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Abstract

In warehouses, storage replenishment operations involve the transportation of items to capacitated item slots

in the forward storage area from reserve storage. These items are later picked from these slots as demand

arises. While order picking constitutes the majority of warehouse operating costs, efficient management of

replenishment operations is important to ensure the availability of the items for picking and to decrease the

operating costs due to replenishment, which might be particularly higher in warehouses with fast-moving items

(e.g., e-commerce warehouses or retail distribution centers).

In this paper, we define the storage replenishment routing problem in a parallel-aisle warehouse, where

replenishment and order picking operations are carried out in successive cycles with time limits. The aim is to

determine the item slots that will be replenished and the route of the replenishment worker in each replenishment

cycle, so as to minimize the total travel time and ensure the availability of items at the start of the cycle they

will be picked. We present complexity results on different variants of the problem and show that the problem

is NP-hard in general. Consequently, we adapt a heuristic approach based on a priori routing and inspired by

the literature on the inventory routing problem. We use randomly generated warehouse instances to analyze

the effects of different a priori routing methods and demand skewness patterns on replenishment performance,

and to compare the proposed approach to benchmarks that mimic practice.

Keywords: Routing, warehouse management, storage replenishment, order picking, inventory routing,

heuristics

1. Introduction

Warehouses play an increasingly important role in supply chains to meet the challenges arising from such

factors as the reduced delivery times, higher number of orders, and fewer items per order. Among the operations

performed within a warehouse, the most labor-intensive and costly activity is order picking, which refers to the

1Corresponding author, e-mail: M.Celik@bath.ac.uk

Preprint submitted to European Journal of Operational Research December 3, 2021



retrieval of items from storage locations in response to customer demand. It is estimated that order picking

constitutes around 55% of the warehouse operating costs (Bartholdi & Hackman, 2019). The productivity

of order picking depends on decisions at the tactical and operational level including the warehouse layout,

assignment of items to storage locations (slots) within the warehouse, batching of multiple orders to be picked

together, and routing of order pickers to reduce travel time (de Koster et al., 2007).

To address the increased need for material handling due to the aforementioned challenges, many warehouses

make use of separate reserve and forward storage areas in order to increase the efficiency of order picking.

In such cases, items are put away into the reserve storage area upon receipt, where they are stored in bulk

amounts. Upon need based on the picking schedule, items are broken down into smaller loads, such as cartons

or cases, and transported into the forward storage area (a process known as storage replenishment), where

storage is in smaller quantities. The motivation to have a forward storage area is to sacrifice space efficiency

and replenishment time in order to provide better accessibility of slots in this area for picking.

Storage replenishment and order picking activities may be performed in conjunction or in sequence, depend-

ing on the intensity of the picking operations and available space in the forward storage area. In both cases, the

replenishment process aims to ensure that items are available for picking in a timely manner, so that the order

pickers do not incur additional waiting times for urgent replenishment. In this regard, storage replenishment

plays an important role in the adherence to delivery times. When the sizes and quantities of the items to be

replenished are small (e.g., when items are picked in cases or pieces), multiple slots can be replenished by a

single replenishment trip into the forward storage area. This implies that by designing an efficient replenishment

route, not only can replenishment be finished in shorter time, but also more slots can be replenished without

significant time added. Motivated by the importance of routing on the efficiency of replenishment, we define the

storage replenishment routing problem (SRRP), which aims to determine (i) the slots to be replenished and (ii)

the sequence of slots in the replenishment route in successive replenishment cycles, subject to a replenishment

cycle time limit and load capacity. The objective of the SRRP is to minimize the total replenishment time while

ensuring no stockouts during order picking.

We consider the SRRP in a single-block, parallel-aisle forward storage area, an example of which is shown

in Figure 1. Such a storage area consists of equal-length aisles parallel to each other, with the front and back

cross aisles that intersect them orthogonally at each end. A feasible SRRP route starts at the depot, which

constitutes the entry point to the forward storage area, replenishes a number of items, and returns to the depot

within the pre-determined replenishment cycle time limit.

The SRRP is considered in a warehouse environment where storage replenishment and order picking are

performed in successive cycles. Since it takes into account multiple upcoming order picking cycles in making

the replenishment decisions, the SRRP resembles the well-studied inventory routing problem (IRP, e.g., Coelho

et al., 2013). On the other hand, given the special structure of the graph corresponding to the forward storage

area, the routing problem is much easier to solve for the SRRP than for the IRP (Ratliff & Rosenthal, 1983).

Making use of this fact, we modify a heuristic approach based on an a priori routing scheme for the IRP to

obtain an efficient solution of the SRRP. In computational experiments on instances based on the IRP literature,
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Figure 1: A single-block parallel-aisle forward storage area with eight aisles and 16 item slots in the replenishment route

we show that this approach not only finds near-optimal replenishment routes within short computational times,

but also outperforms various benchmark replenishment schemes that mimic practice.

The remainder of this paper is organized as follows. In the next section, we discuss the relevant literature

on storage replenishment, order picking and the IRP. This is followed by a formal definition of the SRRP in

Section 3, where a mathematical model is formulated and the complexity of the problem is analysed. Section 4

presents the a priori routing heuristic to solve the SRRP. We discuss our computational experiments in Section

5 and conclude the paper in Section 6.

2. Literature Review

From a practical perspective, the SRRP involves the interaction between storage replenishment and order

picking in warehouses. Furthermore, the inclusion of inventory replenishment and routing decisions generate

similarities between the SRRP and the IRP. In what follows, we review the extant literature on these three

problems and underline our contributions.

2.1. Warehouse Storage Replenishment

At the tactical level, the existence of forward and reserve storage areas in a warehouse gives way to the

forward-reserve allocation problem, where the main decisions involve the size of the forward storage area, which

items to store in the forward area, and how much to store of each item, with the objective to minimize the

total cost (or time) for replenishment. The studies in this stream are distinguished by whether the forward and

reserve areas are in separate locations in the warehouse (e.g., Hackman et al., 1990; van den Berg et al., 1998;

Gu et al., 2010) or in the same rack (e.g., Thomas & Meller, 2015; Wu et al., 2020). In the SRRP, we assume

that decisions related to forward-reserve allocation have already been made, which deems this problem outside

the scope of our work.

A limited number of papers consider storage replenishment at the operational level. Here, the main consid-

eration is to address the timing and quantities of replenishments to avoid any stockouts or delays during order
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picking. The studies in this stream can be classified by whether replenishment is carried out in conjunction or

sequentially with order picking.

The main challenge with simultaneous replenishment and order picking is that even when the list of items to

be picked in each cycle are known, estimating the actual timing of each pick may be impossible or computation-

ally very difficult. Gong et al. (2008) consider such a case with multiple carts, where each cart either replenishes

or picks items from multiple stock locations in each trip. The authors propose a simulated annealing approach

to schedule the routes of these carts to minimize the total makespan, which includes travel, loading/unloading

and wait times. This is extended by Takano et al. (2011) to include rearrangement of items from one stock

location to another and multiple job types (picking, replenishment and rearrangement) in the same trip, where

a metaheuristic approach based on simulated annealing that uses local search moves and dispatching rules is put

forward. Gagliardi et al. (2008) address the problem in a single-aisle pick-to-belt system with a single picker and

replenishment technician, and propose four different replenishment heuristics to minimize stockouts. Here, each

replenishment trip involves transporting a pallet of a single item (unit-load replenishment). Carrasco-Gallego

& Ponce-Cueto (2009) and de Vries et al. (2014) also consider unit-load replenishment under an (s, S) replen-

ishment policy for each item. Based on different assumptions, three heuristic replenishment policies are put

forward in these studies.

The SRRP considers the case where replenishment and order picking are conducted in consecutive intervals.

The number of papers addressing this case is even more limited. Of these, van den Berg et al. (1998) combine

forward-reserve allocation and unit-load storage replenishment. A number of heuristics are proposed to minimize

the total expected labor time. Kim et al. (2003) also focus on unit-load replenishment in a specific layout where

the forward and reserve areas for each item are located in the same zone. The authors develop a heuristic

approach to minimize the total number of replenishments over the planning horizon. Haverhals (2019) includes

the possibility of picking from reserve storage in case of a stockout (bulk picking) and develops approaches to

find the optimal inventory replenishment policies to minimize the total expected order picking, bulk picking

and replenishment cost. To the best of our knowledge, none of the papers in this stream take into account the

routing decisions during replenishment.

2.2. Warehouse Picker Routing

Given the importance of order picking in warehouse operating costs, there exists a vast amount of literature

on order picking. de Koster et al. (2007) provide a framework for the decision problems at the strategic, tactical

and operational levels relevant to order picking, as well as a comprehensive review of the literature. Recent

studies on order picking aim to address combined subsets of these problems (e.g., order batching, picker routing,

storage assignment, zoning). A review of such studies is given by van Gils et al. (2018). On average, more than

half of the order picking time is spent during travel within the warehouse (Tompkins et al., 2010). Hence,

a significant portion of the order picking literature is devoted to problems addressing efficient picker routing.

Masae et al. (2020) present a detailed literature review of this stream.

Despite being closely related to the NP-hard Traveling Salesman Problem (TSP), the picker routing problem
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in a single-block parallel-aisle warehouse (as in Figure 1) can be solved in polynomial time using dynamic

programming (Ratliff & Rosenthal, 1983). A mixed integer programming formulation for this problem is also put

forward by Scholz et al. (2016). Although this formulation is stronger than the corresponding TSP formulations,

its run time far exceeds that of the dynamic programming approach. Exact approaches exist for different versions

of the problem including turn penalties (Çelik & Süral, 2016), weight, fragility and category constraints (Chabot

et al., 2017), precedence constraints (Žulj et al., 2018), non-traditional warehouse layouts (Çelik & Süral, 2014),

and multiple blocks (Roodbergen & de Koster, 2001b; Ruberg & Scholz, 2016; Scholz & Wäscher, 2017; Pansart

et al., 2018; Glock et al., 2019).

In practice, the complicated nature of the optimal picker routes and the difficulty of their implementation

have led to the development of simple-to-apply heuristics. For a single-block parallel-aisle warehouse, Hall

(1993) proposes the S-shape (traversal), midpoint and largest gap heuristics, and evaluates their expected travel

distances. Similar rules-of-thumb, called return and composite, are put forward by Petersen (1997). Makris

& Giakoumakis (2003) modify the k-interchange heuristic for the TSP and Menéndez et al. (2017) propose a

variable neighborhood search approach. Heuristic methods have also been proposed to address picker routing

when items are stored in multiple scattered locations within the warehouse (Weidinger, 2018; Weidinger et al.,

2019) and when multiple blocks exist (Vaughan & Petersen, 1999; Roodbergen & de Koster, 2001a; Theys et al.,

2010; Dijkstra & Roodbergen, 2017; De Santis et al., 2018; Çelik & Süral, 2019).

2.3. Inventory Routing

As explained in more detail in Section 3, the SRRP shares many common characteristics with the inventory

routing problem (IRP), which can be defined as a problem where a single commodity has to be distributed from a

central supplier to a set of retailers over a given planning horizon. Retailers face a given per-period consumption

of the commodity and the replenishment policy has to be such that no stock-out is incurred, i.e., retailers have

a sufficient amount of stock to face the consumption in each period. Moreover, a maximum inventory level

is established at each retailer (which might correspond to the capacity of the retailer’s warehouse). A fleet of

capacitated vehicles is available to perform the distribution and might be used in each period of the planning

horizon. Finally, costs are associated with the routing of the vehicles that perform the distribution and with

the holding of inventories both at the supplier and retailers. The objective is to determine the distribution

plan that minimizes the total routing and inventory costs and satisfies inventory capacity constraints, vehicle

capacity constraints and no stock-out constraints.

The IRP has attracted a lot of attention in the research community, due to the challenges raised by the

intrinsic complexity of the problem, to the many practical applications it is related to, and to the economical

advantages gained when managing the routing and the inventory management operations in an integrated

way (as done in the IRP), as opposed to handling them separately (see Archetti & Speranza (2016) for a

computational study of the gains).

The literature on the IRP is wide. Recent tutorials and surveys on the IRP are available in Bertazzi &

Speranza (2012, 2013), Coelho et al. (2013) and Roldán et al. (2017), and the reader is referred to these works
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for an exhaustive overview of contributions on the IRP. In what follows, we restrict our review to the most

recent contributions on exact and heuristic algorithms for the IRP.

Despite the complexity of the problem, the recent literature is much richer in exact approaches than in

heuristics. Exact approaches are mainly based on the branch-and-cut scheme and handle the case of a fleet of

multiple vehicles. Archetti et al. (2014) present different formulations and branch-and-cut algorithms for the

problem. The multi-product case is studied in Coelho & Laporte (2013a), while branch-and-cut algorithms for

different variants of the problem are proposed in Coelho & Laporte (2013b). Adulyasak et al. (2014) study the

Production Routing Problem, which is a generalization of the IRP where production decisions at the supplier are

taken into account. They propose a branch-and-cut algorithm which can solve the IRP as well. Currently, the

state-of-the-art branch-and-cut algorithm for the IRP is proposed in Coelho & Laporte (2014), where different

classes of valid inequalities strengthen the formulation. To the best of our knowledge, the only branch-and-price

algorithm for the IRP is due to Desaulniers et al. (2016), where it is shown that the performance is comparable

to that of the branch-and-cut algorithm in Coelho & Laporte (2014).

Heuristic approaches for the IRP are mainly based on matheuristic and metaheuristic schemes. Coelho

et al. (2012) propose an Adaptive Large Neighborhood Search where the MIP formulations of subproblems are

iteratively solved to optimality. Archetti et al. (2017) propose a matheuristic where first a tabu search is used

to find a good quality solution and, then, a MILP is solved in the attempt to improve it. Chitsaz et al. (2019)

propose a three-phase decomposition matheuristic for the Assembly Routing Problem and use it to solve the

IRP as well. Metaheuristics have been proposed in Santos et al. (2016) and Alvarez et al. (2018). Santos et al.

(2016) propose a multi-start iterated local search algorithm while Alvarez et al. (2018) propose an iterated

local search and a simulated annealing algorithm. The latter algorithm shows a good trade-off between solution

quality and computing time.

2.4. Our Contributions

The contributions of this paper are mainly three-fold:

1. We define a novel problem that has important implications in practice. In particular, our models, solution

approaches, and managerial insights from the computational experiments are useful in warehouses with

separate forward and reserve storage areas, sequential replenishment and picking cycles, and piece or

carton picking in the forward storage area.

2. We exploit the special graph structure of the warehouse layout and the tractability of routing on this

graph by adapting and modifying models and solution approaches from the IRP literature to incorporate

this structure. To the best of our knowledge, this is the first study to define an extension of the IRP in a

warehouse environment.

3. We present the first complexity results for the problem. These results not only show that the problem is

unlikely to be polynomially solvable for practical cases, but also shed light into the complexity of similar

problems in the order picking literature.
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Replenishment R1 R2 R3

Order picking P1W1 P1W2 P1W3 P2W1 P2W2 P2W3 P3W1 P3W2 P3W3

8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Figure 2: An example 8-hour shift consisting of 3 replenishment and order picking cycles, with each picking cycle consisting of 3
waves; Ri and PiWj denote the ith replenishment cycle and the jth wave of the ith picking cycle, respectively

3. Problem Definition and Mathematical Model

In this section, we first define the problem environment for the SRRP, followed by our modeling assumptions

and mixed integer programming model. In the last part, we present a number of complexity results for various

cases of the SRRP.

3.1. Problem Definition

The SRRP is motivated by the operations of a retail distribution center (DC) that serves 76 retail stores of

a large chain in the south west region of the United Kingdom. The DC applies a zone picking policy, with the

zones determined by the types of products. Each zone consists of a forward storage area that applies manual

picker-to-parts order picking using carts. These zones are replenished from a common reserve storage area.

With a few exceptions, almost all zones apply wave picking, where the orders for a specific subset of stores

are picked in pre-determined time intervals (called waves, lasting between 30 minutes and an hour). Due to

the intensity of activities in a pick wave, replenishment and order picking are carried out at separate time

intervals to avoid congestion. Usually, 3 to 5 successive pick waves (which we will call a pick cycle) are preceded

by a replenishment cycle, which lasts between 15 and 30 minutes. An 8-hour shift generally consists of three

replenishment-order picking cycles, as exemplified in Figure 2.

Each pick zone in the DC applies a continuous inventory review of the item slots by means of a warehouse

management system (WMS). A single replenishment worker is assigned to each zone, who receives the list and

quantities of items to be replenished in the next cycle from the WMS, and loads these items onto a material

handling train while the previous pick cycle is in progress. Once the pick cycle is over, the replenishment

worker visits the slots for these items and performs the replenishment within the allotted time limit. The

current strategy is to replenish items whose quantity in the forward storage area falls below a predetermined

minimum level. In case the allotted time is not sufficient to carry out all necessary replenishments, an additional

replenishment cycle is set up at the end of the shift to replenish remaining item slots. On the other hand,

such an additional cycle requires overtime, and hence the management would like to avoid this as much as

possible. In this study, we ensure that stockouts can be avoided by including constraints in the mathematical

model that all demand should be satisfied within a regular replenishment cycle prior to the corresponding pick

cycle. Furthermore, using computational experiments, we compare our proposed replenishment approach to

that implemented by the DC and quantify the potential improvements in replenishment efficiency with the

proposed approach.
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Given the limited time for replenishment, devising an efficient route for the replenishment worker results in

the opportunity to replenish more items within the cycle, as well as to finish the cycle in shorter time, possibly

allowing more time to perform the picking activities. Motivated by this, we define the storage replenishment

routing problem, which aims to address the decisions on (i) when to replenish each item slot in the forward

storage area from reserve storage to guarantee availability when demand arises and (ii) the replenishment route

in each cycle, subject to the load capacity of the replenishment vehicle, time limit for the replenishment cycles,

quantities of item arrivals to the reserve storage area, and the upcoming demand throughout the planning

horizon. The objective of the SRRP is to minimize the total replenishment time.

Under the given problem settings, the SRRP resembles the well-known inventory routing problem, where

the suppliers and retailers in the IRP correspond to the items in the reserve storage area and item slots in the

forward storage area, respectively. The demand in the IRP is represented by the list of items to be picked in

each order picking cycle in the SRRP. There are three main differences between the two problems. The first

is the existence of multiple items in the SRRP, as opposed to a single item in the IRP, whereas this added

complexity is offset by the fact that each item is demanded by a single item slot. Second, the inventory holding

cost, which is an important component of the IRP, does not exist in the SRRP. The third difference is that as

mentioned before, whereas the main challenge in solving the IRP arises from the routing aspect, this is an easy

component of the SRRP, due to the special structure of the warehouse layout.

3.2. A Mixed Integer Programming Model for the SRRP

The mathematical model and solution approaches for the SRRP rely on a number of assumptions. First, we

assume that the forward storage area has a single-block parallel-aisle layout, as in Figure 1, and that a single

worker performs the replenishment cycle. These two assumptions are in line with the operations of the DC by

which this study is motivated. Furthermore, our work can be extended to the case of multiple pickers, multiple

blocks and non-traditional layout designs for which exact or heuristic approaches are available (see Section 2.2

for such approaches). The forward storage area is assumed to apply a dedicated storage policy, in that items are

always stored in the same slots. Daily arrivals and demand of items for the planning horizon are assumed to be

known in advance, which is applicable to cases where the demand from customers is frozen for a fixed period of

time. The storage capacities, initial item inventories, and the replenishment cycle time limits are also assumed

to be given. An item slot is replenished up to the capacity level of the slot, which is in line with practice and

called top-off replenishment in the industry. Lastly, we assume that the replenishment time of an item is not

dependent on the replenishment amount.

The notation used throughout the mathematical model and the solution approach for the SRRP is provided

in Table 1. The set M denotes the item slots in the forward storage area, whereas M ′ also includes the depot.

Each slot i ∈M has a capacity of Ui item units and an initial inventory of I ′i1 and Ii1 in the reserve and forward

storage areas, respectively. We use tij to denote the travel time between locations i ∈M ′ and j ∈M ′. If j ∈M ,

then this includes the replenishment time of j as well. Replenishment and picking cycles are denoted by the

set T . Before cycle t ∈ T starts, pit units of item i ∈ M arrives at the reserve storage area. Demand for item
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Table 1: Notation used throughout the mathematical model for the SRRP

Index sets
M Item slots
M ′ All locations in the forward storage area, including the item slots and the depot; M ′ = M ∪ {0}
T Replenishment and picking cycles

Parameters
tij Travel time between i ∈M ′ and j ∈M ′ (includes replenishment time of j if j ∈M)
pit Amount of item i ∈M arrival at the reserve storage before cycle t ∈ T starts
rit Amount of item i ∈M to be picked in cycle t ∈ T
Ui Capacity of item slot i ∈M
L Replenishment cycle time
Q Load capacity of the replenishment vehicle
Ii1 Initial inventory of item slot i ∈M in the forward storage area
I ′i1 Initial inventory of item i ∈M in the reserve storage area

Decision Variables
xit Amount of item i ∈M replenished in cycle t ∈ T

zit =

{
1, if i ∈M ′ is visited in replenishment cycle t ∈ T
0, otherwise

ytij =

{
1, if item slots i ∈M and j ∈M : j > i are visited consecutively in the route in cycle t ∈ T
0, otherwise

yt0i Number of times the replenishment route travels between the depot and item slot i ∈M
Iit Inventory of item slot i ∈M in forward storage at the beginning of cycle t ∈ T ∪ {|T |+ 1} : t ≥ 2
I ′it Inventory of item i ∈M in reserve storage at the beginning of cycle t ∈ T ∪ {|T |+ 1} : t ≥ 2

i ∈M during pick cycle t ∈ T is rit.

To represent routing decisions, variables ytij indicate the number of times the link between depot/item slot

i ∈ M ′ and item slot j ∈ M , j > i, is traversed by the replenishment vehicle. More specifically, yt0j determine

the number of times an item slot j ∈ M is visited before or after the depot. These variables can take values

0, 1 or 2, the latter representing the case where the vehicle only replenishes item slot j ∈ M ′ on its route.

Variables ytij , i ≥ 1 can only take values of 0 or 1, as the link between two item slots never needs to be traversed

more than once. Variables zit denote whether location i ∈ M ′ is visited in cycle t ∈ T , whereas replenishment

amount for item i ∈ M in cycle t ∈ T is denoted by xit. Starting from the second cycle, I ′it and Iit represent

the inventory amount of item i ∈ M in the reserve and forward storage areas at the beginning of cycle t ∈ T ,

respectively. Similarly, I ′i,|T |+1 and Ii,|T |+1 denote the inventory of each item in these areas at the end of the

planning horizon.

Based on these sets, parameters and decision variables, the SRRP can be modeled using the following mixed

integer program, which is a modification of the model for the IRP in Archetti et al. (2007):

min
∑
i∈M ′

∑
j∈M ′, j>i

∑
t∈T

tijy
t
ij (1)

s.t. I ′i,t+1 = I ′it + pit − xit ∀i ∈M, t ∈ T, (2)

Ii,t+1 = Iit + xit − rit ∀i ∈M, t ∈ T, (3)
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xit ≥ Ui zit − Iit ∀i ∈M, t ∈ T, (4)

xit ≤ Ui − Iit ∀i ∈M, t ∈ T, (5)

xit ≤ Ui zit ∀i ∈M, t ∈ T, (6)∑
i∈M ′

∑
j∈M ′, j>i

tijy
t
ij ≤ L ∀t ∈ T, (7)

∑
i∈M ′

xit ≤ Q ∀t ∈ T, (8)

∑
j∈M ′, j>i

ytij +
∑

j∈M ′, j<i

ytji = 2zit ∀i ∈M ′, t ∈ T, (9)

∑
i∈S

∑
j∈S, j>i

ytij ≤
∑
i∈S

zit − zkt ∀S ⊆M, t ∈ T, k ∈ S, (10)

Iit ≥ (1− zit) rit ∀i ∈M, t ∈ T, (11)

Ii,t−k ≥

 k∑
j=0

ri,t−j

1−
k∑
j=0

zi,t−j

 ∀i ∈M, t ∈ T, k ∈ {0, 1, . . . , t− 1}, (12)

zit ≤ z0t ∀i ∈M, t ∈ T, (13)

ytij ≤ zit ∀i ∈M, j ∈M, i < j, t ∈ T, (14)

yt0j ≤ 2zjt ∀j ∈M, t ∈ T, (15)

ytij ∈ {0, 1} ∀i ∈M, j ∈M, i < j, t ∈ T, (16)

yt0j ∈ {0, 1, 2} ∀j ∈M, t ∈ T, (17)

zit ∈ {0, 1} ∀i ∈M ′, t ∈ T, (18)

Iit, I
′
it ≥ 0 ∀i ∈M, t ∈ T ∪ {|T |+ 1} : t ≥ 2, (19)

xit ≥ 0 ∀i ∈M ′, t ∈ T. (20)

Objective function (1) of the model defines the total replenishment time to be minimized. Constraints

(2) define inventory balance at the reserve area and constraints (3) determine the inventory balance at each

item slot. Constraints (4)-(6) ensure that whenever a slot is replenished, it is replenished up to its capacity.

Constraints (7) and (8) stipulate the replenishment time limit and load capacity of the replenishment vehicle

in each cycle, respectively. Constraints (9) ensure that if an item is replenished, it has a predecessor and a

successor on the route. Constraints (10) eliminate subtours and constraints (11)-(15) are valid inequalities to

strengthen the formulation (Archetti et al., 2007). Constraints (11) enforce sufficient inventory to satisfy picking

demand of an item in a cycle where there is no replenishment for it. With constraints (12), it is ensured that if

an item is not replenished in cycles t−k, t−k+1, . . . , t, then its inventory at the beginning of cycle t−k should

be at least equal to the total picking demand in these cycles. Constraints (13) imply that an item cannot be

replenished in a cycle unless the vehicle starts from the depot, whereas constraints (14) and (15) require the

item slots and the depot to be visited if they are included in the replenishment route. Constraints (16)-(20)

define the domain of the decision variables.
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Figure 3: The SRRP instance required for transformation from the PARTITION problem

3.3. Computational Complexity of the SRRP

In this section, we analyze the computational complexity of the SRRP for varying number of replenishment

cycles and present the first complexity results on the problem. In addition to establishing the complexity of

various cases of the SRRP, corollaries on our results lead to conclusions on the complexity of the picker routing

problem with multiple pickers in single-block parallel-aisle warehouses. We start with the case where |T | = 1.

Theorem 1. Whenever feasible, the SRRP is polynomially solvable for a single replenishment cycle.

Proof. The optimal solution of the SRRP with |T | = 1 is to replenish the items whose initial inventories in the

forward storage area are insufficient to fulfill the amounts to be picked in the upcoming cycle. Once these items

are determined, the problem is identical to solving the picker routing problem in a single-block parallel-aisle

warehouse, which is polynomially solvable (Ratliff & Rosenthal, 1983).

Next, we establish the complexity of the case where |T | = 2.

Theorem 2. The SRRP is NP-hard for two replenishment cycles, even with no load capacity.

Proof. We first show the NP-hardness of this case by transformation from PARTITION (a weakly NP-hard

problem due to Garey & Johnson, 1979), which, given a set A and an integer size si for each i ∈ A, seeks a

subset A′ ⊆ A such that the total size in A′ equals the total size in A \A′, i.e.,
∑
i∈A′ si =

∑
i∈A\A′ si.

The obtain the SRRP instance that yields a PARTITION instance, we use the warehouse instance in Figure

3. Here, all item slots can store a single unit of the item and all initial inventories at the forward storage area

are zero. There are n+ 1 aisles, with one item on each of aisles 1, 2, . . . , n to be picked in the second cycle, and

one item on aisle n + 1 to be picked in both cycles. Each item i is located si time units from the front end of

the aisle, and the distance between two consecutive aisles is k time units. The replenishment cycle has a time

limit of 2(sn+1 + nk) +
∑n
i=1 si time units.
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Given that item n+1 will be replenished on both cycles, this results in a travel time of 2sn+1+nk time units on

each cycle. Each remaining item i takes 2si time units to be replenished (to traverse the aisle until the item and

return the same distance). Hence, the resulting SRRP instance has a feasible solution only if we can allocate the

remaining 2
∑n
i=1 si time units into two equal-length cycles T1 and T2, so that

∑
i∈T1

2si =
∑
i∈T2

2si =
∑n
i=1 si.

This is equivalent to solving the PARTITION instance. Hence, unless P = NP, the SRRP can be solved in

pseudo-polynomial time in the best case.

With the next theorem, we show that when the replenishment vehicle has no load capacity, the SRRP with

two cycles can be solved in pseudo-polynomial time.

Theorem 3. Without vehicle load capacity, the SRRP is weakly NP-hard for |T | = 2.

Proof. Theorem 2 establishes the NP-hardness of this case. To show weak NP-hardness, we provide a pseudo-

polynomial-time algorithm to solve the uncapacitated SRRP with |T | = 2 in Appendix A. This algorithm

extends the dynamic programming approach by Ratliff & Rosenthal (1983) for the picker routing problem.

The number of states in the algorithm does not depend on the number of item slots, but is linear in terms of

the replenishment time limit. Due to this component, it is polynomial only in terms of the unary representation

of the inputs, which implies that it can be solved in pseudo-polynomial time, proving the weak NP-hardness

of the SRRP with |T | = 2 and no replenishment vehicle load capacity.

It should be noted here that with load capacities, the algorithm in Theorem 3 would no longer run in

pseudo-polynomial-time. This is because in this case, the move types in Ratliff & Rosenthal (1983) would not

be applicable, requiring to check all possible combinations of the items in each aisle, deeming the algorithm to

be exponential-time in terms of the number of items.

Theorems 2 and 3 lead to an important result for the picker routing problem with two pickers.

Corollary 1. The picker routing problem with two capacitated pickers on a single-block parallel-aisle warehouse

is NP-hard. It is weakly NP-hard when the pickers do not have a load capacity.

Next, we show the complexity result for the remaining cases.

Theorem 4. The SRRP is strongly NP-hard for |T | ≥ 3, even without a load capacity.

Proof. We show the NP-hardness of this case by transformation from 3-PARTITION (a strongly NP-hard

problem due to Garey & Johnson, 1979), where there exist a set A of 3m elements, an integer bound B, a size

si for all items i ∈ A such that B
4 < si <

B
2 for all i ∈ A, and

∑
i∈A si = mB. The 3-PARTITION problem

has a solution if there exists a partition of A into m disjoint sets A1, A2, . . . , Am such that
∑
i∈Aj

si = B for all

j = 1, 2, . . . ,m.

The required SRRP instance for transformation is similar to the one in Figure 3, where each item slot has

unit capacity and no initial inventory is available. There are m replenishment cycles and the forward storage

area has 3m+ 1 aisles. Aisles 1 through 3m have one item to be picked in the last cycle, whereas aisle 3m+ 1

has one item to be picked in all m cycles. Each item on aisle i is located si time units from the front cross aisle,

12



where B
8 < si <

B
4 for all i ∈ M and

∑3m
i=1 si = B

2 . Travel time between two consecutive aisles is k units. The

replenishment cycle time limit is 2 ((3m+ 1) k + s3m+1) +B.

Item 3m+ 1 needs to be replenished in each cycle, taking 2 ((3m+ 1) k + s3m+1) time units. This leaves B

time units on each cycle to replenish the remaining 3m items, each of which takes 2si time units. The SRRP

instance has a solution if and only if we can allocate the remaining 2
∑3m
i=1 si = mB time units into cycles

T1, T2, . . . Tm, where B
4 ≤ 2si ≤ B

2 for all i ∈ M , so that
∑
i∈T1

2si =
∑
i∈T2

2si = . . . =
∑
i∈Tm

2si = B.

Since this yields the equivalent 3-PARTITION instance, a feasible SRRP solution can be found if and only if

the corresponding 3-PARTITION instance has a feasible solution. Since the 3-PARTITION problem is strongly

NP-hard, so is the SRRP with at least three replenishment cycles.

Theorem 3 results in an important corollary for picker routing with at least three pickers.

Corollary 2. The picker routing problem with more than two pickers is strongly NP-hard, even when the

pickers have no load capacity.

4. An A Priori Route-Based Heuristic

The NP-completeness of the SRRP suggests that as the instance size increases, the computational burden

to optimally solve it will substantially increase. This is also justified by the computational results in Section

5, where the mathematical model can be solved to optimality for only small instances up to 50 items and 15

replenishment cycles. To overcome this, we propose an a priori route-based heuristic in this section, which

modifies the a priori routing heuristic for the IRP by Solyalı & Süral (2011). The motivation behind this is that

once the item slots to replenish are fixed, the routing problem is tractable.

In the first step of the heuristic, the routing problem corresponding to all the items to be picked throughout

the planning horizon is solved. To do so, one may use the exact approach by Ratliff & Rosenthal (1983), or

any of the heuristics for the single-block picker routing problem in Section 2.2. The ability to solve the a priori

routing problem in a fast manner differentiates our work from that by Solyalı & Süral (2011), where the routing

subproblem involves solving the TSP on a general graph using a specialized solver. Once the a priori route is

determined, the sequence of items to be visited in each replenishment trip is fixed. For any subset of items to

replenish in any cycle, the items are sequenced in the replenishment cycle by maintaining their order in the a

priori route. The main aim in fixing the sequences of item replenishment is to simplify the routing decisions

in the next step. An example of using the a priori route for determining the replenishment sequence is given

in Figure 4(a), which provides the optimal tour that visits all the items in Figure 1. If the next replenishment

cycle involves the seven items shown in black, Figure 4(b) shows the resulting route that is formed by fixing the

sequence of item visits in Figure 4(a).

The first step of the heuristic determines the replenishment route that fixes the sequence with which items

slots will be replenished. This leaves the decision of which item slots to replenish. It should be noted here that

due to the order-up-to replenishment policy, the amounts to replenish are endogenously determined by which
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Figure 4: (a) The optimal route for the example in Figure 1, and (b) the resulting route when a subset of eight items (shown in
black) are to be replenished

Table 2: Additional notation for the a priori routing heuristic

Index sets
T ′ T ∪ {|T |+ 1}
T ∗ T ∪ {0}
αi All predecessors of i ∈M ′ on the a priori route
βi All successors of i ∈M ′ on the a priori route

Parameters
bikt Amount to be replenished for item slot i ∈M in cycle t ∈ T ′ if the last replenishment was made

in cycle k ∈ T ∗
πit The earliest cycle for item i ∈M in which a replenishment can satisfy the demand from cycle πit

to cycle t ∈ T
µit The latest cycle for item i ∈M for which a replenishment in cycle k ∈ T can satisfy the demand

up to cycle µit

Decision variables
wikt Binary variable indicating whether stock location i ∈M is replenished in cycle t ∈ T ′, given that

the last replenishment was made in cycle k, πit ≤ k ≤ t− 1

ŷtij =

{
1, if j ∈M ′ follows i ∈M ′ in the replenishment route in cycle t ∈ T
0, otherwise

cycles the item slot will be replenished. To determine the cycles in which each item slot will be replenished, we

extend the strong formulation for the IRP, which was first put forward by Pınar & Süral (2006).

The additional notation we use for the a priori routing heuristic is given in Table 2. The index sets T ′ and

T ∗ represent extended sets T ∪ {|T | + 1} and T ∪ {0}, respectively. The predecessor and successor sets for

location i ∈M ′ are denoted by αi and βi, respectively. To incorporate the strong formulation, we make use of

additional parameters. The parameter bikt denotes the amount to be sent to item slot i ∈ M in cycle t ∈ T ′ if

the last replenishment was made in cycle k ∈ T ∗. More formally,

bi0t = Ui − Ii1 +

t−1∑
j=1

rij and bikt =

t−1∑
j=k

rij for all k ∈ T.
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Figure 5: The shortest path network corresponding to the given example, with the bikt values given in brackets

For k = 0, the amount bikt should increase the initial inventory level Ii1 for item slot i ∈M to the capacity

level Ui and needs to satisfy the demand for the first t − 1 pick cycles. For k ≥ 1, bikt needs to satisfy the

demand of pick cycles between k and t− 1.

To guarantee that none of the item slots will stock out during the planning horizon, two additional parameters

are used: (i) πit is the earliest cycle for item slot i ∈M for which a replenishment in cycle πit ∈ T ∗ can satisfy

the demand of order picking cycles πit + 1, πit + 2, . . . , t − 1 until the next replenishment in cycle t ∈ T , (ii)

µit is the latest cycle for item slot i ∈ M for which a replenishment in cycle t ∈ T can satisfy the demand in

picking cycles t+ 1, t+ 2, . . . , µit − 1 until the next replenishment in cycle µit ∈ T . In mathematical terms:

πit = min
0≤k≤t−1

{k : bikt ≤ Ui} and µit = max
t+1≤k≤|T |+1

{k : bitk ≤ Ui}.

We use decision variables wikt to denote whether item slot i ∈ M is replenished in cycle t ∈ T ′, after the

last replenishment was made in cycle k ∈ T , where πit ≤ k ≤ t − 1. Here, wi0t denotes whether the first

replenishment for item slot i ∈ M is in cycle t ∈ T and wik,|T |+1 indicates whether the last replenishment for

item i ∈ M is in cycle k ∈ T . The replenishment scheme for item slot i ∈ M , when modeled with decision

variables wikt, constitutes a shortest path network. As an example, consider an item with an initial inventory

of 20 units, item slot capacity of 45 units, and a constant amount of 20 units is picked in every cycle. For a

horizon of three replenishment-picking cycles, this yields the network given in Figure 5.

Lastly, we change the definition of the routing variables ytij to a directed version by defining a binary variable

ŷtij , which takes a value of 1 only if the replenishment vehicle visits location j ∈ M ′ immediately after visiting

i ∈M ′ on its route in cycle t ∈ T .

Using the given index sets, parameters, and decision variables, the following mixed integer programming

model determines the set of item slots to replenish in each cycle:

min
∑
i∈M ′

∑
j∈M ′

∑
t∈T

tij ŷ
t
ij (21)

s.t. I ′i,t+1 = I ′it + pit −
t−1∑
k=πit

bikt wikt ∀i ∈M, t ∈ T, (22)

I ′it ≥
t−1∑
k=πit

bikt wikt ∀i ∈M, t ∈ T, (23)
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Ii,t+1 = Iit +

t−1∑
k=πit

bikt wikt − rit ∀i ∈M, t ∈ T, (24)

µi,0∑
k=1

wi0k = 1 ∀i ∈M, (25)

µit∑
k=t+1

witk −
t−1∑
k=πit

wikt = 0 ∀i ∈M, t ∈ T, (26)

|T |∑
k=πit

wi,k,|T |+1 = 1 ∀i ∈M, (27)

t−1∑
k=πit

wikt = zit ∀i ∈M, t ∈ T, (28)

zit ≤ z0t ∀i ∈M, t ∈ T. (29)∑
j∈βi

ŷtij = zit ∀i ∈M ′, t ∈ T, (30)

∑
j∈αi

ŷtji = zit ∀i ∈M ′, t ∈ T, (31)

∑
i∈M ′

∑
j∈M ′

tij ŷ
t
ij ≤ L ∀t ∈ T, (32)

∑
i∈M

t−1∑
k=πit

biktwikt ≤ Q ∀t ∈ T, (33)

wikt ∈ {0, 1} ∀i ∈M, t ∈ T ′, πit ≤ k ≤ t− 1, (34)

ŷtij ∈ {0, 1} ∀i ∈M ′, j ∈M ′, t ∈ T, (35)

zit ∈ {0, 1} ∀i ∈M ′, t ∈ T, (36)

Iit, I
′
it ≥ 0 ∀i ∈M, t ∈ T ′ : t ≥ 2. (37)

Objective function (21) minimizes the total replenishment time. Constraints (22) and (23) impose inventory

balance at the reserve storage area, whereas constraints (24) stipulate inventory balance at the item slots.

Constraints (25)-(27) are the flow balance constraints for the resulting shortest path network, whereas constraints

(28) ensure that an outgoing arc in the shortest path network results in the corresponding binary replenishment

variable to be equal to one. Using constraints (29), we impose the inclusion of the depot in each replenishment

tour, while constraints (30) and (31) connect the routing and binary replenishment variables, and impose the

tour precedence relations. Replenishment cycle time and load capacity limits are set by constraints (32) and

(33), respectively. Constraints (34) through (37) indicate the domains for the decision variables.

Using the results of the model, the set of item slots to be replenished, the amounts to replenish, and

the replenishment route can be determined. The total replenishment time of this heuristic is denoted by H

throughout our computational experiments. Given the items to be replenished in each cycle, the routes can be

further improved by re-solving the picker routing algorithm by Ratliff & Rosenthal (1983), which we call as the

a posteriori routing step. This improved replenishment time will be denoted by H+.
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Figure 6: Relative convenience of item slots in a single-block parallel-aisle warehouse with a depot in the middle, where darker
colors represent more convenience

5. Computational Experiments

To assess the performance of the heuristics, effect of problem parameters, and practical impact of our

approaches, we perform computational experiments on two sets of instances, distinguished by their size and

objectives. These instances are available online at https://researchdata.bath.ac.uk/id/eprint/976 and the details

of the instance settings are provided in Appendices B.1 and B.2 in the Online Supplement.

With the smaller instances, our objectives are three-fold: First, we would like to compare the results of

the a priori routing heuristic to optimal solutions and quantify the trade-off between the sacrifice in objective

values and the savings in computational times. Second, we aim to compare various a priori routing approaches

among each other to assess if there is any statistically significant difference between these methods in terms of

the resulting replenishment times. Lastly, we would like to analyze the extent of improvement in the objective

function brought about by the a posteriori routing step.

In most warehouses, items are of varying popularity in terms of demand. In such cases, more popular items

may be stored in more convenient slots (i.e., those closer to the depot) to improve the efficiencies in picking

and replenishment routes in the existence of skewed demand (an example showing the relative convenience of

item slots in a single-block parallel-aisle warehouse is provided in Figure 6). With the larger instances, we vary

the demand skewness and aim to assess whether changes in skewness levels have any significant effect on the

replenishment times. Our second objective with the larger instances is to compare the integrated replenishment

and routing approach to that implemented by the DC, as well as to benchmarks in the industry and literature

that ignore the routing decisions.

Our heuristics are coded in C++ and implemented on a personal computer with Intel Core i7-6600U 2.60

GHz processor and 8 GB RAM. To obtain the optimal solutions, we solve the formulation presented in Section

2.3 using the branch-and-cut algorithm presented in Archetti et al. (2007). The algorithm is implemented in

C++ CPLEX 12.5 was used as MIP solver. The experiments on the branch-and-cut algorithm are run on a

laptop with Intel Core i7-3687U 2.10 GHz processor and 8 GB RAM. We impose a 2-hour CPU time limit on

each run of CPLEX and the heuristics.

17



Figure 7: (a) The S-shape and (b) largest gap heuristic solutions for the instance in Figure 1

5.1. Experiments with Smaller Instances

To evaluate heuristic performance, we generate a smaller set of instances derived from Archetti et al. (2007)

and Solyalı & Süral (2011). The warehouse parameters mainly depend on Roodbergen & de Koster (2001a).

We consider a single-block forward storage area consisting of 30 parallel-aisles, with 30 equal-sized item slots

on each side of an aisle. The lengths between two consecutive item slots and two consecutive aisles are 1 and

2.5 meters, respectively. As in Roodbergen & de Koster (2001a), we assume no additional time for acceleration,

deceleration, turning, or entering/exiting an aisle. Travel speed of the replenishment vehicle is 2 meters per

second on average and it takes 30 seconds to replenish an item slot. The depot (entrance and exit to the forward

storage area) is located on the left end of the front cross aisle.

Each day consists of three replenishment picking cycles. We generate instances ranging from 1 to 5 days,

hence from |T | = 3 to 15 replenishment cycles in increments of 3. We also vary the number of items |M | from 25

to 150, in increments of 25. The locations of these items in the warehouse are randomly generated according to

a uniform distribution. With 10 instances under five possible number of cycles and six possible number of items,

we experiment on a total of 300 instances. Our instances are labeled as i##-t##-##, where the dash-separated

numbers represent the number of items, number of cycles, and instance number, respectively.

We assume that an item is demanded in every picking cycle in varying amounts over the planning horizon.

The first-cycle demand ri1 of item i is uniformly distributed from 10 to 90. For the remaining cycles, the

demand rit is uniformly distributed between 0 and 2ri1. Capacity of item slot Ui for item i is given by δiri1,

where δi is randomly generated from 2, 3, or 4. The initial inventory Ii1 is given by Ui − ri1. New items arrive

at the reserve storage area at the beginning of each day (hence once every three cycles) at a quantity of 5ri1.

Assuming one unit of each item weighs equally, load capacity of the replenishment vehicle is 60|M | units. Travel

time limit for each cycle is 500 seconds for |M | = {25, 50}, 750 seconds for |M | = {75, 100}, and 1000 seconds

for |M | = {125, 150}.

We use three alternative approaches to generate the a priori route for each instance. The first of these is

the optimal route, determined using the dynamic programming-based algorithm by Ratliff & Rosenthal (1983),

which will be abbreviated as RR throughout this section. The remaining two methods are the S-shape and

largest gap heuristics by Hall (1993). The S-shape route starts from the left-most non-empty aisle and visits
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each non-empty aisle in sequence, traversing each aisle completely, and returning to the depot using the front

cross aisle. When there are an odd number of non-empty aisles, it traverses the last non-empty aisle until the

last item. For each non-empty aisle, the largest gap heuristic compares the maximum of (1) the maximum travel

time between two consecutive items in the list, (2) the travel time between the front-most item and the front

end of the aisle, and (3) that between the back-most item and the back end of the aisle. After traversing the

left-most non-empty aisle completely, aisles for which (1) or (2) are maximum are entered from the back end

and traversed until the largest gap, in the order from left to right. The right-most non-empty aisle is traversed

completely, and aisles for which (1) or (3) are maximum are entered from the front and traversed until the

largest gap, in reverse order. The S-shape and largest gap heuristic routes for the example in Figure 1 are given

in Figure 7(a) and (b), respectively. We run the a priori routing heuristic with these three approaches and

report the results with and without the a posteriori routing step.

To evaluate the performance of each heuristic, we use a number of gap values. In cases where the optimal

solution can be found, the gap to optimum (%Opt(.)) is calculated as:

%Opt(.) =
z(.)− zopt

zopt
× 100%,

where z(.) denotes the heuristic replenishment time (we use z(H) and z(H+) for the cases without and with

improvement, respectively) and zopt refers to the optimal replenishment time. When CPLEX cannot find the

optimal solution within the time limit, we use CPLEX gap (%Cgap(.)) as the performance measure, where

we replace zopt with the CPLEX upper bound. When CPLEX cannot find a feasible solution, the RR+ gap

(RR+(.)), where zopt is replaced by z(H+) for RR with a posteriori routing, is used to evaluate heuristic

performance.

Within a time limit of two hours, CPLEX can solve 40 out of 300 instances to optimality. A comparison

of the CPU times and optimality gaps for these instances, which involve 3 to 12 cycles with 25 items and 3

cycles with 50 items, is given in Table 3. On average, CPLEX requires around 25 minutes to find the optimal

replenishment tours. For the heuristics, the average CPU times are 1.34, 1.58, and 1.81 seconds for RR, S-shape,

and largest gap a priori tours, respectively (it should be noted here that since the a posteriori routing step takes

less than 0.05 seconds for each instance, we report a single CPU time for the heuristics). With a posteriori

routing, the average optimality gaps for the three routing approaches are 1.22%, 3.74%, and 1.05%, respectively.

This shows that regardless of the a priori routing approach chosen, the proposed approach provides near-optimal

results with more than 99.8% savings in computational time, justifying its efficiency.

When the analysis is extended to all instances for which CPLEX can find a feasible solution, the average

CPLEX gaps and the CPU times are presented in Table 4. These instances include all 25-item instances and

19 of the 50-item instances. For these, improved versions of the RR and largest gap heuristics both result in a

gap of 0.35% each. Furthermore, of the 29 instances for which CPLEX cannot find an optimal solution, these

heuristics find a better solution in eight instances each. A paired t-test between the CPLEX results and the

heuristics (presented in Appendix C.1 in the Supplementary Material) shows that for a confidence level of 95%,
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Table 4: Average percent CPLEX gaps and CPU times (in seconds) of the CPLEX and a priori routing heuristic solutions for
instances where CPLEX can find a feasible solution (10 instances for each setting unless otherwise stated)

CPLEX RR S-shape Largest gap
|M | |T | CPU time %Cgap(H+) CPU time %Cgap(H+) CPU time %Cgap(H+) CPU time

25

3 10.9 1.03 0.4 3.17 0.2 1.18 0.4
6 339.3 0.73 1.5 2.20 0.9 1.06 1.7
9 2247.2 0.83 2.2 2.83 3.2 0.81 1.9
12 7204.7 -0.30 35.3 1.44 61.6 0.32 80.0
15 7204.9 -0.40 43.7 1.67 102.5 -0.01 92.1

50
3 2354.1 2.54 1.3 6.72 0.9 1.14 0.9
61 7208.7 -1.88 4.2 0.85 5.5 -1.45 4.9
92 7222.5 -3.55 13.9 3.88 36.6 -5.14 7.5

Average 5630.8 0.35 13.1 2.81 26.2 0.35 26.4
1 Average of 7 instances
2 Average of 2 instances

there is no significant difference between the average objective values of the CPLEX results and those of the two

heuristics. The S-shape heuristic yields an average gap of 2.81%, and the t-test result in Appendix C.1 shows

that the objective value difference from CPLEX is statistically significant. On the other hand, this heuristic

still finds better solutions than CPLEX in three instances. The results in Table 4 underline the computational

burden faced by CPLEX as instance sizes increase, and point to the RR and largest gap a priori routes obtaining

comparable objective values to CPLEX, further justifying their strength.

To compare the a priori heuristics among each other and to quantify the effect of improvement using the a

posteriori routing, Table 5 shows a comparison of the heuristics in terms of RR+ gaps and CPU times for all 300

smaller instances. On average, all heuristics terminate within a minute per instance, and the maximum average

run time for any setting is less than six minutes. Without improvement, we observe a similar pattern in the gaps

for all heuristics to those in Table 3. The RR heuristic outperforms largest gap, with average RR+ gaps of 3.61%

and 4.75%, respectively, and S-shape heuristic exhibits a gap of 10.44%. Appendix C.2 in the Supplementary

Material shows that for a 95% confidence level, the differences between the average objective values of these

three approaches are statistically significant. For smaller number of items, the difference between RR and largest

gap is smaller, whereas for larger number of items, the difference increases. This is due to the structure of the

largest gap heuristic, where dense replenishment lists (larger instances) result in excessive double-traversal of

aisles. The main reason behind the inferior performance of the S-shape heuristic is the excessive travel time in

the a priori route.

When the improved versions of the three approaches using a posteriori routing are considered, there are

three main observations. First, we observe that for all three heuristics, the a posteriori routing step significantly

improves the routes, as evidenced by the paired t-test results in Appendix C.3. Second, the improved version of

the largest gap heuristic outperforms that of RR, with an average improvement of 0.52%. Of the 300 instances,

RR and largest gap find the best solution in 101 and 184 cases, respectively, with equal objective values for

eight instances. Whenever feasible, the improved S-shape heuristic performs worse than the other two improved

approaches. Appendix C.2 shows that the difference between the improved versions of the three heuristics are

statistically significant. Lastly, we assess the solution quality of the improved versions of the heuristics using

a lower bounding scheme, for which a pseudocode is provided in Appendix D. The lower bound is obtained by
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Table 5: Average percent RR+ gaps, lower bound gaps, and CPU times (in seconds) of the a priori routing heuristics for all small
instances (10 instances for each setting), with numbers in brackets indicating number of infeasible solutions

RR S-shape Largest gap

|M | |T | RR+(H) %Lgap(H
+) CPU time RR+(H) RR+(H+) %Lgap(H

+) CPU time RR+(H) RR+(H+) %Lgap(H
+) CPU time

25

3 1.30 2.66 0.4 10.78 2.11 4.81 0.2 2.17 0.14 2.80 0.4
6 1.41 3.65 1.5 10.76 1.46 5.14 0.9 2.98 0.33 3.98 1.7
9 1.49 4.28 2.2 11.28 1.98 6.33 3.2 1.77 -0.02 4.26 1.9
12 0.94 4.97 35.3 10.92 1.74 6.78 61.6 3.53 0.62 5.61 80.0
15 2.12 5.36 43.7 10.22 2.00 7.45 102.5 2.82 0.31 5.68 92.1

50

3 2.07 3.26 1.3 13.81 (1) 4.67 (1) 8.04 (1) 0.9 (1) 2.16 -1.37 1.86 0.9
6 2.65 3.46 4.8 13.46 (7) 3.46 (7) 7.00 (7) 5.5 (7) 4.43 0.52 3.99 5.1
9 3.01 3.95 17.1 12.46 (2) 2.38 (2) 6.40 (2) 85.9 (2) 2.57 -0.79 3.14 19.8
12 3.30 5.04 68.8 11.15 (1) 1.76 (1) 6.87 (1) 158.2 (1) 3.11 -0.08 4.95 31.9
15 3.81 5.28 328.4 9.58 (3) 0.88 (3) 6.20 (3) 248.5 (3) 2.05 -1.16 4.07 153.2

75

3 3.24 3.36 1.6 11.50 1.42 4.81 1.2 2.50 -1.94 1.37 1.5
6 5.74 3.60 9.8 13.87 2.94 6.62 13.0 5.58 1.04 4.67 13.1
9 4.63 4.06 16.0 12.57 0.49 4.56 20.5 3.93 -0.84 3.19 8.5
12 4.16 5.13 27.4 10.88 1.21 6.39 21.5 4.83 -0.11 5.01 35.9
15 3.71 5.84 188.3 All instances infeasible 2.67 -0.64 5.17 70.9

100

3 4.00 2.98 3.3 11.39 2.02 5.04 3.1 4.80 -1.14 1.82 3.0
6 3.63 3.10 20.5 10.79 1.16 4.29 17.0 5.19 -0.23 2.87 22.6
9 3.57 3.77 31.6 10.98 1.49 5.30 47.7 5.87 -0.14 3.62 22.5
12 4.77 5.36 48.3 9.91 0.64 6.03 43.1 4.07 -0.65 4.63 43.0
15 4.05 5.93 129.8 9.34 0.55 6.50 100.2 4.10 -1.11 4.76 78.2

125

3 5.75 3.17 3.7 8.93 1.60 4.80 3.1 7.62 -0.58 2.58 3.2
6 4.12 3.56 27.8 9.47 0.69 4.27 43.3 6.81 -0.62 2.92 42.6
9 4.06 3.90 63.0 10.14 0.89 4.81 55.7 6.85 -0.63 3.25 38.2
12 4.24 5.30 109.8 9.67 0.54 5.86 125.4 5.85 -0.77 4.50 77.5
15 4.22 5.67 121.9 8.99 0.64 6.34 100.6 5.84 -1.06 4.56 80.4

150

3 3.63 2.80 5.1 5.96 0.76 3.58 5.0 8.61 -1.17 1.61 5.3
6 5.09 3.34 66.6 8.55 0.68 4.04 55.6 8.11 -0.20 3.14 46.3
9 4.73 4.05 74.4 8.37 0.42 4.48 76.6 7.39 -1.15 2.87 50.9
12 4.33 4.91 94.3 9.15 0.18 5.10 119.5 6.79 -1.07 3.80 120.1
15 4.41 5.64 150.0 7.85 0.25 5.90 142.1 7.61 -1.00 4.60 110.2

Average 3.61 4.25 56.6 10.44 1.41 5.65 57.3 4.75 -0.52 3.71 42.0

ignoring the time and load capacity limits, and solving the remaining problem optimally. We denote the average

relative gaps of the heuristic solutions from the lower bound as %Lgap(H
+) in Table 5. The average gaps show

that the three a priori routing heuristics are within 4.25%, 5.65%, and 3.71% of the lower bounds (and hence

optimal solutions), which underlines the high solution quality of these approaches even for larger instances for

which CPLEX cannot find a feasible solution.

To obtain a better understanding of the structures of the replenishment routes resulting from the heuristics,

Appendix E provides each heuristic route for three replenishment cycles of the i50 − t03 − 07 instance. The

routes representation is not reported here for the sake of conciseness. Also, the solution of this instance is

representative of the remaining instances. The inferiority of the S-shape routes can be immediately observed,

where the replenished items are scattered throughout the warehouse for all three cycles. This leads to excessive

inter-aisle movement, as evidenced by the long horizontal lines. Improvement by an a posteriori routing step

removes part of the excessive inter-aisle moves, but the inefficient assignment of item slots to replenishment

cycles implies that the improved routes are still inferior to those under the RR and largest gap heuristics.

With both RR and largest gap a priori routes, the resulting assignment of items to replenishment cycles is

substantially better, but the fixed ordering of replenishment visits may lead to the route crossing itself at times.

The improvement step is able to alleviate this issue and produce near-optimal routes in both cases.

To ensure that the dimensions of the warehouse do not have a significant effect on our results, we repeat our

experiments with the same settings, only changing the number of aisles to 20 and the number of item slots in

each aisle to 45. The results in Appendix F of the Supplementary Material show that the relative performance of
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the heuristics and the gap values do not exhibit significant change. Consequently, we conclude that our results

and insights are not specific to the original warehouse dimensions.

Overall, our experiments with smaller instances show that the a priori routing heuristics perform particularly

well with the RR and largest gap routes. The average gaps to optimum are around 1% for smaller instances

and the solutions are obtained much more quickly than CPLEX. With up to 150 items and 15 cycles, solutions

can be obtained within six minutes on average, owing to the tractability of routing for the SRRP. A posteriori

routing provides statistically significant improvement in the solutions, and the lower bound gaps indicate that

the obtained solutions are very close to optimal.

5.2. Experiments with Larger Instances

With a set of larger instances, our aim is to analyse the effect of demand patterns and compare our heuristics

to various benchmark approaches. The warehouse settings are identical to those with smaller instances, except

that each aisle includes 15 item slots, and the depot is in the middle of the front cross aisle. With 30 aisles and

15 slots on each, there are a total of 450 item slots. We assume that any of the 450 items can be demanded

in any of the 15 cycles we consider, but a fixed total number of items are demanded in each picking cycle. We

vary this number as 25, 50, 75, 100, 150, 200, 250, and 300.

To determine which items will be demanded in each cycle, we consider four different demand skewness

patterns. Under uniform demand, the items demanded in each cycle are generated randomly, regardless of

location within the forward storage area. We also consider 20-40, 20-60, and 20-80 demand skewness patterns,

where top 20% of the most popular items constitute 40%, 60%, and 80% of the demand, respectively. Under

these patterns, we incorporate a turnover-based storage policy, in which more popular items are stored at a

closer distance to the depot. To do so, we sort the items in terms of decreasing popularity, sort the slots in

terms of closeness to the depot, and assign items to slots accordingly. In this sorted list, probability pi of the

demand for the ith most popular item is given by:

pi = F

(
i

|M |

)
− F

(
i− 1

|M |

)
, where F (i) =

(1 +A)i

A+ i
.

Here, A is a shape parameter whose value is 3/5, 1/5, and 1/16 for 20-40, 20-60, and 20-80 demand patterns,

respectively. If a item i is demanded in cycle t, its demand is randomly generated between 0 and 2γi, where

γi ∼ U [10, 90] is the base demand for each item i.

Item arrivals at the reserve storage, slot capacities, and initial inventory levels are identically determined to

those in the preceding section, except that base demand is used to determine these as opposed to the first-cycle

demand. Travel time limit is 500 seconds, and load limit is 1500 item units.

To compare against our heuristic, we consider four benchmark approaches based on similar ones in the

literature and industry that do not incorporate routing into the replenishment decisions (Richards, 2014; APS

Fulfillment, 2021). The first is based on demand (wave) replenishment, where the total demand amount of each

item in the upcoming order picking cycle is replenished in the preceding replenishment cycle. The next three are

based on triggered replenishment, where an item is replenished whenever its stock level hits a pre-determined
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minimum level. We combine this with top-off replenishment, where the item is replenished up to its capacity.

The three variants of this combination, which we refer to as Triggered-1/2, Triggered-1/4, and Triggered-0,

replenish an item up to its capacity level whenever the inventory level would go below half its capacity, a

quarter of its capacity, and zero in the upcoming picking cycle, respectively.

With eight possible number of items, four demand skewness levels and 10 instance for each setting, we run a

total of 320 instances. We use improved largest gap for a priori routing, due to its superior relative performance

to the other methods in the preceding section. The CPU time for the heuristic ranges from 221.6 to 4215.2

seconds, with an average of 1002.3 seconds. All benchmark heuristics run within 1 second for each instance.

Figure 8 shows the results of our experiments with larger instances, which are grouped by demand skewness

levels. As expected, we observe that for any demand skewness level and number of items, the worst performance

is obtained by Demand Replenishment, followed by Triggered-1/2, 1/4, and 0, respectively. This is due to the

decreased frequency of replenishments, and thus the total replenishment time, in this order. Another expected

observation is that for any policy and number of items, total replenishment time decreases as demand skewness

increases, since the turnover-based storage can provide more travel-time savings as demand is more skewed.

The a priori routing heuristic outperforms its counterparts in every setting. Under any demand skewness

level, the relative difference is more prominent when fewer items are demanded per cycle. For example, under

uniform storage, replenishment time savings of LG(H+) over Triggered-0 is 53.7% with 25 items per cycle, which

decreases to 13.4% with 300 items. Similarly, for demand replenishment, the savings are 77.4% and 22.8%,

respectively. As the number of items increases, so does the replenishment frequency, whereby a significant

portion of the forward storage area is traversed in any case, offsetting the potential advantages from routing.

The average improvement over Triggered-0 ranges from 29.9% to 32.1% over the four skewness levels, whereas

the improvement ranges are 43.8%-46.2% over Triggered-1/4, 49.9%-52.2% over Triggered-1/2, and 50.7%-53.1%

over Demand Replenishment. These substantial improvement levels underline the importance of incorporating

routing into storage replenishment decisions.

Under the proposed heuristic, the effect of demand skewness also varies depending on the number of items.

With 25 items per cycle, compared to 20-80 demand skewness, total replenishment time increases by 14.7%,

19.4%, and 36.6% under 20-60, 20-40, and uniform demand skewness, respectively. The corresponding increases

are 0.8%, 3.2%, and 6.8% with 300 items. On average over all possible number of items, the objective increases by

4.0%, 9.4%, and 17.3% for 20-60, 20-40, and uniform demand skewness, respectively. The benchmark heuristics

behave similarly to each other, with average increases of 7.2%, 14.4%, and 18.8% for the same skewness levels.

The differences in these averages between the proposed heuristic and the benchmarks imply that the former is

more robust to changes in demand skewness.

To ensure that the a priori heuristic results for the larger instances are not far from optimal, we apply the

lower bounding scheme discussed in Section 5.1 for this set of instances. Appendix G in the Supplementary

Material provides the average percent lower bound gaps for each number of items per cycle and demand skewness.

We deduce from these gaps that although the gap increases with increasing number of items per cycle, the

maximum gap is around 9%. Given that this is an upper bound on the gap from optimal, it is reasonable to
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Figure 8: Average replenishment time for the a priori routing heuristic (LG(H+)) and four benchmark methods for varying demand
skewness levels (each data point is an average of 10 instances)
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conclude that the heuristic produces high-quality routes, even for larger instances.

6. Conclusions and Further Research Directions

In warehouses with separate forward and reserve storage areas, integration of storage replenishment and

order picking operations plays an important role in determining the timeliness of shipments. When multiple

item slots need to be replenished in limited time intervals, an efficient routing of the replenishment worker is

important to ensure the availability of items for order picking. For this end, this paper has introduced the

storage replenishment routing problem, where the decisions involve which item slots to replenish in which cycle

and sequence subject to a time and capacity constraint for each cycle. We have established the complexity of

the SRRP for various cases and developed a heuristic approach. Our computational experiments show that the

proposed approach not only finds near-optimal solutions within very short computational time, but it is also

quite robust in terms of demand skewness and substantially outperforms different approaches where routing is

not part of the replenishment decisions.

Given the important theoretical and practical implications of integrating storage replenishment and routing

decisions, the SRRP gives way to a number of interesting further research directions. An immediate extension

of this work is to adapt the SRRP and the solution approaches to different warehouse layouts. Exact and

heuristic routing algorithms exist for the case of multiple blocks (e.g. Roodbergen & de Koster, 2001a,b), as

well as fishbone and flying-V layouts (e.g. Çelik & Süral, 2014), which could be used as the a priori routing

scheme. Extension to multiple replenishment workers may capture a wider set of applications. With multiple

blocks and multiple replenishment workers, the heuristics in Valle et al. (2017) can be used to extend the a priori

routing approach to involve batching decisions as well. Another extension would be to consider the case where

replenishment and order picking are simultaneous. This also involves the possibility of order pickers having to

wait for replenishment during the pick waves, which exacerbates the difficulty of routing. On the other hand,

focusing on the case with unit-load replenishments under this setting leads to a more tractable problem, which

may enable some of the approaches for the SRRP to be adapted.

With the advent of automation in the recent years, many warehouses store items in multiple slots at the

same time. Our approaches are directly applicable in such an environment if order picking and replenishment

plans are sequentially made, i.e., picker routes are determined irrespective of replenishment, and replenishment

routing takes picking schedules as inputs. An interesting extension here is to determine the order picking and

replenishment routes in an integrated manner. The main challenge in this case is that the picker routing problem

by itself is NP-hard, even for a single cycle (Daniels et al., 1998), which leads to an even harder problem if

replenishment is also considered. However, devising efficient heuristics for the picker routing problem with

multiple cycles and multiple slots for the same item may allow for the a priori routing approach to be applicable

for the integrated problem.
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