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Abstract. The weakest link theory, sometimes proposed to analyze size effects on the plastic behaviour of
single crystals, is introduced in 3D numerical simulations of polycrystals. The approach relies on a random
distribution of sources in space and strength associated to a crystal plasticity law with constant per layer
Critical Resolved Shear Stresses (CRSS). It is able to reproduce: (1) the grain size dependence of the yield
stress given by the Hall–Petch law, (2) intense slip band localization patterns as often observed at the grains
surface, especially pronounced in quenched or irradiated metals, but difficult to reproduce by numerical
simulation.
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1. Introduction

The present note lies in the context of the numerical simulation of polycrystals in the framework
of continuum mechanics using the Finite Element method associated to Crystal Plasticity for
the constitutive non-linear behaviour. Such simulations are now widely used by the “mechanics
of materials” community focusing on polycrystalline materials. However, these simulations still
suffer from different drawbacks when comparing numerical results with experimental ones.

The first one concerns the grain size sensitivity of the plastic behaviour of polycrystals, and
more specifically of the yield stress that increases with decreasing grain sizes. This macroscopic
evidence is well known since the early years of metallurgy. More recently, with the development
of micro-machining and micro-testing, similar conclusions have been drawn on single crystals:
the smaller the sample size, the higher the yield stress. Using “local” Crystal Plasticity, the stress is
related to the strains which are dimensionless quantities, so that the numerical simulation result
is independent of the size (the grain size for polycrystals or the sample size for single crystals).
In that case the only way to incorporate size effects is to implement size dependent Critical
Resolved Shear Stresses (CRSS) [1] or hardening parameters [2], whether homogeneously [2] or as
a function of the distance from interfaces [3]. Alternatively, enhanced versions of crystal plasticity,
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such as non-local crystal plasticity [4] or variants of Dislocation Field Mechanics [5] have been
proposed to introduce size effects in the simulation of polycrystals [6,7]. These models essentially
take into account an additional hardening arising from the gradients of the plastic deformation
through the dislocation density tensor.

A second drawback of “local” crystal plasticity in polycrystalline simulations concerns its abil-
ity to reproduce the plastic strain heterogeneity experimentally observed at the surface of poly-
crystals. Actually, the surface of the grains often exhibit slip traces, which are crossing entire
grains. These traces can be characterized through Atomic Force Microscopy [8] or High Reso-
lution Digital Image Correlation [9, 10] and an important challenge for the numerical simulation
is to reproduce such plastic strain localization bands, especially enhanced in quenched or irradi-
ated materials [11–13]. Using softening crystal plasticity is an efficient way to develop localization
bands in simulations, however it has been demonstrated that two kinds of bands systematically
appear, slip bands and kink bands, which is not consistent with most of the experiments in which
intense localized slip bands dominate [11]. The combination of non-local and softening crystal
plasticity has been recently explored [14] and proves to be an efficient way to promote slip band
localization. Another approach consists in predefining, a priori, a set of geometrical slip bands
(band parallel to slip planes) and assign them different plastic properties [15]. This methodology
applied in the context of irradiated materials [12], exhibited an important kinematic hardening
induced by a more realistic slip band network.

The present work consists of using “local” crystal plasticity and to introduce stochastic Critical
Resolved Shear Stresses (CRSS) assigned to geometrical slip bands in 3D polycrystalline simula-
tions. The goal and originality of this modelling is twice: introducing size effects (sample size or
grain size) and generating more realistic plastic strain localization networks.

Taking into account the stochastic distribution of CRSS through the weakest link theory is an
efficient way to introduce size effects. The idea is mentioned in the review of Papanikolaou [16],
referring to analytical models [17, 18] and Dislocation Dynamic simulations [19–21]. However,
both analytical and DD models suffer from a rough description of grains to grains interactions
arising within a 3D polycrystal. The present work is then a first attempt to introduce the concept
of stochastic distribution of CRSS within 3D polycrystalline simulations in order to investigate its
influence on both the macroscopic behaviour and the local strain fields.

Section 2 introduces the weakest link model proposed for crystal plasticity in a simple 1D case
of a single crystal submitted to simple shear (one slip system). Extensions of this model to 3D
numerical simulations are proposed in Section 3. Sections 4 and 5 illustrate their capabilities
in terms of macroscopic behaviour and plastic strain distribution through the simulations of
both FCC single and poly-crystals. Discussion, conclusion and future prospects are proposed in
Section 6.

2. The weakest link model for 1D crystal plasticity (single crystal, single slip)

The simple 1D model considers a parallelepiped sample Ω of volume V , submitted to a shear
stress τ. The material is a single crystal with a single slip system favourably oriented. Dislocation
sources are assumed randomly distributed in space together with a random distribution of CRSS
τ. Then, dislocation sources are considered as punctual flaws, corresponding to random points
(x,τ) in the flaw space Ω×]0,∞[, so that the flaw population is a point process in the flaw
space. Assuming that the flaws are independent, their distribution corresponds to a Poisson point
process.

The link between the Poisson point process and the commonly used Weibull model can be
found in [22, Section 2.1] with in mind the analogy between plasticity and brittle failure: the
source strength (or CRSS) for plasticity corresponding to the flaw strength for brittle failure, the
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sample deforms plastically if the applied stress reaches the lowest CRSS present in the volume.
Therefore, according to the Weibull model, the probability that the sample remains elastic reads:

P (τ) = P {N (Ω×]0,τ[) = 0} = exp

(
− V

V0

(
τ

τ0

)m)
= exp

(
−

(
τ

λ

)m)
(1)

where N (Ω×]0,τ [) is the number of flaws in the domain (Ω×]0,τ [) of the flaw space, and
consequently, P

{
N (Ω×]0,τ[) = 0

}
is the probability to find zero flaw in the same domain (i.e.

so that the sample remains elastic). Note that the probability that a sample deforms plastically is
then F = 1−P , which the cumulative distribution function of the Weibull distribution. The two
parameters of the model are m and τ0, with V0 an arbitrary reference volume (generally 1 m3).
Used in the following, λ is a volume dependent parameter according to λ= τ0(V0/V )1/m .

It can clearly be observed that F (or P ) depends on the volume V : F decreases when the vol-
ume decreases. Hence, the smaller the volume the lower the probability that the sample deforms
plastically, or in other words, smaller is stronger. In addition, for a given couple of parameter m
and τ0, the median, the mean and the standard deviation of the Weibull distribution, are propor-
tional to the parameter λ and consequently to V −1/m so that they all decrease when the volume
increases.

The generation of a random set of values satisfying the Weibull model (Equation (1)) follows
the method used in [22] (Section 3.1, citing [23]). Let U a set of random variables uniformly
distributed in [0,1], then a random set of CRSS satisfying (Equation (1)) is simply obtained by
applying to U the inverse of the function P (τ):

τc = τ0

(
− ln(U )V0

V

) 1
m

(2)

The weakest link model is well suited to analyse results obtained on single crystalline samples
submitted to micro-tensile (or compression) tests, whether experimentally [19] or numerically
with Dislocation Dynamics [19,20]. The extension of this idea to the size-dependent macroscopic
yield stress of 3D polycrystals seems promising but is not straightforward. Actually, starting
from an initial homogeneous stress field, following the weakest link assumption, as soon as the
first grain deforms plastically the complete polycrystal should also deform plastically. However,
the first sign of plasticity is quite different from the macroscopic plastic flow, which comes
with the plastic deformation of a large number of grains. Then a direct application of the
weakest link to the whole polycrystal is not suitable to describe the macroscopic yield stress.
Besides, as soon as plasticity occurs in the first grain, the stress field becomes heterogeneous and
grain to grain interactions have to be taken into account. This can be done classically with 3D
numerical simulations accounting for crystal plasticity, but it raises the question of representing
the variability (location and CRSS) associated to dislocation sources within grains.

3. Extension to 3D numerical simulations

The numerical simulations described in this work have been performed with the FFT-based
solver AMITEX_FFTP [24] based on linear hexahedral finite elements with reduced integration
[25]. The input geometry is a 3D digital image (i.e. a regular grid of voxels), each voxel correspond-
ing to a hexahedral finite element, with stress and strain evaluated at centres, and displacement
and stress divergence evaluated at nodes. The crystal plasticity behaviour law is implemented
through the MFRONT code generator [26], compatible with AMITEX_FFTP. The numerical inte-
gration of quasi-perfect crystal plasticity being numerically heavy, the simulations take benefit
from the MPI parallel distributed memory implementation.

C. R. Physique — 2021, 22, n S3, 313-330



316 Lionel Gélébart

Figure 1. Unit-cell with 27 grains polycrystal and additional layers (two voxels thickness)
of voxels with null elastic properties to apply stress free boundary conditions on Y - and Z -
faxes. Periodic BC are applied on X -faces.

3.1. Geometry, loading and behaviour law

3.1.1. Single and poly-crystals tensile test

Both single and poly-crystals, represented by cubic unit-cells, are submitted to a tensile test
loading in the X direction. The macroscopic strain is applied with a strain rate of 10−4 s−1 up to
a plastic strain of 1%, with an interruption at 0.2% of plastic strain to store the cumulated plastic
strain fields (Equation (6)). Using a FFT-based solver, periodicity is assumed between X -faces. In
order to relax periodic Boundary Conditions and apply stress free BC, additional layers (two voxel
thickness) with null elastic properties are added on Y -faces and Z -faces (see Figure 1). Note that
there is no need to use more than two voxels to mimic free surfaces (in practice a single voxel
would have been sufficient as the AMITEX_FFTP code is equivalent to the use of linear hexahedral
finite elements with reduced integration).

For the single crystal, three sample sizes have been considered, D = 1 µm,10 µm and 100 µm,
and two grid refinements have been used nx = 50 and 100. The spatial resolution is δx = D/nx

and the volume of a voxel is δV = (δx)3. For the polycrystal, the unit-cell consists of 27 grains
generated by a Voronoï tessellation technique based on a random (uniform) distribution of 27
seeds and assuming periodicity of the microstructure (see Figure 1). Four average grain sizes
have been considered, Dg = 1 µm,3 µm,10 µm and 100 µm, corresponding to unit-cell sizes of
3 µm,9 µm,30 µm and 300 µm for the 27 (i.e. 3×3×3) grains. Defining the grid refinement nx as
the number of voxels per lengthDg , the 27 grains unit-cell is discretised in grids of 150×150×150
voxels for nx = 50, and 300×300×300 voxels for nx = 100. The spatial resolution is δx = Dg /nx

and the volume of a voxel is δV = (δx)3.

3.1.2. Crystal plasticity

As a first attempt, the use of a simple quasi-perfect crystal plasticity law allows to evaluate
the effect of the CRSS spatial distribution (described in Section 3.2), independently from any
other local hardening contribution. Then, focusing on the onset of plasticity (i.e. the maximum
macroscopic plastic strain is 1%), the small strains assumption is used in the modelling. The
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corresponding constitutive equations are given below.

σ = C :
(
ε−εP )

(3)

ε̇P =
N∑

s=1
γ̇sµs (4)

γ̇s = sign(τs )

 |τs |−
(
τP +τ f

s

)
K

n

+
(5)

The elasticity, Equation (3), is assumed isotropic with a Young modulus and Poisson co-
efficient of 110 GPa and 0.3, respectively. The shear stress τs on system s is τs = σ : µs with
µs = (ms ⊗ns )sym, ms and ns being the slip direction and normal to slip plane direction. The
plastic strain rate, Equation (4), is given by the sum of the slip contributions over the systems.
The slip systems accounted for in the simulations are the 12 slip systems of type {111}〈110〉, com-
monly observed in FCC crystallographic phases. Finally, for each system, the shear strain rate is
governed by the Norton rule with parameter K and exponent n. The expression (X )+, is equal to
X if positive and zero otherwise. The CRSS required to activate plasticity is then τP +τ f

s , where
τP is homogeneous and τ f

s denotes heterogeneous (fluctuating) fields introducing the variability
associated to dislocations sources (position and strength) within grains. There is one field per slip
system, 12 in the present case, and their description is detailed in the next section. The constant
value τP is attributed to the Peierls stress (or lattice friction stress) required to move dislocations.
This parameter is rather small for FCC crystals and an average value of 5 MPa is chosen (values
between 0.3 MPa and 9 MPa for different FCC materials in [27]). Finally the choice of the Norton
law parameters, (10 MPa, 4) for (K ,n), results from a compromise between numerical efficiency
and the proximity with perfect plasticity. In practice, the Norton exponent of 4 is standard when
considering viscoplasticity and dislocation creep. Then, the K parameter has been adjusted to
reduce the viscous effect (less than +/1% relative difference on the macroscopic uniaxial stress at
2% strain for strain rates between 10−3 s−1 and 10−2 s−1).

The cumulated plastic strain field is output from simulations as it represents in a single scalar
field the plastic strain activity. Its rate definition reads:

ṗ =
√
ε̇P : ε̇P . (6)

3.2. CRSS distribution

The purpose of this section is to generate 3D random fields τ f
s , used in (5), in relation with the

Poisson point process introduced in Section 2 leading to the Weibull model described by (1).

3.2.1. Per voxel distribution

A first attempt consists in using for generating the (Nx )3 values (one value per voxel) of τ f
s , the

same Weibull distribution as given in (1), with the volume V replaced by δV , the voxel volume.
Then, the evaluation of the (Nx )3 random values comes directly from (2), with V = δV . A field τ f

s ,
see Figure 2 (left), is then an image of the lowest source strength (for system s) within each voxel,
assuming sources as points randomly distributed in space and strength according to a Poisson
point process. Hence, the simulation should initiate at the voxels where τ f

s is the lowest.
However, the problem with this description, used in combination with a local crystal plasticity

model (here, Equations (3)–(5)), is that when plasticity initiates in a voxel xo for system s (i.e. the
shear stress τS reaches τP +τ f

S (xo)), it is not able to freely propagate in the surrounding voxels

crossed by the same gliding plane because their fluctuating CRSS τ f
S can be much higher than

τ
f
S (xo).
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Figure 2. Per-voxel random distribution of τ f
s for a voxel size of δx = 0.1 µm and a 100×

100× 100 unit-cell (left). Per-layer random distribution of τ f
s for a grain size Dg = 10 µm

and a refinement nx = 50 (right). In both case, there is one random field per slip system so
that 12 different fields are considered in the complete model.

3.2.2. Per layer distribution

In order to circumvent the issue suspected with the per voxel distribution, while keeping
a local crystal plasticity model, the idea is to define (in each grain) thin layers parallel to the
slip plane of system s and assign a constant value for the voxels of a same layer as displayed
on Figure 2 (right). To assign the per-layer values, two methods can be used. The first one,
consists in using the field τ

f
s defined per voxel just above and to assign the minimum value

present in the layer to the whole layer. The second method has not been used but should be
statistically equivalent. It consists in following the Weibull model of (1) with the volume of the
layers (indexed i) and use (2), with V =Vlayeri

, to define one random value per layer. The field τ f
s

is now an image of the lowest source strength within each layer. As twelve systems are considered,
twelve different fields have to be generated as inputs of the numerical simulation (it was also the
case for the per voxel approach).

With that description, if plasticity initiates in a layer, it should be able to propagate and cross
the entire grain, letting a straight slip trace at the surface as often observed experimentally. As a
counterpart, using a per-layer constant value we lose the position of the weakest source whose
strength is affected to the complete layer. In addition, the layer thickness becomes an additional
material parameter.

Note finally that the two distributions rely on the same Weibull model (Equation (1)), built
on the same random point Poisson process for the distribution of sources. They differ from the
volumes which are considered in the model, the volume of the voxels δV in the first case, and the
volume of the layers Vlayeri in the second case.

3.2.3. Weibull parameters

As a first exploration of the model, the couple of Weibull parameters (τ0,m) is set to
(0.1063 MPa, 6). The choice of the exponent m derives from the following simplified analysis. The
median value of a Weibull distribution (Equation (1)) being Md =λ(ln2)1/m = τ0(ln2·(V0/Vd ))1/m ,
with Vd the volume of a grain of diameter d , then Md ∝ d−3/m . Assuming that the grain size de-
pendent part of the classical Hall–Petch relation σy =σ0 +kd−1/2 is proportional to Md , then m

C. R. Physique — 2021, 22, n S3, 313-330
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should take the value of 6. Whatever the simplicity of the reasoning, this value lies in the range of
experimental values (between 4 and 20 in [28]).

The second Weibull parameters τ0 = 0.1063 MPa, corresponds to an arbitrary choice for the
median value M1 µm of 100 MPa for a volume of 1 µm3 (see Section 2).

3.3. Post-treatment: yield stress definitions

The definition of the macroscopic yield stress is conventionally defined on tensile test stress–
strain curves as the stress σy

0.2% for which the plastic strain is 0.2%. This definition, together with
σ

y
1%, the yield stress for 1% plastic strain, are used to investigate size effects (sample size or grain

size) on the macroscopic plastic behaviour of the unit-cell.
However, these yield stresses essentially characterize the stress for which the plastic flow is

significant from a macroscopic point of view. Conversely, it is also of interest to evaluate the yield
stress corresponding to the first signs of plasticity. For that purpose, we define σy

0% as the stress
corresponding to the detection of the first non-linearity. In practice, σy

0% is extracted from the
simulated stress–strain curves as the lowest value for which the ratio (tangent modulus/secant
modulus) is below 0.999.

4. Single crystal cubic unit-cell

The single crystal is submitted to a tensile test loading in the (100) direction of the FCC crystal,
so that, from the loading point of view, 8 slip systems have the same maximum Schmid factor
(1/

p
6 = 0.4082). However, from the CRSS point of view, considering one stochastic field per slip

system, the CRSS are different for the 12 slip systems. This section is a first step towards the 3D
polycrystal simulation, its main purposes are: first, demonstrating from numerical results that the
“per voxel distribution” strategy is not suitable, and second, validating the “per layer distribution”
strategy by comparing numerical results with the results expected from the Weibull model.

4.1. Per voxel distribution

For each sample size D and refinement nx , 3 different random realizations of the 12 fluctuating
CRSS fields τ f

s have been generated and used as input of the simulations. With 3 sample sizes and
2 refinements, 18 simulations have been performed.

Both the macroscopic behaviour and the local plastic strain fields are reported on Figure 3.
From the macroscopic point of view, the behaviour exhibits, as expected, a sample size depen-
dence: for a given grid refinement the higher the sample size the lower the yield stress. Note that
in spite of random CRSS fields, the three simulations performed for each configuration (sample
size, refinement), exhibit almost superimposed stress–strain curves. On the other hand, the be-
haviour exhibits a very important and undesired dependence with respect to the spatial resolu-
tion δx. Actually, using the Weibull model of (1) with V = δV modifies the distribution towards
higher values when decreasing δV , as observed on the median value M = τ0(ln2 · (V0/δV ))1/m .
However, in the 3D numerical simulation the weakest link theory is not reproduced: the sample
do not deform plastically as soon as a first voxel deforms plastically but it requires a large enough
amount of voxels, with higher CRSS, to deform which hardens the behaviour.

Finally, the distribution of the cumulated plastic strain, Figure 3 (right), is quite noisy and does
not exhibit slip band localizations crossing the sample as it can be observed when experimentally
testing single crystals for example with micro-pillars.

As a conclusion, per voxel distributions of CRSS are not convenient to introduce the idea of
randomly distributed sources in 3D crystal plasticity numerical simulations.

C. R. Physique — 2021, 22, n S3, 313-330
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Figure 3. Single crystal unit-cell with per voxel CRSS random fields. On the left, the stress–
strain curves obtained for different sample sizes (D = 1 µm, 10 µm and 100 µm) and two
grid refinements, nx = 50 and nx = 100, respectively in red and blue. For each configuration
(sample size, grid refinement) three simulations results, obtained with three different
random realizations of CRSS fluctuating fields, are almost perfectly superimposed. On the
right, example of a spatial distribution of the cumulated plastic strain (after 0.2% plastic
strain).

4.2. Per layer distribution

In this study, the layer thickness e is arbitrarily related to the spatial resolution δx so that two
voxels represent the layer thickness (i.e. e = 2δx). As a consequence, for a given unit-cell size D ,
the layer thickness e decreases when increasing the refinement nx (decreasing δx = 2D/nx ).

In addition to the 18 (3 realizations × 3 sizes × 2 refinements) simulations run up to a plastic
strain of 1%, 7 additional random realizations have been generated to perform 42 (7 × 3 × 2)
additional simulations up to 0.2% of plastic strain. This allows to account for the variability
observed on the macroscopic response, with a focus on the yield stresses σy

0% and σ
y
0.2%. Both

the macroscopic behaviour and the local plastic strain fields are reported on Figure 4.

4.2.1. The onset of plasticity (σy
0%)

The onset of plasticity is investigated through the analysis of σy
0% detecting the first signs

of plasticity (see Section 3.3). In the elastic domain, the elastic behaviour being homogeneous,
the stress field is uniform. Considering the Weibull model described in Section 2, but now with
eight slip systems having the same Schmid factor (1/

p
6), the probability that the sample remains

elastic is the product of the probabilities that plasticity is not reached on each slip systems. It is
equivalent to consider a volume eight times larger in (1) so that the median value for the yield
stress reads:

σ
y
0% =

(
τP +τ0

(
ln2 · V0

8V

) 1
m

)p
6 (7)

The comparison with the post-treatment of 3D numerical simulations on ten samples is
reported in Table 1. The fourth column in Table 1 comes from a pre-treatment of the random
CRSS fields used in simulations: for each sample,σy

0%is evaluated from the minimum value of the
CRSS fields for the 8 potential active slip systems. This value should be equal to the yield stress
σ

y
0% detected from the simulated stress–strain curve in the third column. The slight difference,

observed on the median, is attributed to the detection procedure and more specifically to
the loading increment used in simulation. The slight difference between the two resolutions,
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Lionel Gélébart 321

Figure 4. Single crystal unit-cell with per layer CRSS random fields. On the left, the stress–
strain curves obtained for different sample sizes (D = 1 µm, 10 µm and 100 µm) and two
grid refinements, nx = 50 and nx = 100, respectively in red and blue. For each configuration
(sample size, grid refinement) three simulations run up to 1% plastic strain and seven run
up to 0.2%. On the right, example of a spatial distribution of the cumulated plastic strain
(after 0.2% plastic strain).

Table 1. Evaluation of the median yield stress σy
0% evaluated from the Weibull model, and

from a post- and pre-treatment of ten 3D numerical simulations on single crystal cubic
unit-cell

D (µm) σ
y
0% (Equation (7))

(MPa)
σ

y
0% (post-treatment)

(MPa)
σ

y
0% (pre-treatment)

(MPa)
1 185.5 181.6 /172.3 188.4/180

10 67.0 62.3/62.3 68/65.3
100 29.6 28.4/28.0 29/29.9

Two values are given, one for each refinement, nx = 50 and 100.

also observed on the “pre-treatment” values, is attributed to the low number of samples as
it (increasing the number of samples reduces the difference). Finally, the comparison of the
numerical values (pre- and post-treatment) are in good agreement with the analytical model
(Equation (7)). It validates, at least for the single crystal case, both the numerical method and
its correct implementation.

4.2.2. Macroscopic plastic flow (σy
0.2%)

As observed on Figure 4, the yield stresses at the onset of plasticity σy
0% reported in Table 1 are

much lower than the yield stresses σy
0.2%, for which the sample flows macroscopically, reported

in Table 2. This important difference, which can be surprising for a single crystal, comes from
the use of periodic boundary conditions in the axial direction together with the cubic geometry
of the unit-cell. Actually, in a cubic cell, every {111} planes in a cubic sample are intersecting the
faces submitted to periodic boundary conditions. As the periodically repeated CRSS fields are
not continuous when crossing these faces, a weak {111} layer in the unit-cell does not coincide
with a weak {111} plane in the periodically repeated unit-cell so that it hinders the localization
of plastic strain in the weakest layer. This interaction between neighbouring unit-cells induces
an important hardening observed on the macroscopic curves (Figure 4, left) and the activation
of various weak planes as observed on the plastic strain maps (Figure 4, right). A deeper analysis

C. R. Physique — 2021, 22, n S3, 313-330



322 Lionel Gélébart

Table 2. σy
0.2% (median over 10 realizations) evaluated for the single crystal cubic unit-cell

for different unit-cell size

D (µm) σ
y
0.2% (MPa)

1 245.3/246.9
10 91.9/93.4

100 41.1/41.9

Two values are given, one for each resolution, nx = 50 and 100.

of the cumulated plastic strain field reveals that the four slip traces corresponding to the four
{111} slip planes are generally observed in these simulations. However, the plastic strain intensity
strongly differs from one slip trace to another and the situation appears more complicated in
the neighbourhood of the periodic boundaries (more slip traces with reduced intensity). As
observed on Figure 4, it must also be noticed that an important part of the unit-cell remains
almost plastically undeformed.

If the variability of σy
0.2% is almost negligible with the per voxel approach, here, it exhibits an

important size effect: the higher the sample size the lower the variability (qualitatively observed
on Figure 4). This effect is now consistent with the weakest link approach. In addition, the effect
of the refinement nx , and consequently of the layer thickness (as e = 2D/nx ), is almost negligible

as observed on σ
y
0.2% in Table 2. Contrary to the per voxel approach, the per layer distribution

allows for the propagation of plasticity as soon as it is initiated in a layer.
As a conclusion, the per layer approach proves to be much better suited to account for

randomly distributed sources.

4.3. Main results

The main results deduced from simulations on a single crystal cubic unit-cell are summarized
below:

• The per-voxel distribution approach suffers from an important mesh size dependence
and an unexpected low variability. The problem comes from the fact that the weakest
link theory cannot be represented in this approach as neighbouring voxels are interacting
in the mechanical simulation (i.e. a voxel with a high CRSS may strongly interact with a
neighbouring voxel with a low CRSS).

• The per-layer distribution of CRSS allows to overcome these issues. Actually, with a CRSS
constant per layer, if plasticity is activated in a voxel it is not hindered by voxels lying in
the slip plane with higher CRSS. A drawback of this approach is that the exact location of
the critical source within the layer is lost.

• Because of the reduced size of the unit-cell in the axial direction, the effect of the
boundary conditions is not negligible, it explains the difference between σ

y
0% (at the

real onset of plasticity) directly related to the minimum CRSS in the unit-cell, and σy
0.2%.

Actually, the two periodic faces act as interfaces between the repeated unit-cells.

5. Polycrystal unit-cell

Following the main results obtained on the single crystal unit-cell, the per-voxel distribution
approach is abandoned in the present section. Consistently with the previous study on the single
crystal cubic unit-cell, the layer thickness is still related to the refinement nx with the relation
e = 2δx = 2Dg /nx (i.e. two voxels per layer thickness).
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Figure 5. Polycrystal unit-cell with per layer CRSS random fields. Average stress/strain
curves for the polycrystal unit-cell, for different grain sizes (left). In blue and red, for the grid
resolutions nx = 100 and 50 respectively. In thin black-dotted line, the curve obtained for
Dg = 10µm and nx = 50 with a homogeneous CRSS (adjusted on the red curve). Adjustment
of two yield stress size dependent models (right), described by (8) (up) and (9) (down).

A single simulation is performed for each refinement nx and grain size Dg , with a single
random realization of the CRSS fields for each simulation. The variability is evaluated for the
smaller grain size Dg = 1 µm (and the refinement nx = 50) with three different random realiza-
tions. Finally, for the sake of comparison, an additional simulation is performed, for the refine-
ment nx = 50, with the classical assumption of a homogeneous CRSS over the whole polycrystal.

Note the different underlying assumptions related to these simulations: plasticity is governed
by sources located in the volume of the grains (i.e. not at the grain boundaries) and the Weibull
parameters describing the source distribution are the same for all the grain sizes.

5.1. Macroscopic behaviour

On Figure 5 (left), the three different simulations performed for the smaller grain size
Dg = 1 µm, are almost superimposed so that a single realization is representative of the macro-
scopic behavior. As observed on the single crystal in Section 4.2, the variability is suspected to
increase with a decreasing grain size. Therefore, the single simulations performed for each of the
two larger grain sizes are also representative. This is an interesting result: the variability observed
on the macroscopic response of single crystal simulations, arising from the random distribution
of CRSS introduced at the grain scale, completely disappears when simulating a polycrystal. This
point is all the more striking as the number of grains, 27, is reduced. It can be explained by the
interactions resulting from grain boundary interfaces. For the single crystal cubic unit-cell the
effect is reduced because the only interfaces limiting the propagation of plasticity through the
whole sample are the X -faces submitted to periodic BC, the Y - and Z -surfaces being free sur-
faces. For the polycrystal unit-cell, the propagation of plasticity through the entire sample must
cross an important number of grain boundary interfaces between the Y - and Z -free surfaces.

However, if variability has disappeared in spite of random CRSS fields, the grain size effect
remains (Figure 5, left). To analyse the grain size dependence of the yield stress, a Hall–Petch
like relation (Equation (8)) is proposed. For a given x% (0.2% or 1%), the three parameters

C. R. Physique — 2021, 22, n S3, 313-330



324 Lionel Gélébart

Table 3. Adjustment of the 3 parameters model (Equation (8)) describing the macroscopic
yield stresses as a function of Dg

σ0
x% MPa kx% MPa (µm)1/mx% mx%

x = 0.2% 13.0 280.5 6.64
x = 1% 15.7 306.1 6.19

Table 4. Adjustment of the 4 parameters model (Equation (9)) describing the macroscopic
yield stresses as a function of Dg and e

σ0
x% MPa kx% MPa (µm)1/mx% mDg ,x% me,x%

x = 0.2% 12.9 235.4 4.97 20.35
x = 1% 15.6 240.4 4.80 14.76

(σ0
x%,kx%,mx%), adjusted on the 8 numerical yield stressesσy

x% (four grain size, two refinements),
are reported in Table 3 (adjustment displayed on Figure 5, up right). It is noticeable that the
resulting exponent mx% is close to the m exponent of the Weibull distribution for the CRSS
(m = 6), especially for the highest plastic strain (1%). Hence, as proposed in Section 3.2.3, the
size dependent part of the yield stress follows approximately the same size dependence as the
Weibull model’s median : MDg ∝ D−3/m

g .

σ
y
x% =σ0

x% +kx%D
− 3

mx%
g . (8)

The effect of the layer thickness e, resulting from the constraint e = 2Dg /nx , is observed on the
red and blue curves on Figure 5 (left), respectively with refinements nx = 50 and nx = 100. The
effect is not negligible and can be explained as follows. When reducing the volume of the layers,
the mean and median of the Weibull distribution increase, and consequently, the spatial average
of the per layer CRSS fields increases. Note that this effect almost vanishes when considering a
single crystal sample with stress free boundaries (see Section 4.2). A modified relation is proposed
in (9) to dissociate the grain size and the layer thickness. The adjusted parameters are given in
Table 4 and the better quality of the adjustment is observed on Figure 5 (right, down). With this
model, for a given thickness, the size dependent part of σy

x% are ∝ D−1/2.5
g and ∝ D−1/2.4

g , for
x% = 0.2% and 1% respectively.

σ
y
x% =σ0

x% +kx%D
− 2

mDg ,x%

g e
− 1

me,x% . (9)

5.2. Plastic strain distribution

As a general remark from Figures 6–9, it must be emphasized that the cumulated plastic strain
fields, obtained with the per layer CRSS distribution, are highly heterogeneous with very high
values compared to the 0.2% macroscopic plastic strain. The plastic strain is localized in a
few activated layers forming intragranular patterns. Qualitatively, it seems that, in general, two
different {111} planes are activated per grain, and sometimes, a single plane or three different
planes are observed.

The negligible macroscopic variability observed in Section 5.1 is now discussed through the
plastic strain fields displayed on Figure 6. The first noticeable point is that, for three realizations,
the plastic strain localization patterns are different while the macroscopic stress is exactly the
same. However, if the patterns are different, it seems, at least qualitatively, that the activated
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Figure 6. Polycrystal unit-cell—Cumulated plastic strain fields (at 0.2% macroscopic plas-
tic strain) for three different random CRSS per layer distributions (Dg = 1 µm, nx = 50).
Colorbar is adjusted on the narrower data range.

Figure 7. Polycrystal unit-cell—Cumulated plastic strain fields (at 0.2% macroscopic plas-
tic strain), for homogeneous (left) and per layer random (right) distributions of CRSS
(Dg = 10 µm, nx = 50). Colorbar is adjusted to the homogeneous case data range.

{111} planes are often the same in the corresponding grains of the different simulations but with
different locations and intensities.

The comparison between the homogeneous CRSS assumption and the present random
description is performed, for the case (Dg = 10 µm, nx = 50), after adjusting the homogeneous
CRSS on the macroscopic behaviour obtained with the per layer distribution. The adjusted value
is 38MPa and the corresponding curve is drawn in thin black dashed line on Figure 5. The plastic
strain field on Figure 7 is far less localized than with the per layer distribution. To reinforce the lo-
calization and patterning in the case of homogeneous CRSS, softening crystal plasticity has been
demonstrated in [11]. However, the refined analysis of the plastic strain fields revealed an impor-
tant and systematic contribution of localized kink bands (perpendicular to the slip planes). This
result was consistent with the bifurcation analysis of Asaro and Rice [29] but is not frequently
observed in experiment. The per layer approach allows to prevent localized kink banding.

The influence of the grain size on the plastic strain fields is displayed on Figure 8: the higher the
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Figure 8. Polycrystal unit-cell—Cumulated plastic strain fields (at 0.2% macroscopic plas-
tic strain), for two grain sizes Dg = 1 µm (left) and Dg = 100 µm (right), with nx = 50 for
both simulations. Colorbar is adjusted to the data range of the case (Dg = 1 µm).

Figure 9. Polycrystal unit-cell—Cumulated plastic strain fields (at 0.2% macroscopic plas-
tic strain), for two layer thicknesses (e = 2δx = 2Dg /nx , with Dg = 10 µm) associated to two
grid refinements (nx = 50, left) and (nx = 100, right). Colorbar is adjusted to the data range
of the case (nx = 50).

grain size, the higher the number of activated layers and the lower the heterogeneity. To explain
this result, it must be kept in mind that with the choice e = 2δx made for the simulations, for a
given refinement (here nx = 50), the layer thickness is proportional to the grain size (e = 2Dg /nx ).
Hence, the volume of the layers, Vlayer, taken into account in the Weibull model (Equations (1) and
(2)) to define the random CRSS, linearly depends on D3

g . As the standard deviation is proportional
to V −1/m

layer (see Section 2), the CRSS fields are less heterogeneous when increasing the grain size
Dg , and, consequently, additional layers can be activated and the plastic strain heterogeneity is
reduced. Note that in the extreme case Dg →∞, the mean, the median and the standard deviation

of τ f
s , tend to 0 and the CRSS field tends towards a homogeneous field τP (see (5)) resulting in a

plastic strain field similar to Figure 7 (left).
The influence of the layer thickness is reported in Figure 9. With the choice e = 2δx, the

two grid refinements (nx = 50 and nx = 100) correspond to two layer thicknesses. The thinner
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the layer thickness, the higher the heterogeneity. A simple geometrical explanation could be
proposed. For a given number of activated layers in the two simulations, there is a factor of
two when considering their volume fractions. Hence, for a given macroscopic plastic strain (e.g.
0.2%), the average plastic strain in the activated layer will be higher for the highest refinement.

6. Discussions

The present model extends the initial purpose of “smooth” classical continuum-based CP to less
“smooth” applications. It is justified by the limitations of classical CP to reproduce experiment at
the micron scale, such as the stochastic results observed on micropillars or intense intragranular
plastic strain localization (slip bands) observed on polycrystals. From the mechanisms point of
view, the stochastic distribution of CRSS is justified by the statistical distribution of dislocation
sources. Of course, the description remains rather simple but it can be regarded as a simple way
to account for micro-plasticity in polycrystalline simulations. The fine details associated to the
description of intermittent plasticity are not taken into account but signs of microplasticity are
reproduced. From the macroscopic point of view, Figure 5 reveals that the first signs of plasticity
(square symbols) appear very early when compared to σ

y
0.2% (circle symbols). This difference

is associated to the successive activation of slip band (layers) in the grains. The macroscopic
plastic flow becomes important as soon as a sufficient amount of bands are activated in the
polycrystal. This description of intra-granular plastic strain fields exhibiting intense plastic slip
bands is also in qualitative agreement with experimental observations of slip bands observed
during the micro-plasticity regime, which are not reproduced by conventional CP.

In Section 3.2.3, the m exponent is chosen so that the CRSS distribution lying in samples of
volume V = D3 follow a sample size dependence D−0.5. These distributions are directly linked
(through the geometrical Schmid factor) to the distribution of yield stresses obtained on single
crystalline samples, independently submitted to a uniform stress. Introducing the stochastic dis-
tribution of CRSS in the different layers of the polycrystal generates a very complex microstruc-
ture giving rise to complex grain-to-grain interactions and leading to the macroscopic yield stress
of the polycrystalσy

0.2% as a homogenization result. Hence, if the grain size dependence D−0.5
g de-

duced from the numerical simulation appears intuitive as we introduced a CRSS sample size de-
pendence D−0.5, it was forgetting the fact that the macroscopic yield stress results from a ho-
mogenization procedure on a rather complex microstructure. In addition, the Weibull exponent
used here is a realistic exponent with respect to experiment (micropillar) and in that sense, the
grain size dependence of the macroscopic yield stress resulting from the present approach can
be regarded as “predictive”.

The hardening effects arising from dislocation interactions are not considered in this first
attempt to account for stochastic CRSS distributions. This approximation is probably valid as
soon as the plastic strains remains small. However, a direct use in each voxel of a dislocation-
based hardening CP law could be considered without any technical (implementation) issue. In
that case, interactions associated to latent hardening will be possible if and only if the two systems
are activated in a same voxel. Hence, latent hardening will be active in:

• the voxels of a same layer if two slip systems are activated. In such layers, the interactions
between coplanar systems will be taken into account

• the voxels at the intersection of two different layers with at least one activated slip per
layer. In such intersecting domains, interactions between non co-planar systems will be
taken into account.
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7. Conclusion and future prospects

The present approach combining a random distribution of CRSS with layered crystal plasticity
is an efficient way to introduce grain size effects in 3D numerical simulations. It is an extension
to 3D CP-FFT (or FEM) simulations of dislocation dynamics simulations, performed on single
crystal micropillars, with a dislocation source length distribution explaining the sample size
effect on the yield stress [20]. Actually, the random CRSS fields are generated from a random
distribution of sources regarded as a random Poisson point process in space and strength.
Assigning the minimum source strength within a layer to the whole layer, plasticity propagates
easily but, as a counterpart, the position of the weakest source is lost. Macroscopically, a Hall–
Petch like relationship is adjusted from the simulated yield stresses. The conventional yield stress
σ

y
0.2%, is very different from σ

y
0% detecting the first sign of plasticity, revealing an important

microplasticity (local plasticity while the macroscopic behaviour remains almost elastic). In
addition, it is remarkable that the macroscopic variability observed on the single crystal unit-cell
completely vanishes with the 27 grains polycrystal unit-cell.

The present approach allows to better reproduce, at least qualitatively, the experimental
observations of plastic strain localizations associated to slip traces at the grains surface, extremely
pronounced in irradiated polycrystals but also observed in many unirradiated metals. As a
future prospect, a deeper analysis of the strain fields will have to be performed to evaluate
quantities that could be compared to experiment such as the band spacing or the number of
band orientations per grain.

An open question coming with the per layer CRSS distribution is the choice of the layer
thickness. Actually, the spatial distribution of sources within a layer cannot be taken into account
(as observed in Section 4.1 with the per voxel distribution of CRSS). This point becomes a
problem as soon as the stress becomes heterogeneous so that in the polycrystal, for a given grain
size, reducing the layer thickness increases the yield stress. Improving this point is still under
investigation. The value of the layer thickness could be associated to experimental measurements
of slip localization bands (e.g. in irradiated materials [30]). Then, the effect of the ratio e/δx,
assumed constant (i.e. 2) along the paper, was studied in a previous paper dealing with a unique
slip plane (basal plane for hexagonal irradiated zirconium) [12]. The results were not completely
converged with e/δx = 2 but the use of composite voxels drastically improved this point. Adapting
the idea of composite voxels, here with four {111} slip planes, could be a future prospect. However,
note that introducing a hardening term to the CP law could also reduce this effect.

Finally, for the sake of simplicity and to separate the different hardening sources, the present
approach was proposed with a very simple quasi-perfect crystal plasticity law. Hence, all the
hardening behaviour, from the early onset of plasticity (σy

0%) to 1% plastic strain (σy
1%) consists

of a kinematic hardening induced by the strong plastic strain localization. The next step will be
to introduce dislocation densities and their interactions to complement the behaviour with an
isotropic hardening contribution.
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