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Abstract. The Laal-Kan fluorite deposit situated in north margin of the Sanandaj-Sirjan metamorphic
belt and Urmia-Dokhtar magmatic arc, NW Iran. The fluorite mineralization in the form of open-space
filling, veins and veinlets have been deposited in the contact zone between highly metamorphosed
schist, gneiss, amphibolite of the Paleozoic age and the Jangutaran limestone of the Precambrian
age. The occurrence of convex tetrad effect and the calculated tetrad values indicate that early and
late stage fluorite mineralization display various geochemical behavior, which are supported by the
bivariate diagrams including T1, T3 and T4 versus each other and some geochemical parameters such
as La/Ho, Y/Ho and Zr/Hf ratios. It can, therefore, deduced that fluorite have been probably formed
during two stages from hydrothermal fluids with a relatively constant composition. The fluid-rock
interaction during deposition of fluorite and REE-F complex were likely the main mechanisms for the
occurrence of tetrad effect.
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1. Introduction

Lanthanides and Y known as Rare Earth Elements
(REE) generally occur in the trivalent oxidation state
(Ln3+) except Ce (Ce3+ and Ce4+) and Eu (Eu2+ and
Eu3+), which display very similar behavior during

∗Corresponding author.

geochemical processes in a wide range of geologi-
cal environments [Bau and Dulski, 1995, Shannon,
1976]. This characteristic of REE have been used as
a geochemical indicator for investigation of ore de-
posits and interpretation of the related geochemical
processes during formation of deposits such as fluo-
rite deposits [Abedini et al., 2019a, Ackerman, 2005,
Akgul, 2015, Deng et al., 2014, Dill et al., 2016, Sas-
maz and Yavuz, 2007, Sasmaz et al., 2018, Williams
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et al., 2015]. The lanthanides are a coherent group
of elements that their ionic radii gradually decrease
with increasing the atomic number from La (1.03 Å)
to Lu (0.86 Å), which is known as the lanthanide con-
traction [Shannon, 1976]. These specifications cause
them to display similar behaviors and graphically
smooth distribution patterns in geochemical investi-
gations indicating their charge and radius controlling
characteristic [Bau, 1996].

These irregularities have been interpreted as the
existence and occurrence of the tetrad effect phe-
nomenon in geochemical processes [Abedini et al.,
2018a,b,c, Kawabe, 1995, Lee et al., 2013, Masuda
et al., 1987, Takahashi et al., 2002], which have been
reported for the first time by Fidelis and Siekier-
ski [1966]. Lanthanides tetrads are known as four
separate groups including La–Nd (first tetrad), Pm–
Gd (second tetrad), Gd–Ho (third tetrad) and Er–Lu
(fourth tetrad) correspond to 1/4, 1/2, 3/4 and filled
electrons of 4f orbital in lanthanide elements [Jahn
et al., 2001]. As can be seen, Gd is a common element
between second and third tetrads. The tetrad effect is
another factor that controls the REE distribution be-
side other ones such as pH of fluids/solutions, scav-
enging, mineral phases and stability of REE-complex
[McLennan, 1994, Sasmaz et al., 2005, Veksler et al.,
2005].

Based on the recent works, the form of tetrad
effect-bearing normalized REE curves can be cate-
gorized into four groups [Abedini and Rezaei Azizi,
2019, Abedini et al., 2019b, Feng et al., 2014, Mi-
namim et al., 1998, Nardi et al., 2012]: (1) concave
or W-type indicative for low temperature deposits,
(2) convex or M-type generally occur in magmatic
or related systems, (3) conjugate convex–concave or
W–M-type and finally (4) zigzag pattern, which can
be related to incomplete occurrence of tetrad effect.
Previous studies have proposed some quantum me-
chanical based mechanisms for the occurrence of
tetrad effect such as nephelauxetic ratios, the spin
energy for coupling, electron configuration of lan-
thanides and Gibbs free energy [Jorgensen, 1970,
Kawabe et al., 1999, Masuda et al., 1994, Nugent,
1970].

Fluorite deposits in Iran reach to 30 with being
more than 3.4 million tones reserve. Some on these
deposits are situated on the Sanandaj-Sirjan meta-
morphic belt including Qahr Abad, Bagher Abad,
Darreh Badem, Atash Kuh and Laal-Kan [Alipour

et al., 2015, Ehya, 2012, Rezaei Azizi et al., 2018b]. In
this paper we focused on the behavior of the REE and
some trace elements with emphasizes on the occur-
rence of tetrad effect in fluorite samples to constrain
the difference between early and late stage fluorite
precipitation in the hydrothermal fluorite deposit of
the Laal-Kan district.

2. Geological settings

Previous studies indicated that many Zn–Pb and
fluorite-barite deposits have been formed at the mar-
gins of the Central Iranian Zone [Rajabi et al., 2012].
Based on the structural geology map of Iran [Aghan-
abati, 1998, Alavi, 1991], the Laal-Kan fluorite deposit
is situated ∼90 km west of Zanjan city, NW Iran at the
contact zone of the Sanandaj-Sirjan metamorphic
belt and Urmia-Dokhtar magmatic arc [Gilg et al.,
2006, Richards et al., 2006] and a worldwide known
Zn–Pb Angouran mine is located ∼500 m south of the
fluorite deposit (Figure 1).

The simplified geology map of the study district
(Figure 2) shows that diverse lithologies from the
Precambrian to Quaternary ages crop out in this
district [Babakhani and Ghalamghash, 1990]. These
lithologies from oldest to youngest can be summa-
rized as follows: (1) the Kahar Formation includ-
ing micaschist, gneiss, amphibolite and quartzite
of the Neoproterozoic age, (2) a metamorphosed
ultramafic–mafic lava and dolomitic limestone–
limestone (Jangutaran Limestone) of the Precam-
brian age, (3) a highly metamorphosed alternation
of schist, gneiss, marble and amphibolite of the Pa-
leozoic age, (4) quartzdiorite, diorite, gabbro and
granite of the Triassic–Jurassic age, (5) the Lower
Red Formation including sandstone, conglomerate
and gypsiferous marls of the Oligocene–Miocene
age, (6) alternation of marl, sandstone, siltstone and
mudstone of the Oligocene–Miocene age, (7) an-
desitic volcanic breccia of the Oligocene–Miocene
age, (8) dacitic-ignibritic lavas and porphyritic an-
desitic lavas of the Oligocene–Miocene age, (9) lime-
stone of Qom Formation of the Oligocene–Miocene
age, (10) andesitic, dacitic-andesitic lava domes of
the Oligocene–Miocene age, (11) travertine, sand,
clay and recent alluvium of the Quaternary age.

Field observations reveal that fluorite mineraliza-
tion in the form of open-space fillings, veins and
veinlets are in the contact zone between the highly
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Figure 1. Simplified structural map of Iran [Alavi, 1991, Aghanabati, 1998] indicating the location of Laal-
Kan and some fluorite deposits.

metamorphosed schist, gneiss, amphibolite of Pale-
ozoic age and the Jangutaran limestone of the Pre-
cambrian age [Rezaei Azizi et al., 2018b]), which de-
posited along and/or parallel to the Laal-Kan Fault in
a W-E trending (Figure 2). The existence of a close
relationship between the fault system and mineral-
ization emphasizes that the structural systems have
played a significant role as pathways for uprising hy-
drothermal fluids [Rezaei Azizi et al., 2018b]. Fluorite
mineralization in this deposit has a variable thick-
ness from a few centimeters to ∼4 m. Field observa-
tions indicate that the contact between mineraliza-

tion and host rocks are relatively sharp with no sig-
nificant alteration. White, smoky and violet colors are
the most abundant that can be seen in the study dis-
trict.

3. Sampling and analytical methods

Thirty-seven samples of fluorite in white, smoky and
violet colors from the excavated places of the deposit
were collected for petrographic studies. In order to
prevent any probable alteration and/or wall-rock in-
teraction during our studies, fifteen thin sections of

C. R. Géoscience, 2020, 352, n 1, 43-58
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Figure 2. Simplified geology map of the study district (after Babakhani and Ghalamghash [1990]).

fluorite samples (in all available colors) were pre-
pared and studied using a petrographic microscope
in the Geology Department at Urmia University to
determine the available mineral phases and their ge-
netic relationship.

For chemical analysis, to prevent any contam-
ination all fluorite grains were separated from the

host rocks by handpicking under a binocular mi-
croscope in the Geology Department at Urmia
University. Totally, eleven fluorite samples (>99%
purity) of the study district in various colors includ-
ing white (#2), smoky (#2) and violet (#7) were an-
alyzed using the inductively coupled plasma mass
spectrometry (ICP-MS) technique to determine the

C. R. Géoscience, 2020, 352, n 1, 43-58
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trace and REE concentration at the Zarazma Zangan
Iranian Co, Iran.

For chemical analysis, all the prepared samples
were crushed to less than −80 mesh after drying at a
temperature less than 60 ◦C. 250 g of fluorite samples
were powdered to less than −150 mesh using a steel
ring mill and 0.2 g of these prepared fluorite samples
were weighted. 1.5 g lithium borate (Li2B4O7) was
added to each of the fluorite samples and heated at
980 ◦C for ∼30 min. After cooling these samples, each
one of them was dissolved in 100 ml nitric acid (5%).
For measuring the amount of trace and REE in each
samples, they poured into a Polypropylene Test Tube.
Measuring the loss on ignition (LOI) was calculated
by the amount of weight loss of 1 g sample before and
after heating at 950 ◦C for ∼90 min. The calibration
and standards were also carried out to control during
analysis processes. The detection limits for analyzed
elements including trace and REE varied from 0.02 to
5 ppm.

4. Results

4.1. Petrography

The mineralogy studies in the fluorite samples of this
district showed that fluorite, quartz and Fe-oxides
mostly hematite were the major mineral phases
of the samples but, barite, calcite, hemimorphite
and clays were distinguished as the minor mineral
phases.

Based on the field observations, fluorite mineral-
ization in the form of open-space fillings, veins and
veinlets consisting of relatively coarse-grained and
massive crystals, which display relatively sharp con-
tact with schist (host rock). Hemimorphite and Fe-
oxides are relatively abundant minor mineral phases
that can be distinguished in the supergene zone due
to weathering.

The studies indicate that fluorite mineralization
has been probably formed in two different stages.
Early stage fluorite crystals are characterized by large
coarse-grained and massive euhedral to subhedral
crystals (Figure 3a, b). These studies also indicated
that tectonic activities caused micro fractures to be
formed in the early stage fluorite crystals. These frac-
tures were filled with Fe-oxides and clay mineral
phases during weathering processes (Figure 3c, d).
The early stage fluorite crystals were also associated

with first generation euhedral to subhedral quartz
(Figure 3e, f). The late stage fluorite is characterized
by subhedral to anhedral, fine-grained fluorite crys-
tals, which were formed in the fractures of the early
stage fluorite crystals and/or schist (host rock) at dis-
tance some far from the open-space filling and cavi-
ties in the study district (Figure 4a, b). The late stage
fluorite in this district is associated with subhedral to
anhedral fine-grained quartz (Figure 4c, d) and hemi-
morphite (Figure 4e, f).

4.2. Geochemistry

The concentrations of some trace and REE for fluo-
rite samples in the Laal-Kan fluorite deposit are pre-
sented in Table 1. As shown in this table, the concen-
tration of Y, Hf and Zr vary between 6.1–8.3, 0.65–1.61
and 0.8–4.7 ppm, respectively. The total REE values of
the analyzed samples also vary in the range of 4.16–
25.67 ppm. Table 2 also lists the calculated geochem-
ical ratios for fluorite samples in the study district.
The Zr/Hf ratio is in the range of 0.5–4.75. The Y/Ho
and La/Ho ratio values for fluorite samples vary from
24.4 to 52.31 and from 2.88 to 24.92, respectively.

5. Discussion

5.1. REE geochemistry

REE distribution during geochemical processes is
strongly dependent on some paleo physic-chemical
conditions such as pH, Eh, temperature of flu-
ids/solutions, fugacity of oxygen in the environment,
water/rock interaction and REE-complex stability
[Abedini et al., 2011, Bau et al., 2003, Castorina et al.,
2008, Khosravi et al., 2017, Levresse et al., 2011,
Nkoumbou et al., 2017, Rezaei Azizi et al., 2018a,
Sasmaz et al., 2005, Tassongwa et al., 2017]. Fluo-
rite as an informative mineral has been reported
from a wide range of deposits and geological en-
vironments that can be used to constraint the pa-
leo physic-chemical condition during geochemical
investigations [Coşanay et al., 2017, Schwinn and
Markl, 2005].

Statistically, the median values of REE concen-
tration in fluorite samples of the study district is
8.41 ppm with the standard deviation equal to
8.5 ppm. The large value for calculated values of
the standard deviation means that the distribution

C. R. Géoscience, 2020, 352, n 1, 43-58
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Figure 3. Photomicrographs of the early stage fluorite mineralization in the Laal-Kan deposit. (a) and (b)
coarse-grained and massive early stage fluorite (Fl-1) filled with Fe-oxides and clay minerals under ppl
and xpl lights, respectively. (c) and (d) the occurrence of micro fractures in the early stage fluorites (Fl-1)
filled with quartz and calcite under ppl and xpl lights, respectively. (e) and (f) first generation euhedral to
subhedral quartz (Qz-1) crystals in the early stage fluorite Fl-1) under ppl and xpl lights, respectively. Fl =
fluorite and Qz = quartz. Abbreviations are from Whitney and Evans [2010].

pattern for ΣREE in fluorite samples is not a normal
distribution [Edjabou et al., 2017]. As shown in Fig-
ure 5a, the distribution patterns show two different
peaks that can be related to different populations
due to changes in geochemical condition during
formation of fluorite [Abedini and Rezaei Azizi, 2019,
Badel et al., 2011]. The clusters were classified into
two populations due to geological, geochemical and
mathematical based relationships (Figure 5b, c). The
first population includes the fluorite samples that
are characterized by low ΣREE with the median and
standard deviation values equal to 6.1 and 1.5 ppm,

respectively. The second group of samples has larger
values of the median and standard deviation values
equal to 21.6 and 2.9 ppm, respectively.

5.2. Tetrad effect

The chondrite-normalized REE patterns for fluorite
samples are shown in Figure 6. Previous studies have
shown that the early stage fluorite mineralization
(Figure 6a) is characterized by LREE enrichment rela-
tive to HREE, whereas the late stage ones (Figure 6b)
are characterized by LREE depletion [Rezaei Azizi

C. R. Géoscience, 2020, 352, n 1, 43-58
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Figure 4. Photomicrographs of the late stage fluorite mineralization in the Laal-Kan deposit. (a) and (b)
coarse-grained and massive early stage fluorite (Fl-1) and late stage fluorite (Fl-2) under ppl and xpl lights,
respectively. (c) and (d) Fe-oxides and subhedral to anhedral fine-grained quartz associated with the late
stage fluorites (Fl-2) under ppl and xpl lights, respectively. (e) and (f) hemimorphite in association with
the late stage fluorite (Fl-2) under ppl and xpl lights, respectively. Fl = fluorite, Hmp = hemimorphite and
Qz = quartz. Abbreviations are from Whitney and Evans [2010].

et al., 2018b]. The remarkable point in these pat-
terns is the occurrence of the tetrad effect in the flu-
orite samples of the Laal-Kan deposit. Both early and
late stage fluorite samples display a convex form in
the chondrite-normalized REE patterns. In this pa-
per, the values of tetrad effect in each group were cal-
culated by (1) proposed by Monecke et al. [2002].

Ti =

√√√√√√ 1

2
×

 XBi

3
√

(XAi
2 ×XDi)

−1

2

+
 XCi

3
√

(XDi
2 ×XAi)

−1

2
(1)

In this equation, XBi and XCi are the concentrations
of the two central elements of the individual tetrad,
and XAi and XDi the concentrations of the first and
the fourth lanthanides of the same tetrad, respec-
tively and Ti (i = 1–4) gives the values for each tetrad.
If all tetrad elements are in the straight line Ti will
be equal to zero and Ti values higher than zero indi-
cate the occurrence of tetrad effect in the normalized
curves. It is worth noting that radioactive Pm does
not occur in geological environments, therefore the
calculation of second tetrad is impossible [McLen-
nan, 1994]. Table 3 lists the calculated values for indi-
vidual tetrad in fluorite samples of the study deposit.

C. R. Géoscience, 2020, 352, n 1, 43-58
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Table 1. The concentration values (in ppm) of some trace and REE for fluorite samples in the Laal-Kan
fluorite deposit

Element
White fluorite Smoky fluorite Violet fluorite

WF.1 WF.2 SF.1 SF.2 VF.1 VF.2 VF.3 VF.4 VF.5 VF.6 VF.7

Fl-1 Fl-2 Fl-1 Fl-1 Fl-1 Fl-2 Fl-2 Fl-2 Fl-2 Fl-2 Fl-1

Y 6.7 8.3 6.5 7.2 6.4 6.6 6.7 7.2 6.8 6.8 6.1

Hf 0.81 0.65 0.78 0.97 1.34 1.58 1.61 1.48 1.39 1.17 0.83

Zr 3.8 1.5 3.5 4.1 4.7 1.8 0.8 2.1 0.9 1.6 3.6

La 4.72 1.2 5.98 5.1 4.04 0.82 0.49 0.7 0.4 0.48 3.45

Ce 7.89 3.08 10.06 9.11 7.07 2.04 2.08 2.39 1.3 1.15 6.51

Pr 0.93 0.31 1.09 1.02 0.86 0.2 0.18 0.21 0.13 0.11 0.9

Nd 3.58 0.95 3.98 3.65 3.25 0.63 0.57 0.69 0.4 0.36 2.98

Sm 0.87 0.19 0.82 0.75 0.64 0.18 0.21 0.19 0.16 0.14 0.59

Eu 0.23 0.05 0.26 0.23 0.22 0.04 0.03 0.04 0.04 0.04 0.19

Gd 0.53 0.25 0.49 0.52 0.49 0.2 0.23 0.22 0.18 0.2 0.49

Tb 0.08 0.06 0.06 0.05 0.07 0.05 0.06 0.05 0.04 0.04 0.05

Dy 0.72 0.6 0.64 0.74 0.74 0.63 0.62 0.53 0.43 0.51 0.66

Ho 0.26 0.2 0.24 0.23 0.22 0.19 0.17 0.15 0.13 0.14 0.25

Er 0.84 0.65 0.98 0.81 0.92 0.64 0.6 0.53 0.43 0.5 0.89

Tm 0.12 0.12 0.14 0.13 0.14 0.11 0.1 0.09 0.07 0.08 0.15

Yb 0.75 0.69 0.84 0.85 0.76 0.58 0.51 0.47 0.4 0.46 1.02

Lu 0.08 0.06 0.09 0.08 0.08 0.05 0.05 0.04 0.05 0.04 0.1

ΣREE 21.6 8.41 25.67 23.27 19.5 6.36 5.9 6.3 4.16 4.25 18.23

Fl-1 = early stage fluorite and Fl-2 = late stage fluorite.

Table 2. The calculated geochemical ratios (mass ratios) for fluorite samples in the Laal-Kan fluorite
deposit

Ratios White fluorite Smoky fluorite Violet fluorite

WF.1 WF.2 SF.1 SF.2 VF.1 VF.2 VF.3 VF.4 VF.5 VF.6 VF.7

Zr/Hf 4.75 2.31 4.49 4.23 3.51 1.14 0.50 1.42 0.65 1.37 4.34

Y/Ho 25.77 27.08 36.09 29.09 24.40 28.00 34.74 39.41 48.00 52.31 48.57

La/Ho 18.15 24.92 22.17 18.36 13.80 6.00 4.32 2.88 4.67 3.08 3.43

According to these results, the early stage fluorite
samples are characterized by low T1, high T3 and low
T4 values, whereas in the late stage fluorite samples
T1, T3 and T4 values are high, low and high, respec-
tively. Figures 7 illustrate the bivariate diagrams of
tetrad effect values in the fluorite samples. As shown
in these figures, first tetrad has negative correlation
versus third tetrad values (Figure 7a). These trends
can be seen in both first versus fourth and third

versus fourth tetrad effect values in these samples
(Figure 7b, c).

5.3. Mechanism for the occurrence of tetrad effect

Based on the previous researches, the most signifi-
cant geochemical mechanism for the occurrence of
the tetrad effect in various deposits can be catego-
rized as follows [Abedini et al., 2017, Badanina et al.,

C. R. Géoscience, 2020, 352, n 1, 43-58



Mansour Rezaei Azizi et al. 51

Table 3. The calculated values for individual tetrad in fluorite samples of the Laal-Kan fluorite deposit

Values
White fluorite Smoky fluorite Violet fluorite

WF.1 WF.2 SF.1 SF.2 VF.1 VF.2 VF.3 VF.4 VF.5 VF.6 VF.7

T1 0.08 0.29 0.05 0.03 0.06 0.26 0.72 0.50 0.47 0.22 0.13

T3 0.28 0.06 0.37 0.40 0.25 0.12 0.11 0.08 0.09 0.17 0.43

T4 0.16 0.44 0.15 0.31 0.19 0.40 0.30 0.40 0.14 0.35 0.31

Figure 5. The frequency diagrams for ΣREE
(ppm) in fluorite samples in the Laal-Kan dis-
trict. (a) ΣREE, (b) first population of ΣREE (Fl-
1) and (c) second population (Fl-2) of ΣREE.

2010, Cao et al., 2013, Irber, 1999, Kawabe, 1995,
Monecke et al., 2007, Nardi et al., 2012, Pan, 1997,
Rezaei Azizi et al., 2017]: (1) mineral phase fraction
during emplacement of an igneous system, (2) the
presence of F-complex in fluid/solution, (3) interac-
tion of fluid and melt in the hydrothermal system
and (4) alteration processes including hydrothermal
and/or weathering.

The fractionation of mineral phases in igneous
systems and interaction of the hydrothermal fluids
with host rocks during uprising can generate a re-
markable convex (M-type) tetrad effect phenome-

non in the separated mineral phases of system [Lee
et al., 2013, McLennan, 1994, Wu et al., 2011]. As
shown in Figure 6, the chondrite-normalized REE
patterns in this deposit have a pronounced convex
(M-type) tetrad effect, especially in the third and
fourth tetrads. Petrographic and mineralogy studies
indicate that the lack of mineral phases such as gar-
net, monazite and apatite in the fluorite samples of
the study district cannot be likely responsible for the
occurrence of convex tetrad effect [McLennan, 1994,
Pan, 1997].

Figure 8 illustrates the correlation between T1

tetrad effect values in fluorite samples and some geo-
chemical ratios. As shown in Figure 8a, the early stage
fluorite samples are characterized by relatively low T1

tetrad effect values and high La/Ho ratios, whereas
T1 tetrad effect values display a high/wide range and
very low La/Ho ratios that can be due to fractiona-
tion of LREE during hydrothermal fluids migration
[Bau and Dulski, 1995, Coşanay et al., 2017]. Mean-
while, the bivariate diagram of T1 tetrad effect val-
ues versus Zr/Hf ratios in the studied samples (Fig-
ure 8b) indicate that early stage fluorite samples have
relatively positive correlation, but the late stage ones
have negative correlation. This means that relatively
low pH hydrothermal fluids were likely played impor-
tant role during precipitation of early stage ones and
high pH hydrothermal fluids were probably respon-
sible for precipitation of the late stage ones due to in-
teraction of acidic fluids with carbonate host rocks
during the migration of fluids [Rezaei Azizi et al.,
2018b].

The Y/Ho ratios in the studied samples display
wide ranges from chondoritic to superchondritic
(Figure 8c). The higher Y/Ho ratios in fluorite min-
eral is an indicative of the role of the existence of lig-
ands such as F−, HCO−

3 , PO3−
4 , Cl−, OH−, and CO2−

3
in hydrothermal fluids [Migdisov et al., 2016]. During
fluorite mineralization, F-rich hydrothermal fluids

C. R. Géoscience, 2020, 352, n 1, 43-58
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Figure 6. The chondrite-normalized REE patterns for fluorite samples indicating the tetrad fields in the
Laal-Kan fluorite deposit. (a) the early stage fluorite samples and (b) the late stage fluorite samples.
Normalization values are from Anders and Grevesse [1989].

cause the higher Y/Ho ratio fluorite, but carbonate-
rich fluids cause low Y/Ho ratio fluorite to be precip-
itated [Bühn et al., 2003]. The fluid inclusions stud-
ies in this district revealed that the composition of
hydrothermal fluids were relatively constant during
both the early and late stage fluorite [Rezaei Azizi
et al., 2018b]. This means that REE-complex in the
presence of F and carbonate ligands were likely re-
sponsible for the occurrence of tetrad effect in the
fluorite precipitation. Figure 9 shows the T3 versus T4

tetrad effect values for fluorite samples in the Laal-
Kan deposits. As shown in this figure the early and
late stage fluorite samples are also seen in two differ-
ent and separate fields. The early stage fluorite sam-
ples are characterized by high T3 values but, the late
stage ones with low T3 values. These parameters indi-
cate that the REE distributions in fluorite were prob-
ably controlled by tetrad effect phenomenon in this
district. Therefore, it can be deduced that the tetrad
effect values in fluorite mineralization can be used as
a good and powerful geochemical indicator to inter-

pret the physic-chemical conditions and geochemi-
cal processes in these types of deposits.

6. Conclusions

Based on the petrographic studies, chemical analysis,
the calculated values of first, third and fourth tetrad,
REE behavior, Y/Ho, Zr/Hf and La/Ho ratios in the
fluorites of the Laal-Kan fluorite deposit, the conclu-
sions can be summarized as follows:

(1) The petrographic studies indicate that fluo-
rite mineralization have been likely occurred in two
different stages including early stage fluorite and
late stage ones, which are characterized by coarse-
grained/massive and fine-grained crystals, respec-
tively.

(2) The chondrite-normalized REE distribution
curves of the fluorite samples display a remarkable
convex (M-type) tetrad effect curvatures, which is an
indicative of hydrothermal/igneous origin in fluids
responsible for fluorite precipitations.
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Figure 7. The bivariate diagrams for the calculated tetrad effect values in fluorite samples of the Laal-Kan
fluorite deposit. (a) T1 versus T3, (b) T1 versus T4 and (c) T3 versus T4.

(3) Based on the relationship between tetrad ef-
fect values and some geochemical ratios such as
La/Ho, Y/Ho and Zr/Hf it can be concluded that in-
teraction between hydrothermal fluids and carbon-
ate host rocks and REE-F complex were likely the
main mechanisms for the occurrence of tetrad effect
phenomenon in the study district.

(4) The correlations between T1, T3 and T4 tetrad
effect values of the fluorite samples with geochem-
ical parameters and previous data of fluid inclu-
sions support the idea that fluorite mineralization
in this deposit were probably formed from a flu-
ids with relatively constant composition in different
stages.
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Figure 8. The bivariate diagrams of T1 tetrad effect values for fluorite samples versus (a) La/Ho, (b) Zr/Hf
and Y/Ho ratios in the Laal-Kan fluorite deposit.

(5) The separation of early and late stage fluo-
rite samples in the bivariate diagrams such as T1, T3

and T4 versus La/Ho, Y/Ho and Zr/Hf can be used a
good and powerful geochemical indicator to investi-
gate and interpret the geochemical processes during
deposition of fluorite.
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