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Abstract. Elastomers used in everyday life are always reinforced with rigid nanoparticles (carbon black or
silica). The addition of rigid nanoparticles to an elastomer gives it very specific viscoelastic properties. In this
article, we discuss the current understanding of mechanical properties of a polymer matrix around its glass
transition, focusing on the situation of polymers confined between two rigid surfaces with a nanometric
gap. Then, we will explain how the properties of the matrix can help to understand the properties of filled
or reinforced elastomers. We will then explain that in reinforced rubbers, the mechanical properties are
dominated by stress propagation between neighboring aggregates through a nanometric polymer gap, thus
by confined polymer bridges. We will discuss how knowledge of the dynamics of confined polymers allows us
to understand the temperature dependence, the pressure dependence and the non-linearities observed for
strain below 0.1 of reinforced elastomers.

Résumé. Les élastomères utilisés dans la vie courante sont toujours renforcés avec des nanoparticules rigides
(noir de carbone, ou silice). L’ajout de nanoparticules rigides dans un élastomère leur confère des propriétés
mécaniques très spécifiques. Dans cet article, nous rappelons d’abord ce que l’on connait aujourd’hui des
propriétés mécaniques d’un élastomère autour de sa transition vitreuse, et en particulier lorsqu’il est confiné
entre deux surfaces solides proche de quelques nanomètres. Puis nous expliquerons comment ces propriétés
peuvent aider à la compréhension de celles des élastomères renforcés. En effet nous montrons que dans
les élastomères renforcés, les propriétés mécaniques sont dominées par la propagation de la contrainte
entre nanoparticules par des ponts de polymère confinés. Nous discuterons comment la connaissance de
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la dynamique des polymères confinés permet de comprendre les effets de température, de pression est les
non-linéarités précoces de la mécanique des élastomères renforcés.

Keywords. Glass transition, Polymer physics, Mechanical properties, Reinforced elastomers, Confinement,
Nanoparticles, Pressure.
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1. Introduction

Glassy polymers (glassy polystyrene, polymethylmetacrylate (PMMA), and epoxies) and
semicrystalline polymers (most of the polyolefins) are generally used without reinforcing with
solid fillers. However, most of elastomers—crosslinked polymer above their glass transitions,
such as those used in shoe soles, car tires, gaskets, and plastic nipples, are mixed and reinforced
with solid fillers. The fillers used are generally carbon black or silica nanoparticles. A representa-
tion of a typical reinforced elastomer is shown in Figure 1. It consists of solid particles (typically
100 nm in size) of various shapes that are embedded in a matrix of crosslinked polymer chains.
From an industrial point of view, fillers are added to achieve the two following objectives. The
first is simply that fillers are less expensive than elastomers; hence, adding fillers reduces the
price of the products. The second is at the heart of this work, is that the presence of inorganic
nanoparticles considerably modifies and reinforces the mechanical properties of elastomers.
Their addition increases the elastic modulus and the wear resistance as well as toughness. How-
ever, at small strain amplitudes (above 0.1%), the addition of fillers causes elastic nonlinearities
(strain softening) that result in a dissipation mechanism crucial for applications, such as car tires
and mechanical dampers.

Understanding the microscopic origin of the mechanical properties of reinforced rubbers
has been challenging for scientists. The question of why rigid nanoparticles increase the elastic
modulus of the filled sample and generate a complex mechanical response remains unsolved.
The first possible answer, which appeared in the material science community fifty years ago [1],
is that polymer dynamics is modified by the presence of rigid nanoparticles. However, the nature
and physical origin of such a modification of polymer dynamics by the fillers has remained
unclear since 2000. Similarly the question of how dynamics of polymer chains precisely affect
the mechanical properties of reinforced elastomers remains a challenging question that we have
addressed over the past twenty years [2–4].

Payne in 1962 [5] identified that the mechanics of reinforced rubber is controlled by hard and
soft zones corresponding to various dynamical states of the polymers, which have different me-
chanical properties. In a seminal paper on the mechanics of filled elastomers, Payne has wrote
“We may assume that the proportion of hard and soft zones is determined by the type and concen-
tration of (carbon) black (nanoparticles), the details of processing, here exemplified by the effect
of heat treatment, the temperature and, of course the immediate preceding strain history.” How-
ever, the nature of these hard and soft zones has not beenmade clear up to now. We propose in
the present study that hard and soft zones, which correspond to the zones at which polymers
connect to the rigid fillers, are in glassy and rubber states, respectively. This finding was inspired
by experiments that revealed the possible modification of glass transition in the vicinity of solid
surfaces. The idea that the dynamical response of polymers near their glass transition is modi-
fied in the vicinity of surfaces emerged in the physics community in 1995. The study conducted
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Figure 1. A schematic of a filled elastomer. Solid nanoparticles (in black) are embedded
in cross-linked polymer chains (red dots). Possibly, the polymers can also be covalently
connected to the particle surfaces.

by Keddie et al. [6] was one of the first to identify that the measured glass transition tempera-
ture of a thin layer of polymer was different from that of the bulk polymer. The effect of surface
proximity on the polymer dynamics has been confirmed by several researchers and has been re-
ported in numerous publications in the past decades [7, 8]. Thus, it has been suggested that the
glass transition temperature near rigid boundaries is shifted compared to that in bulk polymers.
Furthermore, Wang [9] was the first to propose that modification of the mechanical response of
polymer chains near nanoparticle surfaces, which is similar to the shift of the glass transition
temperature observed in thin films, can explain the mechanics of filled elastomers. However,
other mechanisms have been proposed to explain some features of the mechanical behavior of
filled elastomers: the possible adsorption–desorption of polymer chains under mechanical solic-
itations [10] and changes in polymer structure near a solid surface [11]. Both these mechanisms
have a temperature dependence which is different from that of polymers near their glass transi-
tion. Lastly, other mechanisms have been proposed, such as the modification of reptation and the
Rouse dynamics of polymer chains near the surface [12, 13]. We will see that the temperature de-
pendence of the mechanical properties of filled elastomers, which follows the time–temperature
law of pure polymers [14], unambiguously reveals that modification of the dynamics occurring
locally in the vicinity of nanoparticle surface is the main origin of the linear and weak-nonlinear
viscoelastic behavior.

In this paper, we therefore focus on the dynamical features of polymer chains near solid
surfaces and their influence on the mechanical properties of filled elastomers. The objective of
this paper is to summarize the effect of the modification of local polymer mechanical properties,
which is induced by the presence of solid particles, on the macroscopic mechanical properties of
filled elastomers.

This paper is organized as follows.
First, we briefly recall the mechanical properties of a pure elastomer matrix (without fillers)

near the glass transition temperature in bulk polymers. We show that the concept of dynamical
heterogeneities, which were discovered nearly 20 years ago, helps us to understand the origin of
the width of the glass transition domain as well as the onset of yielding.

Second, we discuss the polymer dynamics in a confined geometry. The concept of dynamical
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heterogeneities provides a physical interpretation of the mechanical properties of a polymer
chain confined between two surfaces.

C. R. Physique — 2021, 22, n S5, 33-50
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Figure 2. Schematic cage motions. Monomer (in orange) is trapped by its neighbors. The
neighbors constitute the cage. Under sufficient stress (or thermal activation), the monomer
escapes from the cage and the system reaches a new configuration: a new cage is formed.
At a mesoscopic scale, this corresponds to a change in strain.

Third, we discuss the effect of polymer confinement on three macroscopic mechanical prop-
erties of filled elastomers, i.e., the linear viscoelasticity, variation of elasticity as a function of pres-
sure, and nonlinear viscoelastic response observed at small amplitude known as “Payne’s” effect.

2. Bulk polymer mechanics near the glass transition

First, we briefly present the physical origin of polymer mechanical response near the glass
transition. We schematically distinguish two regimes: the glassy and rubber states.

(a) The glassy state corresponds to low temperatures, where the chain dynamic is very
slow compared to the duration of experiments. In the glassy state, the thermal motions of the
monomers are slow and, in practice, restricted to distances smaller than 0.1 nm, i.e., smaller than
the monomer. A consequence of the restricted motions is that any macroscopic deformation
in the linear regime results in a tiny variation in the distance between neighboring monomers.
Hence, the shear modulus originates from the intramolecular forces—mostly Van der Waals in-
teractions [15]—between monomers and is of the order of the bulk modulus, which is typically
1 GPa.

Sufficiently large stress (50 MPa) or strain (0.05) may induce however irreversible motions
(typically nanometric) of monomers known in the literature as “cage motions,” “plastic events,”
or “hops” [16, 17]. These motions correspond to a modification of the structure with a change of
the nearest neighbors of a given monomer (see for instance in Figure 2, the monomer in orange
which has as first neighbors, before the application of the stress, monomers in blue, red and black
and after the application of shear stress, monomers in violet, red and black).

Macroscopically, the phenomenon just mentioned corresponds to yielding. The yield strain
originates from the monomer packing geometry. All glassy polymers yield above a given stress of
typically a few tens of MegaPascals or when the deformation exceeds about 3–5%.

(b) In the rubbery state, the monomer motions are fast, corresponding to high temperatures,
i.e., T À Tg , where the monomer dynamics are very fast compared to the duration of experi-
ments. The monomers then experience fluctuations at the scale of the chains or more precisely
at the scale of the distance between crosslinks and entanglements, typically over tens of nanome-
ters. At this length scale, each chain may exhibit many configurations. In the rubber state, under
macroscopic deformation, the entropy contribution to free energy dominates. The entropy mod-
ification of chains under elongation leads to a stress opposite to deformation, as depicted in Fig-
ure 3. The shear modulus resulting from this mechanism is of the order of 1 MPa in practice. The
precise origin of the elastic response of crosslinked elastomers is well known, as it originates from
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Figure 3. Chains connected to the network by crosslinks may be stretched by a few hundred
of % while keeping their integrity. The elongation decreases the entropy and generates a
force on the crosslinks.

Figure 4. Relaxation modulus—or stress relaxation after a strain step divided by the step
amplitude—of a crosslinked PolyMethylMethAcrylate (PMMA) matrix across the glass tran-
sition. The modulus is approximately 1 GPa before the cage hops (Van der Waals regime)
and decreases progressively to approximately 1 MPa (entropic regime). Measurements were
performed at a temperature of 108 °C. The WLF law was used to build the entire master
curve, giving the modulus relaxation over 9 decades [16].

entropy modifications of a network under topological constraints caused by crosslinks and en-
tanglements [18]. At a macroscopic scale, the deformation can produce reversible changes of a
few tens of %.

At the crossover between the two regimes just mentioned, the monomer dynamics is of the
order of the measurement time. It is governed by cage hops, which are similar to those induced
by strain (Figure 2) but occurring spontaneously under the simple effect of thermal activation.
The average lifetime of cages varies strikingly but continuously with temperature. By varying the
temperature between the glassy and molten states, a sharp but continuous variation is observed
in the elastic modulus from 1 GPa to 1 MPa at a given time scale (Figure 4). This phenomenon is
called the glass transition [19]. In polymer science, the glass transition temperature Tg is usually
defined as the temperature at which the average lifetime of the cages is 1 s.

Nearly all polymers exhibit a similar variation in their dynamics with temperature. This
variation is in general described by the following empirical law for the mean monomer relaxation
time, which is known as WLF law [14]

In

(
τ

τ0

)
= −C1(T −Tg )

C2 +T −Tg
, (1)
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where the mean monomer relaxation time τ0 at Tg is chosen equal to 1 s. The WLF coefficients
C1 and C2 weakly depend on the chemical nature of the polymer, with typical values of C1 ≈ 17
and C2 ≈ 50 K. The above empirical formula exhibits a divergence in the relaxation time for
T = Tg −C2. This divergence has been discussed in detail (see [20] for instance) and it appears not
to have any physical meaning, because it cannot be reached experimentally. Indeed, measuring
the relaxation time at temperatures below Tg by 10 K is very difficult because the relaxation times
are very large, typically months or years.

The properties of a polymer material around its glass transition are described as viscoelastic.
The viscoelastic modulus is the ratio of the stress over the strain, under a sinusoidal strain solici-
tation, using a complex number. For an elastic material, the stress and strain are in phase and the
viscoelastic modulus is real, but it is complex for a polymer around the glass transition because
of the relaxation. The viscoelastic modulus depends on both frequency and temperature. Equa-
tion (1) can be used to superimpose the frequency viscoelastic modulus at various temperature.
At least in a time window of about 3 decades, over more than 50 K, the viscoelastic modulus ap-
pears to follow the time/temperature superposition law given by (1) [14]. Thus, WLF’s law allows
a measurement of the viscoelastic spectrum at a given frequency for various temperatures and
to deduce the viscoelastic spectrum at other frequencies and temperatures, which considerably
broadens the frequency window for polymer experimentation. For instance in Figure 4, the re-
laxation modulus is shown. The relaxation modulus is the stress relaxation of the material, as a
function of the time, after a step of strain, divided by the strain test amplitude. It can be shown
that it is also the Fourier transform of the frequency dependent viscoelastic modulus. Using the
time rescaling of (1), the relaxation modulus spans over 10 decades of time. But it results from the
superimposition of relaxation modulus measured over three decades of time over a temperature
window of 50 Kelvin by applying (1).

WLF’s relation gives a very good description of the temperature dependence of the character-
istic relaxation time of polymers, but it does not describe the width of the glass transition at all.
In the previous figure, it is implicitly assumed that all the cages have similar lifetimes, but recent
measurements have shown that this is not at all the case. Near the glass transition, polymer mate-
rials exhibit “dynamical heterogeneities [10].” The term “dynamical heterogeneities” means that
the lifetimes of the cages are distributed over more than 4 decades, and the correlation length
of these rearrangements, i.e., the size of the cages is approximately 5 nm. These dynamical het-
erogeneities have been the subject of several vast studies of the glass transition, beyond poly-
mers [21]. The mechanical consequences of these dynamical heterogeneities are considered and
a step strain solicitation is applied to the crosslinked matrix in its glassy state. Each domain of
the polymer matrix accumulates some stress. As time progresses, each domain will undergo a
cage rearrangement that will cause a decrease in stress, as depicted in Figure 2. The stress of a
given domain will relax over a time equal to the cage lifetime. Thus, the lifetime that is widely dis-
tributed leads to a non exponential slow decay of the stress relaxation. A full description of this is
the following: from a mechanical point of view, a polymer can be considered as an ensemble of
5-nm domains, each with its own stress relaxation time, which is distributed over many decades
over the entire material.

We have shown that these dynamical heterogeneities can be mimicked with the model shown
in Figure 5. Following this model, the bulk is divided into 5-nm-wide domains, each exhibiting the
following mechanical behavior: a glassy branch that corresponds to the intermolecular attraction
contribution with a shear modulus of approximately 1 GPa and a specific relaxation time τi

that mimics cage lifetime, in parallel with a 1-MPa branch that corresponds to the entropic
contribution.

The distribution of lifetimes of the domains presents as a log-normal law, which reflects a
Gaussian distribution of the energy barrier involved in cages hops, but it can be based on more
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Figure 5. Mechanical simulations of polymer mechanics. Each domain possesses a rubber
branch and a glassy branch in parallel. The latter is in series with a damper to have its own
relaxation time. The relaxation time is drawn randomly from a log-normal distribution and
may be affected by the local stress.

microscopic arguments (see Long and collaborator’s work, for instance in [22, 23]). To a good
approximation, we can write the lifetime distribution as follows:

P (ln(τ0
i )) = 1p

2πs
exp

(
−ln

(
τ0

i

τ0

)/
2s2

)
. (2)

Where s is the width of the time distribution, and τ0 a characteristic time. The width s depends
on the polymer, but is typically around 4.5 for an homopolymer [24]. We then numerically solved
the model [25], which appears to describe very precisely the viscoelastic modulus of polymer
glasses in their linear regime [24], as shown in Figure 6 for two systems.

Therefore, including nonlinear mechanical properties in this model is easy. As explained in
Section 2, the application of stress can induce cage rearrangements similar to that induced by
thermal activation. The relaxation of domains under macroscopic stress has been measured
in previous studies [26], and the results have been discussed recently by Long [27], and have
been confirmed experimentally by us very recently [28]. The cage lifetime, and the time for
the modulus decay from 1 GPa to 1 MPa, depends on the local stress applied. For the sake of
simplicity, we write it in a scalar form in τ = τ0eσ

2/Y 2
, where σ is the local stress, Y is typically

10 MPa, and τ0 is the cage lifetime in the absence of stress. This law describes how thermal
hopping is modified by stress. Therefore, the mechanical properties of a polymer matrix near
its glass transition can be satisfactorily described by including the local relaxation times from the
previous model as follows:

τi = τ0
i eσ

2/Y 2
, (3)
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Figure 6. Relaxation modulus for crosslinked PMMA and crosslinked blends of poly buta-
diene. Continuous lines are results of the model presented in Figure 5. Details can be found
in previous studies [13].

where the cage lifetime of domain iτ0
i is randomly drawn over a log-normal distribution of many

decades width (2), and σ is the local stress. This type of model has been proven to very efficiently
describe the polymer mechanics both in the linear (as explained in the previous sentences) and
nonlinear regimes in the glass–rubber crossover regime.

Once the physical origin of the polymer viscoelastic responses near the glass transition is
established, including recent findings on the so-called dynamical heterogeneities, we will now
explore how mechanical behavior is modified in confined geometries.

3. Confinement effects on polymer dynamics

We will now show that the model representing a polymer bulk as a collection of dynamical
heterogeneous domains can explain confinement effects and thus the shift of glass transition
temperature observed in thin polymer films. For a few decades, it has been observed that the
polymer dynamics should be modified at the surface of solid particles in filled elastomers. These
modifications have been correlated with some mechanical properties of filled rubbers [9]. More
recently, motivated by the developments of nanotechnologies, the mechanical properties of thin-
polymer film coatings on solid substrates have been studied, revealing that the dynamics of
polymer films may be different from the those of bulk materials [8].

The recent literature unanimously agrees that the dynamics of polymers near their glass
transition is modified by the presence of hard or soft boundaries [8]. We will now consider a
situation of interest for reinforced elastomers: a polymer is confined between two solid walls
with a strong anchoring between the walls and polymer (see Figure 7). This situation mimics the
behavior of a polymer confined between two neighboring solid particles in a filled rubber and
reveals size dependent mechanical properties discussed below [29].

First, let us assume that the thickness of the layer is approximately 5 nm and that hundreds of
domains constitute the polymer bridge between particles. These have random relaxation times
that span many decades, as explained above. We apply a step strain to this bridge and separately
consider the slowest domain compared to other domains. When all other domains have relaxed
their stress, the two solid walls remain mechanically connected only by the slowest domain,
which has a modulus of 1 GPa, whereas other domains exhibit a modulus of 1 MPa. Thus, the
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Figure 7. Polymer bridges between two particle surfaces, constituted by several domains.
The slowest domains, which are 103 fold more rigid than the others at the end of the
relaxation, controls the stress transmission.

stress is carried by the slowest domain, which provides an apparent modulus of about 10 MPa
to the bridge. Therefore, the slowest domain dominates the mechanical response of the polymer
connection between the walls. Thus, the rigidity of the polymer bridge is dominated by the one
percent of slowest domains.

This situation is very different from the case of a bulk polymer. In that case, the slowest
domains must at least form a percolation network to dominate the macroscopic mechanical
response. Thus, in bulk polymers, the slowest domains that dominate the stress have to be more
than in a film (typically more than 10% in bulk as compared to less than 1% in nanometric
films).

Because polymer samples near Tg exhibit a large width in local relaxation times, their me-
chanical response will strongly depend on the geometry of the mechanical solicitation. A length
over which the mechanical properties propagate may thus be introduced. This length has to be
related to the dynamical heterogeneities. In a naive view, the change in mechanical transmission
can be described as a shift of the glass transition temperature of polymer chains in the vicinity of
a solid surface. In this frame, we show that a good approximation of the dependence of the glass
transition temperature as a function of the distance z from the surface can be written as follows:

Tg (z) = T ∞
g ·

(
1+ δ

z

)
, (4)

where z is the distance to the surface, δ an atomic length, and T ∞
g the glass transition of the

matrix at an infinite distance from any surfaces, or in bulk. A more complete analysis of the
mechanical behavior of a polymer thin film between two solid surfaces has been performed
using the aforementioned model. Figure 8 shows that the mechanical response is shifted toward
lower frequencies (or higher temperatures) under confinement. Furthermore, the glass transition
domain is broadened. The simulation has been satisfactorily compared to the experimental
results of filled elastomers. Introducing a clear mechanical criterion for the glass transition—
e.g., the temperature at which the macroscopic modulus of a confined polymer film has a given
value—Equation (4) can appears to be a satisfactory approximation. Hence we see that dynamical
heterogeneities—that are considered as mechanical heterogeneities—induce an apparent shift of
the glass transition of polymer chains confined between solids walls.

The slowing down of polymer dynamics has been the object of various interpretations. Note
that effects other than the effect just mentioned may also contribute to a slowing down of the
polymer mechanical response near surfaces. First, at a monomeric scale, the modification of
the structure and of the dynamics induced by the change in structure may also contribute to
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Figure 8. Real part of the apparent visco-elastic modulus of confined polymer in thin films
versus frequency predicted by the aforementioned model for a film thickness h equal to
1, 2, 4 and 8 domains, as well as for the bulk finite element. The relaxation in thin films
extends to lower frequencies as compared to the one in bulk polymers and broadens with
increasing confinement [30].

slow the dynamics down. However, in that case, a shift in the dynamics is not expected to follow
the frequency–temperature WLF’s law, in contrast to what is observed subsequently [2, 3]. The
shift in dynamic caused by structural modification appears more like a rigid shell around the
particles [31]. Second, the mechanism of adsorption/desorption under mechanical solicitation is
involved when describing modifications of the dynamics near nanoparticle surfaces [10]. There
is however no reason why these mechanisms would follow the frequency–temperature WLF
law, while experimental results do. Finally, the polymer chain dynamics (Rouse motions and
reptation) are modified near the surfaces, but these last contributions typically induce a shift
in time relaxations of a factor of two, whereas the confinement effect leads to a shift of two
decades.

The effect of confinement on the mechanical response of polymers is crucial because of
dynamical heterogeneities. The mechanical behavior of elastomers will indeed reveal this effect,
as explained in the next section.

4. Filled elastomer mechanics

In industrial filled elastomers, the amount of nanoparticles is optimized such that the average
distance between nanoparticle surfaces is of the order of a few nanometers. The adjustment of
nanoparticle concentration is in fact a compromise. A small distance between nanoparticles sur-
faces leads to the system becoming very rigid and brittle, whereas a large distance will cause
the fillers to have a negligible effect on the mechanics. In the optimal situation, from an engi-
neering point of view, the stress in filled rubbers originates mostly in the forces transmitted be-
tween nanoparticles through a thin layer of polymer. This peculiar mode of stress transmission
is described in the literature as “particles network” [32] (see Figure 9). These effects of confine-
ment are crucial in the stress transmission within the filled elastomers because they ensure the
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Figure 9. A schematic view of a particles network connected by polymer bridges (in red).

Figure 10. Ratio between the elastic modulus of filled elastomers versus the pure matrix
for two spherical nanoparticle volume fractions (9% and 16%). Samples described in [2].
This ratio exhibits a maximum in the glass transition domain, and the modulus of the pure
matrix simply decreases with temperature in this temperature range, as shown in Figure 4.
This reveals that the filled rubbers have slower temperature decay than that of the matrix.
Thus, the width of the glass transition domain of the bridges is on average larger than that
of the matrix. The slow decay of Re indicates that the glass transition domain of the bridges
spans more than 100 K.

stress transmission between nanoparticles. We refer to the confined polymer between particles
as “polymer bridges”.

The effect of stress transmission through the particle network can be quantified by the rein-
forcement coefficient Rei , which is equal to the ratio between the elastic modulus in the pres-
ence of nanofillers divided by the elastic modulus of the pure matrix. Rei depends obviously on
the nanoparticle volume fraction. Moreover, Rei decreases with increasing temperature, even at
a few tens of Kelvins greater than the glass transition temperature of the matrix. Precisely, Rei

exhibits a bell-shaped dependence on temperature, as shown in Figure 10.

C. R. Physique — 2021, 22, n S5, 33-50
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This phenomenon can be understood as follows. At low temperatures, both the matrix and
bridges are glassy, and the reinforcement is weak. Similarly, at high temperatures, both the matrix
and bridges are in the rubber state and the reinforcement is weak. Thus, the bell-shaped curve
reveals that the mechanical difference between the elastic modulus of the bridges and that of the
matrix is at maximum a few tens of Kelvins above the glass transition temperature. This reveals
that there is a shift between the temperature dependence of the elastic modulus of the polymer
bridges and that of the matrix, which agrees with the shift in the glass transition temperature
measured directly for the confined polymers (or polymer bridges), as discussed in the previous
sections.

Polymer bridges can thus be glassy or not, depending on the temperature and the gap thick-
ness. For mechanical behaviour, the distribution of distances between neighboring particle sur-
faces is crucial. In practice, because filled elastomers are prepared by mechanical mixing, the dis-
tance between neighboring particles, or the thickness of the glassy bridges, is distributed. It is in-
deed possible to vary the distribution of distance with the same amount of filler in a model, filled
elastomer prepared according to a nonindustrial process [33]. We observed that a change in the
bridge thickness distribution strongly modifies the shape of the temperature dependence of the
modulus. Thus, bridge thickness distribution is a key parameter for the mechanical response of
filled elastomers.

Simple laws can be deduced from this remark. Let us consider that each bridge has its own gap
d , and its distribution we will call p(d). The glass transition of the bridge, which originates from
the shift in Tg induced by the two surfaces, at a distance d/2 of the surface that can be estimated
using the following relation [15]:

Tg (d) = T ∞
g ·

(
1+4

δ

d

)
. (5)

Thus, at temperature T , the bridges with a glass transition temperature Tg (d) larger than T will
be glassy, and the others will be rubber-like. For the most part, the bridges that really participate
in the stress transmission across the sample are the glassy ones. Their fraction X is given as
follows:

X =
∫ dc

0
p(x)dx, (6)

where the upper boundary of the integral is related to the room temperature and the glass
transition temperature of the matrix:

dc = 4δ
T ∞

g

T −T ∞
g

. (7)

Thus, it is expected that Rei depends exclusively on the fraction X . This naïve view appears
to efficiently predict frequency–temperature superposition behavior. As explained above, the
definition of glass transition temperature depends on the choice of a characteristic time, meaning
that T ∞

g depends on the frequency of the measurements, which can be written as T ∞
g (ω).

Therefore, changing the frequency and temperature such that dc remains constant must not
modify the value of Rei . This is indeed observed in our experiments [2], confirming that the shift
in glass transition temperature is the most crucial factor that controls the mechanics of filled
elastomers.

If the distribution p is smooth, increasing the temperature will lead to a decrease in X and
may be somehow equivalent to a decrease in the filler volume fraction. As a result, in samples
with “good” dispersion, a volume fraction/temperature superposition behavior is observed [3].

This qualitatively explains why different distributions (as measured with neutron scattering)
lead to different temperature dependences in similar systems [33]. Furthermore, it can predict
the pressure–temperature superposition law specific to filled elastomers, as explained in the next
section.
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Figure 11. Temperature–pressure modulus master curves obtained for poly(dimethyl-
siloxane-co-diphenylsiloxane) elastomers filled with silica particles at 27% volume and ap-
plying sinusoidal strain of various amplitudes (∆ε= 2.4%, ∆ε= 4%, and ∆ε= 12%). Master
curves were obtained by taking T ∞

g = 158 K and π∗ = 2.2 MPa [23]. Pressure varies from 0 to
3.1 MPa.

5. Pressure effect

One of the consequences of the presence of glassy bridge connection particles is the effect of
pressure on the mechanical properties of filled elastomers.

For bulk polymers, applying pressure is known to result in an increase in the glass transition
temperature [14]. A basic picture is given by the free volume model. In this model, the dynamics
of the chains are related to the amount of unoccupied volume, the free volume, in the system. As
explained above, monomers are trapped in cages by their neighbors. There are periodic changes
in density over time and space owing to thermal activation fluctuations in density. Once the
density is weak enough at a given location, the cage can rearrange. According to the free volume
theory, density is the key parameter that controls the polymer chain dynamics. Under pressure,
density increases and thus free volume decreases, causing a slowing down of the dynamics
and causing increase of the glass transition temperature. This basic image obviously has some
limitations, but it is relatively correct. Experimentally, for pure elastomers, one observes typical
increase in Tg of 0.5 K for a change in amplitude of the pressure is around 1 MPa.

In the case of reinforced elastomers, pressure causes an increase in the elastic modulus, which
can similarly be expressed in terms of an increase in the glass transition temperature. However,
the increase in amplitude of the Tg is approximately 50 K/MPa, two orders of magnitude larger
than the one measured for a pure elastomer [34]. Under pressure, the density increases. This
decreases the length of the glassy bridges, leading to a stronger confinement of the polymer
chains in the glassy bridges. The dominant mechanism is not the variation in the free volume
of the elastomer itself, but a decrease in the glassy bridge thickness. Because their rigidity
considerably depends on the gap between bridges and the glassy bridges sustain most of the
stress, the macroscopic modulus considerably increases under pressure.

We can easily quantify this effect. For the sake of simplicity, we assume that under pressure the
sample undergoes uniform contraction. If R is the radius of the particles, the variation in distance
δd between neighboring particle surfaces under pressure can be written as follows:

δd

d +2R
=−P

K
, (8)
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Figure 12. Typical apparent elastic and loss modulus as a function of strain amplitude ε of
a poly(dimethylsiloxane-co-diphenylsiloxane) elastomer filled with silica particles at 27%
volume at 333 K and 1 Hz.

where P is the applied pressure, K the compression modulus (typically 1 GPa), and V the volume
of the sample. Thus, the fraction of bridges that are glassy is given by (6), but with the upper
bound dc shown as follows:

dc = 4δ
T ∞

g

T −T ∞
g

+ P

K
2R, (9)

with R À d . Under two pressure–temperature (P,T ) and (0,T0) conditions, such that they lead
to the same value of dc , the same bridges will transmit the stress across the sample, and thus we
expect to have the same mechanical behavior. This gives the pressure/temperature superposition
law as follows:

T0 = T −
T −T ∞

g

1+ 4T ∞
g

T−T ∞
g

π∗
P

, (10)

where π∗ = (Kδ)/(2R).
This is exactly what we observed experimentally in industrial samples as shown in Fig-

ure 11 [34]. Experimentally, π∗ is of the order of a few MPa, which is in good agreement with
the aforementioned estimation. Thus, in the mechanical modeling of filled elastomers, pressure
effects should be taken into consideration as soon as the stress exceeds 1 MPa. To conclude, pres-
sure effects reveal the strength of the glassy bridge approach.

6. Payne’s effect

Compared to pure elastomers, reinforced elastomers exhibit a precocious nonlinear response [35,
36]. When submitted to oscillatory strain, the apparent elastic modulus typically begins to
decrease at strain amplitudes larger than 1%, whereas the apparent loss modulus exhibits a
maximum. Typical behavior of the apparent elastic and loss moduli as a function of strain
amplitude is shown in Figure 12.

This is known as Payne’s effect, and it is very important in industrial applications.
Payne’s effect corresponds to a strong but nonlinear mechanical dissipation in filled elas-

tomers. At the same temperature and strain amplitude, the matrix is purely elastic. In indus-
try, because dissipation has to be controlled, particularly in car tires and filled rubber dampers,
Payne’s effect has been the object of numerous discussions. As a result, it is mainly described
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as the progressive destruction of the particle network under increasing strain and at large am-
plitudes, the effect of a particle network disappears. We can quantitatively discuss the effect of
strain on bridges.

Under strain, two effects may be considered: the modification of bridge thickness and strain
softening of glassy bridges.

(a) As explained in the previous section devoted to pressure effect, the distance between
fillers is modified by strain. For a given bridge, depending on the respective positions of
the fillers, compared to strain orientation, the distance between fillers may increase or
decrease. However, on average, the distance increases with strain (at the second order),
resulting in a decrease in the average glass transition temperature of the bridges. We
estimate the effect of strain on the shift in the glass transition temperature of the bridges.
Under a strain of amplitude ε, the mean distance averaged over all directions increases
by a factor of ε2/3. The average bridge thickness changes under a strain of approximately
2Rε2. According to (4), a Tg shift of approximately (∆Tg )/(T ∞

g ) ≈ −(8δRε2)/(3d 2) is
expected.

(b) The stress in the bridges decreases the relaxation times, as written in (3). Because the
stress is transmitted by the glassy bridges, the stress concentrates in these glassy bridges:
the local stress to consider has to be taken to be larger than the macroscopic stress by
a factor equal to the particle section πR2 divided by the bridge section, which can be
estimated asπRd . Therefore, the local stress in the bridge is of the order of ((Er Rei R)/d)ε.
This corresponds to a shift in cage lifetime, as given by (3), which corresponds to (1) to
a shift in glass transition temperature of (∆Tg )/(T ∞

g ) ≈ −(C2)/(T ∞
g C1)((Er Rei R)/(Y d))2

using (1).

After quantifying all these relations, the second effect (b) typically dominates the first effect
(a) by a factor of 100. Thus, Payne’s effect is expected to be controlled by the strain softening of
glassy bridges. Indeed, quantifying strain softening gives a good estimate of the strain at which
the decrease of the elastic modulus and the increase of dissipation begins to be significant—more
than 10% for a strain of about 1% typically. Moreover, the frequency–temperature equivalence can
be observed for the viscoelastic non linear response associated to Payne’s effect, similar to the
one observed for the linear elastic modulus. A detailed analysis of Payne’s effect has been made
possible by all the tools developed in the recent past on the physics of glassy polymers. However,
new tools must be developed to provide a stochastic and tensorial description of the bridges to
the community.

7. Conclusion

Recent advances in the physical origin of the mechanics of amorphous polymers thus provided a
renewed understanding of the mechanics of filled rubbers, a subject that is of great importance
in the transportation sector, which is increasingly demanding in terms of high-level technology.
To understand the mechanics of filled rubbers, one needs to combine the effect of dynamical het-
erogeneities on the dynamics of confined polymers and the yielding on polymer matrix mechan-
ical response with the image of the particles network. Indeed, polymer bridges that mechanically
connect the rigid particles dominate the mechanics of filled rubbers. More precisely, three ef-
fects on the viscoelastic modulus can be discussed precisely using the concepts of glassy bridge
and confined polymer properties; the effect of pressure—that decreases the thickness of glassy
bridges, the effect of temperature—that controls the rigidity of the glassy bridges, and the effect
of strain amplitude—that controls their strain-softening.
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