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ABSTRACT: In the present study a theoretical approach is proposed for the pK, estimation

of monolayers at the air/water interface on the basis of saturated carboxylic acids. This model CiHan1  CaHznn
involves calculating only the Gibbs energies of formation and dimerization of carboxylic acid
associates in the neutral and dissociated forms, as well as the corresponding monomers in the
water and gas phases. The model does not require the construction of any thermodynamic
cycles. The calculations are performed using semiempirical quantum chemical methods PM3
and PM6 within the framework of the conductor-like screening model for monomers and
dimers of carboxylic acids C,H,,,;COOH (n = 6—16). It is shown that the minimum
clusterization Gibbs energy corresponds to associates with the degree of dissociation o = 0.5. A
relationship is derived between the surface and bulk pK, values. In particular, it follows from
this that, unlike the bulk pK,, the surface pK, depends on the alkyl chain length of the
surfactant. It is due to the difference between the solvation energies of the alkyl chains of the
corresponding neutral and dissociated monomers. Thus, the calculated data show that the
lengthening of the carboxylic acid chain by one CH, fragment leads to an increase in the
surface pK, by 0.43 units. The obtained results are in good agreement with the available experimental data.

B INTRODUCTION

The ability of a substance to attach or give away a proton is
crucial in biology, organic synthesis, pharmacy, toxicology, and
other fields. The ionization degree of a substance determines

solvent models. The smallest error in the description of pK, is
characteristic of the LC-wPBE/6-31+G(d) method with
PCM-SMD/UFF in the framework of the density functional
theory. It amounted to 0.15 pK, units. In general, at the

largely its solubility in various media that is especially
important when predicting its behavior at different interfaces.
As of today, a large number of methods for the experimental
determination of pK, have been developed: potentiometry,
spectroscopy, conductometry, solubility analysis, electropho-
resis, NMR, polarography, chromatography, fluorometry,
calorimetry, etc. Since the capabilities of modern PCs have
been developed, calculation methods for estimating pK, have
also been added to the experimental methods.”” The following
calculation methods can be distinguished: the construction of
thermodynamic cycles,*™” isodesmic reactions,'”'" and the
establishment of correlation relationships between structural
parameters and physical properties of substances (quantitative
structure—activity relationships descriptors)."””'* In addition,
the method of valence bonds and bond lengths is used to
determine the pK, value; also, the correlation between the pK,
value and the energy of the highest occupied molecular orbital
is established."® An analysis of the accuracy of pK, calculations
using amino acids containing various functional groups capable
of attaching or donating a proton was carried out using various
quantum chemical methods: Hartree—Fock and perturbation
theory, composite methods, and exchange-correlation func-
tionals in density functional theory.'® Besides, the authors
varied the basis sets, solvation models, and cavities used in the
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moment, the accuracy of pK, determination within one or even
two units is considered quite acceptable.”'’ ™"

Despite a very wide range of experimental and calculation
determination methods, in most cases they are used to assess
the pK, of substances in the bulk phase. However, information
on the surface layer of amphiphilic compounds is much less,
and the available data are rather scattered and sometimes
contradictory. For instance, the authors of refs 20—22 consider
that the pK, value of carboxylic acids in the surface layer is
practically no different from that for the bulk phase. This
contradicts other experimental data, the analysis of which
allowed us to formulate the following regularity: with
lengthening of the alkyl chain of the carboxylic acid their
ability to remove the proton decreases, and, consequently, the
pK, value increases.”> >> The same regularity is characteristic
of various micellar structures and surfactant bilayers.’***
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Another question arises on the absolute pK, values in the
monolayer and the contribution from the increment of one
methylene fragment of the carboxylic acid chain. The analysis
of the available data has shown that an increase in the
carboxylic acid chain by one methylene fragment shifts the pK,
value from 0.1 to 0.7 units. In addition, the pK, value is
strongly influenced by the presence of additives of various ions
in the aqueous phase, the type of buffer solution, and the pH
value 243936

In this regard, the objective of this work is to reveal the
dependence of the surface dissociation constant of saturated
carboxylic acids C,H,,,;COOH (n = 6—16) at the air/water
interface on the chain length, using the quantum chemical
approach developed and successfully tested by us previously
when the film formation of 11 classes of nonionic surfactants
was described.””

B METHODS

The calculation of monomers and associates of carboxylic acid
is carried out in the Mopac2000 software package as a part of
the quantum chemical semiempirical PM3 method. Our
previous studies®>*” devoted to the calculation of the enthalpy,
entropy, and Gibbs energy of carboxylic acid clusterization at
the water surface show that the PM3 method adequately
describes the dependence of these parameters on the surfactant
alkyl chain length. In particular, it allows one to predict with a
sufficient degree of accuracy the threshold length of the
surfactant chain at which the formation of crystalline
monolayers is possible, as well as to assess the geometric
parameters of the unit cell of the obtained films. It gives us the
opportunity to use this method in the present work.

To calculate the parameters of monomers and clusters of
acids in water, we used the conductor-like screening model
(COSMO), which is very popular and often used along with
COSMO-RS in pK, calculations.*’™** In the COSMO model
each solvent is presented as a continuous medium with a
dielectric constant &, in which there is a cavity containing a
dissolved substance. In most cases, a cavity is a collection of
spheres centered on atoms with radii of ~20% larger than van
der Waals values. The relative error of COSMO is 1/2¢, which
makes this model more preferable for polar solvents, in
particular for water (¢ = 78.3).

As a comparison with experimental data we also performed
pK, calculations in a later version of Mopac2016 using the
PM6 method. This software package implements the use of the
COSMO model for the direct calculation of the acid
dissociation constant using the “pK,” keyword.

B THEORY

To assess the pK, value of carboxylic acids in the monolayer, it
is necessary to estimate the clusterization Gibbs energy of
neutral as well as ionized molecules. Previously in liter-
ature™*° as well as in our work,*® it was shown that the values
of the thermodynamic parameters of surfactant formation and
clusterization are pairwise additive. This makes it possible to
estimate the clusterization Gibbs energy of large and infinite
associates using the dimerization Gibbs energy of carboxylic
acids in two directions of the film propagation. Clusterization
AG of an associate with a varying degree of dissociation o can
be represented as the sum of the corresponding parameters for
a neutral (nonionized) dimer and dimers, where one or both
monomers are present in ionized form (see Figure 1). Note
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o

>

Tonized dimer
(in water phase)

Ionized dimer
(in gaseous phase)

Half-ionized dimer
(in gaseous phase)

Neutral dimer
(in gaseous phase)

Figure 1. Optimized geometric structures of carboxylic acid dimers.

that the geometrical structures of these dimers are optimized in
the gas phase because the clusterization thermodynamic
parameters of carboxylic acid calculated exactly in the gas
phase are involved in further calculations of pK,. When
optimizing the last of the dimers with both monomers in the
form of anions, the obtained structure in the gas phase differs
significantly from those for the other two types of dimers in
Figure 1 due to the strong mutual repulsion of two negatively
charged COO™" groups. When the geometric structure of such
a dimer is optimized in the COSMO approximation, it looks
like two other dimers in a nonionized and half-ionized form;
ie, strong repulsion of COO™" groups is not observed.
However, according to the dimerization Gibbs energy such a
dimer is the least energetically favorable among the others.
In the case when a < 0.5, neutral dimers and dimers with
one anion prevail in the cluster or film, but if @ > 0.5, then the
content of dimers with fully and half-dissociated monomers
predominates. Figure 2 shows the dependence of the
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Figure 2. Dependence of the clusterization Gibbs energy of
association on the dissociation degree of carboxylic acids (an example
of heptadecanoic acid in the gas phase).

clusterization Gibbs energy per one monomer of the associate
consisting of dimers with monomers in neutral form, with one
anion and two anions, using heptadecanoic acid as an example.
This dependence is obtained on the basis of the dimerization
Gibbs energies per monomer for different types of dimers
taken in a weighted average ratio depending on the value of the
dissociation degree. It can be seen that the graph has a
minimum corresponding to the dissociation degree a = 0.5.
Note that the obtained graph illustrates the AG3s/m
dependence obtained on the basis of the direct calculation of
carboxylic acid dimers in the gas phase. However, we obtained
a similar dependence based on calculations done with taking
into account the aqueous phase in COSMO. In this case, the
only difference is that this dependence is shifted downward of
the ordinate axis by about 30 kJ/mol.
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Different pH values stipulate different values of a and vice
versa. Since the process of dissociation is spontaneous, by the
AG criterion it will occur in the direction of achieving such a
structure that corresponds to a minimum (i.e, @ = 0.5). The
advantage of structures with a ratio neutral molecule:anion =
1:1 is confirmed by available experimental data concerning the
surface properties of soap foams with different chain lengths
from 10 to 16 carbon atoms.”® The maximum height of the
foam, the half-life, the overall stability of the foam, and the
stability of a single foam bubble, for example, for
C,H,;COO™Na *, are in the pH range equal to surface pK,
= 7.5. The minimum area per one molecule and the contact
angle also correspond to a pH range equal to the surface pK,.
This allows us to estimate the surface pK, value from the
thermodynamic point of view through the dimerization Gibbs
energy of dimers with o = 0.5. This is also consistent with the
idea of the authors of ref 47, where they say that systems with
an ionized and nonionized form of acids in a 1:1 ratio allow
simulating the pH value. It should be kept in mind that the
surface pK, calculated according to this approach will
characterize a single act of proton detachment from the acid.
Since the monolayer contains m surfactant molecules, all
thermodynamic quantities involved in the calculation of pK,
should be reduced to one monomer in the cluster.

Figure 3 shows a simplified scheme for the dissociation of a
carboxylic acid associate. In an associate consisting of m

+  mo-H

Figure 3. Scheme for dissociation of a carboxylic acid cluster.

neutral molecules of carboxylic acids, half of the molecules
dissociate in such a way that the dissociated and neutral
molecules are in staggered order. This is consistent with the
above-described greater preference for such interactions. In
this case, m-a hydrogen ions pass into the aqueous phase.
Figure 3 presents the case corresponding to the degree of
dissociation o = 0.5, when the resulting carboxylic acid
associate contains an equal number of dissociated and
nondissociated molecules, although the general case allows
any value of a.

The equilibrium constant for this process can be written as
follows:

[an][H "
[neu] (1)

where [neu], [an], and [H'] are the concentrations of neutral
and dissociated clusters, as well as released protons; m is the
number of monomers in the cluster; and « is the degree of
dissociation.

At the same time the equilibrium constant of the reaction
can be calculated by determining the change in the Gibbs
energy of the process:

I<surf —

pubs.acs.org/JPCC
1 Ksurf AG AGan - AGneu + m~a-AGH+
n = —_— = -
RT RT (2)
or
—RT 11’1 Ksurf = AG:m - AGneu + WI'G'AGH+ (3)

Here AG,,,, AG,,, and AGy are the formation Gibbs energies
of a neutral associate and associate with dissociated monomers
with respect to the given «, the Gibbs energy of a solvated
proton.

For the clusterization Gibbs energy of associates in a neutral
and dissociated form we can write

AGY = AG,,, — mAG"

neu neu

- ma-AGY — m(1 — a)-AG™, (4)

and AGS = AG

an

where AG2, and AGY are the formation Gibbs energies of
neutral and dissociated monomers of carboxylic acids
calculated in the gas phase.

Then, expressing AG,,, and AG,, from eq 4 and substituting
them in eq 3, we obtain

—RT In K*F
= AGS — AGS,

neu

+ ma(AGY — AG

neu

+ AGy+)

()
We rewrite this expression per one act of proton separation,
ie, divide eq S by m-a:

—RT In K™
AGa(r:11 AGrfjelu air air
= — T L AGY — AGH 4 AGy
m-a ma (6)

The values of the dissociation constants in eqs 1—5 and 6 are
interconnected as follows:

K;urf — m-(\z/W (7)

For the dissociation of the monomer molecules in the bulk
phase, we can write

—RT In K™ = AG™™™ — AG™" + AG,+ (8)

where AGJS" and AG*" are the formation Gibbs energies of

the neutral and dissociated monomers of carboxylic acids
calculated in the aqueous phase.
Then, expressing AGy from eq 8 and substituting it into eq
6, we obtain after some transformations
surf Cl Cl
—RT In Ka — AGan _ AGneu _ AGsolv + AGsolv

an neu
K:"ﬂk m-a m-a

©)

where AGY and AGS" are the solvation Gibbs energies of the

neutral and ionized monomers calculated in the aqueous phase.

The values AGS,/m and AGS/m are the clusterization

Gibbs energies of the neutral and ionized monolayer per one
monomer. It is easy to express the value pKS™ from eq 9:

k bulk
pK;"™ = pK*

neu

AGCI AGCI
(—a" — G ) s AGEY 4+ AGEY
m

+ 0.434
RT

(10)
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This approach allows one to avoid a direct estimation of the
formation Gibbs energy of the solvated proton, which depends
on the chosen experimental or theoretical estimation
technique. The use of the values available in the literature is
quite controversial since this value varies from —253 to —271
kcal/mol,*'®**73° which is —(1059—1134) kJ/mol.

B RESULTS AND DISCUSSION

Monomers. In this paper we consider a series of monomers
with a chain length from 2 to 17 carbon atoms. According to
the conclusions of experimental studies’’ and the data of our
previous works,’**” the surfactant monomers in the crystalline
monolayer are in the most elongated “linear” conformation. As
found in refs 38 and 39, devoted to the study of the
thermodynamics of the film formation of carboxylic acids, the
most energetically favorable conformation of carboxylic acids is
a structure with the following torsion angles in the functional
group: £C,—C,—0O,—H = 180° and 2C;—C,—C,—-0, = —-78°
(see Figure 4).

R

a b

Figure 4. Optimized geometric structures of carboxylic acid
monomers: (a) neutral form and (b) ionized form (R is a
hydrocarbon radical).

The calculated values of enthalpy, absolute entropy, and
Gibbs energy of formation for carboxylic acid monomers in
neutral and ionized form calculated in the gas and water phases
are given in Table. 1. The correlation dependences of the
thermodynamic parameters of monomer formation on the acid
chain length are constructed using the calculated values. For
gas-phase calculations the values of correlation coeflicients in
equations of the form y = (a = Aa)-n + (b + Ab), where n is
the number of carbon atoms in the alkyl chain for the neutral
form of carboxylic acids and anions, respectively, are the
following: for enthalpy a = —22.67 and —23.18, b = —376.84
and —452.11 kJ/mol; for absolute entropy a = 32.03 and 32.38,
b = 229.99 and 223.98 J/(mol-K); for Gibbs energy a = 8.39
and 7.78, b = —384.27 and —477.20 kJ/mol. For solvent-based
calculations the correlation coefficients for the neutral form of
carboxylic acids and anions, respectively, are the following: for
enthalpy a = —18.63 and —20.18, b = —419.83 and —480.78
kJ/mol; for absolute entropy: a = 30.40 and 30.14, b = 227.69
and 228.48 J/(mol-K); for Gibbs energy a = 12.92 and 11.44, b
= —426.58 and —507.21 kJ/mol. The corresponding
correlation coeflicients are in the range of 0.96—0.99.

The calculated pK, values of acids estimated by the Stewart
methodology”” in the Mopac2016 software package using the
PM6 method™” are given in Table. 2. Note that the described
pK, values refer to the bulk, and at the moment there is no
such software package that allows the calculatiion of the

surface pK, values of a surfactant monolayer at the interface. As
seen from eq 8 there is a linear relation between the bulk pK,
and the difference in the Gibbs energies of the formation of the
neutral and ionized monomer in water AGL* — AGRE,
There are numerous studies which do linear fitting of
deprotonation Gibbs energy to the pK, value obtained both
theoretically and experimentally.**’ Here, we can propose a
similar linear expression using the calculated data for the
considered compounds in the PM3 method, given in Table 1.
This dependence is obtained on the basis of the agreement
with the available experimental data (for acids from acetic to
nonanoic) and has the following form:

AGwater _ AGwater

pK ™" = 0.434—2 T AIs

(11)

The values of bulk pK, calculated from it are also given in
Table 2. It is seen that the calculated data for bulk pK,
obtained as a result of direct calculation in PM6 and eq 11 are
in good agreement with the experimental values available for
short-chained representatives of the homologous series of
carboxylic acids.

Dimers. The thermodynamic parameters of formation and
dimerization in gaseous and water phases are calculated for
neutral and half-dissociated dimers as shown in Figure 1. Note
that in the dimers shown in Figure 1 the relative position of the
hydrophilic parts of the molecules corresponds to the
“diagonal” one. In our previous works it has been shown
that it is possible to form films of carboxylic acids with an
oblique unit cell, where the dipole moments of the hydrophilic
parts of the surfactant are located “diagonally” (see Figure 5).>
The arrows show the direction of the vector conventionally
drawn from the carbonyl oxygen to hydroxyl hydrogen in the
COOH group of the carboxylic acid molecule.

For the case when calculations take into account the solvent
in COSMO (see Table 3), there are data for a number of acids
with an alkyl chain length from 7 to 12 carbon atoms. Based on
the obtained data, the correlation dependences of the
thermodynamic parameters of dimerization on the number of
intermolecular CH---HC interactions are constructed. The
values of the contributions of the CH:--HC interactions and
the interactions of the functional groups in the dimerization
Gibbs energy are summarized in Table 4. As can be seen, the
contributions of the intermolecular CH---HC interactions to
the dimerization Gibbs energy differ by almost S times for
systems in vacuum and water, and the contributions of the
interaction of functional groups by 2—4 times, respectively.
Figure 6 shows the graphical dependences AG3: for associates
calculated in both phases. The solid lines correspond to the
values obtained from the correlation dependences, and the
points correspond to the results of the direct calculation with
the PM3 method. Despite the fact that the calculation results
taking into account the solvent in the COSMO model have a
larger standard deviation, it can be seen that the dimerization
of carboxylic acids in the aqueous phase begins for compounds
with a shorter chain length than in the gaseous phase. It should
be noted that the obtained calculation results are consistent
with the available experimental data obtained for oleic acid. It
was shown in ref 58 that the minimum surface tension was
recorded for monolayers at pH = 9—10 corresponding to the
surface pK, of this acid. This minimum value of the surface
tension is caused by the most favorable interaction between the
neutral molecule and the ionized acid molecule, which leads to
the formation of the corresponding complex at the interface

https://dx.doi.org/10.1021/acs.jpcc.0c03785
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Table 1. Formation Thermodynamic Parameters of Carboxylic Acids at 298 K

calculation in gaseous phase

calculation in water (COSMO)

system AH(2)98,mon7 kJ/mol Sg98,mon7 J/ (moI-K) AGg98,mon’ kJ/mol AH(z)gs,mom kJ/mol Sggs,mon) J/ (mol-K) AGgQ&mon? kJ/mol
Neutral Molecule
C,H,0, —426.77 294.85 —372.32 —479.67 296.13 —425.61
C;H(O, —445.09 327.42 —359.74 —494.20 323.46 —407.67
C,H 0, —467.68 361.87 —351.99 —515.83 355.85 —398.35
C;H,,0, —490.21 391.92 —342.87 —484.80 387.85 —336.25
C¢H,,0, —512.85 424.55 —334.63 —506.86 409.61 —-324.19
C,H,,0, —535.49 456.25 —326.11 —-529.90 445.11 —317.20
CeH,,0, —558.15 487.94 —317.61 —552.28 46225 —304.08
CoH 50, —580.81 520.01 —309.23 —574.34 507.90 —299.14
C,0H,,0, —603.49 551.14 —300.57 —593.85 518.97 —281.35
C,;H,,0, —626.16 583.94 —292.41 —619.14 561.03 —278.56
C,H,,0, —648.73 613.51 —283.18 —638.81 571.53 —260.76
C3H0, —671.50 647.16 —275.38 —663.91 617.90 —259.07
C,,H,50, —694.19 676.88 —266.32 —683.38 634.87 —242.99
CisH300, —716.83 710.16 —258.28 —706.41 680.08 —238.89
C,6H;3,0, —739.49 740.25 —249.30 —733.94 732.22 —241.36
C,,H;,0, —762.24 772.44 —241.03 —753.81 765.90 —230.65
Anion
C,H,0, —500.61 298.96 —466.84 —-521.12 288.74 —484.30
C;H(O, —522.54 320.61 —454.61 —557.53 310.64 —486.63
C,H O, —546.88 354.68 —448.50 —563.20 338.03 —459.86
CsH,,0, —570.28 386.76 —440.85 —-579.90 380.51 —448.61
C¢H,,0, —593.52 419.80 —433.34 —600.07 398.48 —433.53
C,H,,0, —616.49 452.23 —425.36 —617.24 448.83 —425.10
CsH, 60, —639.39 483.09 —416.85 —636.76 477.03 —412.41
CoH 50, —662.20 510.62 —407.26 —656.88 511.06 —402.07
C,0H,,0, —684.99 550.33 —401.28 —676.85 545.16 —391.60
C,,H,,0, —707.74 581.41 —392.68 —699.22 562.63 —378.57
C,H,,0, —730.47 608.60 —38291 —720.11 582.62 —364.81
C3H,40, —753.19 646.07 —376.19 —742.55 622.55 —358.55
C,,H,50, —77591 675.69 —367.13 —763.97 661.74 —351.04
C,5H;,0, —798.61 708.13 —358.90 —786.42 677.51 —-337.58
C,sH;3,0, —821.32 747.61 —352.76 —808.57 697.05 —324.95
C;H;,0, —844.01 771.76 —342.05 —829.67 733.75 —316.38

with higher surface activity than the simple associate of neutral
acid molecules.””*”

The dimerization Gibbs energy obtained from the
correlation dependences is used to calculate the pK, of acid
dimers at the interface using eq 10. For this, instead of AGY,/
m and AGS/m we used AG3sm as given in Table 4 for a neutral
and half-dissociated dimer. In this case the corresponding
values of the dimerization Gibbs energies are divided by 2 to
obtain specific values per one monomer. As pK?"* we used the
values for monomers calculated in the PM6 method since the
experimental values of bulk pK, for carboxylic acids are
available for homologues no longer than nonanoic carboxylic
acid. It is also possible to use the bulk pK, values estimated
according eq 11. However, since the difference between the
corresponding values of these pK, varies within the range of
0.02—0.09 units, for calculation of the surface pK, of dimers it
is quite enough to limit ourselves to pK" estimated only by
one of the methods (in this case, the PM6 method). The
calculated results for the dimers are as follows: for C;H,,0,
the pK, value is 4.67, for CgH;40,—5.10, CoH,30,—5.47,
C,oH,00,-5.90, C,,H,,0,-6.29, C|,H,,0,—-6.70, C,3H,,0,—
7.08, C;,H,30,-7.52, C;sH;,0,-7.89, C,cH;,0,—8.33,
C,,H;,0,-8.70, C,gH;,0,-9.12, C,,H3;0,-9.54,
Cy0H400,—9.96, and C,;H,,0,—10.38. It should be noted
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that the direct calculation of pK, for dimers using the
corresponding keyword in the Mopac2016 software package
in the framework of the PM6 method did not give any
satisfactory results. The obtained pK, value does not depend
on the alkyl chain length of the monomers comprising the
dimer and is 4.38—4.43. This indicates the inadequacy of the
calculation formulas introduced in this method for determining
of pK, for surfactant associates and speaks in favor of our
proposed scheme in the framework of the PM3 method.

In addition, the dependence for dimers is obtained similar to
eq 11 for monomers, which relates the bulk pK, to the
difference in formation Gibbs energies of a neutral and half-
ionized dimer in water. The only difference for the case of
dimers is that the value of the free term is 4.18 pK, units, and
the value AGL™" — AGL for dimers does not depend on the
alkyl chain length. Its average value is —110.21 kJ/mol. In this
case, the calculated data are used for dimers with an alkyl chain
length from 7 to 12 carbon atoms, and the experimental data
are used for acids with an alkyl chain length from 7 to 9 carbon
atoms. Involvement of the monomers with a shorter alkyl chain
length in the calculation of the corresponding dimers leads to
the fact that a sufficient number of intermolecular CH---HC
interactions that have a decisive role in the further formation of
monolayers will not be realized in the optimized structures of
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Table 2. Bulk and Surface pK, Values for the Homologues Series of Carboxylic Acids

bulk pK, (monomers)

surface pK, (monolayer)

acid calcd in PM6 caled in PM3 using eq 11 exptl
C,H,0, 497 4.75 476>
C;H0, 4.73 4.81 4.87°*
C,H,0, 4.84 4.76 4.81°*
CsH,00, 477 4.87 4.81%*
C4H,,0, 4.84 4.87 4.85%
C,H,,0, 4.84 4.87 485
CgH 60, 4.84 4.87 4.85%
CoH 50, 4.84 4.86 4.97°
C1oH,00, 4.83 4.87 -
CHyO0, 4.85 4.85 -
Cp,H,,0, 4.82 4.86 -
Cy13H,60, 4.83 4.85 -
C4Hy0, 4.83 4.87 -
Cy5H;300, 4.83 4.85 -
Cyi6H3,0, 4.84 4.82 -
Cy,H;,0, 4.83 4.82 -
CysH;360, 4.84 475 -
C,oH3,40, 4.84 4.81 -
CyoH400, 4.84 4.76 -
CyH40, 4.83 4.87 -

calcd values using eq 10

without correction  with correction exptl
7.99 5.28 -
8.42 5.71 -
8.86 6.15 5.84%°
9.29 6.58 6.1,>> 6.4, 6.8, 7.1-7.3%°
9.74 7.03 -
10.15 7.44 5.3, 6.6, 7.0, 7.07,° 7.5, 8.0°!
10.59 7.88 -
11.03 8.32 6.3, 7.88,°° 7.9,5% 8.1-8.2%°
11.46 8.75 -
11.90 9.19 8.34,%° 8.5,%° 8.6-8.8,%° 9.7
12.33 9.62 -
12.76 10.05 8.0,%, 8.2—8.9,° 9.5,* 9.89,%° 10.2*°
13.19 10.49 -
13.63 10.92 9.82, 11.0%
14.06 1135 -

“Bold experimental data for pK, of monolayers used to determine the standard deviation of calculation results from experimental values.
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Figure 5. Fragment of a 2D film of carboxylic acids with “diagonal”
dipole moments of the hydrophilic parts of the monomers (bottom
view).

the dimers. The structure of such short-chained dimers in
water will have a completely different type, not related to
interactions realized in a monolayer. The pK, values obtained
in this way for dimers with CH:--HC interactions occurring
during the formation of monolayers (provided that one proton
is detached) are C,H,,0,—4.91, CgH,;,0,—4.89, C,H,;0,—
4.87, C,Hy0,—4.92, C,H,,0,—4.88, and C,,H,,0,~4.91.
This differs slightly from the values estimated in the PM6
method but also does not correspond to the experimentally
recorded dependence of the pK, value of the acids on the alkyl
chain length during their association. All of the above
mentioned speaks in favor of the approach using eq 10
proposed by us.

2D Films. To assess the clusterization thermodynamic
parameters per monomer of a 2D film, we used the “simple
method” that was developed by us earlier.’” This method

allows calculating the values of AHSy/m, ASS/m, and
AGS$3s/m for monolayers using the corresponding parameters
only for dimers with a certain arrangement of the dipole
moments of the monomer head groups in them. As shown by
calculations for alcohols, thioalcohols, amines, nitriles, a-
hydroxylic acids, and dialkyl-substituted melamine, the
contribution of interactions of “parallel” hydrophilic parts of
molecules in a dimer is smaller to the clusterization Gibbs
energy than for “sequentially” arranged head groups. For
carboxylic acids in the resulting films with an oblique unit cell,
the dipole moments of the hydrophilic parts of the monomers
are located “diagonally”. This allows the estimation of the
values of the clusterization thermodynamic parameters of such
films using only the values of the contributions of functional
group interactions for dimers, and not to calculate large
clusters for the construction of an additive scheme. For this
purpose the values used in the equations for calculation of the
dimerization thermodynamic parameters should be doubled.
Note that the nature of the intermolecular CH---HC
interactions realized between hydrophobic chains is the same
for all 11 surfactant classes examined earlier.®* Therefore, here
we will use the values of these contributions to the
clusterization Gibbs energy estimated in ref 61. Then the
obtained dependences for the clusterization Gibbs energy per
one molecule of the film have the following form:

for neutral monolayer AGnCelu/ m = —7.44- { g } + 46.55
(12)

and

for the monolayer with dissociation degree a = 0.5

AGS /m = —7.44- { ﬁ} + 31.10
2 (13)
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Table 3. Dimerization Thermodynamic Parameters of Carboxylic Acids at 298 K

calculation in gaseous phase

calculation in water (COSMO)

system AHS kJ/mol AS$R J/(mol-K) AG3s: KJ/mol AHS KkJ/mol ASSe J/(mol-K) AGss: kJ/mol
Neutral Dimer
C-H,,0, -30.19 —161.62 17.97 -30.93 —185.58 24.38
CeH,0, —32.89 —183.43 21.78 —32.68 —180.08 20.99
CoH,40, —4038 —188.56 15.81 —45.99 ~152.88 —0.44
C1oHy00, —42.94 —200.36 16.76 —4871 ~173.00 2.85
C11H,0, —50.68 —215.86 13.65 —56.22 —172.69 —475
C1,H,,0, —53.46 —224.26 13.37 —57.44 —174.71 —537
C,5H,0, —61.04 —242.08 11.10 - - -
Cy.Hy:O, —63.53 —249.93 1095 - - -
CysHy00, —7143 —267.15 8.18 - - -
CyeH,0, —73.99 —273.99 7.66 - - -
CpH,,0, —81.80 ~289.45 446 - - -
Half-Dissociated Dimer
C,H,,0, —46.12 —180.63 7.70 -39.79 —185.88 15.60
CeH,0, —49.10 —194.67 891 —40.06 —21526 24.09
CoH 50, —56.48 —-201.43 3.54 —-52.97 —205.44 8.25
C1oHy00, —59.12 —215.80 5.19 —63.36 ~180.01 —972
C,H,,0, —66.87 —235.52 331 —74.15 -223.11 —7.66
Cp,H,,0, ~69.60 ~235.68 0.64 ~73.16 ~175.94 ~20.73
C15H,0, —77.36 —261.22 048 - - -
C,,Hy:0, ~79.89 —265.57 -075 - - -
CysHy0, —87.65 —285.36 262 - - -
C,H,0, —90.27 ~299.89 ~0.90 - - -
C},H4,0, —9821 ~307.85 —647 - - -
Table 4. Parameters of Partial Correlations for Carboxylic 40 1
Acid Dimers: y = (a + Aa)'K, + (b + Ab)” .
reg. stand. 207
system (a + Aa) (b + Ab) coefficient  deviation — A
AGER, k] /mol < o TR e~ :
neutral dimer  —2.97 +£0.18 2852 + 1.02 0.983 0.98 & 8 N\ ™ o
half- —2.62£022 1555+ 129 0.967 122 5 20 '
dissociated 3 Neutral dimer
dimer % e« Half-diss. dimer
neutral dimer ~ —13.87 £ 249  61.77 + 9.60 0.974 4.70 < 40 Neutral dimer COSMO
(COsMO) —— -Half-diss. dimer COSMO \ —
half— ) —17.02 + 348 71.99 + 14.25 0.943 6.95 ®m  Neutral dimer COSMO (direct calc.) \
j;ls_i:?ated -60 1 O Half-diss. dimer COSMO (direct calc.) \
(COSMO) A Neutral dimer (direct calc.)
A Half-diss. dimer (direct calc.)

“K, is the number of intermolecular CH---HC interactions realized in
the considered dimer; sampling amount N = 11 or 6 for COSMO.

where 7 is the number of methylene fragments in the chain of
carboxylic acids and braces {--} denote the integer part of the
number.

Then, using eq 10 as in the case of dimers and substituting
expressions 12 and 13 for AG”/m into it, we can calculate the
pK, values for monolayers of carboxylic acids with different
chain lengths. An analysis of the contributions of the
clusterization and solvation Gibbs energies for the neutral
and anionic forms of carboxylic acid molecules shows that an
increase of the surfactant chain length does not affect the
contribution from the difference in the clusterization Gibbs
energies of neutral monolayer and monolayer with a = 0.5.
This contribution makes 15.45 kJ/mol. The solvation Gibbs
energy of the neutral monomer is significantly less dependent
on the alkyl chain length than that for the anion. The
contributions of one methylene group to the solvation Gibbs
energy for them are 0.23 and 2.70 kJ/mol, respectively. This

-80 -

Figure 6. Dependence of the dimerization Gibbs energy on the chain
length of the carboxylic acids.

leads to the fact that the surface pK, of the monolayer, in
contrast to that of the bulk, becomes dependent on the
surfactant chain length. The contribution of one methylene
fragment to the change in surface pK, is 0.43 units.

The obtained surface pK, values are given in Table 2.
Comparing the data obtained for the pK, of the monolayer and
the pK, of the dimers, it can be seen that the pK, for the
monolayer is 3.3—3.7 units higher on average than the
corresponding values for the dimers. This is due to two
factors. To a smaller extent, for calculation of the monolayer
pK, the values of contributions of CH---HC interactions and
interactions of the acid functional groups are used, which were
earlier assessed in ref 64, and to a larger extent, a greater
number of CH---HC interactions is present for one monomer
of the film than for a dimer when calculating AGY/m. Tt
should be noted that this picture is consistent with the results
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of coarse-grained modeling for polymethacrylic acid. The
authors of ref 65 recorded that the difference in pK, between
the dimer and the 20-mer of methacrylic acid is 2.57. In the
study of ref 24, the authors noted an increase in pK, up to 3.5—
3.8 units per monolayer for eicosanoic acid in comparison with
the soluble short-chained homologues. Comparing the data
given in Table 2, it can be noted that our results and the
experimental results concerning carboxylic acids of various
chain lengths are in fairly good agreement, especially for
dimers. The best agreement between the calculated data is
observed with the results of Kanicky’® and McLean.*" In his
work, Kanicky”® noted that in solutions of carboxylic acids with
an alkyl chain length of 8—12 carbon atoms, changes in the pK,
value are observed due to the premicellular aggregation of
these surfactants. If we take into account the fact that the
formation of carboxylic acid monolayers proceeds through the
predominant aggregation of dimers and trimers,*® it is possible
to assume that the experimentally recorded pK, values of
carboxylic acids are close to the calculated values just for these
small clusters.

It should also be taken into account that the PM3 method
has such parametrization that it overestimates the energy of
intermolecular CH---HC interactions.”® This leads to the fact
that the clusterization Gibbs energy per one monomer of the
carboxylic acid film is almost two times higher than the
corresponding value estimated on the basis of experimental
data using the theoretical equation of state valid for Langmuir
monolayers derived by the rigorous thermodynamic treatment
described in ref 67. As a result, the surface pK, values estimated
from eq 10 with the values AGS.,/m and AGS/m calculated
from eqs 12 and 13 have a standard deviation from
experimental data of 2.82. In this case, the standard deviation
that is estimated provided the best agreement between the
available experimental data and the corresponding calculated
values. In this regard it is reasonable to use halved values of
AGS,/m and AGS/m in the calculation of eq 10. In Table 2
the column “without correction” contains the results of
calculation of the surface pK, using the values AGS.,/m and
AGY/m obtained according to expressions 12 and 13. The
column “with correction” shows the surface pK, values
calculated under the condition that the values of AGS/m
and AGS!/m from eqs 12 and 13 were halved. In the latter case
the standard deviation of the calculated pK, values is only 0.22
pK, units. This suggests that the proposed approach for the
assessment of surface pK, is not inferior by the accuracy
criterion to those available in the literature.

Note that as pK™™ one can use both experimental and
calculated data for the monomers given in Table 2 for the
calculation of the surface pK,. However, since a number of
experimentally estimated bulk pK, values are limited by
nonanoic acid, we use the results of the direct calculation
obtained in the PM6 method. As mentioned previously for the
case of the surface pK, for dimers, one can also use the
calculated values of bulk pK, obtained on the basis of eq 11.
Moreover, the agreement between the calculated and the
experimental data does not become worse.

Undoubtedly, during the experimental determination of pK,
the result is affected by many factors, in particular,
concentration, type of buffer solution, and the presence of
various concomitant ions in the water. In this regard, the
scheme developed by us has predictive value and can be used
as a less resource-intensive substitute for a labor-intensive
experiment.

B CONCLUSIONS

Within the framework of the semiempirical quantum chemical
PM3 method, an approach is proposed that allows the
estimation of the surface pK, of amphiphilic compounds at
the air/water interface. This approach is based on the pairwise
additivity of intermolecular CH---HC interactions realized
between surfactant molecules. This allows us to confine
ourselves to the calculation of the formation Gibbs energies
only of monomers and dimers of neutral and dissociated forms
of carboxylic acids in the aqueous and gas phases. The
calculation showed that

(1) the formation of associates with neutral and dissociated
acid molecules in a ratio of 1:1 is energetically the most
preferable;

(2) the surface pK, value of carboxylic acids differs from that
for the bulk phase and depends on the surfactant chain
length, which is due to the difference in the
contributions of methylene chain units and functional
groups to the Gibbs energy of solvation of neutral and
dissociated monomers;

(3) lengthening of the carboxylic acid alkyl chain by one
methylene fragment leads to a shift of pK, by 0.43 unit
in the region of large values.

The described approach establishes a linkage between bulk
and surface pK, values, which makes it universal and makes it
possible to use both theoretical and experimental data. The
proposed scheme has good predictive ability and provides an
adequate theoretical justification for the available experimental
data.
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