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Abstract. This paper focused on modelling rain drop size distributions (DSDs) of various integration
time steps using unimodal DSD models (gamma and lognormal). Rain DSD data considered are
those collected from 2005 to 2007 near Djougou city in the north-western region of Benin Republic.
The efficiency of these models was characterized by statistical criteria, mainly Nash and KGE. These
criteria are used to assess the level of fitting of rain DSD spectra. Superimposed rain DSDs were then
parameterized with the rainfall rate, using the scaling law formalism. Results show that there is an
improvement in the structuring of the rain DSDs according to their measurement duration. Analysis
of the occurrence statistics of the structuring of the spectra reveals that the Spectra ill adjusted by
a unimodal DSD model represents 5 to 15% of the population of 1 min rain DSDs. This population
decreases according to the measurement duration of the spectra. The optimal measurement time
is found to be 10 min. Furthermore, parameters of the shape functions (gamma and lognormal)
increase or decrease markedly according to the measurement duration of the rain DSD spectra.
For applications using the relationships deduced from the rain DSDs, results suggested that the
measurement time scale must be taken into account when choosing appropriate relationships.

Keywords. Rain DSD, Scaling law, Unimodal DSD models, Rainfall, Parameterization, Integration time
steps, West Africa.
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1. Introduction

Several studies are carried out on the spectra of the
rain drop size distributions (DSDs), which are not

∗Corresponding author.

well-fitted by unimodal DSD models, in particular,
those which have several peaks (multimodal spec-
tra) [Ekerete et al., 2015a,b, 2016, Radhakrisna and
Narayana Rao, 2009, Sauvageot and Koffi, 2000]. To
identify the peaks in the rain DSDs, measured on
the ground, Steiner and Waldvogel [1987] used the
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136 Sounmaïla Moumouni et al.

following principle: if the concentration N (D) of a
given diameter is significantly higher than those of
neighbouring diameters, then a peak exists at this di-
ameter. Radhakrisna and Narayana Rao [2009] and
Sauvageot and Koffi [2000] simplified this principle
as follows: a diameter Di (i is the index of a di-
ameter class in a rain DSD spectrum) has a peak if
only N (Di−1) < N (Di ) > N (Di+1). Radhakrisna and
Narayana Rao [2009] applied this method and ob-
tained around 30% of multimodal spectra in their
rain DSDs data, with integration time T = 5 min, ob-
served on the ground, at Gadanki in India. Ekerete
et al. [2015b], Ekerete et al. [2015a] and Ekerete et al.
[2016] suggested that this method is not sufficient to
properly identify multimodal spectra. A multimodal
spectrum being made up of several sub-spectra sep-
arated by hollow, each sub-spectrum having a peak
(or a mode), they propose to identify the number of
peaks from the number of hollow. Thus, a diameter
Di has a hollow if only N (Di−1) > N (Di ) < N (Di+1) <
N (Di+2). Before applying this method, Ekerete et al.
[2015b], Ekerete et al. [2015a] and Ekerete et al. [2016]
merged into a spectrum, five neighbouring spectra of
1 min duration, to smooth the data. With the disdro-
metric data from Chilbolton in England, Ekerete et al.
[2015b] obtained 51% of multimodal spectra. In con-
trast with the disdrometric data from Graz in Austria,
Ekerete et al. [2016] obtained around 28% of multi-
modal spectra, a proportion similar to that of Rad-
hakrisna and Narayana Rao [2009].

Sauvageot and Koffi [2000] indicated that the rain
DSDs observed over a short period generally has an
erratic shape, with several relative maximums. They
found these multimodal shapes in the disdrometric
data acquired in two climatic regions: one tropical
(Boyélé in Congo), and the other temperate (Brest in
France). They also showed that some modes of rain
DSDs have a persistence larger than several min-
utes. They then suggested that the analysis of the
rain DSDs observed on the ground are superimposed
DSDs.

Radhakrisna and Narayana Rao [2009] attempted
for the first time to answer several key questions
concerning the multimodality of rain DSDs, using
data collected in Gadanki, India. The author assessed
the occurrence statistics and their dependency on
height, season, and type of precipitation. Among
other things, they noted that multimodal shapes are
not only observed on the ground. They are rather

observed at all altitudes, but with different percent-
ages of occurrence.

Recently, Ekerete et al. [2015b] have shown, from
data acquired in the south of England, that multi-
modality of rain DSDs is a relatively common phe-
nomenon. Analysing this multimodality of rain DSD,
Ekerete et al. [2015a] fit these multimodal spectra
with a Gaussian mixture model. Ekerete et al. [2016]
showed that the average number of modes tends to
increase depending on wind speed and rain rate.

Therefore, some rain DSD spectra, whether ob-
served on the ground or at altitude, can be multi-
modal. This does not allow unimodal DSD models
(such as gamma or lognormal) to adjust them indi-
vidually, suitably. The efficiency of individual mod-
elling of rain DSD spectra, with unimodal DSD mod-
els, can be assessed using statistical criteria such
as Nash or KGE (see Appendix). Thus, a rain DSD
spectrum can be ill or well adjusted by a unimodal
model for certain values of these criteria. Multimodal
spectra will naturally be ill adjusted by a unimodal
model.

Furthermore, from rain DSDs data with duration
T = 1 min, it is possible to create DSD datasets with
integration time steps T = L min (where L is a nat-
ural integer greater than one) by calculating the av-
erages of the L successive spectra, as [Chapon et al.,
2008] did. A temporal filtering of the rain DSDs is thus
carried out, making it possible to build up datasets of
various integration time steps. We can also individu-
ally adjust these new spectra by unimodal model and
assess their level of structuring. This is why one of the
objectives of this article focused on investigating the
impact of the integration time steps of rain DSDs on
their structure. Specifically, we analysed the impact
of the integration time step of the rain DSDs: (1) on
the structuring of the rain DSD spectra; and (2) on the
parameterization of rain DSDs by the rain rate.

Thus, in Sections 2, 3, and 4, we respectively pre-
sented the datasets, the methodology used, and the
results and their analysis. Finally, Sections 5 and 6 re-
spectively represent the discussion and the conclud-
ing remarks.

2. Datasets

The DSDs data used for this study are those sampled
in northern Benin, near the town of Djougou (9.66° N,
1.69° E)—using optical disdrometers: single beam
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Sounmaïla Moumouni et al. 137

Table 1. Datasets of different integration time steps

Data DATA1 DATA2 DATA3 DATA4 DATA5 DATA6

Integration time steps T = 1 min T = 2 min T = 5 min T = 10 min T = 15 min T = 20 min

Number of spectra 12,342 6152 2437 1198 777 578

Cumulative (mm) 1237.16 1236.89 1235.53 1225.94 1217.20 1216.79

[Löffler-Mang and Joss, 2000, Salles, 1995, Salles et al.,
1998] and double beam [Delahaye et al., 2005]—from
2005 to 2007, during the African Monsoon Multidisci-
plinary Analysis (AMMA) meteorological campaign.
These data have been validated and widely used for
several studies [Gosset et al., 2010, Kougbéagbédè
et al., 2017, Moumouni, 2009, Moumouni et al., 2008,
2018]. These data are DSDs of rains with an integra-
tion time step equal to 1 min. They are made up of 93
rainy events which represent a total of: 11,647 spec-
tra when only rain intensities greater than or equal to
0.1 mm·h−1 are taken into account; and 12,342 spec-
tra when only rainfall intensities greater than or equal
to 0.05 mm·h−1 are taken into account. The selected
rainy events are isolated at the level of each disdrom-
eter. A rainy event is defined as event with duration
at least equal to 15 min and intermittency less than
30 min.

From these data, other rain DSDs datasets of vari-
ous integration time steps were computed (Table 1).
The DSDs duration T = L min were calculated within
each event, and the remaining spectra whose num-
ber is less than L are not taken into account.

3. Methods

Since the pioneering work of Marshall and Palmer
[1948] on the rain DSDs, most of those which fol-
lowed, such as [Atlas et al., 1999, Cerro et al., 1997,
Chen et al., 2019, Tenorio et al., 2012, Tokay and
Short, 1996, Uijlenhoet et al., 2003, Ulbrich, 1983, Ul-
brich and Atlas, 1998, Wen et al., 2018, Willis, 1984,
Zeng et al., 2019, Zhang et al., 2003; etc.], analyse it
with N (D) function, defined by spectrum of a given
period T (1 min). It corresponds to the number of
raindrops per unit of volume and by interval of diam-
eters and is calculated as follows:

N (Di ) = Ni

ST∆Di V (Di )
, (1)

where Di is the equivalent diameter of the raindrops
measured, ∆Di the width of the range of diameter

centred on Di . In this study, Di and ∆Di are ex-
pressed in millimetres. S is the disdrometer collecting
surface area expressed in square metre. At the period
T , Ni is the number of drops counted by the disdrom-
eter in each size range. V (Di ) is the falling speed of
the drops of diameter Di . For the rain rate to be pro-
portional to a moment of N (D) function, the rela-
tionship between the drops speed and their diame-
ter is used as suggested by Atlas and Ulbrich [1977]

V (Di ) = 3.78D0.67
i (m·s−1) (2)

In all the above studies, T = 1 min = 60 s and N (Di ) is
expressed in (m−3·mm−1).

3.1. The structuring of the measured spectra

In West Africa where our data were collected, all the
studies [Gosset et al., 2010, Kougbéagbédè et al.,
2017, Moumouni et al., 2008, Moumouni, 2009,
Moumouni et al., 2018, Nzeukou et al., 2004, Ochou
et al., 2007, Sauvageot and Lacaux, 1995] showed that
the superimposed rain DSDs can be well adjusted
by the gamma DSD model or the lognormal DSD
model. In this study, we then used these two models
to individually fit the rain DSD spectra. After fitting
a DSD model (gamma or lognormal) on a measured
spectrum, Nash and KGE criteria are calculated (see
Appendix) between the measured spectrum and the
modelled spectrum. The values of these criteria are
therefore indicators of the efficiency of the mod-
elling. If the measured spectrum is well adjusted by
a unimodal DSD model, the criteria will indicate a
good level of efficiency. If, on the other hand, the
spectrum is not well adjusted by a unimodal DSD
model, the criteria will indicate a low level of effi-
ciency. These criteria are therefore used to qualify
the state of structuring of the measured spectrum.
These structuring levels of the spectra are analysed
according to the integration time steps of the rain
DSDs.

C. R. Géoscience — 2021, 353, n 1, 135-153
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The measured moment of order n of a rain DSD
spectrum (whatever the integration time steps) is de-
fined [Chapon et al., 2008, Lee et al., 2004, Ochou
et al., 2007, Sempere-Torres et al., 1994, Zeng et al.,
2019] by

Mn =∑
i

Dn
i N (Di )∆Di (3)

When we assume a DSD model, the theoretical
moment of order n of a rain DSD spectrum (whatever
the integration time steps) is defined [Chapon et al.,
2008, Lee et al., 2004, Ochou et al., 2007, Sempere-
Torres et al., 1994, Zeng et al., 2019] by

Mn =
∫ +∞

0
Dn N (D)dD (4)

3.1.1. Gamma DSD model fitting

In the literature on rain DSD, there are several vari-
ants of writing the gamma DSD model. For example,
the form proposed by Ulbrich [1983] and Maki et al.
[2001] is different from that proposed by Testud et al.
[2001] or Lee et al. [2004]. In this study, we propose
the following form to have a model whose parame-
ters have well-known physical meanings

N (D) = NT (µ+1)(µ+1)

DaΓ(µ+1)

(
D

Da

)µ
exp

[
−(µ+1)

D

Da

]
(5)

Indeed, in a spectrum, NT is the total number of
drops per unit of volume, Da is the arithmetic mean
of diameter of the drops, and µ is the shape parame-
ter of the spectrum. By introducing the expression (5)
in (4), the moment of order n is

Mn = NT

Γ(µ+1)

(
Da

µ+1

)n

Γ(µ+n +1) (6)

For fitting this model on the measured spectra,
with the moments method, its parameters NT (m−3),
Da (mm), and µ, can be estimated, from the mea-
sured moments, with the following formulae

NT = M0, Da = M1

M0
, µ= M0M2 −2M 2

1

M 2
1 −M0M2

(7)

3.1.2. Lognormal DSD model fitting

Lognormal model with three parameters used to
describe the rain DSD is proposed by Feingold and
Levin [1986]

N (D) = NTp
2πD lnσ

exp

[
− ln2(D/Dg )

2ln2σ

]
(8)

In this expression, NT is the total number of drops
per unit of volume, Dg is the geometric mean of di-
ameter of the drops, σ is the shape parameter of the

spectrum. By introducing the expression (8) in (4),
the moment of order n is

Mn = NT Dn
g exp

( 1
2 n2 ln2σ

)
(9)

For fitting this model on the measured spectra, with
the moments method, its parameters NT (m−3),
Dg (mm), and σ, can be estimated, from the mea-
sured moments, with the following formulae

NT = M0, Dg = M1

M0

√
M 2

1

M0M2
,

σ= exp


√√√√− ln

(
M 2

1

M0M2

) (10)

3.2. Parameterization of drop size distribution
with rain rate

There are two methods of parameterizing of the
rain DSDs by the rain rate: the method based on
the calculation of the average spectra by rain rate
class [Nzeukou et al., 2004, Ochou et al., 2007,
Sauvageot and Lacaux, 1995] and the scaling law
method [Chapon et al., 2008, Sempere-Torres et al.,
1994, Sempere Torres et al., 1998]. In this study, we
preferred the second method because it offers well-
defined scale parameters that can be easily analysed
according to the integration time steps of DSDs.

3.2.1. Summary of the scaling law formalism

Proposed by Sempere-Torres et al. [1994], the pa-
rameterization of the DSDs by the rain rate R, is writ-
ten as follows:

N (D) = Rαg (DR−β) (11)

In this expression, g is a shape function which should
model the DSDs regardless of the scaling parameter
(R). The constantsα andβ are determined by assum-
ing a power relationship between the moments of the
DSD and the rain rate

Mn = AnRbn (12)

By carrying expression (11) in formula (4) and making
the change of variable (x = DR−β), we obtain

Mn =
[∫ +∞

0
xn g (x)dx

]
Rα+(n+1)β (13)

Thus, by comparing (12) and (13) we have

bn =α+ (n +1)β (14)

and

An =
∫ +∞

0
xn g (x)dx (15)

C. R. Géoscience — 2021, 353, n 1, 135-153
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Moreover, the rain rate is defined [Chapon et al.,
2008, Sempere Torres et al., 1998] by

R =CR M3.67 with CR = 22.68π

104 (16)

By comparing (16) and (13) we deduce the following
relationships

α+4.67β= 1 (17)

and

CR

∫ +∞

0
x3.67g (x)dx = 1 (18)

The relation (17) creates a constraint between the
constants α and β, while the integral equation (18)
is used to reduce the number of parameters of the
shape function.

3.2.2. Shape function with the gamma DSD model

When we assume that the rain DSDs are gamma-
shaped, Chapon et al. [2008] proposed the following
expression for the shape function

g (x;κ,µ,λ) = κxµ exp(−λx) (19)

By introducing the expression (19) in (18), we obtain
the following equation which makes it possible to
reduce to two the number of parameters of the shape
function

κ=λ(µ+4.67)[CRΓ(µ+4.67)]−1 (20)

When we introduce (20) in (19), the shape function of
the gamma DSD model becomes

g (x;µ,λ) =λ(µ+4.67)[CRΓ(µ+4.67)]−1xµ exp(−λx)

(21)

The estimation of the shape function g therefore
boils down to the estimation of two parametersµ and
λ. Furthermore, when we carry the expression (21) of
the shape function in formula (15), we obtain

An = λ(3.67−n)Γ(µ+n +1)

CRΓ(µ+4.67)
(22)

3.2.3. Shape function with the lognormal DSD model

Assuming that the rain DSDs are lognormal-
shaped, in the same approach as [Chapon et al.,
2008], we propose the following expression for the
shape function

g (x;χ,σ,θ) = χp
2πx lnσ

exp

[
− ln2(x/θ)

2ln2σ

]
(23)

By introducing the expression (23) in (18), we obtain
the following equation which makes it possible to
reduce to two the number of parameters of the shape
function

χ=C−1
R θ−3.67 exp[−0.5(3.672) ln2σ] (24)

When we introduce (24) in (23), the shape function of
the lognormal DSD model becomes

g (x;σ,θ) = exp(−0.5(3.672) ln2σ)

CRθ3.67
p

2πx lnσ
exp

[
− ln2(x/θ)

2ln2σ

]
(25)

The estimation of the shape function g therefore
boils down to the estimation of two parametersσ and
θ. Furthermore, when we carry the expression (25) of
the shape function in formula (15), we obtain

An = exp[0.5(n2 −3.672) ln2σ]

CRθ(3.67−n)
(26)

3.2.4. Implementation of the scaling law formalism

In this article, for each integration time step of the
rain DSDs, the scaling law approach will be executed
successively as follows:

(1) Calculation of moments of order n (Mn) and
of the rain rate (R) from the data of measured
rain DSDs.

(2) Determination of the exponents bn and of
the pre-factor An in an empirical way (linear
regression of (12)).

(3) Estimation of the constantsα andβ, from the
values of bn . This estimation is done empiri-
cally (linear regression of (14)).

(4) Estimation of the shape functions: Chapon
et al. [2008] used the method of moments
combined with (18). The approach used in
this article, for each model, is described as
follows:

• For the shape function of the gamma
DSD model, it is necessary to estimate
the values of the parameters µ and λ.
We did a regression in the least squares
sense of (22) compared to the values of
An obtained in step no. 2.

• For the shape function of the lognormal
DSD model, it is necessary to estimate
the values of the parametersσ and θ. We
made a regression in the least squares
sense of (26) compared with the values
of An obtained in step no. 2.

(5) Calculation of the normalized spectra with
(11), then representation of these spec-
tra and the shape functions (gamma and
lognormal).

C. R. Géoscience — 2021, 353, n 1, 135-153
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Table 2. Three categories of spectra, taking into account the efficiency of their level adjusting

Categories Spectra very well adjusted by a
unimodal DSD model

Spectra well adjusted by a
unimodal DSD model

Spectra ill adjusted by a
unimodal DSD model

Criterion 1 Nash ≥ 0.8 0.6 ≤ Nash < 0.8 Nash < 0.6

Criterion 2 KGE ≥ 0.8 0.6 ≤ KGE < 0.8 KGE < 0.6

(6) Validation of the modelling: use of different
statistical criteria to compare the theoreti-
cal moments (12) with the measured mo-
ments (3). In expression (12), the exponent
is calculated with (14), the pre-factor for the
gamma distribution is determined with (22),
and the pre-factor for the lognormal distribu-
tion is determined with (26).

4. Results

4.1. Structuring of rain DSDs spectra

Figure 1 is an example of 1 min rain DSD spec-
tra. These are all multimodal spectra. The values of
the displayed efficiency criterion indicate that these
spectra cannot be adjusted by unimodal DSD mod-
els. To each model adjusting the rain DSD measured
is assigned two criteria. We have created three cat-
egories of spectra based on their level of adjusting,
as shown in Table 2. To assess the percentage of oc-
currence of the level of structuring of these spec-
tra, we have presented in Figure 2 the percentiles of
each criterion. With the 1 min rain DSDs, depend-
ing on the criteria and models, we noted that: 5 to
15% of the spectra are ill adjusted by a unimodal DSD
model; and about 60% of the spectra are very well
adjusted by a unimodal DSD model. The number of
ill-adjusted and well-adjusted spectra decreases in
favour of very well-adjusted spectra, as the integra-
tion time steps increases. This is also confirmed in
Figure 3. We noted that from T = 10 min, the pro-
portion of the three spectral types is almost stable.
Figure 4 also illustrates the effect of the integration
time steps of the DSDs on their structuring. The un-
framed spectra (top and bottom) are 1 min spec-
tra. The majority of the top spectra are not well ad-
justed by the unimodal DSD models. But, their re-
sultant (5 min spectrum) is very well adjusted by the
unimodal DSD models. Moreover, the majority of the
lower spectra are very well adjusted by the unimodal

DSD models. Their resultant (5 min spectrum) is also
very well adjusted by the unimodal DSD models. Fi-
nally, we notice that the resultant of the ten spectra
(bottom and top) is better adjusted than each of the
5 min spectra.

The temporal filtering of DSDs therefore makes it
possible to significantly reduce the number of spec-
tra that cannot be adjusted by unimodal DSD mod-
els. Then, T = 10 min is the optimal duration of mea-
surement for a good structuring of all the spectra of
the dataset.

4.2. Parameterization of rain DSDs by rainfall
rate

Table 3 presents the values of the exponents bn and of
the pre-factor An . Figure 5 describes the estimation
of the constants α and β, for the six integration time
steps chosen. These constants, listed in Table 4, are
all positive, whatever T . Thus, confirming that the
rain rate increases as a function of the number of
drops and the size of the drops.

Figure 6 describes the robustness of the estima-
tion of the parameters of the shape functions, for the
six integration time steps. The values of these param-
eters are listed in Table 4. Figure 7 shows that the
superimposed rain DSD spectra normalized is well
modelled by the shape function (gamma or lognor-
mal).

We analysed the trend of the parameters entered
in Table 4 with respect to the integration time steps.
Figure 8 describes the adjustment of these parame-
ters according to the integration time steps. Regard-
ing the constants α and β, their trends with regard to
the measurement time are not significant. This jus-
tifies the very low dependence of the exponents bn

on the integration time steps. However, with the pa-
rameters of the shape functions (µ, λ, σ, and θ), the
trends in relation to the measurement duration are
significant. This trend is clear: decreasing for µ, λ

C. R. Géoscience — 2021, 353, n 1, 135-153
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Figure 1. Some measured 1 min rain DSD spectra, their rainfalls rate, and the values of the Nash
efficiency criterion (relating to gamma DSD model and lognormal DSD model).

and θ; and increasing for σ. These relations are reg-
istered in Table 5. Thus, the sensitivity of the pre-
factors An with respect to the integration time steps is

explained: for the gamma DSD model by the sensitiv-
ity of the parameters µ and λ with respect to the inte-
gration time steps; and for the lognormal DSD model

C. R. Géoscience — 2021, 353, n 1, 135-153
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Figure 2. The percentiles of the efficiency criteria (Nash and KGE) relating to the gamma and lognormal
DSD models fitting measured spectra (for each integration time steps).

by the sensitivity of the parameters σ and θ with re-
spect to the integration time steps. Although Chapon
et al. [2008] did not insist on this, we note in their
article that the parameters (µ and λ) of the gamma
distribution decrease as a function of the duration of
measurement of the rain DSDs in agreement with our
results.

We analysed the capacity of the models built
to reproduce the moments of order n of the rain
DSD. To estimate these moments, we used as in-
put variables the measured rain rate, constants,
and parameters listed in Table 4. The estimated

moments are then compared with the measured
moments using the statistical criteria defined in
the Appendix. The results of this validation are de-
scribed in Figures 9 and 10, respectively, for the
gamma DSD model and the lognormal DSD model.
These results show that there is no significant dif-
ference between the gamma DSD model, and the
lognormal DSD model, for the estimation of the mo-
ments of the rain DSDs. Overall, the precision on
the estimation of the moments is slightly improved
with the increase in the measurement time of the
spectra. This also proves that the relationships of

C. R. Géoscience — 2021, 353, n 1, 135-153
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Figure 3. Frequency of the three categories of spectra (taking into account the efficiency of their adjust-
ment) as a function of the integration time steps of the rain DSDs.

a given integration time step cannot be used for
another.

5. Discussion

In this paper, we obtained a maximum of 15% of
spectra ill adjusted by a unimodal DSD model, of in-
tegration time T = 1 min, with the efficiency crite-
ria Nash < 0.6 or KGE < 0.6, and this proportion de-
creases according to the duration of integration. To
our knowledge, there are no reference, in relation to
our analysis, allowing us to make a comparison. It is
nevertheless obvious that this proportion must vary
according to the threshold of the criteria. In addi-
tion, it would be very interesting to research, in fur-

ther work, the possible link between the number of
multimodal spectra and the efficiency criteria of their
modelling.

Several studies on rain DSDs have parameter-
ized rain DSD using the scaling law formalism
proposed by Sempere-Torres et al. [1994] mainly
[Chapon et al., 2008, Lee et al., 2004, Sempere Torres
et al., 1998].

Ochou et al. [2007] used the same method as
Sauvageot and Lacaux [1995] and they formalize this
method. They applied this method to the rain DSDs
measured with the JW-Disdrometer [JW means Joss
and Waldvogel, 1969]. These data are collected, at dif-
ferent years, at four West African sites. Comparison
of our results with those of Ochou et al. [2007] needs
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Figure 4. Illustration of the effect of the integration time steps of the DSDs on their structuring. The
unframed spectra (top and bottom) are 1 min spectra. Spectra framed in green are 5 min spectra. The
spectrum framed in red is a 10 min spectrum.
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Figure 5. Estimating of the constants α and β: the exponent bn (relation (14)) according to the order of
the moments (Table 3), for each integration time steps.

establishment of new relationships. Then, using (10),
(12), (14) and (26), we obtained

NT = A0Rα+β and Dg = θRβ (27)

Using (27) and making an identification with the
relations of Ochou et al. [2007], we obtained the val-
ues reported in Table 6. It is noted that the constants
and the parameters obtained in this article are well
in line with those obtained in the West African re-
gion [Ochou et al., 2007]. It can also be noted that

the constants α and β for the West African region
(tropical zone) clearly differ from those obtained in
Cévennes-Vivarais (France) [Chapon et al., 2008]. It
would therefore be interesting to extend this study to
several climatic regions.

6. Concluding remarks

In the same logic as [Chapon et al., 2008], we have
studied in this work the sensitivity of the parameter-
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Table 3. Values of the exponents and pre-factors as a function of the order of the moments and the
integration time steps of the rain DSDs

n T = 1 min T = 2 min T = 5 min T = 10 min T = 15 min T = 20 min

bn An bn An bn An bn An bn An bn An

0.0 0.557 71.28 0.556 71.28 0.558 70.66 0.565 69.71 0.553 70.22 0.561 68.88

0.5 0.607 70.84 0.606 70.72 0.609 70.00 0.614 69.00 0.604 69.29 0.610 68.12

1.0 0.661 72.85 0.661 72.62 0.663 71.82 0.667 70.77 0.659 70.89 0.663 69.87

1.5 0.719 77.38 0.719 77.07 0.721 76.22 0.724 75.13 0.718 75.11 0.720 74.22

2.0 0.780 84.76 0.781 84.38 0.782 83.51 0.784 82.43 0.779 82.30 0.781 81.55

2.5 0.844 95.58 0.844 95.17 0.845 94.34 0.847 93.33 0.844 93.14 0.844 92.55

3.0 0.909 110.75 0.910 110.39 0.910 109.73 0.911 108.95 0.910 108.75 0.909 108.36

3.5 0.977 131.62 0.977 131.49 0.977 131.25 0.977 130.97 0.977 130.89 0.977 130.77

4.0 1.046 160.16 1.045 160.57 1.045 161.25 1.044 162.01 1.045 162.27 1.045 162.56

4.5 1.117 199.13 1.115 200.71 1.114 203.23 1.112 206.04 1.114 207.09 1.115 208.09

5.0 1.189 252.50 1.186 256.34 1.184 262.39 1.180 269.10 1.182 271.82 1.184 274.22

5.5 1.264 325.94 1.259 333.99 1.255 346.52 1.250 360.46 1.251 366.62 1.254 371.75

6.0 1.340 427.60 1.333 443.16 1.328 467.40 1.320 494.55 1.321 507.51 1.324 517.94

6.5 1.418 569.18 1.410 597.90 1.403 642.98 1.392 693.92 1.391 720.06 1.394 740.61

7.0 1.499 767.65 1.488 818.99 1.479 900.76 1.465 994.34 1.462 1045.49 1.466 1085.33

Table 4. The constantsα andβ, and the parameters of the shape functions, depending on the integration
time step of the rain DSDs

Integration time steps Constants Gamma DSD model Lognormal DSD model

α β µ λ σ θ

T = 1 min 0.374 0.136 7.050 7.690 1.340 1.060

T = 2 min 0.378 0.135 6.270 7.090 1.360 1.030

T = 5 min 0.383 0.133 5.520 6.470 1.380 1.010

T = 10 min 0.393 0.131 4.770 5.870 1.390 1.010

T = 15 min 0.383 0.133 4.390 5.580 1.400 1.000

T = 20 min 0.384 0.133 4.220 5.430 1.400 1.010

Table 5. Relationship between the parameters
of the shape functions and the integration time
step of rain DSD

Gamma DSD model Lognormal DSD model

µ= 7.103T −0.173 σ= 1.344T 0.015

λ= 7.712T −0.117 θ = 1.049T −0.016

ization of the rain DSD by the rain rate, according to
the integration time step of the rain DSD (duration

T of spectrum measurement). From the 1 min rain
DSDs measured in the North of Benin (West Africa),
five other datasets of different integration time step
were generated. The spectra of each dataset are indi-
vidually adjusted by gamma or lognormal DSD mod-
els. The efficiency of these models, measured using
two statistical criteria (Nash and KGE), is used to
characterize the structuring of the spectra. Analysis
of the occurrence statistics of the structuring of the
spectra reveals that spectra ill adjusted by a unimodal
DSD model represent 5 to 15% of the population of

C. R. Géoscience — 2021, 353, n 1, 135-153



Sounmaïla Moumouni et al. 147

Figure 6. After estimating the parameters of the gamma (µ and λ) and lognormal (σ and θ) shape
functions. The pre-factor An deduced from the formalism of the scaling law (relation (22) for gamma
and relation (26) for lognormal) is represented as a function of the pre-factor An obtained by empirically
method (Table 3), for the six integration time steps.

1 min rain DSDs. This population decreases accord-
ing to the duration of measurement of the spectra.
This result is in agreement with those of Chapon et al.
[2008] who noted that the rain DSD spectra are bet-
ter organized according to their duration of measure-
ment.

The superimposed rain DSDs of each dataset are
parameterized by the rain rate, using the scaling law
formalism developed by Sempere-Torres et al. [1994].
It was also shown that the parameters of the shape

functions (gamma and lognormal) have a significant
tendency with respect to the integration time step
of the rain DSDs. The effectiveness of this parame-
terization was evaluated by comparing the estimated
useful moments with the measured useful moments.
Furthermore, results show that the pre-factors of the
relationships between the moments of the rain DSD
and the rain rate, increase as a function of the dura-
tion of measurement of the spectra. This growth is ex-
plained by the trend of the parameters of the shape
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Figure 7. Representation of normalized spectra (relation (11)) and shape functions (gamma (rela-
tion (21)) and lognormal (relation (25))) for the six integration time steps.

functions with respect to the integration time step of
the rain DSDs.

The modelling of rain DSDs is of great use for
several applications: quantitative estimation of rain
by weather radars or by mobile telecommunication
links; forecasting the attenuation of satellite signals

by rain; leaching of atmospheric particles by rain;
soil erosion by rain; etc. The results of this work will
have important consequences for all these applica-
tions. For the study of soil erosion by rain, we rec-
ommend the optimal integration time of 10 min,
since the data generally used are from rain gauge
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Figure 8. Trend of the constants (α and β), and trend of the parameters of the shape functions gamma
(µ and λ), and lognormal (σ and θ) as a function of the integration time steps.

Table 6. The constants α and β and the parameters of the shape functions obtained by other authors,
from the rain DSDs with integration duration T = 1 min

No. Locality Constants Gamma DSD model Lognormal DSD model Author

α β µ λ σ θ

1 Djougou (Bénin) 0.375 0.136 7.090 7.740 1.330 1.080 This paper

2 Abidjan (Côte d’Ivoire) 0.440 0.120 — — 1.340 1.000 Ochou et al. [2007]

3 Boyélé (Congo) 0.310 0.150 — — 1.410 0.970 Ochou et al. [2007]

4 Dakar (Sénégal) 0.520 0.100 — — 1.410 0.960 Ochou et al. [2007]

5 Niamey (Niger) 0.440 0.120 — — 1.490 0.950 Ochou et al. [2007]

6 West Africa (No. 2+3+4+5) 0.420 0.120 — — 1.410 0.970 Ochou et al. [2007]

7 Cévennes-Vivarais (France) 0.089 0.195 5.00 7.93 — — Chapon et al. [2008]

C. R. Géoscience — 2021, 353, n 1, 135-153



150 Sounmaïla Moumouni et al.

Figure 9. Validation of the fitting of the gamma DSD model: Statistical criteria calculated by comparing
the moments measured with the moments estimated by the model.

networks. For weather radars, measurements are
quasi-instantaneous and available each 5 or 10 min;
we recommend algorithms with integration times of
less than 1 min. This is theoretically possible with the
relationships in Table 5.
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Figure 10. Validation of the fitting of the lognormal DSD model: Statistical criteria calculated by compar-
ing the moments measured with the moments estimated by the model.
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Appendix. Statistical criteria

Let Y obs be an observed data or directly calculated
from the observations, and Y est be a theoretically
estimated data, E [Y obs] and E [Y est] their respective
averages, and σobs and σest their respective standard
deviations, the five criteria used to test the efficacy of
the model suggested are defined as follows:

• The coefficient of linear correlation of Pear-
son (statistics book)

ρ = E [(Y obs −E [Y obs])(Y est −E [Y est])]

σobsσest
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• The Nash coefficient of Nash and Sutcliffe
[1970], defined by

Nash = 1− E [(Y est −Y obs)2]

E [(Y obs −E [Y obs])2]
• The efficiency coefficient KGE of Gupta et al.

[2009], defined by

KGE = 1−
√

(ρ−1)2 +
(
σest

σobs
−1

)2

+
(

E [Y est]

E [Y obs]
−1

)2

• The mean relative error (statistics book)

MRE = E

[
(Y est −Y obs)

Y obs

]
• Standard deviation of fractional error [Lee

et al., 2004]

SDFE =
√√√√E

[(
Y est −Y obs

Y obs

)2
]
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