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Abstract. Sedimentological analysis has shown that during the syn-rift phase (Upper Triassic) the
Mohammedia–Benslimane–ElGara–Berrechid basin (MBEB) is characterized by detrital and evapor-
ite sediment filling. A gradual decrease of palaeoslope over time led to the evolution of paleoenviron-
ments of proximal alluvial fans system to braided rivers and then to an anastomosing system. These
environments evolve finally to an alluvial plain associated with a coastal plain where playa lakes, mud-
flats and lagoons had developed.

We have identified fourteen genetic sequences which are included in four progradational-
retrogradational minor cycles that are themselves grouped in one major cycle. These cycles are re-
lated to the variations of the base level. The dominance of the retrogradation phases giving an asym-
metrical appearance to the cycles is related to the predominance of the base level rise. These varia-
tions are probably of allocyclic origin: tectonic and probably climatic, in relation with the Tethys and
the Atlantic Ocean being opened.

Keywords. Sedimentology, Paleoenvironment, High resolution sequence stratigraphy, Rifting, Trias-
sic.
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1. Introduction

The Moroccan Triassic basins are characterized
by two sedimentary episodes (detrital and evapor-
itic). The deposition of the detrital episode started
during (1) the Early Triassic in the Argana Valley,
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[e.g. Hofmann et al., 2000, Tourani et al., 2010];
(2) the Middle Triassic in the Central High Atlas [e.g.
El Arabi et al., 2006] and in the Oujda mountains
[e.g. Courel et al., 2003, Crasquin-Soleau et al., 1997,
Oujidi and Elmi, 2000], and during (3) the Upper
Triassic in the Middle Atlas basins [e.g. Baudelot
et al., 1990, Lachkar et al., 2000] and in the Moroc-
can Atlantic margin (Essaouira basin, e.g. Hafid,
2000, Slimane and El Mostaïne, 1997; Doukkala
basin, e.g. Hminna et al., 2013; Khémisset basin,
e.g Et-Touhami, 1994, Taugourdeau-Lanz, 1978;
Mohammedia–Benslimane–ElGara–Berrechid basin
(MBEB), Afenzar, 2018).

The Moroccan salt series (evaporitic episode) are
formed during the Upper Triassic as in the other
Triassic continental basins, whether in the North
of Gondwana (Algeria, e.g. Aït Salem et al., 1998,
Bourquin et al., 2010, Courel et al., 2003; and Tunisia,
e.g. Soto et al., 2017, Soussi and Ben Ismaïl, 2000,
Soussi et al., 2001) or in Europe (Portugal, Alves et al.,
2006, Ramos et al., 2017, Soto et al., 2017; Spain,
e.g. Barrón et al., 2006, Bourrouilh et al., 1995, Fer-
rer et al., 2012, Gonzàlez de Aguilar, 2015, Ortí, 2004,
Reolid et al., 2014, Roca et al., 2011; France, e.g.
Bourquin and Guillocheau, 1993, 1996; Germany, e.g.
Aigner and Bachmann, 1992, Kozur and Bachmann,
2008) or in Canada [Leleu et al., 2016, Miall and Balk-
willa, 2019, Olsen, 1997, Wade et al., 1995, Welsink
and Tankard, 2012].

In Morocco, existing data for the Triassic salt suc-
cessions are scarce [e.g. Peretsman and Holser, 1988,
Salvan, 1974]. In the Atlasic domain, the saliferous se-
ries is more reduced and is represented in outcrop by
gypsum levels (Central High Atlas, e.g. Biron, 1982,
Benaouiss et al., 1996, Courel et al., 2003, El Arabi,
2007, Baudon et al., 2012, Vergés et al., 2017; Argana
Valley, e.g. Hofmann et al., 2000; Middle Atlas, e.g.
Lorenz, 1976, Laville et al., 1995, Ouarhache et al.,
2012). Towards the Mesetien domain and the Moroc-
can Atlantic margin domain, these successions be-
come much more important. In all Triassic basins be-
longing to these two domains, the saliferous succes-
sions are similar. They are subdivided into two large
parts recognized in borehole: (1) the lower part at-
tributed to the Upper Triassic and (2) the upper part
dated from the Lower Liassic, separated by the Cen-
tral Atlantic Magmatic Province, i.e. CAMP basalt (Es-
saouira Basin, Echarfaoui et al., 002b, Hafid, 2000;
Doukkala Basin, Echarfaoui et al., 002a, Salvan, 1984;

Khémisset Basin, Et-Touhami, 1994, 1996, 1998, Sal-
van, 1982; MBEB Basin, Afenzar, 2018, Lyazidi, 2004,
Salvan, 1984).

The MBEB Basin consists of a detrital and evap-
oritic sedimentary series of about 1500 m [Afen-
zar, 2018, BRPM, 1973]. This sedimentary series
is subdivided into two main formations: a sandy-
conglomeratic formation at the base (Formation A)
and argillaceous-saliferous formation in the middle
and top of the series (Formation B) [Afenzar, 2018,
Afenzar and Essamoud, 2017] recovered by Triassic-
Liassic basalts [Peretsman, 1985].

The aim of this study, from a detailed sedimen-
tological analysis is (1) to reconstruct palaeoenvi-
ronment and (2) for the first time, to propose se-
quence stratigraphy analyses to constitute a basis
of a stratigraphic correlation with other Triassic At-
lantic basins. Moreover, the correlations in terms of
sequence stratigraphy allow to constrain the spa-
tial and temporal evolution of salt series and could
guide the exploration and thus have an economic
impact.

2. Geological setting

At the early Mesozoic, the Pangea continent was af-
fected by an initial break-up associated with the early
stages of the opening of the Central Atlantic Domain.
During this phase, the Moroccan and North Ameri-
can Margins were subjected to an extensive tectonic
regime that led to the opening of a set of rift basins
[e.g. Courel et al., 2003, Hafid, 2000, Leleu et al., 2016,
Le Roy and Piqué, 2001, Medina, 1995, Olsen, 1997,
Piqué and Laville, 1995, Piqué et al., 1998]. The Mo-
roccan basins are placed geographically in the cen-
tral segment of Central Atlantic Domain and are lat-
erally equivalent to the Nova Scotian basins [Hafid,
2000, Leleu et al., 2016]. The MBEB basin is a part of a
Moroccan margin like the Khémisset, Doukkala, Es-
saouira, Souss and Tarfaya basins (Figure 1). Among
these basins, the closest to MBEB Basin are Khémis-
set Basin in the north (separated by the Paleozoic
basement of central Morocco) and Doukkala Basin in
the south (separated by the Paleozoic of Casablanca
block).

The MBEB basin is located in the North-West of
the Moroccan coastal Meseta, about twenty kilo-
meters northeast of Casablanca (Figure 2). The
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Figure 1. Paleogeographical location of Moroccan Triassic basins in the Late Norian (synthetic map
based on Courel et al., 2003 and Leleu et al., 2016).

structure of this basin has been interpreted sev-
eral times. The interpretations of El Wartiti et al.
[1992] were based on the boundary with the Her-
cynian basement, which are unconformity con-
tacts materialized by border faults controlling the
individualization of the basin and conditioning its
filling.

Usually, this basin is presented as an immense
shallow depression which seems to have originated
from N–S to NE–SW half-graben structure [Afenzar,
2018, El Wartiti et al., 1992]. At the end of the Pa-
leozoic and the early Mesozoic, this half-graben is
developed and filled by an important detrital and
evaporitic syn-rift sedimentary series; with a mag-
matic activity belonging to the CAMP [Manspeizer
and Cousminer, 1988, Peretsman, 1985].

This basin was subjected to a NW–SE extension
with a slight deformation component [El Wartiti
et al., 1992]. The structure is controlled by a deep de-
tachment, which is probably an ancient Hercynian
weakness zone, and which plunges slightly towards
the NNW. This is related to the opening of the proto-
Atlantic domain [El Wartiti et al., 1992, Medina, 1994].

3. Lithostratigraphic framework

According to the old nomenclature, the lithostrati-
graphic series of the MBEB basin was subdivided into
five main zones attributed to Permo-Triassic deposits
[BRPM, 1973]: (1) Zone argileuse inférieure; (2) Zone
salifère inférieure; (3) Zone basaltique; (4) Zone sal-
ifère supérieure; (5) Zone argileuse supérieure (Fig-
ure 3A).

According to the latest works, the sedimentary
series in the MBEB basin is subdivided into two
major series: Lower argillaceous-salt series attributed
to Triassic and Upper argillaceous-salt series attrib-
uted to Liassic [Hssaida et al., 2012, Lyazidi, 2004].
The two parts are separated by a basaltic complex
(Figure 3B).

This basalt was dated Late Triassic-Early Lias-
sic (200 Ma) and belonged to the CAMP by sev-
eral works based on radiometric dating data [Perets-
man, 1985]. Subsequently the infra-basaltic series
can be attributed to the Upper Triassic [Afenzar,
2018, El Wartiti et al., 1992, Lyazidi, 2004, Salvan,
1984].

In this study, we have subdivided this Upper
Triassic part into two main formations: the sandy-

C. R. Géoscience, 2020, 352, n 6-7, 417-441



420 Abdelkrim Afenzar and Rachid Essamoud

Figure 2. Geological map of the MBEB basin with the sections and boreholes analyzed as well as
correlation transects in genetic stratigraphy (A: Chaâbat Al Hamra section, B: Chaâbat Lhmira, C: Assikriat
section, D: Tlet Ziaida, E: Sidi Amour, F: Sidi Bouchaibe, G: Barrage Oued El Maleh, H: Sidi Bou Amar, I:
Ouled Jhaich J: ElGara, TI, TII, TIII: correlation transects).

conglomerate Formation (A) at the base of the series
and the argillaceous-saliferous Formation (B), sub-
divided into two members, (1) Mudstone-siltstone
Member and (2) Argillaceous-saliferous Member
(Figure 3C).

4. Method

This sedimentological study consists in a detailed
analysis of the field sections (outcropping in the
northeastern part of the basin) and drill cores of
four boreholes (PB43 (712 m), PB44 (650 m), POM1
(1070 m) and POM2 (1350 m), Figure 2) for a bet-
ter view of the sedimentary bodies and their spa-
tial arrangements. This allows to characterize dif-
ferent facies and their associations as well as the
architectural elements [Allen, 1983, Miall, 1985,
1996] which allow us to reconstruct the depositional
environments and their evolutions over time and
space.

In fact, the vertical and horizontal arrangement
of these facies give birth to the characterized archi-
tectural elements according to several criteria deter-
mined by Allen [1983] and Miall [1985, 1996], which
are: the nature of the upper and lower bounding sur-
faces, the external geometry, the scale, and the inter-
nal structures. The last step is the determination of
paleoenvironment which is based on the nature and
types of lithofacies already characterized and also on
types of architectural elements.

The genetic stratigraphy applied in this study
consists of a high-resolution correlation of all the
field sections as well as the boreholes in the basin,
which makes it possible to individualize isochronous
markers separated by a few tens to hundreds of
thousands years [e.g. Bourquin and Guillocheau,
1993, 1996].

After the characterization of sedimentary facies,
deduction of depositional processes, identification of
facies association and interpretation of depositional
environments, and setting up a sedimentological
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Figure 3. Lithostratigraphic subdivision of the detrital and evaporite infra-basaltic series of the
Mohammedia–Benslimane–ElGara–Berrechid basin (A: BRPM, 1973; B: Lyazidi, 2004 C: Afenzar, 2018).

model, the genetic unit are characterized and then
stacking pattern showing the evolution over time of
the depositional environment are established.

The second step consists in correlation of the
genetic sequences according to three transects
and based on reference levels which can serve
as isochronous markers. For this objective four
levels have been identified: (1) unconformity be-
tween the Hercynian basement and the first facies
deposited in the basin; (2) contact between the
siltstone-mudstone member and the basal part of
the argillaceous-saliferous member; (3) contact be-
tween the top part of the argillaceous-saliferous
member and the basal part of the member contain-
ing pure halitic facies; (4) the lower part of the basalt
formation considered as the limit between the Up-
per Triassic and Lower Liassic [Peretsman, 1985]. A
cartography of the genetic sequences was carried
out below in order to obtain 2D and 3D geometries
for a better interpretation of the evolution of these
genetic units as well as the lateral passages of the
facies.

5. Facies analysis

5.1. Identification of lithofacies

Fourteen facies were identified, described and inter-
preted in terms of depositional processes based on
lithology, grain sizes and sedimentary structures [Mi-
all, 1978, 1996] (Figures 4, 5 and 6, Table 1).

5.2. Architectural elements

In this study and according to architectural elements
of [Miall, 1996, 2016] we used the abbreviation AE
(Architectural Element) for the coding of these el-
ements. This analysis made it possible to charac-
terize six architectural elements (noted AE1 to AE6,
Figures 5a, 5b, 5c and 5d) and two facies associations
(AFP and AFE).

Architectural element AE1

This constitutes the basis of the series, it was de-
termined in the Chaâbat El Hmira area on a verti-
cal extent from 4 to 5 m. AE1 is formed mainly by
facies association Fc1 and Fc2 corresponding to fa-
cies Gms and Gm of Miall [1978, 1996]. It is at the

C. R. Géoscience, 2020, 352, n 6-7, 417-441
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Figure 4. Illustration of the different facies identified in the basin. Description and interpretation in
Table 1.

C. R. Géoscience, 2020, 352, n 6-7, 417-441
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base of the series (in contact with the Paleozoic base-
ment) and associated with the architectural elements
AE2 and AE3 (Figure 5a). It is formed by gravity flow
deposits, mainly pebbles and gravels poorly sorted,
formed in the proximal areas of alluvial fans. Accord-
ing to all the criteria, this element corresponds to the
element SG (Sediment Gravity Flow) of Miall [1985,
1996, 2016].

Architectural element AE2

AE2 (Figures 5a and 5b) is formed by lithofacies
Fc2, Fc4, Fc5, Fc6 and Fc9. Regarding the internal
structure, it is formed by poor matrix and imbri-
cated pebbles facies (Fc2) showing channels lag and
sieve deposits. In other cases, this element is formed
by sandstone lithofacies characterized by horizon-
tal planar bedding: upper flow regime (Fc6), and
by some sandstone lithofacies showing the planar
crossbeds (Fc5). Moreover, architectural element AE2
has fourth order basal boundary surfaces (4th: mi-
nor erosion) and over (5th: surface bounding gen-
erally flat to slightly concave-upward) [Miall, 1988].
These limits are sometimes erosive and slightly pla-
nar and in other cases erosive and concave to the top.
Inside the element, and between the lithofacies,
small boundaries can be identified. From these char-
acteristics, we can say that AE2 resembles to the ar-
chitectural element CH (Channels) of Miall [1985,
1996, 2016].

Architectural element AE3

It is formed mainly by assemblages of coarse litho-
facies containing imbricated pebbles and gravels,
showing horizontal stratification, sometimes planar
crossbedding: Fc2 and Fc5 (Figure 5a). Sometimes
minor lithofacies were identified between these ma-
jor facies (Fc4 and Fc6). Most facies of this element
are organized as tabular bodies of five to six me-
ters thick. Also, it is formed from a 4% to 6% of fine
to medium sandstones. AE3 corresponds to the ar-
chitectural element GB (Gravel bars and bedforms).
It is usually coarse deposits formed at gravels bars,
these coarse deposits are sometimes intercalated by
thin levels sandstones formed at low flows (speed de-
crease) [Massari, 1983, Miall, 1985, 1996, 2016].

Architectural element AE4

This architectural element (Figures 5b and 5c) is
formed by medium to fine lithofacies assemblages:

facies Fc5, Fc6 and Fc7 corresponding respectively
to facies Sp, Sh and Sl of Miall [1978, 1996, 2016],
but it is dominated by Fc7. The Fc6 and Fc7 facies
are sometimes separated by a very fine facies: Fc8.
Architectural element AE4 passes laterally into ele-
ment OF. It is characterized by internal boundaries of
second to third order, while its outer boundaries are
fourth order. For this, AE4 has many similarities with
the architectural element SB (Sand Bedform) of Miall
[1985, 1996, 2016]. This architectural element charac-
terizes in our case, crevasse channels and/or crevasse
splays deposits.

Architectural element AE5

It is an assemblage of fine to very fine lithofacies.
This element is presented as sandstone sheets with
horizontal laminations from 40 to 80 cm thick: facies
Fc6, it is intercalated with thin purplish siltstones and
mudstones laminated: facies Fc8 and Fc9. This archi-
tectural element resembles to architectural element
LS (sand laminated sheets) of Miall [1985] (Figure 5c).
Lithofacies forming this architectural element have
been interpreted as the product of flash floods [Miall,
1985, Rust, 1978, Sneh, 1983, Tunbridge, 1981, 1984].
The architectural characteristics of this element are
well described by Tunbridge [1981] and Sneh [1983].
The sand sheets are deposited on flat surfaces slightly
eroded, laterally, they can spread over hundreds of
meters.

Architectural element AE6

Architectural element AE6 (Figures 5b and 5c) is
considered as a major element in the basin, its thick-
ness can reach forty meters. It is presented as large
sheets (2 to 50 m thick), formed by purplish or red
brick siltstones and mudstones, these siltstones and
mudstones sometimes show a massive aspect with
crude planar laminations indicating a quiet deposi-
tional setting. In other cases, they show horizontal
laminations with very thin intercalations (5–15 cm) of
fine sandstones. By these characteristics we can say
that AE6 corresponds to the architectural element OF
(Overbank fines) of Miall [1985, 1996, 2016].

According to Miall [1985, 1996], in most cases
this element has a sheet geometrical form, reflect-
ing its origin by vertical aggradation. In the vicin-
ity of the active channels, these sheets are separated
by crevasse splays. This architectural element may

C. R. Géoscience, 2020, 352, n 6-7, 417-441
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Table 1. Description and interpretation of sedimentary facies of Triassic series of MBEB based on Miall
(1978 and 1996), Bridge [2003] and Opluštil et al. [2005]

Facies
code

Lithology and sedimentary
structures

Depositional
process

Interpretation

Conglomeratic facies

Fc1 Massive conglomerate (1 m to
4 m thick) with angular,
disorganized and poorly
sorted gravels. The matrix is
formed by the fine sandstone.
Without sedimentary
structures (A, B Figure 4).

Gravity flows,
Mass flow deposits

Equivalent to Gms of Miall [1996]. The
absence of sedimentary structures and
the existence of a mixture of fine and
coarse materials suggest that this
conglomerate is deposited by gravity
flows: debris flow at proximal alluvial
fans environment [Miall, 1978, 1985,
1996, Opluštil et al., 2005].

Fc2 Clast-supported stratified
conglomerates with
centimeter to decimeter-sized
pebble-gravels, showing
angular to sub-angular shapes
and horizontal bedding
imbrication (B & C, Figure 4).

Aggradational
deposit

Equivalent to Gm of Miall [1996]. This
facies (0.4 m to 2.5 m thick) has been
deposited at median to distal alluvial
fans or longitudinal bars in the braided
rivers system. It can also be interpreted
as sieve and/or lag deposits [Miall, 1978,
1985, 1996].

Fc3 Planar crossbeds
conglomerate (0.5 m to 3 m
thick). The matrix is formed
mainly by clastic materials
(clast-supported) which are
very fine sandstones (D,
Figure 4).

Progradational
deposit

Equivalent to Gp of Miall [1996]: Deposit
of longitudinal bar in a braided rivers
system with shallow channels [Miall,
1978, 1985, 1996]. This facies present a
similarity with conglomerate of the lower
part of Bigoudine formation (T6) in the
Argana valley [Hofmann et al., 2000].

Sandstone facies

Fc4 Massive coarse sandstone (1 m
to 3 m thick) without any
sedimentary structures.
Sometimes it presents isolated
large fragments (A & C,
Figure 4).

Rapid deposits
Gravity flow
deposits

Equivalent to Sm of Miall [1996]. The
presence of isolated large fragments is
probably related to their falling along the
slope [Sohn et al., 1997], associated with
the deposition mechanism itself or a
movement in a high load flow [Postma
and Cruickshank, 1988]. According to
[Einsele, 1992, Miall, 1985, 1996], these
facies occur in alluvial fans environment.

Fc5 Fine to coarse sandstone
(0.4 m to 2 m thick), showing
the planar crossbeds (E,
Figure 4).

Progradational
deposit

Equivalent to Sp of Miall [1996]: Linguoid
or transverse bars deposits (lower flow
regime) [Bridge, 2003, Miall, 1985, 1996,
Todd, 1996]. It is similar to some
sandstone beds of the lower part of
Oukaïmeden sandstone [Benaouiss et al.,
1996].

(continued on next page)
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Table 1. (continued)

Facies
code

Lithology and sedimentary
structures

Depositional
process

Interpretation

Fc6 Fine to coarse sandstone
(0.2 m to 1.5 m) characterized
by horizontal laminations with
parting or streaming lineation
(F, Figure 4).

Plane-bed flow Equivalent to Sh of Miall [1996]. This
structure is generated by small
longitudinal vortices affecting the entire
turbulent boundary layer. It results from
upper flow regime deposits [Miall, 1985,
1996].

Fc7 Fine sandstone (0.5 m to 2 m
thick) characterized by low
angle (<10°) planar cross beds.

Scour fills Equivalent to Sl of Miall [1996]. It is a
crevasse channel and/or a crevasse splay
deposit often formed in the floodplain at
anastomosed fluvial system.

Fine facies

Fc8 Massive to horizontal
laminated siltstone. They have
a reddish appearance with
grey to greenish levels of
mottling (E & F, Figure 4).

Overbank deposit Equivalent to Fl of Miall [1996]. Vertical
accretion deposit showing a laminar flow
of very low energy. This facies is
interpreted as a flood plain, overbank or
playa deposits [Miall, 1985, 1996].

Fc9 Massive reddish mudstone
(0.1 m to 6 m thick) showing
mottling spots (C & H,
Figure 4).

Overbank deposit Equivalent to Fm of Miall [1996]. These
mudstones can be deposited in (1) an
alluvial plain of a braided system, (2)
floodplain and playas, and sometimes in
(3) distal alluvial fans [Mader, 1985].
These mudstones are interpreted as
lacustrine or overbank deposit [Miall,
1996]. This facies and Fc8 sometimes
have cyclicity similar to that described by
Hofmann et al. [2000] in the Argana
valley (T4, T5 and T7).

Evaporite facies

Fc10 Gypsum beds facies (0.1 m to
0.5 m). It is presented in the
form of centimeter banks
alternating with the siltstones
and the mudstones facies (H,
Figure 4).

Evaporation in a hot
and humid
environment

These facies are formed in relatively hot
and humid environments by the
precipitation of sulfated ions in
supersaturated solutions subjected to
intense evaporation [Warren, 2006,
2010].

Fc11 Fibrous gypsum (0.1 m to
0.2 m thick)

Diagenetic facies Diagenetic origin [Afenzar and
Essamoud, 2017, Afenzar, 2018,
Et-Touhami, 1994, 1996].

(continued on next page)
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Table 1. (continued)

Facies
code

Lithology and sedimentary
structures

Depositional
process

Interpretation

Fc12 Milky clean halite deposited as
decametric to metric beds
rarely associated with very fine
anhydrite laminae (I, Figure 4).

Evaporation in a hot
and humid
environment

The rhythmicity of this facies with the
mudstone facies is probably due to the
interventions of the slightly turbid
continental waters which propagate on
the surface of the brine [Afenzar, 2018,
Et-Touhami, 1994, 1996, Sonnenfeld and
Hodec, 1985]. The alternation of this
halite with detrital and sulphate levels
indicates that it is probably deposited in
saline mudflats or evaporite flats.

Fc13 Phenoblastic halite with
limpid crystals (J, Figure 4).
(0.5 m to 0.5 m thick)

Diagenetic facies Filling of dissolution cavities. Diagenetic
origin [Afenzar, 2018, Et-Touhami, 1994,
1996].

Fc14 Millimeter to centimeter veins
of fibrous halite.

Diagenetic facies Filling of pre-existing fractures in the
mudstone levels. It is presented as thin
fibers elongated perpendicularly to the
walls of mudstones. This halite is formed
probably during diagenesis in the
mudstone [Dumas, 1988, Et-Touhami,
1994, 1996, Hovorka, 1983].

fill abandoned channels, provided it has concave-up
basal contact and ribbon to lenticular geometry of
the channel itself [Ethridge et al., 1981, Miall, 1985].

Facies association of Playa (AFP)

It is a lithofacies combination of 5 to 6 m thick. It
is formed by siltstone and mudstone lithofacies as-
semblage (Fc8, Fc9) and by fine sandstones some-
times showing horizontal flat beddings (lithofacies
Sh). The facies association AFP presents a cyclicity of
the sandstone, siltstone and mudstone facies; which
shows that it is deposited in Playa Lake. The presence
of sandstone deposits also shows that these playa
lakes are shallow [Liu and Wang, 2001].

Evaporite facies association (AFE)

It is an association of mudstone (Fm) and evapor-
ite facies (Fc10: beds gypsum, Fc11: fibrous gypsum,
Fc12: milky halite, Fc13: phenoblastic halite, Fc14: fi-
brous halite). The thickness of the facies varies be-
tween 1 and 1.5 m for the siltstone, between 10 and
20 cm for the gypsum and between 10 cm and 2 m for

the halite. These evaporite facies are often of primary
and in other cases diagenetic origin. They are formed
by the evaporation of saline waters in mudflats and
lagoons in a hot and humid climate in relation to a
“pellicular” sea that covered the basin in the Upper
Triassic.

6. Paleoenvironment reconstruction

6.1. Proximal alluvial fans system

This fluvial model is characterized by massive con-
glomerate with angular, disorganized and poorly
sorted gravels, and by massive coarse sandstone (two
to three meters thick without any sedimentary struc-
tures). These lithofacies are associated in two archi-
tectural elements: AE1 (Sediment gravity flow SG)
and AE2 (Channels CH). AE1 units are interbedded
with channelized beds of AE2. By these architec-
tural element characteristics (facies assemblage, ge-
ometry, bounding surfaces. . . ), we can deduce that
this depositional environment is similar to the model
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Figure 5. Architectural elements characterized in the basin (a: in Chaâbat Lhmira outcrop, b: in the
Chaabat Al Hamra outcrop, c: in the top of Chaâbat Lhmira outcrop, d: in Assikriat outcrop).

No 1 of Miall [1985, 1996, 2016]. It is proximal al-
luvial fan with sediment gravity flows of gravelly
rivers [Afenzar, 2018, Afenzar and Essamoud, 2017,
Miall, 2016]. The frequency of debris flows depends
strongly on source rock weathering characteristics,
so that adjacent fans, the headwaters of which flow
across contrasting bedrock units, may show quite dif-
ferent lithofacies assemblages [Hooke, 1967, Miall,
1996, 2016].

6.2. Shallow channels of a braided rivers system

The sediments characterizing this environment
style are coarse to medium. It is a clast-supported
stratified conglomerate with centimeter to
decimeter-sized pebble-gravels, showing sub an-
gular shapes and horizontal bedding imbrication
(Fc2), and planar crossbeds conglomerate (Fc3). The
medium to fine deposits are presented by massive

coarse sandstone without any sedimentary struc-
tures (Fc4) and fine to coarse sandstone charac-
terized by horizontal laminations with parting or
streaming lineation (Fc6). The facies association of
this style forms the architectural element AE2 (CH:
channel) and AE3 (GB: gravel bars). In this envi-
ronment, the architectural element AE3 is the most
abundant. During the fluctuations stage, bar com-
plexes become emergent, and are crossed by minor
channels in which thin deposits of AE2 may form [Mi-
all, 2016]. These fluvial style characteristics resemble
to those of model No 2 of Miall [1985, 1996, 2016]. It
is a proximal braided rivers system characterized by
shallow channels and gravel bars.

6.3. Floodplains in anastomosed rivers system

This depositional environment is characterized es-
sentially by fine to very fine deposits with a large
thickness. In that case, these facies are organized into
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Figure 6. Synthetic sedimentary log of the basin with minor and major cycles of base-level variations.
a and b: conglomerate; c: sandstone; d: siltstone; e: mudstone; f: pure halite; g: argillaceous halite; h:
gypsum; i: basalt.

two architectural elements: AE4 (SB: Sand Bedforms)
deposited in the crevasse splays, and architectural
element AE6 (OF: Overbank Fine) formed in flood
plains and abandoned channels. The element AE4

has a limited lateral extent and passes laterally into
AE6. This type of fluvial style is much less studied and
interpreted, unlike other types of depositional envi-
ronment [Farrell, 1987, Kraus and Bown, 1988, Miall,
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1985, 1996, 2016]. However, it is linked to an anas-
tomosed environment characterized by low-energy
floods with crevasse channels and crevasse splays.

6.4. Coastal plains, playa lakes, mudflats and la-
goons system

This is a set of more distal deposit environments.
They are characterized by deposits recorded in the
middle and top part of the argillaceous-saliferous for-
mation (B) and which is finally capped by Triassic-
Liassic basalts. This system is characterized by mas-
sive to horizontal laminated siltstone, massive red-
dish mudstone showing mottling spots, gypsum beds
facies alternating with the siltstones and the mud-
stones facies, fibrous gypsum, milky clean halite de-
posited as decametric to metric beds rarely asso-
ciated with very fine anhydrite laminae and phe-
noblastic halite with limpid crystals.

This system probably corresponds to the large
coastal plain downstream characterized by the devel-
opment of playa lakes, mudflats and lagoons where
the evaporite facies are formed by the evaporation
of marine waters [Peretsman, 1985, Peretsman and
Holser, 1988] under a hot and humid climate and in
relation to a pellicular sea that covered the domain
during the Upper Triassic time.

7. Genetic stratigraphy and correlation

7.1. Identification of genetic sequences

In the continental domain, as in our case, the iden-
tification of genetic sequences is complicated. A ge-
netic sequence is usually represented by a period
of erosion, by pass or stacked of fluvial deposits
linked to the base level fall (i.e. progradation) and
a period of aggradation accompanied the base level
rise (i.e. retrogradation). The periods of base level
fall correspond to a weak preservation of the fa-
cies whereas the period of aggradation corresponds
to a significant sedimentary preservation [Bourquin
et al., 1998, 2009, Hamon and Merzeraud, 2005,
Homewood et al., 1992, Merzeraud, 1992].

Genetic sequence UG1

It is a genetic sequence in which an alluvial fan
system evolves to a braided system with an alluvial
plain. The period of base level fall (progradation) is

characterized by a weak preservation of the thin con-
glomerate facies without sedimentary structure with
coarse, angular and poorly sorted elements limited
by erosion surfaces indicating the base level fall. The
base level rise period (retrogradation) is character-
ized by the important preservation of alluvial fan fa-
cies and the development of conglomeratic facies
(showing horizontal stratifications with imbricated
and well-sorted pebbles-gravels) and sandstone fa-
cies showing horizontal planar bedding. These facies
are organized into architectural elements: AE1, AE2
and AE3 formed in channels and bars in a braided
river system.

Genetic sequence UG2

The base level fall period is characterized by
the deposition of coarse massive sandstone facies
without sedimentary structures. The base level rise
is marked by well-organized facies with horizontal
stratifications and other conglomerate facies show-
ing planar cross-beds organized into architectural el-
ements AE2 and AE3 deposited at the channels and
bars in a braided fluvial system.

Genetic sequence UG3

This genetic sequence formed during the increase
of the base level (retrogradation), is characterized by
the development of distal fine facies forming the ar-
chitectural element AE6 and deposited in the flood-
plain. The basal boundary of this sequence is marked
sometimes by the passage of coarse facies formed at
the bars in a braided system to fine facies of the flood-
plain.

Genetic sequence UG4

This sequence is characterized by its formation
during the rise of the base level marked by the de-
position of sandstone, siltstone and mudstone facies.
These facies are associated in two architectural el-
ements (AE2: CH and AE6: OF) formed in anasto-
mosed channels with an immense floodplain. This
period of base-level rise is also characterized by a de-
crease of grain-size, passing from channel sandstone
facies to the siltstone-mudstone facies of the flood-
plain.

Genetic sequence UG5

UG5 is characterized by a period of base level
rise associated with the development of sandstone
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and mudstone facies organized into architectural el-
ements AE4, AE5 and AE6 deposited in sand bars and
crevasse splays at a floodplain related to an anasto-
mosing fluvial system. The facies association is char-
acterized by a gradual decrease of grain-size.

Genetic sequence UG6

This genetic sequence is formed during the base
level rise period. It is represented by sandstone and
siltstone-mudstone facies deposited in floodplains
and probably in coastal plains characterized by archi-
tectural element AE6 and facies associations of playa
(AFP).

Genetic sequence UG7

It is characterized by a period of base level rise,
and formed by sandstone, siltstone, mudstone and
evaporite facies. These facies form the association
of Playa (AFP) and/or facies-association of evaporite
(AFE) formed at playa lakes and at lagoons with an
immense coastal plain.

Genetic sequences UG8 to UG14

The UG8 to UG14 genetic sequences are charac-
terized by alternating siltstone, mudstone and evap-
orites facies (organized into architectural elements
AE6, AFP and AFE) formed in a coastal plain as-
sociated with mud flats and lagoons. These genetic
units have been identified mainly in boreholes at
depths ranging from 500 m up to 1000 m. The
maximum flooding surfaces of these sequences are
between the mudstone facies and the evaporites
facies.

7.2. Genetic sequences correlations

The genetic units are correlated from one section to
the other (Figure 7) and from borehole to another
(Figure 8). This correlation is based on the determi-
nation of reference levels. For this objective four lim-
its have been identified:

– the first one is the unconformity between the
Hercynian basement and the first facies de-
posited in the basin,

– the second reference level is the contact be-
tween the detrital facies and the first evap-
orites facies (gypsum) deposited in the basin
and corresponds to the contact between the

Mudstone-Siltstone Member and the basal
part of the Argillaceous-Saliferous Member
(Figure 3C),

– the third reference level concerns the contact
between the upper part of the Argillaceous-
saliferous Member and the basal part of pure
halitic facies, located at the top of this Mem-
ber,

– the fourth one is the beginning of the Basalt
considered as the limit between the Upper
Triassic and Lower Liassic [Peretsman, 1985].

For more precision, this correlation was carried
out according to three transects: the first one (TI) N–S
on Oued El Maleh river. The second transect (TII)
N–S on the Oued Nfifikh and the last transect (TIII)
N–S which links between the boreholes PB43, PB44,
POM1 and POM2 (Figure 2). The stacking pattern of
the genetic sequence allows the constitution of four
minor cycles of base level variation (Figure 6).

The first cycle (C1) is characterized by conglom-
erate and sandstone deposits unconformably de-
posited on the Hercynian basement. The maximum
flooding surface (MFS1) is marked by the passage of
thin conglomerate facies without sedimentary struc-
ture with coarse, angular and poorly sorted elements
limited by erosion surfaces to conglomerate facies,
deposited in proximal alluvial fans and conglomer-
ate and sandstone facies formed in a braided fluvial
system with a progressive rise of base level (UG1 and
UG2).

The second cycle (C2) (Figures 9, 10 and 11) has
a remarkable base level increase. It is characterized
by a vertical aggradation of the sandstone, siltstone
and mudstone facies formed in an alluvial plain in
braided system and/or in an anastomosing river sys-
tem.

The third cycle (C3) (Figures 9, 10 and 11) was
identified on the borehole (PB44). It is a retrogra-
dational/aggradational cycle and is characterized
by the appearance of the first evaporite facies. Its
base is represented by gypsiferous mudstone and
alternations of mudstone and bed gypsum. Then,
there is a transition to alternations of halite (+/−
closed lagoon) and mudstone formed in playa and
mudflats.

The fourth and last cycle (C4) (Figure 11) is char-
acterized by the rise of the base level, with the forma-
tion of pure halite facies, which shows a marine inter-
vention stopped abruptly by basaltic effusions at the
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Figure 7. Correlation of genetic sequences based on the study of field sections on the Oued Nfifikh-
ElGara axis (Transect II).

end of the Upper Triassic.

7.3. Basin-wide genetic sequences cartography

The identification of different orders of genetic se-
quence stacking and their correlation allow the car-
tography of their extent. The result is a paleogeo-
graphic reconstruction for each genetic sequence.
This stratigraphic correlation makes it possible to
study the distribution of facies in space within each
sequence, and their evolution over time (Figures 9, 10
and 11).

At the base of MFS1, conglomerates have larger
thicknesses in the center than at the ends for transect
(TI) (Figure 9). For the transect (TII) (Figure 10), these
conglomerates have significant thicknesses along the
entire transect. At the north, some conglomeratic
facies of the retrogradational part of the genetic
sequence UG1 pass laterally to sandstone facies. The
genetic sequence (UG1) of this cycle (C1) is formed
in proximal deposition environments: alluvial fans,
proximal braided system with remarkable variations
of palaeoslope.

Between MFS1 and MFS2, an increase of base
level leads to a change in the depositional environ-
ment to an alluvial plain characterized by sandstone
and siltstone deposits. This rise of the base level is
shown by well-developed braided channel facies and
by a gradual decrease of grain size and then by the

appearance of the well-sorted facies, with the dis-
appearance of the angular elements and finally by
the passage of the massive facies without sedimen-
tary structure (Gms and Sm) at Planar cross-beds fa-
cies (Gp and Sp) then at Horizontal lamination fa-
cies (Gm and Sh) [Bourquin et al., 1998, 2009, Hamon
and Merzeraud, 2005, Homewood et al., 1992, Merz-
eraud, 1992, Poli, 1997]. Lateral transition of facies is
observed at the north of the transect (TI) (Figure 9)
and the entire transect (TII) (Figure 10).

Between MFS2 and MFS4, we have noticed an ap-
pearance of evaporites facies that are concentrated
in the middle of the transect (TI, Figure 9) and pass
laterally to siltstone and mudstone at the same ge-
netic sequence. For the transect (TIII, Figure 11),
this interval (MFS2–MFS4) is characterized by a ge-
netic sequence with purely saline facies. This pas-
sage of evaporites facies to mudstone facies is prob-
ably due either to the migration of deposition envi-
ronment during the same time interval, or to the dis-
solution and erosion of these facies exposed in out-
crop. The last cycle (C4) (Figures 10, 11) is charac-
terized by a deposition of pure halite facies recov-
ered by basalts, which shows the marine incursion
before these basaltic effusions at the end of Triassic
and early Jurassic.

These genetic sequences and progradational/
retrogradational cycles show an evolution of the
proximal fluvial environments (alluvial fans passing
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Figure 8. Correlation of genetic units based on the study of the central and northern boreholes of the
basin (Transect III: N–S).

Figure 9. First transect (TI) N–S of correlation and cartography of genetic sequence and minor cycles of
base-level variation.

laterally to braided system) at the base of the TI and
TII (respectively Figures 9 and 10, orange and beige
color) to a distal environments (anastomosed rivers
and floodplains) in the middle of TI and TII and at the

base of TIII (respectively Figures 9, 10 and 11, yellow
and green color below MFS2), and then at a tran-
sition environment (coastal plain with lagoons and
mudflats) at the top of the TI and TII and throughout
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Figure 10. Second transect (TII) N–S of correlation and mapping of genetic sequence and minor cycles
of base-level variation.

Figure 11. Third transect (TIII) N–S of correlation and mapping of genetic sequence and minor cycles of
base-level variation.

the transect TIII (respectively Figures 9, 10 and 11, green and pink color).
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8. Discussion

Paleoenvironmental evolution

Sedimentary analysis has shown that the studied
basin is characterized by siliciclastic sedimentation
at the beginning and then evaporitic at the end of the
syn-rift sedimentary filling (Figure 6) [Afenzar, 2018].
First-cycle debris eroded from a mountainous source
area are deposited at the edges of the basin in coarse
alluvial fans, or transported to a coastal plain [Miall,
2016].

Based on the identified facies, and the character-
ized architectural elements and the alluvial styles,
the depositional environments are evolved over time
from:

– proximal alluvial fans system characterized
by accumulation of gravity-flow sediments to
a proximal braided system characterized by
conglomeratic and sandstone bars;

– subsequently, the depositional environment
has changed to an anastomosed system with
a vast floodplain characterized by crevasse
splays that pass laterally to overbank de-
posits (middle of the sedimentary series);
these anastomosed systems occur in areas of
active vertical aggradation, such as coastal
systems during a time of rapidly rising base
level;

– finally, these environments eventually evolve
to a coastal plain where playa lakes, mudflats
and lagoons have developed. In this phase,
the syn-rift sedimentary series recorded a
marine incursion at the Upper Triassic with
saliferous sedimentation Afenzar [2018]. It is
deduced from the presence of a thick sal-
iferous series with a large lateral extension
whose isotope ratios of sulfur and bromine
contents indicate their marine origin [Perets-
man, 1985, Peretsman and Holser, 1988].
These marine waters are probably of Tethyan
origin and are also related to the opening of
the Proto-Atlantic [Et-Touhami, 1994]. This
marine incursion remains thin compared to
the southwest European Triassic basins. In
these cases, the well-developed marine do-
main is indicated by the presence of carbon-
ates rich in marine species (e.g. Alpujarride
carbonates in Betic Cordillera: Martin-Rojas
et al., 2009). Leleu et al. [2016] specified that

these marine ingressions from the Tethys do-
main are inferred from dolomite and marine
fauna in Portugal and from thick salt deposits
in Morocco and offshore Canada during the
late Rhaetian.

Control factors

Detrital sedimentation in the MBEB basin can be
interpreted as resulting from the filling of a ditch in
the form of half-graben [El Wartiti and Fadli, 1985,
El Wartiti et al., 1992], the replay of the Hercynian
faults which caused the collapse of this ditch and
the activation of erosion. According to Salvan [1984],
distension and subsidence were localized in Meseta
points (ex. MBEB basin), which led to the accumula-
tion of salts deposits.

The MBEB basin is therefore an open continental
zone, which has favored the registration of alluvial
fans, high-energy fluvial systems, and then gradually
filling up, we have moved to lakes, and to evaporites.
It is a typical succession associated with geodynamic
context of rift type.

In this basin, the silico-clastic sedimentation is the
result of continental alteration, and therefore a good
part of the budget of erosion will arrive in the basin.
After the period of erosion (the ante-Triassic reliefs),
the basin is an area of sedimentation. It is an exten-
sive basin whose deposits are initially aggradational
and then retrogradational.

The MBEB basin also recorded a budget of pa-
rameters (mainly tectonic, climate) that created ac-
commodation and a parameter that fills this space:
the sediment supply. The sediments are mostly
red. This reflects the oxidizing conditions in which
the sedimentation was carried out [Biron, 1982,
Van Houten, 1973]. The evaporites indicate a rela-
tively hot and humid climate that has favored their
precipitation.

The palaeoenvironmental evolution was also con-
trolled by the evolution of palaeoslope. The decrease
of the latter is found in most Triassic rift basins be-
longing to the central Atlantic domain. Leleu and
Hartley [2010] suggest that in the Fundy and Mi-
nas basins, the palaeoenvironmental transition is di-
achronous, such that it cannot be related to climatic
controls of global or megaregional extent and the
fining-upward profile can be explained by a decrease
in source area relief by erosion within a hydrologi-
cally closed basin.
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Paleogeography

The evaporitic deposits could correspond to a
Late-Triassic transgression from the Tethys to the
north and an epicontinental marine domain to the
west [Beauchamp, 1988, Beauchamp et al., 1995, Ou-
jidi et al., 2000]. A “pellicular” sea covered most of
the Moroccan basins with intermediate facies, which
was therefore a flat surface affected by localized
subsidence (The MBEB basin is part of it) where
the evaporitic thick layers accumulated. The marine
character of the evaporites [Peretsman and Holser,
1988] denotes a first transgressive episode [Salvan,
1984] generalized throughout the Atlasic-Mesetien
domain [Oujidi et al., 2000]. The detrital basins on ei-
ther side of the future Atlantic Ocean are considered
primarily purely continental, with the Newark Basin
as a model [Smoot, 1991].

The idea of a secondary communication be-
tween the Tethyan marine domain and the proto-
Atlantic via the basins of Khémisset, Roumani and
MBEB, operating discontinuously is quite conceiv-
able [Et-Touhami, 1994].

Relationship with Atlantic rifting

At the beginning of the Mesozoic, the northwest-
ern part of the African continent was affected by an
initial fracturing associated with the early stages of
the opening of the central Atlantic (Atlantic rift).

Several authors consider that the opening of
several Moroccan Triassic sedimentary basins (at
least those in the southern edge of the Tethys) was
initiated during this Triassic rifting. This opening
was controlled by the reactivation of the preexisting
weakness zones in the Paleozoic basement and in-
herited from the Hercynian orogeny [Courel et al.,
2003, Hafid, 2000, Laville et al., 2004, Leleu et al.,
2016, Le Roy and Piqué, 2001, Medina, 1994, Olsen,
1997, Piqué and Laville, 1995, Piqué et al., 1998].

The MBEB basin is part of the western province
of Triassic deposits in Morocco, which correspond
to all the basins of the Moroccan Atlantic margin
(Doukkala, Argana, Essaouira. . . ) in direct relation
with the Atlantic rift [Beauchamp et al., 1985, Sal-
van, 1984, Van Houten, 1977]. The Triassic deposits
are considered as syn-rift.

9. Conclusion

This sedimentological analysis carried out for the
first time in this basin allowed the reconstruction of
palaeoenvironments and thus the syn-rift sedimen-
tary filling history during the Upper Triassic. During
rifting, the MBEB Basin passed through three ma-
jor phases of sedimentary filling. The first phase is
purely continental. During this period, the first de-
posits arrived in the basin are of alluvial fan ori-
gin. Subsequently, the decrease in palaeoslope and
the rise of the basal level resulted in paleoenviron-
mental changes (proximal fluvial system to a distal
depositional environment). During the third phase,
the syn-rift sedimentary series recorded a marine in-
cursion at the Upper Triassic with saliferous sedi-
mentation.

The correlation and cartography of the ge-
netic sequences as well as the progradational/
retrogradational cycles made it possible to obtain
2D/3D geometries of the basin according to the three
correlation transects. This indicates a growth in the
thickness of these sequences vertically (growth to-
wards the top of the sandy-conglomeratic formation)
and laterally (increase of the thickness of the genetic
sequences while passing of borders to the center
of the basin). These correlations also show lateral
passages of the mudstone facies (NE-SE border) to
the evaporite facies (basin center). The economic
importance of these 2D/3D geometries lies in their
orientation of the exploitation of pure halite facies
whose thickness and quality increase towards the
center of the basin.

From a paleogeographic point of view, the
Mohammedia–Benslimane–ElGara–Berrechid Basin
is part of the western Moroccan Triassic province,
which corresponds to all the basins of the Moroc-
can Atlantic margin (Doukkala, Argana, Essaouira,
Tarfaya) in relation to the rifting of Central Atlantic
Domain. In this context, this study consists of a ba-
sic approach for all future studies concerning the
stratigraphic correlations between this basin and the
Triassic basins of the African Atlantic margin and
Northeastern American margin.
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