 per second. Fig. 3c shows the network
bandwidth consumption between application nodes and the
OpenTelemetry collector. With few requested being traced,
Head-sampling only consumes a maximum of 1.4 MB/s of
network bandwidth.

Tail Sampling (Jaeger Tail). Tail-sampling imposes more
burden on the traced application than head-sampling, at-
taining 14% lower peak throughput (Fig. 3a). At low load
(1,000 r/s), tail-sampling successfully captures ≈100% of
edge-case traces, at 9.9 per second (Fig. 3b). However, a load
of just 2,000 r/s is sufficient for clients to encounter back-
pressure from the network and the OpenTelemetry collector,
and they begin incoherently dropping spans: at 2,000 r/s only
71% coherent edge-cases are captured; at 3,000 r/s only 28%;
and so on. Tail-sampling rapidly deteriorates and at peak load
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Fig. 4: Scalability and Overload

captures fewer coherent edge-case traces than head-sampling
(1.44 edge-cases/s), because 98.8% of captured traces are in-
coherent. Tail-sampling consumes up to 78 MB/s of network
bandwidth (Fig. 3c).

Tail Sampling (Jaeger Tail Sync). Jaeger clients asyn-
chronously send spans to OpenTelemetry collectors, and as we
just observed, drop spans when client-side queues fill up. We
repeat the experiment with a synchronous variant, whereby
clients send spans to OpenTelemetry synchronously. Back-
pressure then manifests as additional critical-path request
latency. This approach inevitably increases request latency
and reduces peak throughput by 42% (Fig. 3a). However,
we can observe the collector ultimately captures more edge-
case traces, peaking at 47 edge-cases per second at 6,000 r/s
(Fig. 3b) and 72.2 MB/s of network. Beyond this, the Open-
Telemetry collector is saturated and cannot process a higher
rate of traces; it begins indiscriminately dropping incoming
spans, reducing the fraction of coherent edge-case traces.

Hindsight. Hindsight achieves comparable peak throughput
to No Tracing (<3.5%), and minimal impact on request la-
tency below peak load (Fig. 3a). Hindsight captures 99–100%
of edge-case traces at all throughputs (Fig. 3b). Hindsight
consumes a maximum of 2.6 MB/s of network bandwidth
since only edge-case traces are being collected (Fig. 3c).

6.2 Scalability and Overload
We now focus on two aspects of Hindsight’s scalability: its
breadcrumb traversal mechanism and its ability to rate-limit
spammy triggers. We deploy the 93-service Alibaba topol-
ogy as described in §6.1. To reach a higher request and trace
throughput, we scale down the computation performed at
each service and increase offered load up to 28,000 r/s. We
install three triggers with probabilities tA=0.1%, tB=1%, and
tF=50%. tF represents a faulty trigger—it fires for 50% of re-
quests and thereby adds substantial load to Hindsight’s bread-
crumb traversal mechanism. We rate-limit Hindsight’s collec-
tor bandwidth to 1 MB/s per agent to backlog the agents and
inhibit Hindsight’s ability to collect traces; thus tF triggers
far more traces than Hindsight can collect.
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Fig. 5: Hindsight applied on use cases UC1–UC3 (see §2.1).

Coherent rate-limiting. Fig. 4a plots the percentage of co-
herent traces captured for tA,tB and tF as the offered load
increases. Throughout the experiment, Hindsight captures ap-
proximately 100% of traces triggered by tA and tB, since they
fire infrequently. By contrast, tF triggers far more traces than
can be collected. In absolute terms, Hindsight collects ≈2,000
coherent traces per second throughout the experiment, with
tF using capacity not used by tA and tB. Thus, higher request
rates results in more traces dropped for tF in both relative and
absolute terms.

Breadcrumb traversal. Fig. 4c plots the average bread-
crumb traversal time based on the trace size – i.e. the number
of Hindsight agents that were recursively contacted. We show
results for four experiment iterations and label them based on
their approximate trigger rates: t12k, t8k, and t4k correspond
to the 24k, 16k and 8k r/s workloads (≈12k, 8k, and 4k trig-
gers/second respectively). To compare to a non-overloaded
setting we also include t0.1k, a 12k r/s workload from §6.1
(≈0.1k triggers per second). Traversal time is elevated for
t12k, t8k and t4k (up to 86 ms) since spammy triggers sub-
stantially increase the load on Hindsight’s coordinator. Con-
versely, traversal time for t0.1k is <13 ms since triggers are
relatively infrequent. For each experiment, traversal time in-
creases with trace size, but sub-linearly since breadcrumbs
can be gathered concurrently from different branches in re-
quests that have fan-out. However, even under the extremely
overloaded circumstance, the longest traversal time is still
manageable, which is less than 100 ms and thus far smaller
than the event horizon as described in the following section.

Event horizon. We lastly measure Hindsight’s event hori-
zon. Here, we introduce a delay when an agent receives a local

trigger. We vary the delay added to triggers and measure how
many coherent traces are ultimately collected. At a certain
point, triggers will have too much delay and trace data will
have been evicted before the trigger even fires. Fig. 4b plots
the percentage of coherent traces captured for tB as we vary
the trigger delay. We repeat this experiment with small buffer
pools (100 MB and 10 MB per agent) to exacerbate the event
horizon effect. Even a 10 MB buffer pool can capture nearly
100% coherent traces in the absence of added delays, but a
500 ms delay drops coherence to 58% and at 600 ms, coher-
ence is <20%. A larger buffer pool improves the tolerance to
delays: with a 100 MB buffer pool, coherence surpasses 90%
with up to 3s delay, but drops to <20% by 6.4 s. In practice, we
believe our default 1 GB pool is a reasonable choice, bringing
an event horizon around 1 minute.

6.3 Case Studies
We now turn our attention to the case studies introduced
in §2.1, and demonstrate how Hindsight’s local triggers are
able to support these use cases.
Error diagnosis (UC1). We deploy DSB Social Network,
a microservice system with 12 microservices and 17 back-
ends [25], on 13 CloudLab c6320 nodes [21]. We add an
ExceptionTrigger from Hindsight’s autotrigger library to the
ComposePostService, and run DSB’s default workload with
300 r/s1. We randomly inject exceptions in the Compose-
PostService module, with exception rates ranging from 1%
to 10%. We repeat the experiment twice and rate-limit Hind-
sight’s collector to approximately 1% and 5% of the total trace
data generated by the experiment. Fig. 5a plots the exception
rate, and the number of coherent exceptional traces captured,
for each 30 s time window. When there are few exceptions,
Hindsight captures all traces; when the exception rate exceeds
collector bandwidth, Hindsight coherently captures as many
traces as possible within this limit.
Tail-latency (UC2). We add a PercentileTrigger from
Hindsight’s autotrigger library to the ComposePostService
module in the same setting as above, invoking addSample at
the end of each ComposePost RPC call and providing the mea-
sured RPC duration. We set p to 99, 95, and 90, as different
thresholds for tail latency. We inject 10% requests at random
with 20–30 ms latency. Fig. 5b plots the latency distribution
of requests captured by different strategies; the vertical dotted
lines mark the tail-latency percentile threshold. Hindsight is
able to specifically target traces with high-percentile latency.
By contrast, head-sampling is random and thus its captured
latency distribution resembles that of all requests – useful for
aggregate analysis but not for edge-case troubleshooting. We
note that Hindsight does not sacrifice this aggregate analysis
use-case; it supports both simultaneously (cf. §6.1).
Temporal provenance (UC3). We add a QueueTrigger
from Hindsight’s autotrigger library to the HDFS NameNode

1We measure a maximum attainable DSB throughput of ≈350 r/s.
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queue — the QueueTrigger combines a TriggerSet with a
PercentileTrigger, parameterized to capture N = 10 most
recently dequeued lateral requests when 99.99th percentile
queueing latency is observed. We deploy HDFS on 10 ma-
chines (8 DataNodes, 1 NameNode, and 1 client) and run
a Hindsight agent on each machine. We run a closed-loop
workload of random 8 kB reads with 10 concurrent requests.

Fig. 5c (left) shows NameNode queue latency over time.
We inject a burst of 10 expensive createfile requests 21
second into the trace that briefly saturate the queue—Fig. 5c
(right) zooms in on this time window. The figure shows high-
latency requests (•), requests that fire the autotrigger (X), and
the additional lateral requests that were triggered to Hindsight
(X). The first expensive request occurred at 22 seconds, fol-
lowed by a pause while it was executed. Upon dequeuing the
subsequent read8k request, QueueTrigger fired due to high
queue latency, and Hindsight retroactively sampled the 10
prior traces leading up to the trigger. The sample included the
culprit expensive request. Overall, all 10 expensive requests
were sampled, 8 unrelated requests prior to the first expensive
request, and 9 additional read8k requests. Moreover, several
intermittent latency spikes occurred unrelated to the exper-
iment (Fig. 5c, left), which Hindsight also captured; upon
investigation, these were due to garbage collection.

Unlike UC1 and UC2, temporal provenance is unsupported
in existing tail-samplers. Moreover, temporal provenance is
fundamentally difficult to support with tail-sampling due to
scalability issues. Temporal provenance requires knowledge
of lateral traces (e.g. the 10 previous traces); by implication
those traces must all route to the same collector instance. How-
ever in practice, tail-sampling necessarily uses traceId for
routing decisions – thus related traces may arrive at different,
oblivious collectors.

6.4 Hindsight Performance
6.4.1 End-to-end Application Overheads
Hindsight generates trace data for all requests; thus low over-
heads are a key goal of Hindsight’s design. In this experiment,
we measure the impact of Hindsight on end-to-end application
latency and throughput. We deploy a two-service MicroBricks
topology with a 100% call probability from the first service
to the second. To highlight tracing overheads, neither service
performs additional compute. We vary the offered load and
measure end-to-end request latency and throughput.

API Call T=1 T=4 T=8 API Call T=1 T=4 T=8
begin 72.7 194.8 237.9 tracepoint 7.9 8.4 8.6
end 70.7 205.8 216.6
Category(.01) 45.8 44.9 46.7 tracepoint 8B 3.9 4.0 4.8
Percentile(99) 275.3 293.5 306.9 tracepoint 128B 11.5 13.5 13.0
Percentile(99.9) 407.1 441.9 512.2 tracepoint 512B 37.7 43.1 40.9
Percentile(99.99) 629.4 875.8 1134.0 tracepoint 2kB 160.2 192.9 174.7
TriggerSet(10) 6.57 44.1 52.2

Table 3: Latency measurements (nanoseconds) for Hindsight client
API and autotriggers for a microbenchmark application configured
with 1, 4, and 8 Threads (§6.4.2). Defaulttracepointwrites a 32 kB
trace event; we also measure 8–2048 B tracepoint payloads.

Fig. 6 plots latency-throughput curves under several dif-
ferent tracing configurations. The lowest latency and highest
throughput is achieved with No Tracing, peaking at an average
71.0 k requests/s. Similar throughput is achieved by Jaeger
when configured with 1% Head-sampling, at 70.2 k r/s. Hind-
sight peaks at 70.4 k r/s – a decrease of only 0.9% compared to
no tracing. Hindsight generates on average 330 MB/s of trace
data at peak request throughput, with an event horizon of 5.2 s,
and consumes a combined 0.3 CPU cores across agents, coor-
dinator, and collector. By comparison, Jaeger configured with
Tail-sampling peaks at only 41.4 k r/s, an overhead 41.7%;
moreover, the workload over-saturates the OpenTelemetry
collector, resulting in 94% of trace data being dropped while
consuming 4.5 CPU cores.

6.4.2 Client API and Autotrigger Microbenchmarks
We run a benchmark application that generates traces and
measures the overhead of calls to Hindsight’s client API and
autotrigger library. The benchmark writes traces by calling
begin to start the trace, writing a total of 16 kB per trace by re-
peatedly callingtracepoint, then callingend to finish the trace.
Eachtracepoint call writes a 32-byte event struct (3 metadata
fields and a timestamp) using Hindsight’s OpenTelemetry li-
brary. After each trace the benchmark invokes five different
autotriggers. The benchmark runs a configurable number of
threads to generate traces; each thread runs a continuous loop
generating traces, and each thread is independent and writes
a different trace. We configure Hindsight to use 32 kB buffers
and a 1 GB buffer pool, and run a Hindsight agent. We run 1
minute per experiment (≈10–50 million traces).

Table 3 shows API latency for 1, 4, and 8 threads. Over-
all Hindsight achieves nanosecond-scale API latency, and by
design the expensive API calls (begin, end, and autotriggers)
are limited to once per trace. begin and end vary from 70-
230 ns, proportional to the number of threads due to contend-
ing on shared-memory queues to acquire and return buffers.
By contrast, tracepoint call latency is mostly independent of
the number of threads, between 7.9–8.5 ns (reduced to ≈4 ns
when omitting timestamps). We also measure tracepoint la-
tency for larger payloads up to 2 kB; latency increases only
up to 175 ns per tracepoint since tracepoint is primarily a
memory copy into the thread-local buffer established by be-
gin.
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Autotrigger overheads vary. CategoryTrigger is relatively
cheap (<47 ns) and TriggerSet adds relatively little overhead
to the wrapped trigger (6–53 ns). By contrast, PercentileTrig-
ger overheads grow proportional to the percentile: up to 307,
512, and 1,134 ns respectively for tracking 99th, 99.9th, and
99.99th percentile latency. This occurs due to larger internal
data structures for tracking order statistics.

6.4.3 Control-Data Trade-offs

Hindsight’s design emphasizes a control-data split, to enable
applications to write trace data at large volume while reduc-
ing the amount of indexing work agents must perform. The
main factor influencing this trade-off is Hindsight’s buffer
size. With large buffers, agents index fewer buffers and thus
perform less work; however it may exacerbate internal frag-
mentation when traces only partially fill buffers. Conversely,
small buffers are more space-efficient, but require more index-
ing work from agents. We evaluate this trade-off by measuring
client-side and agent-side throughputs, while varying Hind-
sight’s internal buffer size from very small (128 B) to very
large buffers (128 kB).

We run the benchmark application with one thread, 100 kB
traces, and a payload of 1 kB per tracepoint call (Hindsight
fragments payloads across multiple buffers when necessary).
Fig. 7 (left) plots the client-side throughput of generating data
(x-axis) and the agent-side throughput of indexing buffers (y-
axis). We annotate data points with the corresponding buffer
size used. Large buffer sizes (128 kB) can support peak client
data throughput (12.1 GB/s) while requiring little of the agent.
Conversely, tiny buffer sizes (128 B) stress the agent buffer
throughput since we more frequently cycle buffers through
the queues. Fig. 7 (left) plots three lines and indicates two im-
portant phenomena. The client throughput line plots the rate
at which the client writes buffers, whereas the agent through-
put line plots the rate at which the agent cycles buffers; the
delta in-between are ‘null buffers’, written by the client be-
cause the available queue is empty, i.e. the agent cannot keep
up. Writing to null buffers means lost trace data; the third
line, agent goodput, only counts buffers of coherent traces,
i.e. excluding all buffers for traces that lost data. We observe
that the goodput with 128 B buffers is lower than with 256 B
buffers due to greater loss. In general, with ≥1 kB buffers, the
agent is able to consistently keep up without losing data.

Fig. 7 repeats this experiment with varying numbers of
threads, and plots client-side data throughput and agent-side
buffer goodput. Buffer sizes of 16 kB and higher are sufficient
for reaching peak write throughput while remaining comfort-
ably within agent throughput limits; by default, we select
32 kB for Hindsight.

7 Discussion
In this section we provide additional discussion that is periph-
eral to the core of Hindsight’s design.
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Fig. 7: Buffer size trade-off. Each data point is annotated with the
Hindsight buffer size. Small buffers require more indexing work
from agents, while large buffers are less memory efficient by exacer-
bating internal fragmentation.

7.1 Failures
Application Failures. If the application process crashes (e.g.
SEGV/NPE-type crashes), then Hindsight will be able to pre-
serve problematic traces, because Hindsight’s agent will con-
tinue to run and the trace data will be preserved in memory in
the shared buffer pool. The agent will also be able to continue
responding to breadcrumbs. This is a secondary benefit of
externalizing trace data on the critical path of requests, and
Hindsight currently supports this. By contrast existing dis-
tributed tracing frameworks buffer trace data in application
memory and would lose unreported data upon an application
crash.

Agent Failures. If Hindsight’s agent crashes (including or
excluding the application process crashing), then the buffer
pool will still exist in-memory on the machine and could be
later retrieved to inspect the state just prior to the crash. Hind-
sight does not currently implement such a recovery process.
In addition, if an agent crashes it will by default prevent Hind-
sight’s coordinator from following breadcrumbs through this
crashed agent. This can be overcome with a straightforward
extension of Hindsight’s breadcrumb mechanism – propagat-
ing breadcrumbs for the last N visited nodes instead of just
one; this would both avoid (N-1)-hop failures and also speed
up Hindsight’s collection process.

Kernel and Hardware Failures. In the case of kernel
crashes or hardware failure, application-level traces are only
useful if it was the application’s behavior that triggered the
crash. In this case Hindsight’s data would be lost.

7.2 Cross-Layer Tracing
Cross-layer telemetry data. Distributed tracing is primar-
ily useful at troubleshooting application-level problems in
distributed systems, because all data is generated from within
the application and the tracing frameworks are thus limited
to only data visible to the application. Cross-layer and lower-
layer issues are a challenge in their own right and an open
research problem (e.g. recent work specifically focusing on
which layer to attribute a problem too [11, 27]). The primary
challenge is figuring out how to integrate multiple different
sources of telemetry data at different levels, of which dis-
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tributed tracing is just one. This is a focus of our ongoing
work, since Hindsight is designed to handle high volumes of
telemetry data, thus making it feasible to cheaply integrate
other detailed cross-layer sources of data into Hindsight as a
single point of ingestion.

Detecting symptoms from other layers. Hindsight can
only persist traces for symptoms that can be observed at the
application level. In cases such as short-lived network conges-
tion, Hindsight can’t detect this at the network level. However,
if congestion bubbles up as an application-level SLO viola-
tion, then Hindsight would be able to detect it and fire a trigger.
Recent work has embedded application trace IDs in network
packets [27], and we are considering this in our ongoing work
as a way to externalize triggers, e.g. network-level triggers
can fire and persist application-level traces.

7.3 Event Horizon
Event Horizon Factors. Several factors influence Hind-
sight’s event horizon: (i) the bufferpool size of each agent; (ii)
the rate new trace data is generated; (iii) the time between a
request completing and a trigger firing. Inevitably, if there is
too much trace data, or if triggers are too slow, Hindsight may
be unable to keep the trace before its data is overwritten. For
some use cases this means Hindsight cannot use retroactive
sampling. However, head-sampling or tail-sampling would
still be viable options, equivalent to existing distributed trac-
ing frameworks.

Increasing the Event Horizon. The solution is either to in-
crease the memory available to Hindsight or to scale down
the percentage of traced requests using Hindsight’s optional
trace percentage. Trace percentage is a separate configuration
knob (defaulting to 100%) that controls the percentage of
requests that generate trace data in the first place. The starting
premise for Hindsight is that 100% tracing is acceptable, so
we use 100% as the default and describe Hindsight as such
throughout the paper. However this is not mandatory. If an
application has overhead constraints or limited memory for
bufferpool, then it can scale-back the percentage of requests
that are traced in the first place. Hindsight enforces scale-back
coherently across agents through consistent traceId hashing,
and reducing the trace percentage has a corresponding in-
crease in event horizon, e.g. 50% trace percentage will half
trace data throughput and double event horizon.

Mismatched and Dynamic Event Horizons. The global
event horizon of an application is dictated by the shortest
event horizon among the constituent processes, because the
moment the first agent evicts the data of a trace, that whole
trace becomes incoherent. This is a fundamental property
of Hindsight, and one that can primarily be addressed by
configuring larger bufferpool memory on higher throughput
nodes. The bufferpool does not need fundamentally need to
be fixed-size and we considered implementing a dynamically-
sized bufferpool, e.g. that can be configured with a target event

horizon. Ultimately we chose a fixed-size bufferpool to better
bound memory overheads, a desirable property for telemetry
systems [72].

Shared Buffer Pools. In our current design we deploy 1
Hindsight agent per traced application process. If multiple
containers share a machine, as in our experiments, then this
results in multiple agents running on the same machine. In
principle there is no reason applications cannot share a single
machine-wide bufferpool. Doing this would allow processes
to pool their bufferpool capacity and it would average-out any
difference in event horizon between the processes.

7.4 Event Horizon for Tail Sampling
Tail Sampling Event Horizons. Hindsight’s event horizon
has an analogue in tail sampling, because trace collectors can-
not immediately perform tail sampling the instance trace data
arrives. Instead a collector must wait for all of the slices of
a trace to arrive from all of the machines the request visited.
Today this is done with a timeout (e.g. 30s by default in Open-
Telemetry [53]), after which the trace objects are constructed
and tail samplers can be evaluated. If the application gener-
ates a high volume of trace data, then the trace collector can
potentially run out of memory buffering data while waiting to
do tail sampling.

Tail Sampling Expressivity. Today’s tail samplers focus on
filters and outliers applied to span attributes and metrics. More
fundamentally, a tail sampling decisions for one trace cannot
influence the sampling decision of other traces. By contrast,
Hindsight’s lateral traces enable a trigger to specify other,
related traces, in addition to the one exhibiting a symptom.
Thus Hindsight can support use cases like temporal prove-
nance (UC3). Tail sampling does not support such use cases,
and it would be non-trivial to introduce this ability, due to the
way trace data for different traces route to different collectors
based on traceId.

8 Related Work
Distributed tracing. Numerous prior works identify end-to-
end requests as a useful granularity for slicing telemetry data
and troubleshooting distributed systems. Example use cases
include detecting anomalous request structures [39, 65, 73],
diagnosing changes in the steady-state [17, 58, 62], modeling
workloads [48, 71], and identifying resource and queue con-
tention [26,46,73]. Distributed tracing systems have been pre-
sented in industry [36,65], as open-source tools [33,53,57,79],
and in academia [24, 47]. Edge-case troubleshooting stands
in tension with overheads in distributed tracing, and head-
sampling and tail-sampling offer alternative points in this
space (§2.2).

Logging frameworks. Distributed tracing is the cousin of
log ingestion frameworks that collect and store application-
level log data [14,67]. Log ingestion frameworks are agnostic
to concepts like requests, do not record or group log data by re-
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quests, and cannot control head-sampling decisions coherently
for requests – instead applications generate simple sequential
streams of log data all at the same level of logging detail. Con-
sequently, logs are typically far less detailed than distributed
tracing and log ingestion frameworks handle a lower volume
of data. For example Chukwa reports on average 10kB/s per
node [14]; Splunk limits to 330 kB/s per node [67]; Amazon
CloudWatch limits to 5MB/s per log stream [13]. Early dis-
tributed tracing works rejected the idea of building distributed
tracing atop logging, citing coherence challenges from brit-
tle data, enormous post-processing costs, and fundamental
scalability bottlenecks [18, 36, 65]. In practice, trace detail
is typically far greater than even non-production debug-level
logging [65], and it is easy to see why: head-sampling gives
operators leeway to instrument their applications at fine detail,
because they can amortize the high cost of a single trace by
scaling down the number of collected traces. By comparison,
log ingestion frameworks have no such opportunity.
Network provenance. Hindsight is similar in spirit to net-
work packet provenance systems that chronicle the history of
network state, enabling use cases such as tracking the origin or
path traversed by a packet across the network. Earlier systems,
like ExSPAN [78] and SNP [76], adopt this abstraction; more
recent works like SyNDB [37] and SPP [15] apply network
provenance for packet-level root-cause analysis on Internet
scale. Packet provenance systems primarily trace only packet
metadata, which is well-structured and can be summarized
in-band; these systems tackle additional trust challenges out-
side of Hindsight’s purview. By contrast, handling metadata
to reconstruct the path of a trace is but one concern for Hind-
sight; Hindsight is focused on handling arbitrary payloads
(i.e. trace data), and the resulting performance, coherence, and
fairness challenges. Hindsight also draws inspiration from
works focused on temporal provenance [77] and packet reputa-
tion [16] in distributed systems, although Hindsight’s tracing
abstractions operate entirely at the application level.

9 Conclusion
Hindsight circumvents the false dilemma between overhead
and usefulness for diagnosing symptomatic edge cases by pro-
viding developers detailed traces from the recent past when
they encounter symptoms of failures. We believe the retroac-
tive sampling abstraction, and our Hindsight implementation
of it, can shift the conversation around tracing away from
mechanism (how to collect traces) to a question of policy
(what traces should be collected), and allow distributed trac-
ing systems to support edge-cases analysis: a key use case for
which they were originally conceived.
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