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Abstract. Low-amplitude signal detection is a key procedure in borehole microseismic and desert seis-
mic exploration. Usually, signals are difficult to detect due to their low amplitude and noise contam-
ination. To solve this problem, we propose a method combining shearlet energy entropy with a sup-
port vector machine (SVM) to detect low-amplitude signals. In the proposed method, the signal fea-
ture is extracted using shearlet energy entropy. The signal is more sparsely represented in the shearlet
domain because of the multi-scale and multi-direction characteristic of the shearlet transform, which
favours signal feature extraction. Furthermore, in calculating shearlet energy entropy, we use the cor-
relation of shearlet coefficients to enhance the difference between signal and noise in the shearlet do-
main. Shearlet energy entropy makes the SVM achieve a more accurate classification result compared
with other traditional features such as amplitude and energy. The results of synthetic and field data
show that our method is more effective than the STA/LTA and the convolutional neural network for
low-amplitude microseismic signal and desert seismic signal detection.

Keywords. Shearlet energy entropy, SVM, Microseismic signal, Desert seismic signal, Signal detection.
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1. Introduction

The technology of hydraulic fracturing monitoring
with microseismic signals is used to judge the form
and extension trend of fracturing through an analysis

* Corresponding author.

ISSN (electronic) : 1778-7025

of recorded microseismic data [Maxwell and Urban-
cic, 2001]. However, low-amplitude microseismic sig-
nals are usually submerged by a strong noise [Zhang
and Van der Baan, 2018a]. Likewise, increasingly dif-
ficulties arise in desert seismic signals detection be-
cause of the similarity between signal and noise [Li
and Li, 2016]. Thus, we need to develop an accu-
rate and fast low-amplitude seismic signal detection
method. Various approaches have been proposed:
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the STA/LTA method detects signals based on the ra-
tio variation of the amplitude or energy in the time
domain [Allen, 1982]. Although the computation cost
of the STA/LTA is low, its quality decreases when the
signal-to-noise ratio (SNR) of the record is low. The
Akaike information criterion (AIC) proposed here is
based on an autoregressive model used to determine
the boundary points of two stationary sequences
with different statistical properties for signal detec-
tion [Leonard, 2000]. AIC does not work well for low-
amplitude seismic signal detection, either. Methods
based on convolutional neural network (CNN) signal
detection have attracted much attention [Yuan et al.,
2018, Samaneh et al., 2018, Xiong et al., 2018], but
their performances depend on the existence of large
training datasets.

The wavelet transform is widely used for seismic
signal detection [Wang, 2009]. It is a method based
on time-frequency analysis, which has high flexibil-
ity and fast calculation [Mallat and Hwang, 1992].
There are two types of signal detection methods us-
ing wavelet transform: one uses the wavelet trans-
form for pre-processing in order to suppress the
noise [Wang, 2009]; the other makes use of some sig-
nal features in the wavelet domain such as energy
entropy, multi-scale entropy [Jia et al., 2016]. How-
ever, the wavelet transform cannot perform multi-
directional decomposition. Multi-directional analy-
sis methods such as the shearlet transform are pro-
posed to treat this issue [Lim, 2010]. The shearlet
transform has alower approximation error for signals
than other multiscale and multidirectional analysis
methods [Zhang and Van der Baan, 2018b, 2019].

In this paper, we propose a method combining
shearlet energy entropy with SVM to detect a micro-
seismic and seismic signal. The signal can achieve
a sparser representation in the shearlet domain due
to the multi-direction characteristic of the shear-
let transform, which favours signal feature extrac-
tion. Furthermore, we do the correlation processing
across scales to enhance the difference between sig-
nal and noise in the shearlet domain. Then we cal-
culate the shearlet energy entropy as a signal fea-
ture. Compared with the traditional features such
as amplitude and energy, SVM can give a more ac-
curate classification result with shearlet energy en-
tropy. The SVM has higher accuracy for small training
datasets compared with methods of deep-learning
signal detection [Zhang et al., 2004]. We use SVM in-
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stead of a threshold to obtain an automatic detec-
tion. It avoids misjudgments caused by threshold se-
lection. Tests show that the proposed method can
effectively detect microseismic and seismic signals
at low SNR.

2. Shearlet energy entropy
2.1. Shearlet

Guo and Labate [2006, 2007] combined the complex
wavelet theory with multi-scale geometric analysis
to construct a sparse representation of a multidi-
mensional function: the shearlet representation. The
shearlets v 1, are a special example of composite
wavelets in L?(R?), which can be constructed by ap-
plying dilations, shear transformations, and transla-
tions to an appropriate mother function. In dimen-
sion 2, the shearlets can be written as the following
form:

(W km () = det Aol "2y (S A x = m):
j kez,mez?}, (1)

where 1 is an appropriate band-limited function in
L%(R?), for details see [Easley et al., 2008]. The param-
eters j, k, m represent scale, direction and position,
respectively. Ag is anisotropic dilation matrix which
is associated with the scale transformation, and Sy
is called shear matrix which is associated with the
direction transformation, here the two matrices are
40 . [11
02507 o1

The shearlet transform of a function f € L[2(R?) for
a certain scale, direction and position is defined as
follows:

given as: Ag =

Sf(]) k» m) = <fr1//j,k,m>r (2)

where S¢(j, k, m) represent the decomposed coeffi-
cients after the shearlet transform. The symbol ¢, ")
denotes the scalar inner product.

2.2. Shearlet energy entropy

The shearlet transform can decompose the data into
different scales and directions which yields the shear-
let coefficients S¢(j, k, m). The signals energy is con-
centrated in only a few directions due to their spa-
tial correlation at those dips only [Zhao et al., 2016,
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Zhang and Van der Baan, 2019]. We define the energy
of the shearlet coefficient as:

E(j, k) =) S5(j, kym) 3)
m

where E(j, k) is the energy of the shearlet coefficient
in the jth scale and the kth direction.

The difference between signal and noise becomes
small when the SNR is low. Thus, we determine to do
the correlation between two adjacent scales to high-
light the features of the signals. The correlation en-
ergy between two adjacent scales is defined as fol-
lows:

ESj js1(k) = E(j,k)-E(j +1,k), )

where E(j, k) and E(j + 1, k) respectively express the
energy of two adjacent scales in the same direction.

Through (4), we can get the signal’s direction by
largest energy distribution. Then we do the correla-
tion to the signal’s direction coeflicients between two
adjacent scales to further enhance the coefficients
associated with signals. Finally, We divide the en-
hanced coeflicients into some segments, the energy
of these segments is expressed as Ej, Eo, ..., E.. The
total energy E is equal to the sum of Ej, Ep, ..., E,. Set
pr = E;/E, and Y¢_, p; = 1. Shearlet energy entropy
is defined as:

W =-Y p:log(py). 5)

The entropy is used to measure the randomness
of signals. In the process of signal detection, ran-
domness causes noise to have larger entropy values
than the signals [Rezek and Roberts, 1998]. Since sig-
nal and noise present different characteristics in the
shearlet domain, the proposed shearlet energy en-
tropy can further enhance the difference between
signal and noise.

3. Signal detection based on shearlet energy
entropy and SVM

SVM is a classifier and its basic theory is margin-
maximization. It has a simple structure and low com-
putation cost [Adankon and Cheriet, 2009, Hu et al.,
2013]. For signal detection, we get a SVM classifier
through the training set, and then we can use this
trained SVM classifier to determine if the input rep-
resent signals. The specific theories of SVM are as fol-
lows:
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The main principle of SVM classification is to find
the optimal classification surface. The optimal clas-
sification surface can be transformed into solving the
following equation [Widodo and Yang, 2007]:

1 2 7
min —|wl|“ + i 6
min 2ol yi:Zlf, (6)

S.t.
yilwTpz)+b)=1-&, &=20,i=1,...,n (7

where w is the normal vector, which determines the
direction of the hyperplane; y is the penalty parame-
ter which imposes a trade-off between training error
and model complexity; z; is the input sample and y;
corresponds its label, the value of y; could be +1 or
—1; i represents the sample number; b is the offset,
which determines the distance between the hyper-
plane and the origin; ¢; is the slack variable, which is
used to measure the deviation of data from the ideal
conditions. ¢ is a nonlinear mapping function, it can
map the input data into a high dimensional feature
space. The solution details of this optimization prob-
lem, see Widodo and Yang [2007].

After solving the above equation, the final decision

function is given by:
n
D(z) = sign (Z ciyiK(z,z;) + b) , (8)
i=1

where c; is the Lagrange multiplier. Through (8), we
can get a two-class classifier to determine if the input
are signals or not. If (Z:‘zl ¢iyiK(z,z;)+b)>0,D(z) =
+1 represents the positive sample, conversely, D(z) =
—1 represents the negative sample. K(z,z;) repre-
sents the Gaussian radial basis function kernel, it is
defined as:
—llz -zl
gz ) ) 9)
where o is the width parameter of a function, which
controls the radial range of the function.

The penalty parameter y and the parameter o in
the kernel functions are two key factors affecting the
accuracy of the SVM classifier. If the penalty param-
eter y is set too small or too large, the learning algo-
rithm will be under-fitting or over-fitting. When o is
set too small, the radius of the area of influence of
the support vectors only includes the support vec-
tor itself and no amount of regularization with y will
be able to prevent over-fitting. Conversely, if o is too
large, the model cannot capture the complexity or
“shape” of the data. Therefore, in this paper, we use

K(z,z;) =exp (
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leave-one-out cross-validation to get some pairs of y
and o which can achieve a high accuracy.

To train a SVM classifier, first, we choose some sig-
nal and noise samples to create the training dataset,
where the number of noise samples and signal sam-
ples is the same. The signal samples are generated by
using Ricker wavelets with different amplitudes and
dominant frequencies. The noise samples are gener-
ated using by a combination of white Gaussian noise
(WGN) and real noise with different levels. Then we
calculate the shearlet energy entropies of these sam-
ples and put them into SVM to train a final classifier.
When we have obtained a SVM classifier, the signal
detection is done in two steps:

Step 1: We decompose the input data into a shear-
let domain to find the shearlet coefficients in signal’s
direction. Then we correlate them with a adjacent
scale to enhance the signal coeflicients.

Step 2: We calculate the energy entropies of the
enhanced shearlet coefficients obtained from step 1.
Then, the energy entropies are used as input into the
trained SVM classifier for signal identification.

4. Experiments
4.1. Synthetic microseismic data

To verify the reliability of this method, we simulated
the microseismic signal containing the P wave and
the S wave. The amplitude of the P wave is smaller
than that of the S wave, as shown in Figure 1. The
frequency of the microseismic signal is high and the
dominant frequency of the actually received wavelet
is about 200 Hz. [Gao et al., 2018, Maxwell and Ur-
bancic, 2001]. We set the dominant frequencies of
two microseismic signals to 200 Hz [Zhu et al., 2016]
which is close to the real situation. The sampling fre-
quency is 1000 Hz. The amplitudes of the P wave and
S wave are 0.5 and 0.2. Figure 2 is the noisy record
where white Gaussian noise (WGN) was added with
the SNR of -8 dB.

The record is decomposed into 4 scales by the
shearlet transform. Since most microseismic signals
concentrate on the high frequency scales, and the
larger scales correspond to higher frequencies, we
choose the larger scales for detection. In this paper,
we divide records into 4 scales and we process the
two largest scales: 3rd and 4th scale. Figure 3 shows
the shearlet coefficients in different directions at the
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3rd scale. We can see that most signals are concen-
trated in the 4th direction, while noise is distributed
in all directions. The correlation energy of the first
trace between adjacent scales is shown in Figure 4.
We can see that the correlation energy in the 4th di-
rection is obviously larger than the others. This in-
dicates that we can obtain more accurate signal di-
rections through correlation processing. Figure 5(a)
shows the waveform of the first trace. We can see
that the front low-amplitude microseismic signal is
submerged by noise which is difficult to identify. The
shearlet coefficients after the correlation processing
is shown in Figure 5(b), the shearlet coefficients asso-
ciated with microseismic signals are all distinguished
from the noise, which facilitates the subsequent en-
ergy entropy feature extraction and SVM detection.

Next comes the training process of the SVM. For
the training set of the SVM classifier, we chose here
1000 groups of signal samples and 1000 groups of
noise samples to form the training set. The sig-
nal samples are were randomly generated by using
Ricker wavelets with the amplitudes ranging from 0.1
to 1 and frequencies ranging from 100 to 500 Hz. The
noise samples were randomly generated with WGN
and real noise with different levels. Through training,
we can obtain the trained SVM classifier.

We compared the proposed method with the
STA/LTA and CNN, and the detection results are
shown in Figure 6. The proposed method can accu-
rately detect two microseismic signals and there is no
misjudgment. In the case of low SNR, we can still ac-
curately detect the microseismic signals, while there
are many detection errors with the STA/LTA and CNN
methods. It is difficult to choose a suitable threshold
for the STA/LTA method especially when the SNR is
low. CNN achieves accurate detection at high SNR,
but it does not work well for low SNR either. In con-
trast, the proposed method avoids threshold setting
and the detection result of the proposed method is
accurate at low SNR.

4.2, Statistical experiments

In order to verify the validity of the proposed method,
we pick 500 groups of samples to make the experi-
ment. A Ricker wavelet is used to simulate the signal.
The dominant frequency of Ricker wavelets is 200 Hz.
The sampling frequency is 1000 Hz. We add different
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Figure 1. Synthetic microseismic record.
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Figure 2. Noisy record contaminated by WGN with the SNR of —8 dB.

Table 1. Accuracy of synthetic signal detection

by the proposed method
Amplitude SNR
-5dB -6dB -7dB -8dB
1 100% 99.2% 92.4% 87%
0.5 100% 98.6% 92.2% 85%
0.2 99.8% 98.2% 91.4% 80%

WGN:ss to pure Ricker wavelets and change the ampli-
tudes of the Ricker wavelets. The detection results of
the proposed method, STA/LTA and CNN are listed in
Tables 1, 2 and 3, respectively.
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Table 2. Accuracy of synthetic signal detection
by STA/LTA

Amplitude SNR
-5dB -6dB -7dB -8dB
1 97% 90.2% 86.4% 70%
0.5 90% 89.5% 85.6% 69%
0.2 87% 87% 83.4% 63.4%

From Tables 1, 2 and 3, we can see that the detec-
tion accuracy decreases as the SNR and signal ampli-
tude decrease. The proposed method achieves higher
accuracy at low SNR compared with the STA/LTA and
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Figure 4. The correlation energy of first trace between adjacent scales (j =3 and j = 4).

CNN. The accuracy of the proposed method is 80% CNN is only 60%-76%. We draw receiver operating
when the SNR is —8 dB. The accuracy of STA/LTA and characteristic (ROC) curves of 100 groups of samples

C. R. Géoscience, 2020, 352,n° 1, 103-113
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Figure 6. Detection results of Figure 2 by the proposed method, STA/LTA and CNN.

Table 3. Accuracy of synthetic signal detection
by CNN

Amplitude SNR
-5dB -6dB -7dB -8dB
1 97.8% 94% 89%  76%
0.5 925% 89.6% 85% 73.1%
0.2 91% 88% 84.6% 68.2%

when SNR is —8 dB and the amplitude of the Ricker
wavelet is 0.2 as shown in Figure 7. A method works
more accurately if its ROC curve is closer to the upper

C. R. Géoscience, 2020, 352,n° 1, 103-113

left corner. The AUC is the value of the area under the
ROC curve which is used to conclude whether a clas-
sifier is excellent. When an AUC value of a method
is larger, this method has higher accuracy. The AUC
values of the proposed methods, STA/LTA and CNN,
are 0.8570, 0.7091 and 0.7536, respectively. As shown
by Figure 7, the ROC curve of the proposed method
is closer to the upper left upper corner and its AUC
value is larger than that of the other two methods.
Thus the proposed method has higher accuracy than
the other two methods. To further verify the effec-
tiveness of the proposed method, we add real noise
with different levels to the above synthetic microseis-
mic signals to compose 300 group samples: the am-
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Figure 8. The field microseismic record.

plitude of synthetic microseismic signals is 1 in the
first 100 groups, 0.5 in the second 100 groups, and
0.2 in the last 100 groups. The detection results of the
proposed method, STA/LTA and CNN are listed in Ta-
ble 4. We can see that the proposed method still has
the highest accuracy in all cases.

4.3. Real microseismic and desert seismic data

In order to prove the validity of the proposed method
in dealing with real data, we selected for analysis and

C. R. Géoscience, 2020, 352,n° 1, 103-113

Table 4. Detection accuracy of synthetic signal
contaminated with real microseismic noise

Amplitude 1 05 0.2
The proposed method 100% 95% 82%
STA/LTA 93% 71% 60%

CNN 95.6% 77% 70%

processing a real microseismic record with 15 traces
in a certain area of China, as shown in Figure 8 (this
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Figure 9. Detection results of Figure 8 by the proposed method, STA/LTA and CNN.

record is also used in some published papers such as
Li et al. [2018], Zhu et al. [2016]). We can see that the
amplitudes of signals in some traces are too weak to
detect. These weak signals also have waveforms sim-
ilar to those of the noise. The detection results of the
proposed method, STA/LTA and CNN are shown in
Figure 9. The STA/LTA method does not work well
for this situation. Some noise with a similar ampli-
tude and waveform is identified as a signal by the
STA/LTA method. CNN identifies the low-amplitude
signals as noise and thus they cannot be detected.
High-frequency weak microseismic signal detection
is very challenging for methods based on energy or
deep learning. These weak signals can be accurately
detected by the proposed method which performs
well in low SNR.

This challenge also appears in the desert record.
The random noise in a desert seismic record is con-
centrated to the low frequency bands which often
overlaps with the seismic signal. It causes great dif-
ficulty in desert seismic signal detection. Figure 10
shows a real desert record with 30 traces. We can see
that desert noise has a low frequency and a wave-
form similar to that of the signal. In this example, we
also compare the proposed method with the STA/LTA
and CNN, and their detection results are shown in
Figure 11. The performance of the STA/LTA dramati-
cally decreases for weak desert seismic signal detec-

C. R. Géoscience, 2020, 352,n° 1, 103-113

tion. Most signals can be detected by the CNN, but
some noise sequences are also identified as signals.
The proposed method has the highest accuracy com-
pared with the STA/LTA and CNN.

5. Conclusion and discussion

In this paper, shearlet energy entropy is used as a
signal feature to detect effective signals. This feature
can better differentiate the signal from the noise than
a simple energy computation. The SVM classifier is
trained with the extracted feature. There is no need
to select a reasonable signal detection threshold with
the use of SVM. The detection errors due to inappro-
priate threshold selection can be reduced. The sig-
nal is detected in an intelligent way by the proposed
method. A large number of experiments demon-
strate the potential and superiority of this proposed
method for low-amplitude microseismic and seis-
mic signal detection. It requires much fewer training
datasets than the CNN- based signal detection meth-
ods.

In the proposed method, shearlet energy entropy
is used as a feature to train a SVM classifier for signal
detection. A more effective classifier can be obtained
by combining more features. In addition, a more re-
fined kernel-function selection in the SVM such as a
mixed-kernel function can further increase the clas-
sification accuracy.
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