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Abstract. We study the mechanical response of a dislocation-free 2D crystal under homogenous shear
using a new mesoscopic approach to crystal plasticity, a Landau-type theory, accounting for the global
invariance of the energy in the space of strain tensors while operating with an infinite number of equivalent
energy wells. The advantage of this approach is that it eliminates arbitrariness in dealing with topological
transitions involved, for instance, in nucleation and annihilation of dislocations. We use discontinuous
yielding of pristine micro-crystals as a benchmark problem for the new theory and show that the nature of the
catastrophic instability, which in this setting inevitably follows the standard affine response, depends not only
on lattice symmetry but also on the orientation of the crystal in the loading device. The ensuing dislocation
avalanche involves cooperative dislocation nucleation, resulting in the formation of complex microstructures
controlled by a nontrivial self-induced coupling between different plastic mechanisms.
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1. Introduction

With the advance of nanotechnology and broad fabrication of nano-scale structures, the focus in
the study of plastic deformation has shifted to atomic dimensions. The emerging science of nano-
materials deals, for instance, with machine parts printed by chemical vapor deposition or made
of nano-grained metals. At these manufacturing scales, external and internal (microstructural)
lengths become comparable, and the dislocation-based description of plasticity comes to the
forefront in providing design guidelines for miniaturized mechanical devices [1–3]. It was found,
for instance, that sub-micron size objects, serving as components of such systems, are charac-
terized by remarkably high strength. This opened a way to a broad range of novel engineering
applications, including nano-metric machining and hierarchical steels, e.g. [4].
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Considerable research efforts have been focused on the study of dislocation plasticity in sub-
micron crystals in an attempt to assess the extent of the failure of traditional inelastic constitu-
tive models at these scales [5–9]. As a result of these efforts, it has become clear that the defor-
mation mechanisms, which we habitually associate with plastic flows, change dramatically once
the sample size is reduced below the micrometer range. It was found that the strength of such
crystals reaches theoretical (ideal) limit [10–13] and that the plastic flow proceeds through stress
drops reminiscent of brittle fracture [14–17]. The attendant intermittency compromises the reli-
able functioning of ultra-small machinery and jeopardizes our ability to ensure the predictable
performance of MEMS and other similar systems [18–22].

Of primary interest to our study will be the phenomenon of discontinuous yielding in sub-
micron (initially) dislocation free volumes. According to the classical continuum paradigm, the
elastic deformation in strained crystals must be followed by either an abrupt brittle-like failure or
gradual plastic deformation. Instead, loading of sub-micron crystals revealed a mixed, fracture-
type plastic behavior. Micro-crystals, exhibiting smooth classical yield at macro-scales, were
shown to fail catastrophically, with conventional work hardening replaced by a sequence of
intermittent plastic events [23].

The precipitous brittle yield, revealing a high level of dislocation correlations and manifesting
plastic collapse, was first discovered in metal whiskers [24, 25]. Brittleness of this type has been
since routinely observed in nanoparticles, which “break plastically” while generating a large
number of dislocations [26,27]; similar global plastic instabilities have also been recorded during
nanoindentation [28, 29]. The implied system size plastic avalanches result from a large number
of highly cooperative individual dislocation nucleation and dislocation glide events, taking place
almost simultaneously [13, 18, 30, 31].

The distinctive features of crystal plasticity at sub-micron scales can be attributed to the high
degree of structural perfection of such samples, which are usually almost pristine [32, 33]. In
particular, the catastrophic yield depends critically on the absence of dislocations before strain-
ing. Despite the global, system-spanning scale of experienced plastic deformation, such samples
produce nearly pristine postmortem microstructures. Almost all dislocations mediating the ex-
plosive stress drop manage to escape to the boundaries, sometimes even producing pristine-to-
pristine transition [16, 34]. It was also observed that as the deformation volume of a material de-
creases, the effect of crystal orientation on the operative deformation mechanisms increases; in
particular, the mechanical response of sub-micron defect-free nanopillars is different depend-
ing on whether they are deformed along high symmetry orientations or low symmetry orien-
tations [35, 36]. The compression tests on confined micropillars revealed higher (and therefore
closer to theoretical limit) stresses of massive dislocation nucleation than in the presence of free
surfaces [36, 37].

In this paper, addressing the mechanical response of dislocation-free 2D crystals under ho-
mogenous shear, we attempt to rationalize the above observations using the mesoscopic model
of crystal plasticity [38–40]. We use discontinuous yielding of pristine micro-crystals as a bench-
mark problem for this new theory and study in detail how the nature of the catastrophic instabil-
ity depends on the lattice symmetry and the orientation of the crystal in the loading device. The
initial plasticity in pristine nano-scale volumes is of particular theoretical importance as the pro-
cess dominated by cooperative dislocation nucleation vs more conventional flow mechanisms
involving multiplication and glide of pre-existing dislocations.

The rest of the paper is organized as follows. In Section 2, we motivate our study reviewing the
problem from the viewpoint of materials science of sub-micron crystals. We then briefly discuss
the existing computational tools. The new mesoscopic model is introduced in Section 3, where
we recall the geometrically nonlinear kinematics of crystal lattices and discuss the construction
of strain-energy density respecting the finite strain symmetry of the crystal lattice. In Section 4,
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we present the macroscopic picture of the discontinuous yield revealed by our numerical experi-
ments and, to justify these results, compute the theoretical (ideal) shear strength for perfect crys-
tals with different point groups. In Section 5, we study post-bifurcation behavior of pristine crys-
tals and compare the post avalanche dislocation patterns. Along with their representation in the
physical space, we also visualize such patterns in the configurational space of lattice strains. In
Section 6, we briefly discuss the mechanical response of the simulated crystals beyond the cata-
strophic brittle event. Finally, in Section 7 we present our conclusions.

2. Some background

Plastic deformation in crystalline solids involves discontinuous changes in the configuration of
nearest neighboring atoms as some stress/strain thresholds are exceeded upon external loading.
The associated relative movement can be interpreted as the creation and propagation of topo-
logical lattice defects. The most prominent among them are dislocations, moving along crystal-
lographic planes and leaving behind quantized lattice slip [41–43]. Understanding the collective
motion of dislocations is the key to control the ductile failure of crystals as these linear defects
are involved in shear band formation, fatigue, and even fracture [44–46].

Plastic flow is inherently complex due to long-range elastic interactions of dislocation lines
and strongly nonlinear, threshold type short-range interactions of dislocation cores [47, 48].
Facilitated by lattice trapping, transient and sessile dislocation patterns cover a broad range of
scales from microscopic (junctions) to macroscopic (grains) [49–51].

Despite the presence of microscopic heterogeneities, plastic flows appear at the scale of bulk
materials as smooth phenomena amenable to continuous description [52]. Therefore, macro-
scopic crystal plasticity is usually formulated within classical continuum mechanics and involves
macroscale constitutive relations. The inelastic component of strain tensor is parametrized by
a finite number of order parameters representing amplitudes of pre-designed plastic mecha-
nisms; in rate independent limit each of them is assumed to be governed by dry friction dynam-
ics [53–58]. The fact that fluctuations are effectively averaged out,1 opens for continuum plastic-
ity (CP) access to macroscopic time and length scales and allows one to model realistic 3D struc-
tures with complex geometries while accounting phenomenologically for such complex effects
as hardening, rate-dependence and polycrystallinity [55, 61–64].

However, it has been recently realized that plastic flows in ultra-small samples are beyond
the reach of such theories. A description of the cross-over from a “mild” plastic flow in bulk
materials to a “wild” scale-free intermittent plastic response at the sub-micron scale requires
significant paradigm change [59]. In particular, the current CP theory fails to resolve intermittent
stress-drops (or strain-jumps) at submicron scales [11, 13, 22] and is also unable to explain
catastrophic events accompanying plastic flows in nanoparticles [16], nanowires [65] and nano-
pillars [14, 66–68]. None of these phenomena can be rationalized without a direct reference to
dislocation motion.

If in bulk materials dislocation motion is largely uncorrelated and fluctuations can be indeed
averaged out, plastic flows in sub-micron crystal involve highly cooperative dislocational rear-
rangements. The most striking effect of such cooperativity is provided by intermittent system
size dislocation avalanches, which defy self-averaging and challenge any attempt of continuous
description. More generally, the scale-free CP fails at sample sizes comparable to the emerging
microstructural scale of defect patterning, simply because the latter is assumed to be zero in the
CP theory. The attempts to regularize the CP and link the internal length scale with the presence

1Recently continuum models were proposed with internal fluctuations accounted for through stochastic constitutive
equations [59, 60].
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of “geometrically necessary” strain gradients have been so far only partially successful as the size
effect was also observed in the absence of strain gradients, e.g. [69].

An alternative approach to the rationalization of the size effect was to shift the attention
from the role of gradients in dislocation arrangements to the scarcity of dislocation sources
in small crystals. It was noticed that when sufficiently small crystals were strained to the bulk
yield stresses, the rate of dislocation escape to the surfaces grew to become larger than the rate
of dislocation multiplication, and therefore, plasticity could proceed only by the nucleation of
new dislocations at considerably higher stresses [70]. The implied “dislocation starvation” was
therefore linked to the fact the “breeding” distance for dislocation multiplication becomes larger
than the system size [23, 70, 70–74].

Following this logic, the “brittle” response of pristine ultra-small samples after they reached
the level of theoretical (ideal) strength, can be explained by massive homogeneous nucleation
of dislocations [75–77]. In other words, in such “starved” samples yielding can be expected to
proceed as a dislocation nucleation avalanche which can reach the size of the system [19,78–81].
The implied cooperative response becomes possible because the defect-free environment allows
the nucleated dislocations to dynamically self-organize, taking full advantage of the un-screened
long-range elastic interactions [82–84]. The emerging mechanical instability ultimately originates
from strain softening whose origin will be revealed as a part of this study.

We note that sharp peak stresses at yielding have been also observed in some macroscopic
samples where the large yield drop is usually followed by a Luders-like flow instability, e.g. [85,86].
In such cases the initial mobile dislocation density is usually low either because dislocations were
annihilated during the annealing process or because they were blocked by solute atoms; in both
cases the discontinuous yielding is associated with either collective depinning from Cottrell at-
mosphere or explosive nucleation from nano-sized grain boundary sources. A theoretical expla-
nation of discontinuous yielding in the prototypical context of transformational plasticity was
proposed in [87] where the stress peaks were linked to the difference between (homogeneous)
nucleation and propagation thresholds for internal instabilities.

The development of the computational tools accounting for the dislocational nature of plastic
flows has become a priority because the inadequacy of the conventional methods based on
CP was placing severe restrictions on the possibility to model plastically deforming ultra-small
structural elements [22, 88–90]. In particular, it was realized that to simulate discontinuous
yielding in sub-micron crystals which involves massive nucleation of dislocations, the modeling
approach cannot ignore lattice effects and must necessarily account for phenomena at the
scale of dislocation cores. Capturing the attendant pattern formation is challenging because the
nucleated dislocations continue to interact strongly at many different scales [91–95].

Numerous computational alternatives to CP have been developed targeting different time
and length-scales. They range from molecular dynamics (MD) [96, 97] and similarly microscopic
phase-field crystal (PFC) method [98, 99], to the more coarse grained phase-field dislocation
dynamics (PFDD) [100–102], discrete dislocation dynamics (DDD) [103–106], and continuum
dislocation dynamics (CDD) [107–109]. The multi-scale quasi-continuum model (QC) attempts
to bridge all the scales while accounting for each of them fully comprehensibly [110, 111].

MD approaches, including Molecular Statics (MS), and Density Functional Theory (DFT),
accurately represent micro-mechanisms of plastic response while relying minimally on phe-
nomenology [112]. MD simulations have been particularly instrumental in the study of the
homogeneous and heterogeneous dislocation nucleation [76,90,97]. The only relative shortcom-
ing of the atomistic simulations is that they are still computationally rather expensive in most
applications, even at the small time and length scales of interest; also the problem of mapping
to the macroscopic description in terms of the measurable quantities like stresses and strains
is apparently not yet fully resolved [113–116]. Partial temporal averaging of atomistic molecular
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dynamics has emerged in the form a coarse-grained continuum PFC theory [117]. The PFC ap-
proach was applied to the description of an ensemble of few interacting dislocation dipoles and
was able to capture some cooperative features of crystal plasticity [98, 99, 118]. However, such a
detailed description of atomic lattices still remains rather demanding in terms of computer time,
at least in the case of developed plastic flows with realistic number of interacting dislocations.

Discrete dislocation dynamics (DDD) approach was created to overcome the short time and
length scales of atomistic methods. This model treats adequately long range interaction of dislo-
cations without resolving the fine structure of the dislocation cores. To account for short range
interactions, specific “local rules” must be added governing, for instance, intersections and locks.
Even some particular lattice scale effects have been successfully modeled with the help of such
additional phenomenological constructs, typically motivated by atomistic simulations [119–125].
Being reinforced in this way, the DDD has emerged as an extremely useful approach for model-
ing evolution of many interacting dislocations [126, 127]. However, it still remains challenging to
account in the DDD framework for large deformations, crystal symmetry, lattice rotation, as well
as the emergence of non-dislocational defects. Coarse graining of DDD, which opens the way
towards modeling of dislocation patterning, has been attempted in the framework of the meso-
scopic CDD methods where dislocation microstructures are modeled by continuum dislocation
density fields [128–130]. While various phenomenological closure relations have been proposed
to model the evolution of the dislocation density, the systematic development of this approach
is hindered by the fact that rigorous statistical averaging in the ensemble of strongly interacting
dynamic defects is still a big challenge [131].

In search of a micro–macro compromise a QC approach was proposed in [132] and then
significantly developed in [110, 111, 133–135]. It is based on the observation that a fully atomistic
resolution is necessary only in small spatial regions, while in most of the modeling domain
the deformation fields can be represented by the classical continuum theory. A necessity of
patching the continuum and discrete subdomains poses, however, a complex problem [111,136].
The QC method has been successfully used in many applications, including the study of nano-
indentation, deformation of grain-boundaries and crack tip evolution [137–140].

Of particular interest to our study is the local version of the QC method representing a meso-
scale compromise between continuum and atomistic approaches [132, 134]; a closely related
approach is the interatomic potential FEM (IPFEM) [141, 142]. In these effectively single scale
methods the spatial domain is subdivided into discrete elements, as in a finite element method
(FEM), and the deformation in each element is taken to be piece-wise affine. The energy density
of an element, which then depends only on the displacement gradient at this point, is evaluated
using interatomic potentials and the Cauchy–Born rule [143–146]. These approaches were shown
to capture adequately the basic structure of dislocation cores, even though they can misrepresent
some truly atomistic features like deformations varying rapidly within the cut-off distance of the
interatomic potential.

A mesoscale approach to crystal plasticity, which also allows one to treat dislocations in a
fully continuum framework, and which is relevant for our own development, is the phase-field
dislocation dynamics (PFDD) [101, 147–149]. This method has evolved from the original Landau
approach to the modeling of phase transitions [150–155]. In PFDD lattice slips are described by
scalar order parameters and the energy wells represent quantized lattice invariant shears [147,
156, 157]; transition layers, separating regions with different amount of shear, represent the
locations of dislocation lines. The Landau energy functional couples the tensorial linear elastic
energy with the scalar lattice energy whose periodic structure is usually informed by atomic
scale simulations based on the Cauchy–Born rule. The PFDD method enables simulations of
much larger crystal sizes and much longer time scales than atomistic simulations [150, 158–160].
While the extensions of PFDD to finite strains have recently appeared [161, 162], the remaining
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challenge is that the structure of lattice invariant shears is resolved by scalar order parameters
only approximately [98, 163, 164].

3. Mesoscopic tensorial model (MTM)

We have seen that despite many important advances in various specific problems, the sufficiently
versatile computational method, allowing for natural coupling of different plastic “mechanisms”
while addressing realistic space and time scales,2 is still missing. The challenge is then to build
a synthetic mesoscopic tensorial approach dealing with large strains, while accounting correctly
for both anisotropy and discreteness of the simplest Bravais lattices.

Different attempts along these lines can be found in the literature. The corresponding scalar
approaches [38, 165, 166] can be viewed as generalizations of the minimalistic 1D Frenkel–
Kontorova model [167–169] for the 2D case when only one slip system is activated. Despite their
simplicity such models have been successful in describing dislocation cores [170], in simulating
dislocation nucleation [75, 171–174] and even in modeling of plastic intermittency [39, 68]. The
tensorial models with linearized kinematics were proposed in [175–178]. They produced a more
realistic picture of plastic flows but still could not account adequately for lattice-invariant shears
associated with finite plastic slip [179].

The first attempts to incorporate the effects of geometrical nonlinearity were made in the
context of a model of reconstructive phase transitions allowing for partial plastic accommoda-
tion [180]. A finite strain model focused directly on the modeling of plastic deformation was first
developed for the case of highly anisotropic lattices of HCP type with a single slip system [38].
Both of these papers can be viewed as different realizations of the original program of Ericksen
who proposed that in nonlinear elasticity the energy periodicity should be made compatible with
geometrically nonlinear kinematics of Bravais lattices [181–184], see also the subsequent impor-
tant developments of the mathematical formalism in [185–188].

Behind the coarse-grained approach of Ericksen was the general assumption that meso-scale
material elements are exposed to an effective energy landscape which is globally periodic due to
the presence of lattice invariant shears. From the perspective of such Landau-type continuum
theory with an infinite number of equivalent energy wells, plastically deformed crystal can be
seen as a multi-phase mixture of equivalent “phases”. Plastic yield can be then interpreted as an
escape from the reference energy well and plastic “mechanisms” can be linked to low-barrier val-
leys in the energy landscape. Friction type dissipation controlling dynamics in continuum crys-
tal plasticity emerges in such theory as a result of a homogenized description of an overdamped
athermal dynamics in a rugged energy landscape [189, 190].

The 2D scalar model of crystal plasticity presented in [38,39] was effectively a single slip system
version of such theory. Building upon [180], a 2D tensorial version was presented in [40]. Its main
advantage is that it incorporates adequately the full symmetry of the Bravais lattices [181, 184].
We recall that the invariance described by the infinite group GL(2,Z) is different from the one
associated with the classical finite point group limited to orthogonal transformations. The global
group GL(2,Z) is much broader, accounting not only for orthogonal transformations but also
for non-orthogonal transformations representing lattice invariant shears. For example, in 2D a
Bravais lattice can be viewed as an infinite integer translation of two linearly independent vectors
or, more formally, it is a set of vectors x ∈ R2 such that x = vK eK , with vK ∈Z. For a given Bravais
lattice, there are infinite choices for the basis {eK }. The associate global symmetry group is the
maximal subgroup of the group of invertible linear mappings leaving the lattice invariant. In

2Allowing one, for instance, to resolve the system size dislocation nucleation avalanche for micron size crystals.
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particular, for 2D Bravais lattices it is GL(2,Z) = {MK L ∈ Z, det(M) = ±1}, where K ,L = 1,2. In
words, the global symmetry group of a 2D Bravais lattice is represented by 2×2 invertible matrices
with integer entries and determinant ±1.

In the kinematically nonlinear Landau type theory with GL(2,Z) symmetry the role of the order
parameter is played by the metric tensor (defined below), and the bottoms of the energy wells
correspond to lattice invariant deformations. Since the ground state in the continuum theory of
this type is necessarily degenerate (hydrostatic) [182, 191], the regularization is necessary, as in
the case of PFDD or any other Landau-type theory. In [40] such regularizing internal length scale
was associated with the size of the mesh generating discrete elastic elements. In other words,
the mesh scale was treated as a physical parameter which defines the meso-scale. Given the large
magnitude of the “transformation strain”, different “phases” ended up being localized at the scale
of such mesoscopic elements and the domain boundaries appeared macroscopically as linear
defects mimicking dislocations.

In what follows we refer to the approach proposed in [40] as the mesoscopic tensorial model
(MTM). The main advantage of this approach is that it is formulated in terms of macroscop-
ically measurable quantities (stress and strain) while being able to distinguish between differ-
ent symmetry induced configurations of dislocation cores. It can therefore account adequately
for both long- and short-range interactions between dislocations. Most importantly, it allows for
topological transitions associated with dislocation nucleation and annihilation even though the
corresponding “reactions” appear as blurred on the scale of regularization. Last but not least, in
the MTM approach the interaction of dislocations with various obstacles, including pinning by
impurities and depinning from nucleation sources, can be handled without introducing ad-hoc
relations.

In this paper the MTM is used to conceptualize the brittle-like response of nominally ductile
sub-micron crystals. Through a series of numerical experiments we uncover the origin of the cor-
related dislocational response of crystals with different symmetry at loading levels approaching
the theoretical (ideal) strength. In particular, we reveal the mechanism of the observed orienta-
tion dependence of the degree of “brittleness” and rationalize the system size dependence of the
associated collective nucleation event.

3.1. GL(2,Z) energy density

For simplicity, we deal in this paper with the two dimensional Bravais lattices: square (with lower,
square symmetry) and triangular (with higher, hexagonal symmetry). In addition to its theoretical
interest, the study of plasticity in 2D crystals is technologically relevant because such crystals
have been recently found important in many applications [192–200].

The main ingredient of the MTM approach is the objective elastic energy density which re-
spects the GL(2,Z) symmetry. To construct such energy, we need to first introduce the deforma-
tion of a continuum body y = y(x), where y and x are the position vectors in the current (Euler-
ian) configuration and the reference (Lagrangian) configuration, respectively. If F is the defor-
mation gradient ∇y = ∂y/∂x, the frame indifferent elastic energy density Φ(C) can depend on F
only through the metric tensor C = FT F. To account adequately for all deformations that map
a Bravais lattice onto itself, we require that the strain energy density satisfies Φ(C) = Φ(MT CM)
for any matrix M in GL(2,Z). We recall that this invariance follows from the fact that the same
lattice can be generated by the two sets of lattice vectors ēK and eK if and only if ēK = MK LeL .
In the presence of such symmetry, the space of metric tensors C with components CK L = eK ·eL

partitions into periodicity domains. Therefore, when the energy is known in one of the domains,
it can be automatically extended to all other equivalent domains by the use of global tensorial
periodicity.

C. R. Physique — 2021, 22, n S3, 201-248
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Figure 1. The structure of the GL(2,Z) periodicity domains in the space of metric tensors C.
The shown portion of the infinite surface detC = 1 represents simple lattices with detC > 0.
The projected section of the original hyperbolic surface is defined by the inequalities
0 <C11 < 6, 0 <C22 < 6, and −3 <C12 < 3.

The space of metric tensors in the 2D case is three dimensional and in Figure 1 we show a
two dimensional section of this space defined by the condition detC = 1. For better visibility
equivalent tensorial periodicity subdomains are shown in two alternating colors, gray and white.
Each of these subdomains contains necessarily one and only one copy of a particular Bravais
lattice. In this figure, equivalent zero-parametric families of square lattice configurations are
marked with solid squares Si,Sij, . . . ,S ī,S ī̄j, . . . while solid triangles Ti,Tij, . . . ,Tī,T ī̄j, . . . correspond
to similar families of equivalent triangular lattices. Red lines indicate one-parametric families
of rectangular lattices and blue lines correspond to similar families of rhombic lattices. Finally,
the open 2D domains correspond to two-parametric families of equivalent oblique (monoclinic)
lattices, see also [201–204]. Note that in this representation we do not see the “volumetric” part
of the metric tensor responsible, for instance, for void formation [205].

The darkened area in Figure 1, denoted by D, is known as the “fundamental” domain [206].
Among all the equivalent metric tensors describing symmetry-related lattices, this domain con-
tains the “minimal” ones, known as “reduced forms of Lagrange”. An arbitrary basis ei producing
an arbitrary metric C has its unique “Lagrange reduced” copy ẽi with the corresponding metric
C̃ in D.

The Lagrange reduction is obtained using the following rule: among all symmetry related
copies of the original basis, the reduced one is formed by the shortest non-colinear vectors with
an acute angle between them, see for instance [180]. Therefore, the domain D can be defined as:

D=
{

0 <C11 ≤C22,0 <C12 ≤ C11

2

}
. (1)

Inside this domain, the “Lagrange reduced” square lattice, with basis vectors aligned with the
close-packed directions e1 = (1,0), e2 = (0,1), corresponds to point S0 in Figure 1. Instead, the

C. R. Physique — 2021, 22, n S3, 201-248
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“Lagrange reduced” triangular lattice with its basis vectors h1 = γ(1,0) and h2 = γ(1/2,
p

3/2),
where γ= (4/3)1/4, corresponds to the point T0 in Figure 1.

In view of the GL(2,Z) periodicity, it is sufficient to know the elastic energy for C̃ ∈ D. One
can then use the symmetry to write Φ(C) = Φ0(C̃), where C̃ = MT CM is the Lagrange reduced
metric, and the functionΦ0 is defined only inside D. The condition that the functionΦ0 is twice-
differentiable can be satisfied if the deviatoric part of Φ0 is a sixth order polynomial [185, 187].
With hexagonal symmetry chosen as global, one can write the minimal expression for such
polynomial [180]

Φ0
d (C̃/(detC)1/2) =βψ1(C̃/(detC)1/2)+ ψ2(C̃/(detC)1/2), (2)

where, ψ1 = I1
4 I2 − 41 I2

3/99+ 7 I1 I2 I3/66+ I3
2/1056, and ψ2 = 4 I2

3/11+ I1
3 I3 − 8 I1 I2 I3/11+

17 I3
2/528. and we used the following hexagonal invariants I1 = 1/3(C̃11+C̃22−C̃12), I2 = 1/4(C̃11−

C̃22)2 + 1/12(C̃11 + C̃22 − 4C̃12)2, and I3 = (C̃11 − C̃22)2(C̃11 + C̃22 − 4C̃12)− 1/9(C̃11 + C̃22 − 4C̃12)3.
The elastic energy density (2) depends on a single parameter β that may be used to enforce a
particular symmetry on the reference state. For instance, the choice β = −1/4 guarantees that
the global energy minimizers correspond to square lattices while the choice β= 4 shifts the bias
towards the triangular lattice. In what follows, the total elastic energy will be then taken in the
form Φ0(C̃) = Φ0

d (C̃/(detC)1/2)+Φv (detC). The additive volumetric part of the energy density,
which plays only minor role in this study by affecting the structure of dislocation cores and
controlling the formation of voids, will be chosen in the form Φv (s) = µ(s − log(s)). This choice,
instead of a more realistic Lennard-Jones type potential, will allow us to avoid various volumetric
instabilities while still excluding infinite compression. In particular, to ensure that the strain field
remains close to the surface detC = 1 in our numerical experiments we choose large value of the
bulk modulus by setting µ= 25.

We remark that the particular potential (2) was chosen for illustrative purposes only and for
most applications in crystal plasticity the piece-wise quadratic potentials with GL(2,Z) symmetry
would be sufficient, see for instance [39, 68]. Outside crystal plasticity, the general approach of
MTM can be used as well with potentials satisfying less restrictive symmetry constraints, see for
instance, [207].

3.2. Energy landscape

To visualize the local energy landscape we use the plane with coordinates ((C11 −C22)/
p

2,C12).
In Figure 2(a) we illustrate the potential (2) with β=−1/4 describing an energy landscape whose
absolute minima are the equivalent square lattices. To model plastic flows in triangular lattices
with higher, hexagonal symmetry, we choose in (2) the parameter value β = 4 and the resulting
elastic potential is illustrated in Figure 3(a).

In Figures 2(a) and 3(a) one can clearly distinguish between the “soft” directions located inside
the deep valleys of the energy landscape (marked in blue), and the “hard” directions pointing
away from the valleys and forcing the system to climb high energy barriers separating the valleys
(yellow and red regions). Inside each low energy valley the energy is periodic with the bottoms
of the energy wells corresponding to equivalent lattices. Thus, in the case of square lattices
(Figure 2(a) the equivalent minima are denoted by Si,Sij, . . . ,S ī,S ī̄j, . . . and in the case of triangular
lattices (Figure 3(a)), by Ti,Tij, . . . ,Tī,T ī̄j, . . ..

Note that while the energy is locally convex near the bottom of each energy well and can be
approximated by the standard Hookean paraboloid, the global energy landscape is highly non-
convex and can be characterized as rugged. In particular this means that outside the immediate
vicinity of the energy wells bottoms the system finds itself in spinodal regions where the consti-
tutive behavior softens opening the possibility for various mechanical instabilities. Note that the
local maxima of the one parametric energy landscape along the low energy valleys turn out to
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Figure 2. (a) The level sets of the strain-energy density (2) with β = −1/4. Colors indicate
the energy level: blue, low; red, high. Dashed lines correspond to the simple shear loading
paths F(α,φ) defined in (3). (b) The periodic strain-energy profile along the two symmetric
paths 1–1 and 2–2 and the current state of lattice vectors.

Figure 3. (a) The level sets of the strain-energy (2) with β = 4. Colors indicate the energy
level: blue, low; red, high. Dashed lines correspond to the simple shear loading paths F(α,φ)
defined in (4). (b) The periodic strain-energy profile along the three symmetric paths 1–1,
2–2, and 3–3 and the current state of lattice vectors.

be located very close to the configurations corresponding to saddles describing perfect lattices
with alternative symmetries: triangular lattices, in the case when we shear a square lattice (see
triangles near the local maxima along the white dashed paths in Figure 2(a)) and square lattices,
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in the case when we shear a triangular lattice (see squares near the local maxima along the white
dashed paths in Figure 3(a)).

CP theory obviously appreciates the implied complexity of the energy landscape but not in
the same way as MTM. Thus, the low energy valleys are modeled as zero energy plastic “mecha-
nisms”. The periodicity of the energy inside the valleys is neglected and instead the phenomeno-
logical friction type lays are introduced to govern the “working” of such mechanisms. Elasticity is
usually assumed to be linear and is only accounted for around the reference energy well, which
is then extended globally. This does not create problems in CP because at large strains plastic de-
formation along the valleys always wins against elasticity which becomes at such strains prohib-
itively expensive energetically. To describe in the CP framework the coupling between different
plastic “mechanisms”, involved for instance in latent hardening [208], additional phenomenolog-
ical relations have to be formulated. In MTM those will be automatically accounted for due to the
presence of various saddle points (mountain paths) that are apparent in Figures 2(a) and 3(a).

To illustrate a more detailed structure of the energy landscape along the particular low energy
valleys we now consider two parametric families of square lattices transformed to one another by
the volume preserving shear deformations of the form

F̄(α,φ) = 1+αa(φ)⊗a⊥(φ), (3)

where α is the amplitude of shear, a(φ) = R(φ)e1, R(φ) is a matrix describing a counterclockwise
rotation by the angle φ, e1 is a unit vector of the Cartesian coordinate system directed along the
close-packed x direction and a⊥ is a vector orthogonal to a.

For instance, if we fix φ= 0 and consider a one parametric family involving the metric tensors
C(α), we obtain the path 1–1, shown in Figure 2(a) by a dashed white line facing left. It starts at
the reference state S0, corresponding to the unstressed square lattice, and at integer values of
parameter α generates an infinite sequence of equivalent unstressed replicas of the same square
lattice. For instance, the “closest” lattices configurations S1 and S1̄ can be reached from S0 by the
elementary shear deformations F̄(±1,0).

If we choose instead φ = π/2, we obtain another one parametric family of simple shears
described by the path 2–2, shown in Figure 2(a) by a dashed white line facing right. It also starts
at the reference state S0 and produces at integer values of parameter α an infinite sequence of
equivalent unstressed configurations of the square lattice. Once again, the “closest” lattices S2

and S2̄ can be reached through the shear deformations F̄(∓1,π/2).
The energy landscapes along these symmetric paths are the same, see Figure 2(b). Note that

around the symmetric energy minima α = 0 and α = ±1, visible in such a graph, the energy is
quadratic but then it loses convexity and the corresponding mechanical response starts to soften.
Such softening is ultimately behind the break up of elastic response and the emergence of yield. If
the system is quasi-statically driven through such an energy landscape, it undergoes a succession
of snap-back instabilities which, under overdamped dynamics, merge into the dissipative plastic
response which is postulated phenomenologically in the classical CP approach, see [189] for
details.

Note that a composition of shear deformations from the paths 1–1 and 2–2 can be interpreted
as an activation of a double-slip. For instance, the mapping F̄(−1,π/2)F̄(1,0) brings the system
from the reference lattice configuration S0 to the equivalent lattice configuration S12 after it
slips in two perpendicular directions. In fact, all the bottoms of the energy wells Sij, . . . ,S ī̄j, . . .,
corresponding to equivalent square lattices, can be reached similarly by combining quantized
simple shears (3) with φ= 0 or φ=π/2. Moreover, as we have already mentioned, a simple shear
path leading away from one of the energy wells passes near the saddles corresponding to ideal
lattices with different symmetries. It is then natural to conclude that these saddles serve as a
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switching points activating double slip and inciting composite shears. Based on these observa-
tions, one can argue that multiple alternative lattice symmetries, that are virtually invisible in the
“single symmetry” classical CP approach, may be contributing fundamentally to the complexity
of plastic flows in crystals.

Periodicity of the energy along the particular tensorial directions, illustrated in Figure 2(b),
is usually directly postulated in PFDD, with each of these directions bringing in a scalar order
parameter of its own. To describe a composition of the corresponding shear deformations, the
PFDD order parameters need to be coupled phenomenologically. Instead, in the MTM, such
coupling is automatic due to the global symmetry requirements. Moreover the MTM approach
allows one to assess the height and the structure of the barriers separating the corresponding
valleys and controlling the activation of double-slip. Note also, that a combination of scalars can
represent a globally defined tensorial variable (metric tensor) only approximately.

Turning back to Figure 2(a), we observe that the two other symmetric paths 3–3 and 4–4, shown
by dashed blue lines, correspond to simple shears applied to the rotated crystal with φ = π/4
and φ = 3π/4. While these symmetric shears are no longer aligned with the dense planes of
our square lattice, the corresponding loading paths are still special since they bring the system
from the reference energy well S0 directly to the second nearest energy wells, represented in
Figure 2(a) by the small squares S11, S22, S1̄1̄ and S2̄2̄. Along such paths the energy landscape
is also periodic but the period doubles and the separating barriers become much higher as these
paths are largely located outside the low energy valleys. While in CP such paths are not viewed as
plastic “mechanisms” that can be activated, they are still accounted for in the MTM which deals
with the whole tensorial landscape and therefore encompasses all possible paths.

Finally, the red dashed line in Figure 2(a) illustrates a non-symmetric loading path with
φ = arctan(1/2), also originating in S0. This path exhibits the characteristic loading–unloading
asymmetry of generic simple shear deformations. In particular, along this path the equivalent
square energy well S2̄ can be reached through “unloading” at F̄(−1,arctan(1/2)) but none of the
nearest square wells are reached upon “loading” with α positive.

The analysis above suggests the strong dependence of the plastic response on the orientation
of the crystalline sample inside a hard loading device, even if it always applies the same simple
shear deformation. The fact that there are soft and hard orientations has been long known in
crystal plasticity. MTM approach presents a more nuanced picture, showing that the soft paths
may come not only with different size of the periodically placed barriers but also with different
periodicity, while along the hard paths one may expect extremely high barriers and generic
loading–unloading asymmetry. The crucial advantage of the MTM is that all this complexity
does not have to be postulated and emerges directly from the global symmetry of the energy
landscape.

The obtained general picture is confirmed if we turn from square to triangular lattices, how-
ever, as the analysis below shows, the important differences between the energy landscape in
lower symmetry (square) and higher symmetry (triangular) lattices exist.

In the case of triangular lattices we can again illustrate the available plastic “mechanisms” by
considering the one parametric simple shear paths. The single slip plasticity in triangular lattices
can be modeled by the shears

F̄(α,φ) = 1+αb1(φ)⊗b2(φ), (4)

where bA(φ) = R(φ)hA with A = 1,2. The (non-unit) lattice vectors hA have been introduced
earlier and the vectors bA are their duals defined by the conditions bA ·bB = δB

A .
Using (4), we can generate three symmetric shear paths originating in the unstressed lattice T0

and describing plastic slips along the three close-packed directions. They correspond to crystal
orientations φ= 0,π/3,2π/3, see the white dashed lines in Figure 3(a). Here again, for the integer
values of α we obtain infinite families of equivalent replicas of the original triangular lattice.
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In particular, the lattice configurations T1 and T1̄, located on the path 1–1, can be reached by
the shear deformations F̄(±1,0) starting from the lattice configuration T0 (see the dashed white
line facing left). Upon further “unloading” F̄(−2,0), another triangular lattice T1̄1̄ can be reached,
while the lattice configuration T11 is reachable by the matching additional “loading” F̄(2,0) (not
visible in Figure 3(a)).

The symmetry related paths 2–2 and 3–3, also shown in Figure 3(a) by dashed white lines,
correspond to the shear deformations F̄(α,π/3) and F̄(α,2π/3). Both of them also originate in the
point T0 and produce at integer values of α infinite families of equivalent replicas of the original
triangular lattice. Thus, along the path 2–2, one can reach the equivalent lattices T2, T1̄, and T1̄2̄,
all visible in Figure 3(a). Similarly, the equivalent lattice configurations T1 and T2 are reachable
along the path 3–3.

For each of these paths, which all correspond to the known plastic “mechanisms”, the one
dimensional periodic energy landscape is exactly the same, see Figure 3(b). The maxima of
such energy landscapes are located close to the saddle points of the global energy landscape
corresponding to square lattice configurations. Because they follow the low energy valleys of the
global energy landscape (shown in blue in Figure 3(a)), these simple shear paths correspond to
“soft” loading directions for a triangular lattice. Observe that such valleys are splitting into two
in each of the energy wells which is clearly an easy mechanism for the activation of multi-slip in
such higher symmetry lattices.

A non generic path with φ=π/2 is also shown in Figure 3(a) (see the blue dashed line). In this
case, the crystal is not driven along one of the low energy valleys, however it does pass through
the bottoms of the energy wells (with period 3). If we load the crystal in shear along this “hard”
direction, we can expected to reach the “yellow” and even “red” zones in Figure 3(a) and therefore
acquire considerable elastic energy before the ultimate breakdown of an elastic state. Curiously
enough, as we show below, this does not happen.

Since we use in this paper a particular expression for the energy (2), one may think that, given
that the results depend on this choice, we cannot obtain generic picture for square and tetragonal
crystals. However, the proposed energy has several universal features such as the exact location
of the energy wells and the fact that they are quadratic close to lattice invariant shears. Moreover,
the configuration of the low energy valleys and the connecting saddle points is also universal
in the sense that it is dictated exclusively by the GL(2,Z) symmetry. Of course, the potential-
specific features of the energy landscape, like the curvatures of the wells and the height of the
energy barriers, remain. In fact, such quantitative ambiguity is the element which MTM shares
with all other Landau type theories. To assess this ambiguity, we have conducted a preliminary
comparison of the results presented here with the outcome of the MTM, where the energy was
constructed directly from an atomic model. While the fine structure of the dislocation cores was
affected, we did not record any qualitative differences as far as the global post yield dislocation
pattern is concerned [209].

Note also that the level of smoothness of the Landau potential can be improved if we replace
the six order polynomials used in (2), by the higher order polynomials. Various exponential
approximations were discussed in [186] and an example of an analytic function with GL(2,Z)
symmetry was presented in [40]. However, in general, such potentials are analyzed numerically
and the possibility of a relatively simple analytic representation is not an issue. Therefore,
physically relevant potentials can be constructed directly inside the fundamental domain D by
analyzing homogeneous deformations of atoms and applying the Cauchy–Born rule. To this end
one can use interatomic potentials, embedded atom methods and even quantum mechanics.
Such numerically constructed energy potentials can be then continued by symmetry using the
Lagrange reduction mentioned above or other similar approaches [206, 210, 211].
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3.3. Computational approach

We now turn to the numerical implementation of the MTM approach. Its underlying idea is that
rate-independent crystal plasticity can be modeled within the framework of the appropriately
discretized nonlinear elasticity combined with athermal, overdamped dynamics. If the loading
is sufficiently slow, the exact nature of such dynamics is not essential as long as it effectively
performs incremental energy minimization [189,190]. As the loading evolves the system remains
on the same branch of local minima of the energy till the latter ceases to exist and then it switches
to another equilibrium branch. Such switching is a dynamic process (avalanche) which can be
considered instantaneous at the time scale of the loading but it still contributes to dissipation. In
this representation, plastic flow emerges as a set of equilibrium solutions of nonlinear elasticity
with dissipation taking place exclusively during the abrupt branch switching events [189].

We recall that solution of an elastic problem implies local minimization of the energy

W =
∫
Ω
Φ(∇y)dx,

which is prescribed on a reference domain Ω with unit volume. We assume that the system
is loaded by an affine displacement field prescribed on ∂Ω (hard device). The conditions of
mechanical equilibrium can be formulated in terms of the first Piola-Kirchhoff stress tensor
P = ∂Φ/∂F. In the index free form they can be written as

∇·P = 0.

Using the Eulerian i , j = 1,2 and the Lagrangian K ,L = 1,2 indexes and assuming summation on
repeated indexes, we can rewrite these equations in the form

Ai K j L y j ,K L = 0,

where

Ai K j L = ∂2Φ0(C̃)

∂Fi K ∂F j L
. (5)

Here C̃ = MT CM, where the integer-valued matrix M with determinant equal to one is computed
for each value of C using the Lagrange reduction algorithm. The matrix M depends on the current
state of deformation F in a piece-wise constant manner and therefore can be considered as
constant in (5) which can be then rewritten as

Ai K j L = MM N MPQ

[
∂CMP

∂F j L

∂C AB

∂Fi K
MAC MBD HMQC D + ∂2CMP

∂Fi K ∂F j L
ΣNQ

]
. (6)

Here we introduced the tensors

Σ=


∂Φ0
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∂C̃22

 , (7)

and
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which are assumed as known inside the fundamental domain D. We also recall here for conve-
nience that ∂CK L/∂Fi j = δK j Fi L +δL j Fi K , and ∂2CK L/∂Fi M∂F j N = (δK MδLN +δK NδLM )δi j .

As we have already mentioned, the continuum elasticity problem, formulated above, is highly
degenerate which is the property the MTM shares with other similar Landau type theories.
Usually such theories are regularized through the introduction of an internal length scale. In
contrast to the conventional Ginzburg–Landau approaches like PFDD, relying for regularization
on higher gradients of the order parameters, in MTM the regularization is achieved by spatial
discretization. More precisely, deformation is assumed to be piecewise linear and the elastic
response is attributed to discrete material elements whose size is viewed as a physical parameter
of the model [38, 40, 180].

We therefore need to reduce the space of admissible deformations to compatible piece-
wise-affine mappings. To this end we build a network whose discrete nodes are labeled by
integer valued coordinates a = 1, . . . , N 2. We assume that each element of the network is a
deformable triangle and write the displacement field in the form u(x) = uaNa(x), where Na(x)
are the compactly supported shape functions, ua are the amplitudes of nodal displacements
and summation over repeated indexes effectively extends over elements containing or bounding
point x. The mesoscopic deformation gradient is then F(x) = 1+∇u(x), and the equilibrium
equations can be written in the form

∂W

∂ua =
∫
Ω

P(F)∇Na(x)dx = 0, (8)

where P = 2FMΣMT . This problem can be solved by quasi-Newton method followed by the so
called NR “refinement” when the initial guess is too far from the solution for Newton–Raphson
method to converge initially [132].

More specifically, to solve (8) for ua we first use the L-BFGS algorithm [212] which builds a
positive definite linear approximation of (8) allowing one to make a quasi-Newton step lowering
W . Such iterations continue till the increment in total energy W becomes sufficiently small. The
obtained approximate solution is then used as an initial guess wa to solve, using LU factoriza-
tion [213, 214], the equations for the correction dwa

K ab
i j dwb

j +Ra
i = 0, (9)

where

K ab
i j = Ai K j L(F)

∂Na

∂xK

∂Nb

∂xL
, Ra

i = Pi K (F)
∂Na

∂xK
. (10)

The displacement field can be updated in this way till the value of the integral in (8) is sufficiently
small and then the loading parameter can be advanced again. In the case when the applied
deformation is, a homogeneous shear F̄(α,φ) with fixed orientation φ, the loading parameter
is the shear amplitude α. By changing this parameter in increments of 10−4, we advance the
displacement field u(α,φ) = (F̄(α,φ)− 1)x for all nodes a on the boundary of the body ∂Ω.

The outcome of such numerical experiments depends on the value of the internal length
scale entering the discrete problem through the finite element size h. Each element contains
n2 interacting atoms, where n = h/a and a is a fixed atomic scale. For such element deformed
in simple shear we can use one of the known ab initio methods to compute its energy, which
becomes close to periodic as we increase h. The value of this internal length scale used in MTM
depends on the smallest range of energy periodicity required in the problem; in considered
cases the periodicity at the level of the few first energy wells could be captured already for
h ∼ 10a.

Since the linear size of the macroscopic sample is L = 1, the small dimensionless parameter of
the MTM is h/L = 1/N where N 2 is the number of the nodes. Thus, if h is in nm size range, the
simulations with N ∼ 103 would describe a micrometer size crystal. When N is small, dislocation
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cores emerge as blurred because the scales smaller than 1/N are homogenized out. While such
cut-offs may compromise the short-range interaction of dislocations, long-range interactions at
distances larger than 1/N will be captured correctly.

4. Numerical experiments

To understand the paradoxical crack-free brittle behavior of very small, initially dislocation-
free crystals, we used MTM and conducted a series of numerical experiments with square and
triangular crystals. The samples were subjected to simple shear, and we performed experiments
with several different orientations of the same samples in the same hard loading device. We used
square cut samples in all our experiments and could vary the system size up to N = 1024.

4.1. Macroscopic response

The obtained macroscopic responses for crystals described by the piece-wise smooth potential
(2) are summarized in Figures 4(a) and (b). We show separately the energy–strain and the stress–
strain responses for square and triangular crystals loaded in different orientations. The energy
was obtained by incremental local minimization starting from the reference state. To compute
the stress–strain curve, we define the resolved-shear stress in the direction of loading as τ(α) =
dW/dα= ∫

ΩP : (dF̄/dα)dx.
In each of our numerical experiments, the initial phase of the deformation history is (non-

linear) elastic. During this stage, all elements have associated metrics that remain inside the ex-
tended fundamental neighborhood of the initial phase (Pitteri neighborhood [188]), comprised
of four (in case of square symmetry) or six (in case of triangular symmetry) symmetric replicas of
the fundamental domain. While the response of the crystal inside such domain is nominally elas-
tic, our experiments show that the affine deformation becomes unstable before the boundary of
this neighborhood is reached. The instability takes place at a critical value of the loading param-
eter α = α∗

c which depends not only on crystal symmetry and crystal orientation, see Figure 4,
but also on the value of N (see below). The breakdown of affine elastic regime takes the form of
a catastrophic drop in both stress and energy. While these drops are still associated with plastic
deformation, they are highly reminiscent of brittle fracture.

We now discuss how the macroscopic mechanical behavior during such discontinuous yield
depends on crystal symmetry and how it varies when crystals of the same symmetry are differ-
ently orientated in the loading machine.

We start with a pristine square crystal that we load along the principal slip direction withφ= 0.
In such an “easy” glide direction, the instability is preceded by the purely elastic softening, and the
yield takes place near the maximal load. However, instead of conventional continuous yielding,
the crystal experiences discontinuous yield as it abruptly loses almost all accumulated energy
with stress dropping almost to zero. This means that the crystal manages to expel almost all
nucleated dislocations away from its bulk, either by annihilating or sending them towards the
boundaries. If the boundaries were unconstrained, the transition would be pristine-to-pristine,
but in the hard-device loading conditions, at least some of the nucleated dislocations end up
forming low energy piles-up near the boundaries (see more about this in the next section).

A similar almost pristine-to-pristine discontinuous-yield occurs in the case of a less symmet-
ric but still non-generic shear with φ = π/4 but only after both the elastic energy and the stress
reach a much higher value. As we have already seen, along this loading path, the periodicity strain
doubles, and the barriers become much higher than in the case of shear loading directed along
the low energy valley. The crystal is first driven away from such valley and, before yielding, man-
ages to accumulate a considerable amount of energy without an apparent softening. It is then
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Figure 4. Macroscopic mechanical response of square (a–c) and triangular crystals
(b–d) subjected to simple shear loading: (a,b) the equilibrium elastic energy W(α) (c,d);
the equilibrium stress τ(α).

rather remarkable that the eventual breakdown of the elastic state leads to almost complete re-
laxation of considerable elastic stress. The explanation probably lies in the fact that the crystal’s
orientation is still special vis a vis the applied load.

Loading of the crystal in a non-generic tensorial direction φ= arctan(1/2) leads to a moderate
softening in the elastic range, which again ends with a discontinuous yield. The resulting dislo-
cation avalanche relaxes the stored elastic energy only minimally. This suggests that the crystal is
left with considerable amount of dislocations which may not be strongly correlated.

In triangular lattices with hexagonal crystallographic symmetry, the macroscopic mechani-
cal response is different. For two loading paths with φ= 0 and φ=π/3, passing inside the low en-
ergy valleys, the overall softening nonlinear elastic response terminates with a yielding avalanche
which takes place at exactly the same level of energy and the same value of the loading parameter.
The pristine state is not recovered after the discontinuous yield because higher symmetry gives
rise to geometric frustration, and the stored elastic energy cannot be fully resolved through dislo-
cation self-organization. However, the resulting stress drop is considerable, which suggests that
long-range correlations have been created. The slight difference in the terminal post-avalanche
state for the paths with φ= 0 and φ=π/3 is a finite size effect suggesting that the corresponding
instability modes interact differently with the incommensurate square shape of the sample.

Along the non-generic “hard” loading path with φ = π/2, the crystal shows hardening non-
linear elastic response, however, the yielding stress is only slightly higher than in the case
of the “soft” paths considered above. The discontinuous yield leads again to relatively small
energy relaxation, suggesting that a high symmetry environment favors the considerable accu-
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mulation of dislocations. However, the stress drop is smaller than along more symmetric “soft”
paths, which hints towards a higher level of frustration and weaker long-range correlations in the
post-buckling equilibrium state.

To summarize, our numerical experiments suggest that nominally ductile crystals, which are
expected to yield continuously in the bulk form (large N , pre-existing defects), can undergo a
brittle-to-ductile (BD) transition when the value of N and the initial dislocation density both drop
below certain thresholds. Such brittleness has been indeed realized to be a characteristic feature
of sub-micron samples with high initial purity (absence of solutes, precipitates, and dislocations).
The implied discontinuous yield results from massive homogeneous nucleation of dislocations
in the form of a highly cooperative avalanche. As we have shown, the MTM can successfully
simulate such avalanches and captures not only the catastrophic stress drop but also, in some
cases, the recovery of almost pristine post-avalanche states. Even more importantly, MTM allows
one to study the subtle quantitative dependence of the parameters of such discontinuous yield on
crystal symmetry and sample orientation. Some features of the observed behavior may depend
on our particular choice of the Landau potential, like for instance, the crossover from elastic
softening to elastic hardening depending on the orientation of the sample; the question whether
such behavior is instead a generic property of all GL(2,Z) symmetric potentials will be addressed
elsewhere.

4.2. Ideal shear strength

To rationalize the observed behavior, we now study analytically the linear stability of an affine
elastic response in homogeneously deformed crystals. From the classical continuum elasticity
standpoint, the instability would mean that a homogeneous configuration is no longer a weak
local minimum of the elastic energy. In a hard device, such instability results from the local loss
of rank-1 convexity of the elastic energy density which also means the loss of strong ellipticity
of the equilibrium equations [215, 216]. The instability in the regularized model is necessarily
delayed which is one of the sources of the “smaller is stronger” size effect in sub-micron crystals.

Consider a homogeneous configuration of an elastic crystal with deformation gradient F
rigidly imposed on its boundary. Suppose that this state becomes linearly unstable at the criti-
cal value of the imposed strain F̄c . To find this threshold, we need to linearize the equilibrium
equations around the homogeneous state. If we write them in terms of small incremental dis-
placements u superimposed on the homogeneous state F (used as the reference state), we obtain
the system

Api q j (F)u j ,pq = 0,

where Api q j (F) = FpK FqL AK i L j is the (Eulerian) tensor of incremental moduli. The unstable
mode can be represented as a combination of Fourier components u = ηexp(iknx), where n is
the unit normal selecting the modulation direction,η is the amplitude, and k is the wave number.
In the Fourier space, this equation can be re-written as

[Q(F,n)η]η= 0,

where Q j l (F,n) =Ai j ml ni nm(F) is the Eulerian acoustic tensor [217, 218]. Stability of the homo-
geneous state F is lost when there exists a non-trivial n such that

detQ(F,n) = 0.

This condition can be used to identify the unstable values of C [219–221]. Generalizing the
classical definition of Frenkel [222], we can associate the ideal shear strength with such C
and compute them by performing a sequence of monotone loading tests. The ensuing critical
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Figure 5. Surfaces of ideal shear strength for square (a) and triangular (b) crystals. Silver
contours delimit the domains of linear stability for homogeneous states. The strain-energy
density is taken from (2).

orientation n and the associated polarization η can be interpreted as the characteristics of the
incipient defects, see, for instance, [76, 77, 141, 142, 223, 224].

To identify the sub-domain in the space of reduced metric tensors (inside the extended
fundamental domain) where the homogeneous deformations are stable, we conducted a series
of numerical experiments with differently oriented lattices loaded by shear deformations of
the form (3) and (4). Interpolating over a family of one parametric paths we obtained the
surfaces of ideal strength for both square and triangular lattices, see the light grey contours in
Figures 5(a) and 5(b), respectively. These contours represent upper bounds for the sets which can
be interpreted as continuum yield surfaces.

Observe that such surfaces may have rather different shapes: more elongated in the case of less
symmetric square lattices and more round in the case of more symmetric triangular lattices. To
maintain the symmetry of the configurational space, we showed in the case of triangular lattice
two symmetric yield surfaces. Similar stability boundaries can be, of course, constructed around
each of the equivalent replicas of the unstressed lattices [40].

The strong asymmetry of such yield surface in the case of square lattices, see Figure 5(a), shows
that if an anisotropic crystal is loaded in “soft” and “hard” tensorial directions it can exhibit very
different strength. Thus, the instability can take place either inside the low energy valley or get
delayed till after the crystal has first stored considerable amount of elastic energy. Instead, in high
symmetry crystals the apparent yield surface is almost isotropic, see Figure 5(b), and since in this
case all tensorial loading directions are almost equally “soft”, the expected theoretical strength is
low independently of the orientation of the applied shear.

In our numerical experiments, the parameters of discontinuous yield were practically indis-
tinguishable from the computations based on the idea of ideal shear strength, see small stars on
the stress–strain and energy–strain graphs in Figure 4. This means that inside the elastic range
the system with N = 1024 is adequately described by the continuum limit. This also justifies the
experimental observations that pristine sub-micron crystals yield close to the limits of theoretical
strength which therefore cannot be improved without changing the nature of the crystal.

It is instructive to look in more detail at the instability modes for crystals reaching different
points α=αc (φ) along the surface of ideal strength. The knowledge of the corresponding vectors
nc and ηc allows one to identify the primary instability modes which, at least for sufficiently large

C. R. Physique — 2021, 22, n S3, 201-248



220 Oguz Umut Salman et al.

Figure 6. Instability limits for square lattices: (a–c) level sets for the determinant of the
Eulerian acoustic tensor, (d–f) parameters of the unstable modes vis a vis the deformed
lattice vectors. (a) φ = 0, (b) φ = arctan1/2 and (c) φ = π/4. The parameters (αc ,θc ) are
calculated from the condition det(Q) = 0.

N , guide the eventual nucleation of dislocational dipoles. Since the value of the bulk modulus
µ in the strain-energy density was chosen to be sufficiently large, our crystals are effectively
incompressible and therefore we can always expect that approximately nc ⊥ηc and the instability
mode is close to a simple shear.

Consider first square lattices, and assume that the macroscopic loading paths are again given
by (3) with φ = 0,arctan(1/2),π/4, see Figure 2. In Figure 6(a–c) we show the evolution of
the determinant of the Eulerian acoustic tensor along each of these path as a function of the
parameter θ defining the orientation of the unit vector n = (cosθ, sinθ). The external boundaries
of the dark blue regions define the stability limits and the smallest value of the loading parameter
α on one of such boundaries, defines the maximal homogeneous strain achievable along the
corresponding loading path. Note that the whole pattern is periodic in θ and only one period is
shown in Figure 6(a–c).

We recall that the “soft” path with φ= 0 corresponds to a simple shear along one of the dense
planes of the square lattice. According to Figure 6(a), at the critical value of the loading parameter
αc ≈ 0.134, the associated θc ≈ 3.035 rad. Since the unit vectors nc and ηc ≈ n⊥ are almost parallel
to the current (deformed) lattice vectors, see Figure 6(d), the unstable mode essentially activates a
single slip in the “vertical” direction. This is illustrated in Figure 7 where we show the orientation
of the unstable mode. Note that the red arrow in Figure 7 points to the right of the pure shear
path. This, together with the global topography of the energy surface suggests that the instability
will develop in the direction of the energy well S2 rather than S1.

The fact that this first unstable mode is not the one associated with θc ≈ π/2, which would
mean a single slip in the “horizontal” direction, may be thought as counter-intuitive based
on the naive application of the plastic “mechanisms” approach of CP. And indeed, the mode
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Figure 7. The orientation (in the configurational space of metric tensors) of the first un-
stable mode along the simple shear loading path φ = 0 originating in S0 (red arrow). Yel-
low curve is the theoretical strength threshold. The white dashed path passing through the
black triangle (traingular lattice T0) corresponds to pure shear. Shades of blue show the
level sets of the potential. White arrows point in the direction of growing simple shear am-
plitude α.

with θc ≈ 1.5746 rad, which corresponds to the anticipated “horizontal” direction of slip, is
destabilized right after the mode with θc ≈ 3.035 rad. The splitting of these two modes is the
effect of geometric nonlinearity. Thus, if kinematics is linearized, which essentially means that
the terms of the order of α2 are neglected, simple shears along the tensorial directions φ= 0 and
φ=π/2 become indistinguishable since

C(α,0) =
[

1 α

α 1+α2

]
, C(−α,π/2) =

[
1+α2 α

α 1

]
. (11)

The geometrically linearized theories, neglecting the terms quadratic in α, are confined to
the plane trC = 2, which is tangential to the hyperboloid detC = 1 at S0, see Figure 8. In such
theories, see, for instance, [174, 176–178], the strain paths corresponding to the simple shearing
deformations F̄(α,φ = 0) and F̄(−α,φ = π/2) would merge into a single line C11 = C22 = 1. As
a result, for instance, the two minima S1 and S2 would collapse on each other, see Figure 8.
In our geometrically nonlinear approach the applied simple shear biases one of these modes
and, as we have seen above, the two plastic “mechanisms” end up activated consecutively rather
than simultaneously as the linearized theory (as well as classical CP) would suggest. Similar
degeneracy occurs also in the case of triangular lattices if the configurational space is reduced
to the plane tangent to the point T0 as in [225].

For our two other loading paths with φ = arctan(1/2) and φ = π/4, see Figure 6(b,c), a
single unstable mode can be clearly isolated. The vectors nc and ηc ≈ n⊥

c are again almost
parallel to the deformed lattice vectors in the case of φ = arctan(1/2) path, see Figure 6(e). The
ensuing instability is close to the one along the path φ = 0. In particular, a single slip system is
activated (“vertical”) and initially nucleated dislocation dipoles is of one type only. The post-
bifurcational localization can be then again expected to take the form of the nucleation of
dislocation pairs along the plane selected by the condition of continuum instability as in Peierls–
Nabarro model [169].
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Figure 8. The effect of the geometric linearization of MTM around the square energy well
S0. In such approximation the (gray) hyperbolic surface detC = 1 is replaced by the (pink)
tangent plane trC = 2. The two simple shear paths with φ = 0 and φ = π/2 as well as the
pure shear path (shown by a separating gray dashed line) collapse into a single path shown
by the red straight line AB . Here a single point A describes the two square lattices S1 and
S2, while a single point B stands for the two square lattices S1̄ and S2̄.

In the case ofφ=π/4 path, see Figure 6(f), the situation is different because the pre-instability
lattice is strongly distorted and is almost rectangular. The instability mode is no longer aligned
with the low energy valleys of the energy landscape which should lead to the simultaneous acti-
vation of both slip systems and the emergence of both “vertical” and “horizontal” dislocations.
Overall, as we move away from the “soft” path φ = 0, the loading directions become progres-
sively “harder” and along such paths the instability takes place at higher values of energy density.
Given that the corresponding unstable modes are not perfectly aligned with deformed lattice
vectors, the ensuing geometrical frustration should lead to higher complexity of the dislocation
patterns.

In the case of triangular lattice, we again consider non-generic simple shear loading paths
along the dense crystallographic planes with φ = 0 and π/3 and a generic path with φ = π/2,
see (4). The first two represent “soft” shearing directions, while the last one is the “hard” one
facing potentially higher energy barrier. Figure 9(a,b,c) show the level sets of the determi-
nant of the Eulerian acoustic tensor in the plane of parameters α and θ for each of the three
paths.

Note first that, in contrast to the case of square symmetry, here the instability thresholds along
different paths do not differ considerably. Moreover, the apparently “hard” path with φ = π/2,
which does not correspond to any straightforward plastic “mechanism”, gets destabilized before
the apparently “easy” ones with φ = 0 and φ = π/3. We reiterate that such quasi-uniformity of
the instability conditions is a natural property of higher symmetry lattices with all thresholds
collapsing onto one in the case of ideal isotropic solids (with superimposed fluctuations in the
case of amorphous glasses or polycrystals).
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Figure 9. Instability limits for triangular lattices: (a–c) level sets for the determinant of the
Eulerian acoustic tensor, (d–f) parameters of the unstable modes vis a vis the deformed
lattice vectors. (a) φ= 0, (b) φ=π/3 and (c) φ=π/2. The parameters (αc ,θc ) are calculated
from the condition det(Q) = 0.

We also observe that in all three cases the instability modes are characterized by the vectors nc

and ηc ≈ n⊥
c that are no longer co-linear with the orientation of the deformed lattice basis. This

suggests that the initial patterning, controlled by the continuum instability, is incommensurate
with lattice slips and therefore the mechanism of dislocation nucleation may be rather different
from the one predicted by the Peierls–Nabarro model [169]. The fact that still ηc ≈ n⊥

c suggests
that the macroscopic instability will appear in the form of simple shear, however, the misalign-
ment of the instability mode with crystallographic slip planes makes the prediction of the actual
activated slip planes difficult.

To show the effect of finite N , we also studied the stability limits in the original discrete setup,
see also [213,226]. To this end we computed the smallest eigenvalue of the 2N 2×2N 2 Hessian ma-
trix K ab

i j . Our Figure 10 shows that although the critical value of the loading parameter α∗
c (N ) in

the discretized problem, chosen by the condition that such eigenvalue is equal to zero, is slightly
larger than the ideal shear strength αc in the continuum problem, the two approach each other
quickly as the element size h = 1/N decreases. In the case of square lattices the gap closes up
already at N ∼ 100 as the instability directions are almost perfectly aligned with the deformed
crystal, see Figure 10(a). In the case of triangular lattices, the misalignement is much stronger
and the finite size effect in the form of a gap between the predictions of discrete and continuum
theories remains apparent for much smaller element sizes, see Figure 10(b). Note that the asymp-
totic behavior of the smallest eigenvalues near zero, shown in Figure 10, is different from the pre-
diction of the theory of amorphous plasticity where the corresponding eigenvectors are quasi-
localized [227–229]. The linear response of pristine crystalline solids with zero disorder is global
and that is why its elastic instabilities can be largely captured by the classical continuum theory.

The dependence of the instability thresholdα∗
c on the system size N is illustrated in Figure 11.

The theoretical limit, effectively reached by the samples with N = 1024, is shown by the red
dashed line. At small N we observe the emergence of a nontrivial asymptotics α∗

c ∼ N−1/3.
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Figure 10. Smallest eigenvalue of the discrete stiffness matrix K as a function of the loading
parameter α for different values of element size h = 1/N : (a) square, (b) triangular lattice.
The crystal orientation is always φ = 0. In the continuum case, we show the smallest
eigenvalue of the acoustic tensor Q(F,nc ).

Figure 11. System size dependence of the critical loading parameter α∗
c (N ) in numerical

experiments with triangular crystals oriented at φ= 0.

It suggest that the spatial scale of the dislocation microstructure is of the order ∼ h1/3L2/3,
which may imply hierarchical “domain splitting” near the external boundaries.

For square and triangular lattices with N = 40 we illustrate in Figure 12(a,b), the 2N 2 dimen-
sional eigenvectors ua

i of the corresponding Hessian matrices K ab
i j when their lowest eigenval-

ues crosses zero at α∗
c . These eigenvectors are presented as vector fields with the homogeneous

component subtracted. In both cases, the modulations have orientations n∗
c that are close to the

ones predicted by the continuum theory. However, if the unstable wavenumber remains arbi-
trary in the scale-free continuum theory, the discrete theory selects a particular length scale. The
strong misalignment, in the case of triangular lattices between the orientation of the macro mod-
ulations and the lattice vectors, see Figure 12(b), can delay the transition to the ultimate lattice
scale instability culminating in the nucleation of dislocation dipoles. In the case of square lat-
tices, shown in Figure 12(a), we observe lattice scale modulations present already in the original
unstable mode. They correspond to the wave vectors at the boundary of the Brillouin zone, see
some elementary examples of such multiscale instabilities in [230, 231].
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Figure 12. Unstable modes at the instability point for square (a) and triangular (b) lattices.
Blue arrows show the modes associated with the lowest eigenvalue of the stiffness matrix
K. Here N = 40 and φ= 0.

To summarize, our numerical experiments show that pristine sub-micron crystals exposed to
affine deformation yield discontinuously near the thresholds of theoretical strength. In the case of
simple shear loading, the obtained thresholds show dependence on the orientation of the sample
in the loading device, which is in qualitative agreement with experimental results, e.g. [35,36]. Our
study also reveals a strong link between the structure of the apparent yield surface and the lattice
symmetry.

5. Discontinuous yielding

In this section, we turn to the study of the fine structure of the microscopic response following
the loss of stability of the homogeneous state. The goal is to reveal the detailed unfolding of the
catastrophic dislocation nucleation avalanche and trace how the final configuration, containing
a large number of defects, emerges in the process of energy minimization. In particular, we show
that complementary pictures of the evolving defect configurations emerge in the real and the
configurational spaces.

All numerical experiments start with a dislocation-free crystal u = 0, and we drive the system
using an athermal quasistatic protocol. We use hard device boundary condition controlling the
positions of surface nodes and impose in this way an affine deformation F̄ on the boundary
of a square domain and choose the loading step (strain increment) sufficiently small to ensure

C. R. Physique — 2021, 22, n S3, 201-248



226 Oguz Umut Salman et al.

continuity of the minima outside the avalanches. The macroscopic stress–strain and energy–
strain curves obtained in such numerical experiments are summarized in Figures 4(a) and 4(b)
for the square and triangular crystals, respectively.

For α<α∗
c the picture is rather simple. In real space, the deformation is affine F(x) ≡ F̄ and in

the configurational space of the metric tensors C we observe the perfect overlap for all elements.
As we have already mentioned, there is an excellent agreement between the numerical value of
α∗

c and the predicted value of ideal shear strength, see Figure 4. As soon as stability is lost, the
homogeneous configuration breaks down. The pristine crystal transforms into a highly defected
one, with most of the dislocations eventually escaping from the bulk and forming various pile-
ups near the fixed boundaries. The configurational points, corresponding to different elastic
elements, spread in the space of metric tensors C, reaching the neighborhoods of distant energy
wells. The emerging dislocation patterns, which we discuss in detail below, were obtained from
the simulations involving more than a million elements.

5.1. Square lattices

Consider first a square crystal loaded in a crystallographically exact simple shear with φ = 0. In
Figure 13, we show the snapshots of the distribution of the shear component of the Cauchy stress
σ= (detF)−1FPT in the physical space as the crystal evolves (in fast computational time) through
the avalanche after the loading parameter has reached the valueα∗

c . In the insets, we illustrate the
concurrent evolution of the cloud of configurational points in the space of metric tensors which
tracks different stages of the implied energy minimization process.

At positive values of the loading parameter α the crystal is driven along the energy valley
away from the energy minimum S0 towards the minima S1, S11, etc. This could suggest the
development of plastic slip along the horizontal plane, however, as we have seen, the first
instability is “vertical” which means activation of the slip system represented by the minima
S2, S22, etc., see Figure 6. While the initial states of the avalanche are indeed dominated by the
activation of the vertical dislocation dipoles, see Figure 13(a), horizontal dipoles appear later as
well because of local stress concentration and consequent involvement of the second slip system
which is predicted by the instability analysis to be activated at slightly larger loading levels, see
Figure 13(b).

Note that the two low energy valleys merge around the point T0, which describes a triangular
lattice. The structure of the energy landscape around this point is close to a monkey saddle3

and passing of configurational points through such region creates non-trivial coupling between
horizontal and vertical slip systems. As a result, even though most of the units move towards the
energy well S2 some of the configurational points eventually also populate the energy well S1.
As the crystal is driven further, it is pulled towards another (almost) monkey saddle describing
the triangular lattices T1. Around this intersection of the low energy valleys, the configurational
points take a turn towards the energy well S12 instead of continuing towards apparently more
natural well S11. Similarly, around the (almost) monkey saddle T2 the configurational flow is
directed towards the energy well S21, see Figure 13(b–d). All these choices depend sensitively on
the boundary conditions and will be rationalized in a separate publication.

To see how the spreading of the configuration points in the space of metric tensors transforms
when we move into the physical space, we focused in Figure 14 on three randomly selected
fragments of the post-avalanche equilibrium configuration shown in Figure 13(d). The emerging

3As discussed in detail in [40], for our choice of the elastic potential it is not exactly a degenerate “monkey saddle”
but rather a shallow energy maximum (triangular lattice) surrounded by three closely located non-degenerate (classical)
saddles (rhombic lattices).

C. R. Physique — 2021, 22, n S3, 201-248



Oguz Umut Salman et al. 227

Figure 13. Snapshots of the stress field during discontinuous yield in pristine square
crystals. Colors indicate the level of the shear component of the Cauchy stress. Insets show
the same images in the configurational space. Black dots indicate the value of the metric
tensor in individual finite elements. Here N = 1024 and φ= 0.

equilibrium pattern contains dislocational pile ups near the boundaries and few locked up dislo-
cational dipoles in the bulk of the specimen. Note, in particular, the pairs of dislocations on two
parallel slip planes blocking each other, see Figure 14(b), and on two perpendicular slip planes
forming characteristic locks, see Figure 14(d). The fact that after the system spanning avalanche
most of the nucleated defects manage to either annihilate or escape to the boundaries of the
crystal, explains why the crystal becomes almost pristine after such a devastating discontinuous
yield event.

To check the generality of these conclusions, we also performed numerical simulations of the
discontinuous yield at α ∼ α∗

c with initially perturbed displacement field which was “dirtied” by
random Gaussian perturbations with zero mean and small variance (∼0.0001). Such disorder is
too small to suppress brittleness [68] and, we show in Figure 15 the equilibrium stress field after
the catastrophic avalanche. Since the pre-avalanche state was not “pristine”, the energy minimiz-
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Figure 14. Final stress configuration after the discontinuous yield in pristine square crys-
tals: (b–d) show the enlarged versions of the square indicated by the same letters in (a). Here
N = 1024 and φ= 0.

Figure 15. Final stress configuration after the discontinuous yield in a square crystal which
was randomly perturbed at the point of instability. Colors indicate the level of the shear
component of the Cauchy stress. Squares show the rotated versions of the unstressed
lattice. Here N = 1024 and φ= 0.

ing self organization of dislocations is compromised by the geometrical frustration imposed by
the disorder. The resulting dislocation pattern appears to be structurally similar at several scales,
see the successive insets shown in Figure 15(b,c). The two main perpendicular slip planes are now
activated at almost the same level. Note the formation of self screening dislocation-rich walls,
reminiscent of low-angle grain boundaries, which separate dislocation-poor, low-stress domains
where the lattice undergoes simple rotations, see small rotated squares in Figure 15(d); all these
structural features have been previously recorded in physical experiments. Note also, that since
samples containing imperfections show diminished brittleness [68], the discontinuous yield can
disappear in cyclic loading already after few cycles.
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Figure 16. Snapshots of the stress field during discontinuous yield in pristine square
crystal. Colors indicate the level of the shear component of the Cauchy stress. Insets show
the same images in the configurational space. Black dots indicate the value of the metric
tensor in individual finite elements. Here N = 1024 and φ= arctan(1/2).

Consider next a “harder” shear loading path withφ= arctan(1/2) which does not follow the low
energy valley. As we have already mentioned, in this case a homogeneously deformed crystal will
store a bit more elastic energy before instability than in the case of the symmetric “soft” paths.
The breakdown scenario is shown in Figure 16: after reaching the (regularized) ideal strength
limit F̄(α∗

c ,arctan1/2), dislocations nucleate along the “vertical” slip plane which agrees with the
prediction of the stability analysis. In the configurational space of metric tensors the stream of
points describing such dislocations is directed from S0 to S2, see Figure 16(a). Eventually few
“horizontal” dislocations form as well, see Figure 16(b,c), and because of geometrical frustration
they are not all expelled to the boundaries of the crystal, see Figure 16(d). Therefore the system is
left with considerable residual energy and the stress drop is relatively small.

The most interesting yield scenario is obtained for the non-genericφ=π/4 loading path which
leads from the reference state S0 to the second closest energy minimum S11 after passing a much
higher energy barrier than in the case φ = 0. Here even more elastic energy is stored before
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Figure 17. Snapshots of the stress field during discontinuous yield in pristine square
crystal. Colors indicate the level of the shear component of the Cauchy stress. Insets show
the same images in the configurational space. Black dots indicate the value of the metric
tensor in individual finite elements. Here N = 1024 and φ=π/4.

the instability than in the case φ = arctan(1/2). The breakdown takes place at F̄(α∗
c ,π/4) with

a single instability mode activated, see Figure 17(a). However, the ensuing process of collective
dislocation nucleation quickly becomes very complex. Due to the presence of the considerable
amount of stored elastic energy and attending geometrical frustration, almost instantaneously,
in addition to the original energy well S0, all four neighboring square wells (S1, S1̄) and (S2,
S2̄) become engaged and few elements even reach more distant square wells, see Figure 17(b,c).
More specifically, the flow of configurational points in the space of metric tensors is so “intense”
that it passes through a series of (almost) monkey saddles corresponding to triangular lattice
configurations to accesses not only the nearest but also the next nearest square energy wells S11

and S1̄1̄ which represent compositions of shears from both main slip systems.
The post-avalanche dislocation pattern is then multi-slip with minimal pile up on the bound-

aries and most of dislocations self-organizing in the bulk of the crystal, see Figure 17(d). A close-
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Figure 18. Stress field after the avalanche for a pristine square crystal with orientation
φ = π/4 (a); zoomed view of the marked area (b); further zoom to the scale of the discrete
finite element nodes (c).

up of the highlighted region shown in Figure 18(a,b) down to the scale of finite element nodes
puts in evidence the formation of dislocation walls separating almost unstressed cells with corre-
lated lattice mis-orientations. In other words, we observe the formation of dislocation-rich bands
which self screen long-range elastic fields allowing the strains inside the dislocation-poor regions
to relax by reducing the deformation gradient to pure rotation. In Figure 18(c), we show such dif-
ferently re-oriented crystal (almost) stress free regions in more detail. Interestingly, molecular
dynamics simulations also suggest that at almost theoretical strength, dislocations alone can no
longer release the elastic energy, and the reorientation of crystal lattices emerges as an important
mechanism of plastic response [97]. In other words, a perfect sub-micron crystal appears to be
yielding by catastrophic strain-induced reorientation of the crystal lattice with the formation of
generalized twin and grain boundaries.

To summarize, our numerical experiments conducted on square lattices suggests that while
in specially oriented crystals, pristine-to-pristine brittle yield at ideal shear strength threshold is a
possibility, the generically oriented, dislocation free sub-micron crystals, can be expected to yield
discontinuously with massive dislocation nucleation culminating in the formation of complex
dislocational patterns. During such instabilities a large amount of stored elastic energy is released
and the connection between the initial instability mode and the developing deformation pattern
is quickly lost. To minimize elastic energy, dislocations do not only nucleate cooperatively but
also self organize hierarchically forming multi-scale cell structures with presumably complex
statistical properties, to be studied separately using, for instance, the approach presented in [68].

5.2. Triangular lattices

Consider next the case of higher symmetry triangular lattices. As we have already seen, in this
case the macroscopic mechanical response is in overall agreement with the analytical yield sur-
face, modulo the fact that, differently from what we have seen in the case of square lattices, dis-
continuous yield is observed for values α∗

c which were about a 10% higher than the correspond-
ing analytical predictions αc , see Figure 10(b). This gap, which is a function of the finite element
size h, results from the disregistry between the orientation of the unstable modes and the “soft”
directions of the energy landscape.

Consider first the loading path corresponding to a simple shear (4) with φ= 0. An application
of the idea of plastic “mechanisms” suggests that crystal should evolve from the initial energy
well T0 to the next closest triangular well T1; the corresponding low energy valley is shown
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Figure 19. Snapshots of the stress field during discontinuous yield in pristine triangular
crystal. Colors indicate the level of the Cauchy shear stress σx y . Insets show the same
images in the configurational space. Black dots indicate the value of the metric tensor in
individual finite elements. Here N = 1024 and φ= 0.

in Figure 3 as the path 1–1. However, as we have already seen, the actual instability of the
homogeneously deformed lattice state T0 occurs strictly after the determinant of the continuum
acoustic tensor has become negative for some orientation nc . To deal with encountered soft
directions, the implied dislocation nucleation is postponed. The anticipated low energy valleys
in the energy landscape cannot be used because the apparently low barriers leading towards
the state T1 along the path 1–1 are still too high. Instead the softness of the energy landscape
drives the system in the direction of the saddle point S1 which corresponds to the square lattice
while still remaining within the fundamental domain. Therefore in our numerical experiments
we observed that during the gradient descent type energy minimization at αc that periodically-
spaced modulations develop prior to the dislocation nucleation, see Figure 19(a). The orientation
of the modulation bands agrees with the directions nc obtained using the continuum instability
condition.

As the instability develops, the non-equilibrium configurations found by the minimization
algorithm show the sharpening of the band boundaries and then the secondary symmetry
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breaking through the homogeneous nucleation of dislocation dipoles, see Figure 19(b). Note that
the orientation of these dipoles agrees with the lattice (T0 to T1 path) but not with the orientation
of the bands (T0 to S1 path). Note also that the implied pairs of dislocations with opposite signs
nucleate at the centers of the modulation bands where the displacement gradients are large
which apparently helps the system to overcome the energy barriers leading to T1 lattice state.
The emerging dislocation nucleation scenario is slightly different from the one suggested by the
Peierls–Nabarro model where, effectively, the bands are perceived as atomically sharp and lattice
oriented.

In Figure 19(b–d) we see that the modulation eventually completely breaks down with only
one slip system ending up being activated. Due to the misalignment of the bands with the slip
planes and the associated geometrical frustration, the nucleated dislocations interact with each
other strongly causing the activation of the double slip represented by the triangular lattice state
T11. With dislocations either annihilating or escaping to the boundaries, the resulting picture is
in basic agreement with the prediction of a single slip CP theory.

Along the other symmetric loading paths with φ = π/3 and φ = 2π/3, which also describe
shears on dense planes of the triangular lattice, the general scenario of discontinuous yield
remains the same. While the degree of misalignment of the initial modulation bands with the
lattice does not change, the orientation of these bands relative to the square computational box
is slightly different in each of these cases which (mildly) affects the outcome of the instability.
The succession of events, constituting the system spanning avalanche in the case of loading
orientation φ = π/3, is illustrated in Figure 20(a–d). Here again the macroscopic modulations
create the nucleation sites responsible for the secondary instability which leads to the formation
of almost ideal dislocational dipolar mats [232], see Figure 20(b). Dislocations eventually self
organize into bands, see Figure 20(c), but finally all end up on the surface of the crystal, see
Figure 20(d).

Here again the primary, purely elastic instability develops in the direction from triangular well
T0 to the square well S0 as if indicating an incipient phase transition. The secondary instability
associated with barrier crossing leads to the flow of configurational points from T0 to T1̄ which
therefore creates plastic slip. As dislocations pile up near the boundaries, they activate the
secondary slip associated with the well T1̄1̄ and even the second slip system represented by the
well T1̄2̄. Ultimately, all four triangular lattices T1, T2, T11̄ and T1̄2̄ get involved, however, the
ensuing complexity remains localized near the sharp corners of the sample. At the end of the
avalanche the bulk of the sample appear to be free of dislocations which explains the dramatic
stress drop experienced by the crystal.

In view of the high symmetry of the triangular lattice, the structure of the yielding avalanche
for the generic path with φ = π/2, which also starts in the original energy well wells T0, is not
very different from what we have already seen in the case of the non-generic path with φ = 0.
The influence of the neighboring square well S0 is again felt in the structure of the initial elastic
modulations, see Figure 21(a). The deformation ultimately localizes inside the low energy valley
connecting the triangular wells T0 and T1̄. Transient dislocation entanglements eventually get
dissociated with dislocations either annihilating or escaping to the boundaries, however, the
stored elastic energy is not fully relaxed by such limited plasticity, see Figure 21(b–d). In general,
this example suggests that in sub-micron crystals with high symmetry and accordingly “round”
surfaces of theoretical strength, the outcome of the discontinuous yield is decided not so much by
the orientation of the sample in the loading machine, but rather by the orientation of the sample
boundaries vis-a-vis lattice directions.

To summarize, using MTM, we were able to show that, similar to what is observed in experi-
ments, pristine sub-micron crystals undergo discontinuous yielding close to theoretical strength.
During the catastrophic avalanche, massive nucleation of dislocations first transforms such crys-
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Figure 20. Snapshots of the stress field during discontinuous yield in pristine triangular
crystal. Colors indicate the level of the shear component of the Cauchy stress. Insets show
the same images in the configurational space. Black dots are placed according to the value
of the metric tensor’s components in individual finite elements. Here N = 1024 and φ=π/3.

tals from defect-free to defect-saturated, but then most of the defects either annihilate or escape
to the fixed boundaries producing again almost pristine crystals. The access through MTM to
transient nonequilibrium states allowed us to study for the first time the sensitive dependence of
the phenomenon of discontinuous yield on crystal symmetry, crystal orientation in the loading
machine, and even crystal shape.

The general feature of the simulated discontinuous yield is that the instability starts as a long-
wave purely elastic modulation which breaks the affinity of the original homogeneous state. The
actual dislocation nucleation emerges as a secondary instability, triggered by non-affinity and
proceeding collectively. A large number of defects appear almost simultaneously and the “auto-
catalytic” nature of such avalanche is due to the fact that already nucleated dislocations trigger
new nucleation events. The process terminates only when the elastic repulsion from the walls
finally blocks the nucleation in the bulk.

The pristine-to-pristine yield takes place if a non-generic loading allows the system to com-
pletely avoid frustration and channel almost all dislocations away from the bulk. Otherwise the
avalanche jams with dislocations forming self-locking patterns. Such patterns can be interpreted
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Figure 21. Snapshots of the stress field during discontinuous yield in pristine triangular
crystal. Colors indicate the level of the shear component of the Cauchy stress. Insets show
the same images in the configurational space. Black dots indicate the value of the metric
tensor in individual finite elements. Here N = 1024 and φ=π/2.

as cell structures because relatively narrow dislocation walls bound extended domains where lat-
tice undergoes simple rotation. In the case of open boundaries, the dislocation pile-up, playing
an important role in the observed scenario, will be replaced by the global strain localization.

6. Beyond the principal avalanche

The analytic and numerical results presented in the previous sections are relevant for concep-
tualizing the puzzling discontinuous response of nominally ductile crystals. Such brittle-like re-
sponse is generic for ultra-small and, therefore, dislocation-starved crystals in the sense that it is
observed routinely in compression and nano-indentation experiments [16, 29, 34, 233].

As we have shown, to ensure such pseudo-brittle behavior, the crystals should be structurally
perfect (dislocation and defect-free). In this case, the main effect is an explosive system spanning
avalanche at the end of the elastic regime with massive collective nucleation of dislocations,
which results in a catastrophic load drop known as discontinuous yield. In this section, we briefly
discuss what happens if the loading resumes after the discontinuous yield and the crystal, whose
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Figure 22. Macroscopic mechanical response of square crystal upon loading beyond the
catastrophic system-size avalanche. Here N = 500 and φ= 0.

purity is now compromised, continues to yield. We limit the analysis to just a few observations,
while the detailed study will be presented elsewhere.

As we have seen, after the termination of the system size avalanche and the re-stabilization of
the inhomogeneous state, the generic crystalline sample can be expected to contain a highly cor-
related configuration of lattice defects. If the quasi-static loading continues, such an imperfect
crystal will first undergo another quasi-elastic deformation which will be succeeded by another
avalanche, necessarily less dramatic in view of the ubiquity of nucleation sources and the avail-
ability of the locking sites. Subsequent monotone loading will be punctuated by an intermittent
succession of avalanches, with most of them small, but some reaching again the size of the whole
system [8, 48, 68, 104, 234–238]. To illustrate these general observations and show that MTM ap-
proach is well suited to study the effects of intermittent discontinuous yield, we now present few
illustrations of the mechanical response of square crystals subjected to simple shear with φ = 0
following directly the initial plastic avalanche. Since, naturally, the complexity of the dislocational
patterns increases with subsequent loading, we reduce the precision of the description by adopt-
ing a smaller value of N = 512 and preserve the small annealed disorder as in the experiment
shown in Figure 15.

The simulated macroscopic response is summarized in Figure 22, where we show the com-
puted energy–strain, see Figure 22(a), and the stress–strain, see Figure 22(c), relations. The corre-
sponding zoom ins are shown in Figures 22(b) and 22(d), respectively.

We first observe that after the major stress/energy drop, the smooth elastic response turns
into jerky plastic yield. More specifically, the post-catastrophic response can be decomposed into
conservative elastic steps that are interdigitated by dissipative stress/energy drops representing
dislocation avalanches broadly distributed in size, see Figure 22(b,d). While the averaged stress
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Figure 23. Evolution of the shear component of Cauchy stress in physical space after the
catastrophic system-size avalanche. The snapshots correspond to the selected points in
Figure 22 marked by numbers 1,2,3,4. The corresponding distributions in the configura-
tional space are shown in the insets. Here N = 500 and φ= 0.

response in this range shows monotone hardening, the averaged energy first decreases and then
increases. This is due to the fact that the energy losses cannot even be seen on such stress–strain
curves, see [189] for more details. The jerkiness of the response originates in transitory elastic
deformation of self-locked microstructures which always involves partial or complete unlocking
and dynamical restructuring, accompanied by energy dissipation.

To trace such restructuring, we show in Figure 23(a–d) a succession of four snapshots of the
stress field in the arbitrary chosen moments of “time” as indicated in by dots marked by num-
bers 1,2,3,4 in Figure 22(b,d). Afterwards, in Figure 24 we zoom into two spatial regions A and B
and follow the “time” evolution of the particular groups of dislocations over several avalanches.
The numerical experiment, illustrated by these figures, is similar to the one shown in Figure 14
but with even smaller annealed initial disorder. We observe that continuing loading is accom-
modated by additional nucleation of dislocations which remain in the bulk due to apparent re-
pulsion from the already saturated boundaries. The configurational points in the space of metric
tensors spread more uniformly among the three equivalent square energy wells S0, S1 and S2,
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Figure 24. Enlarged view of the dislocation configurations inside the square regions (A) and
(B) shown in Figure 23 as they evolve with loading. Colors indicate the shear component of
the Cauchy stress tensor.

being distributed almost evenly by the (almost) monkey saddle T0. The ensuing dislocation pat-
tern includes individual dislocation locks as well as dislocation walls separating domains where
the lattice is almost unstressed. This pattern results from dynamic self-organization of disloca-
tions and can be viewed as generic.

Upon further loading, the crystal continues to harden as seen in Figure 22(d). The plastic yield
takes the form of an irregular sequence of stress-drops associated with partial restructuring of
the dislocation pattern, see Figure 23(b–d). The configurational points continue to spread over
the metric space reaching distant wells corresponding to various compositions of simple shears.
This means that despite the simple shear strain applied on the boundary, the deformation in the
bulk of the sample takes the manifestly multi-slip form. Interestingly, the patterns identified in
Figure 23(b–d) are reminiscent of the ones obtained by X-ray diffraction method in [239] where
the authors observed the formation of dislocation boundaries separating (nearly) dislocation-
free regions with almost perfect lattices. Such subgrains were shown to exhibit intermittent
dynamics, appearing and disappearing as well as displaying transient splitting behavior.

We observe that most small-sized avalanches are associated with the transitional motion of
depinning dislocations between the dislocation-rich wall-like patterns. During such transitions,
dislocations either get locked again or annihilate, however, at least some of the existing large-
scale dislocation structures persist during the loading. To illustrate this conclusion, we show in
Figure 24 the enlarged view of the time evolution for the two rather arbitrarily selected square
sub-domains, which we identify as A and B . In A, we see an almost rectangular dislocation
structure based on dipolar walls, which ensure an ideal screening of the long-range elastic
fields [235]. With loading, this structure deforms elastically but otherwise remains relatively
stable, experiencing only minor rearrangements (addition and subtraction of dislocations from
local entanglements). Instead, the incomplete dipolar wall shown in B does not survive the
loading, and finally, the participating dislocations disappear entirely due to an abrupt collective
annihilation. Usually, such restructuring events give rise to bigger avalanches, and we checked
that the largest avalanche between the deformation states (c) and (d) shown in Figure 22(b,d),
can be indeed linked to the disappearance of the multi-dislocation structure B , see Figure 24.

Note, however, that the avalanches associated with partial restructuring of the disloca-
tion pattern, are still much smaller in size than the system spanning avalanche responsible
for the major restructuring behind the original discontinuous yield of pristine crystal. This is
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associated with a “special preparation” of the pristine (homogeneous) crystal whose high de-
gree of degeneracy causes instability to happen simultaneously all over the sample. The dynamic
randomization produced by the discontinuous yield generates annealed disorder and reduces the
degeneracy, producing more conventional yield represented by mostly small avalanches. How-
ever, due to long-range elastic interactions, strong correlations in such apparently random sys-
tem remain, and they lead to occasional recurrence of the system size avalanches, known as
“dragon-king event” [240]. This leads to the supercritical avalanche distribution in sub-micron
crystals which was observed in experiment and has been recently successfully simulated in the
framework of a scalar version of MTM [68].

7. Conclusions

In this paper, we presented the first systematic demonstration of the effectiveness of the meso-
scopic tensorial model (MTM) by showing that it can simulate complex plastic phenomena in
crystals involving a large number of interacting dislocations. A characteristic feature of the MTM
is that it resolves lattice scale dislocation cores while operating with the engineering concept of
stress and strain. It can be viewed as a tensorial version of the scalar phase-field model, account-
ing for large rotations and finite lattice invariant shears in geometrically precise way. It is reas-
suring that the MTM can deal adequately with short-range interactions of dislocations while ac-
counting for full crystallographic symmetry, without direct use of interatomic potentials or other
ab-initio methods.

The key feature of the MTM is that it is formulated as a nonlinear field theory of Landau-type
respecting the discrete GL(3,Z) symmetry. It can also be viewed as a geometrically and physically
nonlinear anisotropic elasticity theory. It may first sound paradoxical that elasticity framework
was chosen to describe plasticity. However, this viewpoint is fully consistent with the fact that
dislocations are elastic defects whose interaction is largely elastic. Under quasi-static loading,
inelastic dissipation takes place during fast switching between elastic branches. Such branch
switching events are ubiquitous due to the rugged nature of the generic MTM energy landscape
and the presence of elastic driving.

To generate such energy landscape, the MTM relies on local validity of the Cauchy–Born
rule even though some features of the nonlocal atomistic description are then inevitably lost.
Behind the emergence of the continuum stresses and strains is the spatial averaging over a
microstructural length scale: the latter characterizes the size of a cluster of atoms (an element)
assumed to deform homogeneously. The elastic branches are exchanged when, as a result of
elastic instabilities, such elements abruptly move between the neighboring wells of the globally
periodic Landau energy.

An important feature of the MTM approach to crystal plasticity is that plastic “mechanisms”
are not assigned a priori, but take the form of low energy valleys connecting the wells of Landau
energy. Plastically deformed state emerges in this representation as a mixture of equivalent
Landau phases, with dislocations appearing as incompatible components of phase boundaries.
In such a model slip directions are not rigidly pre-defined and loading along one slip system can,
by itself, initiate another slip system. Topological transitions, like the ones involved in the activity
of Frank–Read and SA (single arm) sources, are incorporated automatically.

In this paper we used the simplest 2D version of the MTM to simulate numerically a bench-
mark phenomenon: the catastrophic discontinuous yielding in pristine sub-micron crystals due
to cooperative nucleation of dislocations. We used Dirichlet type boundary conditions (hard de-
vice) to be consistent with our definition of the theoretical strength, but we also checked that
switching to periodic boundary conditions changes the results only quantitatively. We showed
that in simulations, the development of the collective “brittle-like” dislocation nucleation event
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is similar to the one observed in experiments with imperfection-free sub-micron crystals. The use
of the MTM allowed us to quantify, for the first time, the dependence of the ensuing dislocation
patterning on the crystal symmetry and on the orientation of the crystal in the loading device. The
critical load turned out to be in agreement with analytical predictions. Moreover, the yield crite-
rion based on the Legendre–Hadamard (strong ellipticity) condition was shown to be successful
in predicting the overall orientation of the non-affine patterns.

Vastly different dislocation nucleation scenarios were observed during the discontinuous
yield in square and triangular lattices. In the case of square symmetry, shearing in the “soft”
directions causes pristine-to-pristine transitions with stress dropping almost to zero as a result
of the catastrophic avalanche. Instead, loading of the same crystals in the “hard” directions
leads to the formation of a complex, highly correlated dislocation pattern and results in residual
stress. In higher symmetry hexagonal crystals, the theoretical strength threshold depends only
weakly on the orientation of the crystal. Due to ensuing geometrical frustration, the nucleation
of dislocations is preceded by the development of long-wave elastic modulations. While most
of the dislocations manage to escape to the boundaries of the crystal, the post avalanche stress
remains considerable independently of the sample orientation. In both square and hexagonal
cases, lattice configurations with alternative symmetries (hexagonal and square, accordingly)
appear as saddle points of the Landau energy and play an important role in fomenting multi-
slip by re-directing the flow of configurational points between converging energy valleys.

Our study shows the potential of the MTM in dealing with plastic flows, involving strongly
interacting dislocations, while relying only on minimal phenomenological assumptions. It opens
new paths in the study of spatial and temporal complexity associated with developed plastic
flows. Already the first concrete results, obtained in this paper, represent promising steps towards
harnessing brittle events in sub-micron crystals compromising forming processes, endangering
the load-carrying capacity of micro-machine parts, and jeopardizing reliability in various other
micromechanical applications.

Acknowledgments

The first two authors contributed to this paper equally. All authors acknowledge helpful dis-
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