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Abstract. Quantum material systems upon applying ultrashort laser pulses provide a rich platform to access
excited material phases and their transformations that are not entirely like their equilibrium counterparts.
The addressability and potential controls of metastable or long-trapped out-of-equilibrium phases have mo-
tivated interests both for the purposes of understanding the nonequilibrium physics and advancing the quan-
tum technologies. Thus far, the dynamical spectroscopic probes eminently focus on microscopic electronic
and phonon responses. For characterizing the long-range dynamics, such as order parameter fields and fluc-
tuation effects, the ultrafast scattering probes offer direct sensitivity. Bridging the connections between the
microscopic dynamics and macroscopic responses is central toward establishing the nonequilibrium physics
behind the light-induced phases. Here, we present a path toward such understanding by cross-examining the
structure factors associated with different dynamical states obtained from ultrafast electron scattering, imag-
ing, and modeling. We give the basic theoretical framework on describing the non-equilibrium scattering
problems and briefly describe how such framework relates to the out-of-equilibrium phenomena. We give ef-
fective models outlining the emergences of nonthermal critical points, hidden phases, and non-equilibrium
relaxational responses from vacuum-suspended rare-earth tritellurides, tantalum disulfides thin films, and
vanadium dioxide nanocrystalline materials upon light excitations.
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1. Introduction

The interests for exploring light-induced new functional phases or properties of matters are moti-
vated by practical endeavors, dubbed as materials on demand [1,2], as a new direction of material
research. The desire to harness the functionalities beyond the conventional metals or semicon-
ductors has drawn significant attentions for exploring quantum materials [3]. The quantum ma-
terials, also referred to as strongly correlated electron materials, are featured by their complex
phase diagrams where multiple electronic phases often occur adjacently. While such complex-
ity is rooted in the active interactions between multiple microscopic degrees of freedom—lattice,
charge, spin, and orbital—competing ground states are of macroscopic nature [2,4] and their evo-
lutions over the external control parameters can be discussed much without the detailed knowl-
edge at the microscopic scales [5]. The physics of phase transitions can often be encapsulated in
generalized order parameters that either explicitly breaks or implicitly connects to the symmetry-
breaking processes. Much of the success in developing predicative models owes to phenomeno-
logical models based on the order parameter concept [6–8], which has been demonstrated in
contexts [9] ranging from condensed matter physics to cosmology [10].

Much anticipated are the successful models for nonequilibrium phase transitions in the quan-
tum materials. A number of important developments have emerged in recent years concerning
this topic. One can now rely on the growing capabilities of the ultrafast techniques to give increas-
ingly more details of the nonequilibrium transformations between quantum phases; see for ex-
ample the recent reviews [11–14]. Indeed, many recent ultrafast pump–probe studies of quantum
matters also led to surprising results that cannot be identified from the equilibrium states [15–23],
often referred to as the hidden state problem [24, 25]. Second, studying the nonequilibrium
collective state evolution in quantum materials involves fundamental concept of nonequilib-
rium many-body physics [26–30]. Especially, understanding how a nonequilibrium system self-
organizes into a broken-symmetry phase is a problem of broad interests from condensed mat-
ter [31–33] to high-energy physics [34–36]. It is widely believed that the generic responses of an
isolated many-body system upon quench is to evolve towards the equilibrium state. However,
before the system could fully equilibrate, novel behaviors may occur. The confluence of new ex-
periments and theoretical frameworks has prompt synergistic developments. For example, the
nonequilibrium phase transitions have also been intensively researched under controlled set-
tings using the trapped cold atoms as the quantum material simulators [37–42].

In this article, we will attempt to establish a unified framework to treat ultrafast scattering
from the nonequilibrium states of quantum materials. In this case, the system we refer to is
the broken-symmetry order expressed in the lattice field with distinct order parameter that can
be measured by the scattering approach. The pump–probe platform offers new opportunities
for studying nonequilibrium physics. In the nonequilibrium physics context, the ultrafast light
excitation couples to the system through a perturbation that changes the system parameters.
More specifically, we ask how a quantum material containing long-range broken-symmetry states
may effectively switch under an ultrafast “quench” [13, 43] enforced by laser pulse in routes
distinctively different from a thermal state [44, 45]. In this central aspect, excited quantum
material transformation is akin to the femtochemistry problem [46] where the ultrafast electronic
excitation sets the new bonding landscape before the heavier molecular nuclear dynamics can
follow. Given the separation of the timescale, the impulsive unveiling of the new potential energy
landscape sets forth the ensuing molecule conformational dynamics where the dynamics of
electrons follow those of the nuclei adiabatically. This scenario is referred to as the impulse-
adiabatic approximation. Meanwhile, the inability for a many-body system to instantaneously
thermalize offers intriguing aspect of controlling quantum material phase transition out of
equilibrium.
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Scattering from a nonequilibrium system contains information on both the microscopic dy-
namics and macroscopic state evolution, and properly extracting such information in a con-
trolled nonequilibrium quantum material will offer valuable insight on the symmetry-breaking
properties and the nonequilibrium effects. Three prototypical quantum material systems: rare-
earth tritellurides, tantalum disulfides, and vanadium dioxide will be discussed under this frame-
work. We also examine the pump and material settings required for the controlled experiments.
Facing the challenging issues with the multiscale dynamics, the technological aspects of the
multi-messenger approaches based on a unified framework of ultrafast electron microscopy sys-
tem will also be discussed. Our goals here are twofold. One is to understand the still mysteri-
ous hidden phase phenomena in nonequilibrium quantum materials. The second is to explore
the ideas of using the light-excited quantum material as a platform to study the nonequilibrium
physics.

2. Description of non-equilibrium phase transition

Quantum phases are macroscopic states that exist at a finite temperature with quantum mech-
anism in origin but often behave semi-classically [2, 4]. They often emerge by breaking the ex-
isting symmetry of the underpinning Hamiltonian defining the microscopic states [8]. In doing
so, they distinguish themselves from the microstate evolution, and the collective state properties
typically are described by a very small number of long-scale order parameters, in which the mi-
croscopic dynamics are coarse-grained [9]. Ultrafast pump–probe approaches utilize the tempo-
ral resolution and pump control to explore hidden or transient metastable phases as a means to
unveil the underpinning complex landscape of macroscopic quantum phases and to study the
nonequilibrium physics.

Based on defining a local order parameter, the Landau–Ginzburg mean-field theory success-
fully captures a system undergoing a phase transition in which some symmetry is broken [6, 7].
The scattering techniques, which can provide direct evidence of the symmetry change and
the properties of the order parameters, have been instrumental for the success of developing
Landau–Ginzburg theory for quantum materials [6, 47–49]. The main focus of this article is to
examine how nonequilibrium quantum materials involving multiple broken-symmetry ground
states evolve upon applying laser quench. The process typically involves nonequilibrium state of
the order parameters. Ultrafast electron scattering is used as a sensitive probe to characterize the
dynamical order parameter fields.

For the experimental examples discussed in this paper, the macroscopic systems we refer to
are the broken-symmetry orders expressed in the lattice field with distinct order parameter. In
these cases, the phase evolution is characterized by the long-wave responses on much greater
length scale than the periodicity of the mean atomic positions. The scale difference allows
different physical principles governing the order parameters and the microscopic dynamics
to be separated. For example, macrostate evolution is decoupled dynamically from the local
vibrational excitations around the mean positions. Therefore, it is natural for the impulse-
adiabatic description of the femtochemistry problems to apply to the nonequilibrium phase
transition of quantum materials under the ultrafast quench—a paradigmatic scenario has been
given for the photoinduced phase transition (PIPT) problems concerning the strongly correlated
molecular solids; see the review [25]. Here, the Landau–Ginzburg free-energy equation serves to
describe the long-scale property, i.e., a general functional of the coarse-grained order parameter,
which is registered in coherent scattering structural factor; whereas the microscopic processes
are encoded in the diffuse and inelastic scattering.

For illustrating the correspondence between the order-parameter field and the scattering
functions, we start with the case of a singular order parameter η = |η|eiθ associated with a
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continuous phase transition. Typically, only the amplitude and its gradient will change the free-
energy density, written as:

f = 1

2
a(T −Tc )|η|2 + 1

4
A4|η|4 + 1

2
αi j

∂η

∂xi

∂η

∂x j
. (1)

For a uniform order parameter, the potential surface described by the first two terms on the
righthand side (RHS) has the stationary points that give the coordinate for the broken-symmetry
state (|η| > 0). For the broken-symmetry state typically residing at low temperature, a and A4 are
positive. With the phase rigidity tensor αi j > 0, the third term raises the free energy for a system
being inhomogeneous. This simple mean-field depiction captures the universal laws governing
the system when it approaches the critical point, with the temperature difference |Tc − T | as
the control parameter. For T < Tc , fηη = 2a(T − Tc ), i.e., approaching the broken-symmetry
state from above the free energy changes from a parabolic uphill to a double well potential. The
nonanalyticity at Tc and the ensuing BCS-type onset of the order parameter are given by following
the stationary point as a function of temperature:

|η(T )| =
√

a

A4
(Tc −T )1/2. (2)

The Landau–Ginzburg equation also gives the right description for the pre-transitional instabil-
ities probed by the diffuse scattering, which provides additional information about the phase
rigidity. To see this, we express the long-range parameter variations with the fluctuation waves
components:

δη(r ) =∑
k
ηkeik·r, (3)

where ηk and k represent the amplitude and the momentum wavevector. The least work required
to produce the variation δη according to (1) is

δη(r) = 1

2
fηη(δη)2 + 1

2
αi j

∂ f

∂xi

∂ f

∂x j
. (4)

We can calculate the mean-square Fourier component of the fluctuation wave at momentum k:

〈ηkη
∗
k〉 =

kB T

V

(
1

fηη+αi j ki k j

)
. (5)

Equation (5) gives the Lorentzian line shape of the anomalous spectrum of diffuse scattering
near Tc . From (1) and (2), we establish for T > Tc , fηη = a(T −Tc ). Rearranging (5), we obtain
〈ηkη

∗
k〉 = (kB T /V )(1/α∥k2

∥ +α⊥k2
⊥+a(T −Tc )) for T > Tc , with the Lorentz line width ∆k∥,⊥ =

(a(T −Tc )/α∥,⊥)1/2.
Thus far, only the statics of the Landau–Ginzburg equation is discussed. For considering the

nonequilibrium phase transition, connections to the microscopic physics must be made. To give
a microscopic picture, we consider a single-wavevector charge-density wave (CDW) system [50].
Here, the specific ordering formation is by breaking the translational symmetry over a specific
wave-vector Q, typically driven by the electronic instabilities at the relevant length scale (2π/Q)
coupled to the lattice field [51]. In this case, the order parameter has the amplitude and phase
components and can be written as η = |η|ei(Q·r+φ) with |η| and φ representing the amplitude
and phase fields. The order parameter fields can be probed via their connection to the distorted
lattice, or lattice periodic distortion wave (LDW). At each lattice site L, the distorted amplitude is
described by

uL(r ) = u0ê sin(Q ·L+φ), (6)

where ê and u0 represent the polarization vector and amplitude. The order parameter and LDW
are related by u0 = |η|Aηu with Aηu a constant that can be probed under the steady state prior to
applying quench, where the order parameter |η| is typically set to be 1 by convenience.
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Figure 1. Landau–Ginzburg free-energy surface for spontaneous symmetry breaking and
the order parameter dynamics. (a) The 2D free-energy landscape that defines the order pa-
rameter field at different temperatures. The arrow directions show temperature quench.
The field fluctuations are depicted in the change of the amplitude (δη) and the phase (δφ).
(b) The corresponding lattice phonon dispersion curves that couple to the landscape mod-
ification. The lattice softening, driven by the temperature quench, occurs at momentum
wavevector Q of the long-range state. (c) The phase ordering kinetics orchestrated by the
fluctuation fields. The near-equilibrium scenario is depicted in black curves. The nonequi-
librium one, depicted in green, is driven by a deep quench, where T ¿ Tc . The dispersion
curves for the amplitude (AM) and phase mode (PM) of the CDW state are depicted at the
top. Adapted with permission from Ref. [23].
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We first give a hypothetical scenario of a swift system-wide temperature quench to below Tc to
drive spontaneous phase ordering. For a complex order parameter, this process is now described
on a two-dimensional (2D) landscape of the order parameter fields (amplitude and phase); see
Figure 1a. Driving the order parameter evolution is the free-energy potential which unfolds
from the uphill into the Mexican-hat shape of the broken-symmetry phase. After choosing a
phase, the amplitude (|η|) dynamics is deterministic as a ball falling from the top of the hill to
a location in the trough, i.e. a spontaneous symmetry breaking (SSB). However, nonequilibrium
scenarios appear with the underlying separation of scales in the physical CDW system. This
can be understood by mapping the unfolding energy landscape involving the long-wave state
evolution to the corresponding changes in the lattice field. The relevant lattice dynamics are
governed by the momentum-dependent lattice potential expressed in the phonon dispersion
curves (Figure 1b), which shift from those of the normal (T > Tc ; solid lines) state to the broken-
symmetry phase (T < Tc ; dashed lines) with a mode softening at phonon momentum wavevector
q ∼ Q which may be probed via the inelastic and diffuse scattering spectrum [52–59]. As the lattice
potential changes leveled at the electronic scale is assumed to be nearly instantaneous, the soft
modes in the critical regime (colored in red where the dispersion curves drop in frequency, ω)
cannot respond adiabatically. This inherent nonadiabicity between the potential energy shift and
the long-wave soft collective mode response is prominent for any photoinduced phase transition
driven by a quench [23].

Two types of collective modes are involved in the phase change dynamics [50, 60]. One is the
amplitude modes (AM), represented by the amplitude fluctuation δ|η| as depicted in Figure 1a.
The AM would be generally gapped within the broken-symmetry ground state as it costs energy
to increase or decrease the amplitude |η|. Meanwhile, the incommensurate CDW state also hosts
the ungapped phase mode (PM) [50], as also depicted in Figure 1a where the level of the free
energy surface does not change over phase variation, δφ; in this case PM is referred to as the
Goldstone mode [50, 61–63]. In Figure 1c, we depict the dispersion curves for the AM and PM
modes as a function of the temperature. It is easy to see that the AM would be always gapped with
the exception at the critical point, whereas the PM becomes ungapped after establishing the new
broken symmetry phase. These soft modes are dynamically connected with the field instabilities
only at the bottom of the free energy. The asymptotic slope of the dispersion curve determines
the “sound speed” of the fluctuation wave.

In the ultrafast scattering experiments, the order parameter is mapped into the LDW ampli-
tude and probed via the time-dependent two-point equal-time correlation function:

Sη(r− r′; t ) ∼ 〈u(r; t )u(r′; t )〉, (7)

where the bracket denotes the spatial and ensemble averaging over the probed volume and the
acquisition time window. The Fourier transformation of the (7) gives the structure factor Sη(q; t )
which results in satellites for the ordered states in the reciprocal space. As will be discussed in
Section 4, Equation (5) gives the diffuse scattering component of Sη(q; t ). Hence, we can extract
the ξF , the correlation length for the critical fluctuations, from the line shape of the diffuse
scattering, i.e. ξF = 1/∆k∥,⊥, and deduce the rigidity based on the T -dependence:

α∥,⊥
a

= (T −Tc )ξ2
F . (8)

It is instructive to point out that the bandwidth of the phonon softening probed by inelastic
scattering is typically much larger than the anomalous linewidth of the diffuse scattering. This
is because only those stochastic soft-phonon modes near the CDW Q vector will eventually
condense into the static CDW order. The order parameter field fluctuations may be described
over the Mexican hat energy surface.
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These long-wave and low-energy excitations are considered as the hydrodynamic modes [61]
or fluctuation waves [49], with wavelengthλ= 2π/|k|, where typically the momentum wavevector
|k| ¿ |Q|, the wave vector of the CDW/LDW. Such field fluctuations must be created by joining
two soft phonon modes from the lattice field. It has been shown by Overhauser [50, 62] that to
form a collective mode with momentum k, either AM or PM, two soft phonons with momentum
q = k±Q, must be coherently jointed [50]; conversely, upon quenching the order parameters,
the excited collective mode decays by dissociating into a pair of phonons. The dissociation
process would be most relevant in discussing the overdamped dynamics following the impulsive
suppression of a pre-existing CDW order.

Now we concern how the order parameter of the nonequilibrium state will manifest physically.
We expect in potential-driven dynamics the system will be attracted to a minimum energy
basin. The simplest nonequilibrium dynamical model is relaxational for a non-conserved order
parameter η(r; t ), such as the CDW system and with a stochastic contribution, often referred to
as time-dependent Ginzburg–Landau equation [9, 27, 64]:

∂η

∂t
=−Γδ f

δη
+ς=−Γ

[
δ f0

δη
−α∇2η

]
+ς(r, t ). (9)

Here f0 is the effective potential energy (excluding the gradient term), Γ is a relaxation constant
and ς(r, t ) is the noise source. One can often take the noise as random and for a Gaussian white
noise 〈ς(r, t )〉 = 0 and the noise correlator 〈ς(r, t )ς(r′, t ′)〉 = 2TΓδ(r− r′)δ(t − t ′) [9, 27].

We can now connect this expression to the phenomenological description of SSB. Under a
deep quench with the eventual T ¿ Tc , a large shift of the local curvature of the potential is
induced as depicted in Figure 1a. In the initial amplitude dynamics, the first term on the RHS is
most important. However, the phase space of the order parameter is broadened by its coupling
to the stochastic background (the 3rd term), but only in the soft phonon mode regions due
to the scale matching. The nonlinear coupling to phonons leads to a rectification allowing the
amplitude mode to build up as the system move from the hill to the low-energy basin. When
reaching the bottom of the basin where δ f0/δη ∼ 0, the second term will now become more
important. This means the nonequilibrium system will undergo pattern formation, driven by the
positive rigidity favoring long-range ordering. The (9) can be simplified to 1

∂η

∂t
= D∇2η+ς, (10)

where D = Γα is the diffusion constant [27] and defines a characteristic timescale tD ∼ ξ2
S /D for

the coarsening where ξs is the size of the coherent domain created. It is easy to see that in this
case the relaxational dynamics for the coarsening follows a universal scaling law [65,66]. The size
of the domain increases at velocity ∼ ∂ξs (t )/∂t = 2D/ξs (t ). This implies that the characteristic
length scale ξs (t ) =p

2Dt grows as t 1/2 [65].
In the following, we will go beyond the hypothetic scenario of temperature quench. The

temperature quench is inherently impractical to implement as such a process is physically slow
and is prone to generate inhomogeneous phase ordering due to the presence of interfaces for
cooling the system from outside. The more effective approach to implement the physical quench
is instead via driving the system interaction parameters rather than changing the temperature of
the system [43]. This will require additional order parameter(s) to couple with the present one—a
scenario of cooperativity or competitions described in a multi-parameter free-energy equation,
which is in fact a characteristic feature of quantum material phase transitions [31, 32, 67, 68]. As

1Private communication with M. Maghrebi.
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will be discussed in the experimental studies, rich scenarios as those involve competitive broken-
symmetry orders, vestigial orders, and the intertwined ground states could be identified, leading
to intriguing nonequilibrium states and hidden phases; see Section 6.

3. Light-induced hidden phases through competitions

While one expects that there should always be a corresponding critical threshold directly linked to
a thermal phase transition according to (2), there have been many reports that the experimentally
identified thresholds are significantly less than the thermodynamic requirements. In many cases,
an additional low energy threshold is linked to the appearance of a light-induced hidden state
without entirely melting the pre-existing ordered phase. Indeed, the threshold behavior with a
sub-thermal activation energy density has been the hallmarks of PIPT phenomena [25].

We now consider a multi-component free-energy surface in which the order parameters
are coupled to account for phase transitions where different broken-symmetry orders coexist
or compete in quantum materials. In particular, in strongly correlated electron systems, the
competing orbital, spin, and lattice interactions yield a multiplicity of nearly degenerate broken-
symmetry phases and complex phase diagrams [2,11,69,70]. For example, within the high-critical
temperature superconductors, such as iron-based and cuprates, superconductivity is often found
to compete with a density-wave order. A prototypical case concerning the competitive SSB
within the density-wave systems is recently discussed and observed in the rare-earth telluride
compounds [22, 23].

A generic Landau–Ginzburg expression that applies to the broad range of physical phenomena
concerning competitions is [31, 71, 72]

f0(η1,η2, . . .) = 1

2

∑
i

ai (T (i ) −Tc,i )|ηi |2 + 1

4

∑
i

A4,i |ηi |4 + 1

2

∑
i j

Ãi j |ηi |2|η j |2, (11)

where the first two terms represent the free energy from the individual phase that will undergo
SSB at the respective critical temperature Tc,i . The third term gives the coupling energy where a
competitive scenario has Ãi j > 0. One can apply this multi-component potential energy surface
to (9) to determine the order parameter dynamics. Of concern here is the nonequilibrium phase
competitions driven predominantly by the laser interaction quench. Generally, the stochastic ef-
fects propagating to the long-range degree of freedom are slow to manifest. The microscopic
physics depends on “local” momentum-dependent coupling between the excited hot carriers
and the lattice modes, to establish the initial bath that is expected to be inhomogeneous in effec-
tive temperatures. Nonetheless, we expect the post-quench immediate response to be potential-
driven. We first discuss here the truly competitive SSB scenario, applying to the rare-earth tritel-
luride system [23, 72], in which Tc is shared among the two order parameters η1 and η2.

While much of the ordering dynamics involving complex order parameters will depend on
the microscopic details of the experimental settings, here we focus on the phenomenology of
amplitude dynamics, i.e. |η1| and |η2|. The competition here precludes the thermal phase of
|η2| from appearing below Tc if |η1| is selected by SSB. This is described in Figure 2, where
f0 is expressed in two dimensions along |η1| and |η2|. For a model simulation the parameters
here are chosen for |η1| = 1 to be the sole minimum at an initial temperature T1 (black curve),
before applying laser quench. Within the reversible thermodynamic pathway, i.e. via adiabatically
tuning the temperature that is homogeneous system-wide, the |η1| remains the dominate phase
as represented by the sole minimum basin in the global energy surface. This can be seen by taking
the derivative over |η1|, which we assume to be the thermodynamically preferred state at the low

temperature. We then obtain |η1| =
√

(a1(Tc −T )− Ã|η2|2)/A4,1, i.e. |η1| naturally takes a non-
zero value when |η2| = 0 at T < Tc . This thermal route is depicted in blue on the right side of
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Figure 2. Light-induced changes of the Landau–Ginzburg free-energy landscape involving
two order parameters η1 and η2. The non-equilibrium pathway (depicted in the left route)
involves the formation of a bi-directional hidden state with order parameter η2 when
the repulsive coupling potential is suppressed by a swift reduction of the preeminent
order parameter η1. In contrast, in the thermal pathway (right) the global free energy
minimum remains in the condition where |η2| = 0, namely the CDW is uniaxial. Adapted
with permission from Ref. [23].

Figure 2. In the model calculation, |η1| reaches a new minimum at 0.6 (brown curve) due to
heating. Conversely, a stable new static broken-symmetry order (i.e., 〈η2〉 > 0) could appear at
T < Tc if a2(T −Tc )+ Ã|η1|2 becomes negative. To achieve this naturally, one needs to supply an
amplitude quench of the initial order to a level beyond:

|ηth| =
√

a2(Tc −T )

Ã
, (12)

namely a threshold behavior emerges. However, by requiring |η1| to be dominant, i.e. a1/A4,1 >
a2/Ã, one can see this is prohibited if the quenched system were to maintain the thermal equi-
librium condition. Therefore, the light-induced hidden state scenario shall occur in a nonequi-
librium process in which one can suppress |η1| transiently through an interaction quench that
initially couples only to a subset of lattice modes.

This scenario is described on the left side of Figure 2. A nonthermal quench of |η1| to∼0.5 leads
to a minimum in the subspace of the free energy for |η2| at ∼0.36 (see the black circle). Here,
we assume the field of the new order parameter, being decoupled from the high-temperature
bath created by quench, has a temperature of the ambient. Meanwhile, the order parameter
field of the present order, being driven directly by the quench, has a higher local temperature,
i.e., T (2) ¿ T (1) in the initial period. Following this, it is possible for the new order parameter
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to undergo a threshold onset at a critical laser fluence Fc , which is much smaller than what is
required to completely melt the existing order [19, 23]. However, if the system were to regain
thermal equilibrium, i.e. T (2) ∼ T (1), then one can show the free energy again has the global
minimum over a non-zero |η1|, i.e. the hidden state is removed from the order parameter field
when the system thermalizes.

4. Mapping the dynamical order parameter with ultrafast scattering

Optical excitations can result in a departure from the thermal responses making the modeling
of the scattering factor, Debye–Waller effects, and the diffuse signatures quite different from the
conventional approaches for the equilibrium states. In this section, we focus on understanding
the different lattice responses to the nonequilibrium excitation that go into the structure factor
function. The analyses here are based on momentum-resolved structure factor S(q, t ) or their
momentum integration m(Q, t ), which can be directly compared with the ultrafast electron scat-
tering experiments. The goals are to derive directly from the experimental measurements the
nonequilibrium systems, including the evolution of the static order parameters and the associ-
ated order-parameter field fluctuations of the quantum phases. However, in a nonequilibrium
phase transition, such as SSB driven by a quench, these long-range parameters are rooted in the
microscopic excitations. While there has been extended literature dedicated to the scattering by
the phonon processes [73, 74] and by the long-ranged broken-symmetry state with periodic lat-
tice distortions [50,52,75], the discussions were often partial to one aspect only and aimed at the
near-equilibrium processes. The goal here is to lay out the scattering formalism to treat the two
as well as the quasi-static order parameter evolution in a self-contained framework.

The nonequilibrium phases created by the impulsive excitation involve two types of lattice
dynamical effects: the incoherent microscopic responses of the lattice, i.e. the phonons, and
the long-range parameter fluctuation waves of the cooperative states. To be more specific, we
refer to these two types of excited lattice wave manifolds as {q} and {k} based on their respective
momentum wavevectors. The signatures from the soft modes that belong in {q} and the those of
the collective modes that belong in {k} can be differentiated experimentally. In the spectroscopy
experiments, because of the momentum conservation, the probe photon does not directly couple
to the soft mode at a finite momentum q. However, it can couple to the collective modes at the
long-wavelength limit: k = q − Q → 0. In contrast, in the scattering experiments, one detects
both effects at different parts of the momentum space. We shall attempt to capture these two
types of lattice excitations in the scattering formalism. In ultrafast scattering, one probes the
time-dependent structural factor around the reciprocal lattice Ghkl at the momentum transfer
wavevector, s = q+Ghkl :

S(s, t ) =
∫

e−is·(r−r′)〈ρ(r, t )ρ(r′, t )〉drdr′, (13)

which is the Fourier counterpart of the correlation function 〈ρ(r, t )ρ(r′, t )〉〈· · · 〉 denoting spatial
and ensemble-averaging of the probed volume set by the experimental conditions. One can show
for a sufficiently long-ranged order parameter on a periodic lattice L = n1a1+n2a2+n3a3 with n1,
n2, n3 being integers (0,±1,±2. . .), the integral is simplified into

S(s, t ) = 〈F (s, t )F∗(s, t )〉,
where F (s, t ) = ∫ ∑

L fLδ(r−L−uL(t ))e−is·r dr = ∑
L fLe−is·(L+uL (t )) is the Fourier spectrum of the

lattice. The term fL equal to
∑

i ρi e−is·%i represents the unit cell scattering form factor where %i is
the mean unmodified relative position of the atom in the unit cell. Here, uL(t ) is the displacement
from the mean position at each lattice site, which may originate either from the long-range
parameter or fluctuations due to phonons or collective modes.
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More specifically here, we consider a single long-range parameter η present in the system,
e.g. introduced by a charge-density or orbital order (6). We write down the general form of
uL considering phonons uq (r, t ) = ∑

q uq,0êq sin(q · r −ωqt + φq) and the contributions from
the LDW uη(r) = u0,ηêη sin[Q · r +φη], with ui ,0, êi and φi denoting the respective amplitude,
polarization directional vector and phase. For describing the fluctuations of the order parameter,
we include in uη the associated collective excitations in terms of the phase and amplitude
fluctuations inδφ(r, t ) =∑

kφ0,k sin(k·r−ωkt ) andδÂ(r, t ) =∑
k′ Â0,k′ sin(k′·r−ωk′ t ). We then have

uq(r, t ) =∑
q uq,0êq sin(q · r−ωqt +φq) for the phonons, and uη(r, t ) = u0,ηêη(1+δÂ(r, t ))sin[Q·r+

δφ(r, t )] for the displacement associated with long-range parameter. Following this, the overall
displacement at each lattice site is

uL(t ) =∑
q

uq(L, t )+u0,ηêη(1+δÂ(L, t ))sin[Q ·L+δφ(L, t )]. (14)

Equation (14) has all key ingredients to describe the dynamics of the excited states with soft
modes and collective modes in a broken-symmetry state. To simplify the derivation without
losing generality, we first drop the amplitude fluctuations δÂ and expand the equation based
on the momentum-dependent displacement u = uq +uk, with the order-parameter fluctuations
dominated by the phase modes [50]. In this case, the distribution function is written as:

ρ(r, t ) =∑
L
δ

{
r−L−∑

q
uqêq(L, t )−uηêη sin(Q ·L+∑

k
φk sin(k ·L−ωkt ))

}
. (15)

The system form factor is given:

F (s, t ) =
∫
ρ(r, t )e−is·r dr

= ∑
L

fLe−is·(L+∑
q uq êq(L)+uη êη sin(Q·L+∑

kφk sin(k·L−ωkt )))

= ∑
L

fLe−is·L
{

e−is·(∑q uq êq(L)
)}

{e−is·uη êη sin(Q·L+∑
kφk sin(k·L−ωkt ))}. (16)

The first bracket on RHS is simply the scattering by lattice phonons. We have

e−is·(∑q uq êq(L)
)
=∏

q
e−is·uq,0 sin(q·L−ωqt ).

Using the Jacobi–Anger generating function:

e−iz sinφ =
∞∑

n=0
e−inφ Jn(z), (17)

we have
e−is·(∑q uq êq(L)) =∏

q

∑
l

e−il (q·L−ωqt ) Jl (s ·uq,0).

The second bracket on RHS gives the scattering from the order parameter static wave with phase
fluctuations. By twice applying the Jacobi–Anger generating function, we can derive

e−is·uη,0 êη sin(Q·L+∑
kφk sin(k·L−ωkt )) =

{∑
m

e−imQ·L Jm(s ·uη,0)

}
e−i

∑
k mφk sin(k·L−ωkt )

=
{∑

m
e−imQ·L Jm(s ·uη,0)

}{∏
k

∑
n

e−in(k·L−ωkt ) Jn(mφk)

}
= ∏

k

∑
m,n

e−i(mQ+nk)·Leinωkt Jm(s ·uη,0)Jn(mφk).

Putting together, we obtain

F (s, t ) =∑
L

fL

{∏
q

∑
l

e−i(s+l q)·Leilωq t J l (s ·uq,0)
∏

k

∑
m,n

e−i(mQ+nk)·Leinωkt Jm(s ·uη,0)Jn(mφk)

}
.
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With the understanding that each q and k component is distinct and incoherent with respect to
each other, we can describe them separately in the form factor:

F (s, t ;q,k) = ∑
L,l ,m,n

fL{e−i(s+l q+mQ+nk)·Leilωqt eimωkt Jl (s ·uq,0)J m(s ·uη,0)J n(mφk)}

= ∑
l ,m,n

fLδ(s−Ghkl − l q−mQ−nk)eilωqt e
imωkt

Jl (s ·uq,0)J m(s ·uη,0)Jn(mφk). (18)

Now, we are in a position to consider scattering weight transfer under different excitation scenar-
ios.

4.1. Case A: Debye–Waller effect and diffusive scattering from lattice phonons

Here, we consider the effective “heating” of the lattice, resulting in the Debye–Waller effect and
the diffuse scattering around the main lattice Bragg peak at s = Ghkl and simplify (7) by assuming
there is no static distortion wave present i.e. l = m = n = 0, however, the effect of phonons is
included. Then the structure factor for the main lattice Bragg peak

S(0)
0 (Ghkl ) = F F∗ = δ(s−Ghkl )| fL J0(s ·uq,0)|2. (19)

One can simplify the equation with J0(s·uq,0) well approximated by 1−(s ·uq,0)2/4, justified since
s ·uq,0 ¿ 1 with uq,0 ∼ 0.01 Å. Then by taking logarithm on both sides, one can derive

e−is·(∑q uq êq(L)
)
= e−

∑
q

1
4 (s·uq,0)2 = e−Mq ,

where Mq = ∑
q 1/4(s ·uq,0)2. This gives S(0)

0 = δ(s − Ghkl )| fL|2e−2Mq , with e−2Mq simply the
conventional phonon Debye–Waller factor (DWF), although in this form one does not require
the system to be in thermal equilibrium.

Experimentally, the DWF is deduced for individual Bragg peak at Ghkl . Equation (19) gives the
projected mean-square (ms) value of lattice vibration from all independent vibrational modes

u2
hkl = 2Mq /|Ghkl |2, (20)

according to the projection of the respective polarization vector êq onto Ghkl . The excitation of
phonons that leads to the suppression of the main Bragg peak intensity as described in (18) also
gives rise to diffuse scattering around the main Bragg peak at s = Ghkl +q. Here, one may assume
that the scattering by phonon at different q is incoherent, hence allowing the cross terms to be
dropped. Considering the 1st order diffuse scattering, the structure factor becomes

S(0)
1 (q) = F F∗ = | fL|2e−2Mq

∑
q
δ(s−Ghkl −q)|J1(s ·uq,0)|2. (21)

|J1(s ·uq,0)|2 can be similarly well approximated by (s ·uq,0/2)2 = 1/2Gq, where Gq = 1/2(s ·uq,0)2.
Hence, one obtains

S(0)
1 (q) ∼= | fL|2e

−2Mq
∑

q
Gqδ(s−Ghkl −q). (22)

Similarly, from the 2nd-order phonon diffuse scattering (l = 2)

S(0)
2 (q) = | fL|2e−2Mq

∑
q
δ(s−Ghkl −2q)|J2(s ·uq,0)|2

∼= | fL|2e−2Mq
∑

q
1/2(Gq)2δ(s−Ghkl −2q). (23)

By substituting
∑

q Gq = 2Mq and including contribution from S(0)
0 , a conservation law is obtained

for the integrated intensity near Ghkl : mGhkl =
∑

l S(0)
l =| fL|2e

−2Mq (1+ 2Mq + 1/2(2Mq )2 + ·· · ) =
| fL|2. Hence, the effect from scattering by phonons can be regarded as transferring the scattering
weight from Ghkl to Ghkl + l q, resulting in the creation of the diffuse background. On one hand,
this allows one to sum up the effects from all vibrational modes into the lattice DWF. On the
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other hand, the diffuse scattering techniques measure the momentum distribution of the phonon
structure factors [52, 74] and in a wide angle setting such measurements can be conducted along
with coherent scattering experiments to unpack the dynamics of phonons in the ultrafast X-ray
and electron diffraction; for example, see Refs [57–59]. We point out the scattering formalism
discussed here applies to both thermal and nonthermal scenarios. Taking only the dominant one-
phonon contribution, the diffuse scattering S(0)

diff(q) is given by summing the phonon structure
factor from different vibrational state occupancy n(q):

S(0)
diff(q) =∑

q

n(q)+1

ω(q)
|S(0)

1 (q, êq)|. (24)

Normally, in the equilibrium experiment, n(q) = coth(}ωq/2kB T ) and a Gaussian vibrational
state from the equilibrium Boltzmann statistics [74] and hence allowing one to map DWF into
temperature assuming the deposited energy is equipartitioned among all active modes [52, 73].
Whereas this assumption is no longer guaranteed in the experimental conditions at far-from-
equilibrium regime [76], neither (22) nor (23) is restricted to the Boltzmann statistics, hence they
will apply to the nonequilibrium experiments as a way to track the kinetics of vibrational energy
flow from the initially strongly coupled modes into the rest to establish the lattice phonon baths.

4.2. Case B: Evaluating order parameter evolution and fluctuation effects by phase modes

Now, we look at the scattering by the superlattice, namely the LDW, at s = Ghkl + Q, but also
recognizing the existence of phonons in the system. Here, the scenario has m = 1, n = 0, and (18)
gives the structure factor for the 1st-order satellite associated with the static wave:

S(1)
0 (k) = | fL|2e−2Mqδ(s−Ghkl −Q−k)|J1(s ·uη,0)|2 ∏

k
|J0(φk)|2. (25)

Applying the same argument in case A, one can write down the equivalence of the DWF for the
scattering at Q as e−2Mφ = ∏

k |J0(φk)|2 , where 2Mφ = ∑
k 1/2φ2

k. This gives the scattering by the
superlattice

S(1)
0 (Q) = | fL|2e−2Mq e−2Mφδ(s−Ghkl −Q)|J1(s ·uη,0)|2. (26)

Again we consider each phase fluctuation component as independent and write the structure fac-
tor for the 1st-order fluctuation wave: S(1)

1 = | fL|2 ∑
k e−2Mqδ(s−Ghkl −Q−k)|J1(s ·uq,0)|2|J1(φk)|2.

The scenario is very similar to the main lattice diffuse scattering case, and by consid-
ering also higher-order fluctuation waves, the total satellite scattering at Q:

∑
m S(1)

m =
| fL|2e−2Mq |J1(s ·uq,0)|2e−2Mφ (1+ 2Mφ+ 1/2(2Mφ)2 + ·· · ) = | fL|2e

−2Mq |J1(s ·uq,0)|2, which is con-
served; the effect of phase fluctuations can be considered as transferring the scattering weight
from Q to Q+ l k. But unlike in the case of main lattice DWF [52, 73], the phase fluctuations play
a much more significant role here given the phase modes are ungapped (or low-energy modes),
especially when considering an incommensurate wave state [50, 62]. This, from (18), leads to
peak broadening in the structure factor SQ(k). Nonetheless, from the conservation law, fully in-
tegrating contributions from both the static and the fluctuational components, mQ = ∫

SQ(k)dk,
allows one to still retrieve the order parameter amplitude uη,0 from an evolving CDW structure
factor:

mQ = | fL|2e
−2Mq |J1(s ·uη,0)|2. (27)

The situation is more complex for the main lattice Bragg peak if there are more than one CDW
states present in the system (denoted by l ). The momentum integration of SG gives:

mGhkl = | fL|2e
−2Mq

∏
l
|J0(Ghkl · êηl u0,ηl (t ))|2. (28)
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4.3. Case C: Fluctuation effects by amplitude modes

Here we consider diffuse scattering by amplitude fluctuations of the distortion wave at s =
Ghkl +nQ±k. Given that the AM is in general gapped (except at the critical point of a continuous
phase transition), it has a much less impact when compared to the PM. To see this, we again
assume that the AM and the PM are independent. The effect from amplitude fluctuations is
formulated in the density modulations

ρ(r, t ) =∑
L
δ

{
r−L−∑

q
uqêq(L)−uη(1+δη)êη sin(Q ·L+φ)

}
,

where δη is expanded with the Fourier components δη=∑
kηk sin(k ·L−ωkt ). Let us look at the

contribution from only one “k” component: Jn[s ·uη(1+ηk sin(k ·L−ωkt ))]. In the limit of small
distortion, i.e. s ·uη¿ 1, the expression is simplified using the recursion relation:

Jn[s ·uη(1+ηk sin(k ·L−ωkt ))]

= Jn(s ·uη)

{
1+|n|ηk sin(k ·L−ωkt )+ |n|(|n|−1)

2
η2

k sin2(k ·L−ωkt )

}
.

We expand sin(k·L−ωkt ) = 1/2{ei(k·L−ωkt )+e−i(k·L−ωkt )} and similarly for sin2(k·L−ωkt ), to obtain
the form factor for the fluctuation wave with momentum wavevector k to the second order:

F (s;k) = e−Mq
∑
L,n

e−i(s+nQ)·L Jn(s ·uη)

{
1+ |n|

2i
ηk

[
ei(k·L−ωkt ) +e−i(k·L−ωkt )]

− |n|(|n|−1)

8
η2

k

[
2+ei(2k·L−2ωkt ) +e−i(2k·L−2ωkt )]}

= e−Mqδ(s−Ghkl −nQ)Jn(s ·uη)

(
1− |n|(|n|−1)

4
η2

k

)
+e−Mqδ(s−Ghkl −nQ−k)e−iωkt Jn(s ·uη)

(
1− |n|

2i
ηk

)
+e−Mqδ(s−Ghkl −nQ+k)e+iωkt Jn(s ·uη)

(
1− |n|

2i
ηk

)
−e−Mqδ(s−Ghkl −nQ−2k)e−i2ωkt Jn(s ·uη)

|n|(|n|−1)

8
η2

k

−e−Mqδ(s−Ghkl −nQ+2k)e+i2ωkt Jn(s ·uη)
|n|(|n|−1)

8
η2

k.

When n = 0, the first term on RHS: S(0)
0 = | fL|2e−2Mq |J0(s ·uη)|2 gives the intensity at the lattice

Bragg peak, which is the same as before the collective excitations; both PM and AM do not alter
the main lattice peak structure factor. Note, when n = 1, the excitations of AM do not change
the 1st-order satellite intensity at s = Ghkl +Q, which is unlike the case for PM. The amplitude
fluctuations do contribute to the diffuse scattering around the satellite intensity at Ghkl +nQ,
for n ≥ 1; see the remaining terms on the RHS. While the AM excitation adds to the diffuse
background, its gapped nature makes such contribution much smaller than the effect from PM,
away from the critical point.

4.4. Case D: Scattering weight transfer between static wave fluctuations and lattice
phonons during phase transitions

Tracking the dynamical transfer of scattering weight between the microscopic and macroscopic
systems driven by an ultrafast quench is at the core of discussing the nonequilibrium physics of
phase transitions [26,35,66,77–79]. For the prototypical case of SSB upon quench, the free energy
landscape with a nonzero 〈η〉 would involve phase and amplitude modes; see Figure 1c. Here, in
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a physical text we consider the Peierls-type SSB to form an incommensurate CDW, in which the
unfolding of the order parameter landscape is preceded by the lattice softening in the normal
state. The CDW wavevector is determined by a maximum of the full electronic susceptibility χ
enhanced by the Fermi surface nesting and the associated electron-lattice interactions at Qχ.
The same conditions also lead to the softening in the phonon dispersion curve [80], with the
phonon frequency ωq → 0 as q → Qχ. The fluctuation waves and soft phonons are intricately
connected by q = k ± Q. One can see this by considering a phase fluctuational wave (phase
mode) at k. It manifests in the lattice vibration uφ,k (L, t ) = uQ,0 sin(Q ·L+δφk (t )), with δφk (t ) =
φk,0 sin(k ·L−ωt ). For a small amplitude, φk,0 ¿ 1, sin(Q ·L+δφk (t )) = sin(Q ·L)cos(δφk (t ))+
sin(δφk (t ))cos(Q · L) ∼ sin(Q · L) + δφk (t )cos(Q · L), and one arrives at uφ,k (L, t ) = uQ,0 sin(Q ·
L)+φk,0 sin(k ·L−ωt )cos(Q ·L). The first term is simply the unperturbed static distortion wave.
The second term can be rewritten as δφη,k = 1/2φk,0{sin[(k+Q) ·L−ωt ]+ sin[(k−Q) ·L−ωt ]},
which constitutes a “coherent superposition” of two phonon modes having wavevector k + Q
and k − Q. Similarly, one can look at the amplitude mode at k and writes δuη,k = uk,0 sin(k ·
L −ωt )sin(Q · L) = 1/2uk,0{cos[(k + Q) · L −ωt ] + cos[(k − Q) · L −ωt ]}, thus comes to the same
conclusion [50].

The derivation here illustrates the direct connection between the soft phonon modes and the
CDW collective modes, which would necessitate an interplay between the structure factors of the
CDW and the main lattice peaks. The pairing and unpairing dynamics attributed to the scattering
weight transfer are embedded in the nonequilibrium dynamics of phase transitions. Figure 3
discusses the two scenarios encountered experimentally where we look at the interconversion
between two types of the lattice dynamics through the changes in the dispersion curves that
are coupled to the free-energy landscape changes. Of concern is how one can decouple the
DWF from the symmetry-associated contribution pertaining to the phase transition. To this end,
with proper consideration of multi-Q contributions one can independently obtain the respective
order parameter dynamics via evaluating h(t ) = mQl (t )/mG (t ) and g (t ) = mQa (t )/mQc (t ), where
the contribution from DWF is eliminated. Specifically,

h(t ) = |J1(Ghkl · êηl u0,ηl (t ))|2∏
l |J0(Ghkl · êηl u0,ηl (t ))|2 (29)

and

g (t ) =
∣∣∣∣ J1(Ghkl · êηa u0,ηa )

J1(Ghkl · êηc u0,ηc )

∣∣∣∣2

. (30)

Given the polarization of the CDW state êηl , the order parameter u0,ηl (t ) can be retrieved and
used to deduce the DWF at Ghkl .

5. Multi-messenger ultrafast electron scattering and imaging experiments

We now consider the practical aspects of implementing these measurements through the ultra-
fast scattering and imaging techniques. First, we discuss the ultrafast electron diffraction (UED)
approach. A central thesis for the success of using the scattering-detected order parameter dy-
namics to reconstruct the free-energy landscape is the separation of scales as discussed in Sec-
tion 2. While this approach reduces the complex nonequilibrium phase transitions to prob-
lems just involving few macroscopic degrees of freedom (order parameters), the validity of the
impulse-adiabatic approximation behind this approach needs to be examined in the experi-
ments.

The event sequences from the microscopic excitations to the macroscopic transitions, as high-
lighted in Figure 3, are intrinsically multi-stepped and multi-perspective, but can be efficiently
probed with recent significant advances of the fs spectroscopy and X-ray scattering techniques;
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Figure 3. Nonequilibrium phonon dynamics and fluctuation waves in the CDW system
during light-induced melting and order formation. The connection between the two dy-
namics upon the laser interaction quench is viewed through the changes in the phonon dis-
persion curves, which are coupled to the change of the order-parameter free energy land-
scape driving the fluctuation waves of the system. The two signatures are manifested in
the scattering structure factors of the main lattice (SG) and the CDW superstructures (SQ)
at Ghkl and Q respectively. Here, h, k and l represent the Miller indices. The transfer of the
scattering weight between SG and SQ occurs as a CDW order is created or destroyed. The ex-
citations of the lattice modes contribute to the dynamical DWF, expressed in e−2Mq . On the
other hand, the symmetry breaking or recovery (i.e. the melting of CDW) modifies SG and
SQ respectively with the Bessel functions: J1 and J2, which are anti-correlated with each
other. The manifolds of fluctuation waves and phonons involved in the phase transitions
are denoted by their momentum wavevector in {k} and {q}.

for recent reviews, see [11–14]. Similarly, the development of the electron-based ultrafast electron
scattering [81–92] and microscopy [93–108] techniques is also in full swing in recent years. Upon
applying the laser pulses, the excitation energy is initially stored in the photo-excited hot carri-
ers, setting off the nonequilibrium microscopic dynamics through couplings to the lattice modes.
Ultrafast spectroscopy techniques have investigated these initial relaxations and found clear sig-
natures of more than one decay channel [13]. Hot carriers decay nearly instantaneously through
internal relaxations establishing an effective electron temperature, Te . But the electronic energy
relaxation into the lattice can only efficiently occur within a small part of phonon branches, re-
ferred to as the strongly coupled phonons (SCP), often within the higher energy optical branches
most connected with the electronic excitations. Then the energy is spread to other modes loosely
defined as the weakly coupled phonons (WCP). The exchange of kinetic energies between the
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three sub-systems is typically described by a three-temperature model (3TM) [13, 109–112].
Meanwhile, the ordering over the long-range scale does not directly couple to the microscopic

processes due to a large mismatch in the momentum and energy states active at the shortest time.
The dynamics of the order parameter are driven by the shift of the energy landscape established
by the momentum-dependent electron–phonon coupling (EPC) matrix. The EPC is shaped by
electronic instabilities at the Fermi surface (FS) and electron correlation effects, which can be
altered significantly upon applying optical excitations. The shifting of the energy landscape
thus can occur on a very short timescale, which, from the perspective of the long-range order
parameter, represents a nonthermal interaction quench.

One of the main goals of UED is to capture the dynamics of the order parameter following the
quench. Only the average structure can be obtained by the intensity of the Bragg peaks whereas
the structural fluctuations resulted from the symmetry-breaking and recovery processes (see Fig-
ure 3) shall be retrieved as well from features beyond the central coherent peak. Of concern is
also the soft modes and the pre-transitional phonon dynamics [113–116], properties of the lattice
elastic energy landscape supporting the symmetry breaking [9, 117, 118]. These events partially
overlap in time with the microscopic processes probed by the ultrafast spectroscopy techniques.
The signatures of such are obtained from the q-resolved fine structure of the coherent structure
factors as well as the diffuse scattering surrounding the Bragg peaks. Only through the combi-
nation of the scattering signals (coherent and incoherent) gathered from the different recipro-
cal subspaces of the Brillouin zone a deeper understanding of the nonequilibrium phenomenon
of phase transition can be gained. To this end, a strong advantage of UED lies in its large Ewald
sphere, making the retrieval of the different q-dependent features at once possible from a large
momentum-scale diffraction pattern—typically as many as 10–100 Bragg peaks can be observed
simultaneously in a single diffraction pattern, in contrast to the X-ray diffraction approach.

In principle, the simple geometry of the conventional UED approaches makes it well suited to
compare with results obtained by ultrafast spectroscopy [11–14]. An important problem concerns
the comparison between the volume excited and the parts probed by different techniques [13,25].
When applying an optical or near-infrared laser pulse, the excitation transforms the materials on
a finite absorption penetration depth, typically within 100 nm. The very large cross-section of the
electron scattering means that small volume samples, such as thin films or nanocrystals in the
range of 10s nm scale (depending on the beam energy) can be used. This feature partially relieves
the concerns of sampling inhomogeneously excited regions and unpacking information—an
issue to be addressed in Section 6.3.

Meanwhile, the advantage of UED might turn into a disadvantage as the scattered signal
can be dispersed into a large momentum space with a relatively poor q resolution. This calls
for an increase of the beam flux and a decrease of the sample lateral size to improve the q
resolution, however at the expense of signal strength. A challenge of UED as well as the ultrafast
electron microscopy (UEM) approach has been to balance the requirement of the resolution
versus the dose afforded under a repetition rate set by the recovery time of the excited quantum
material systems, typically in the kHz and sub-kHz ranges [13, 120, 121]. There is an apparent
limitation, setting the resolution affordable under a specific dose, by the space-charge-led pulse
lengthening, referred to as the space-charge effect (SCE) [122–129]. Fortunately, looking deeper
into this SCE issue, one can find a way to overcome this SCE even in a significant way, by properly
manipulating the beams in its 6-dimensional collective phase space through electron-optical
means. Key knowledge about this came from studying the dynamical phase space structures of
the pulses as a function of the particle number, Ne,0, controlled by the extraction field Fa , both
experimentally and theoretically.

The electron pulses used in the UED systems are typically created by applying the fs ultraviolet
laser pulses on a cathode through the photoelectric effect [122]. From the multi-level fast multiple
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Figure 4. The brightness-limited performance in the electron bunch compression. (a) The
multi-level fast-multiple model (ML-FMM) simulation of the structures of the electron
pulse extracted under a field Fa = 10 MV/m from a photocathode at two different times.
(b) The number of particles in the electron bunches, Ne , obtained at the specimen of the
UEM system as a function of the ultrafast ultraviolet drive laser power. This number is
typically a small fraction (∼5–10%) of the particle number Ne,0 generated at the cathode due
to the slicing by the alignment apertures in the beamline. One obtains the virtual cathode
limit (VCL) from the slope change. The right panel shows the pulse duration characteristics
under the tuning of the longitudinal RF lens at different Ne . Panel a is adapted with
permission from Ref. [119].

method (ML-FMM) calculations designed to preserve the stochastic scattering effect in the beam
dynamics simulations, one shows that the collective phase space volume is nearly conserved
once the pulse is fully extracted (Liouville’s theorem) from the cathode [130]. Hence, the perceived
SCE associated with the pulse lengthening caused by the internal Coulombic forces can be
overcome via dynamically reshaping the phase space structure of the pulse [121, 131, 132],
without leading to degradation of the throughput.

This leaves the pulse brightness, defined as (particle number)/(phase space volume), as a
main figure of merit in designing the photo-emission electron sources and plays a key role
for improving the UEM/UED performance. In particular, a central effort has been to avoid the
uncontrolled growth of phase space due to the stochastic effect [124] that leads to the degradation
of the brightness, but not necessarily the (collective) SCE. Such an issue is addressed in ML-
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FMM calculation by studying the brightness figures and phase space structures as a function
of Fa [119]. Prototypical SCE-led pulse evolutions under a nominal Fa = 10 MV/m are shown in
Figure 4a, where the phase space structures at two stages (630 fs and 100 ps) along the transverse
(x) and the longitudinal (z) directions are compared. The particle momenta (px and pz ) depicted
by the arrows give a certain spreading but largely are correlated with the position (x and z) led
by SCE. Accordingly, the brightness is tracked as a function of particle number Ne,0 with the
extraction field (Fa) as the control parameter.

A main conclusion from ML-FMM simulations is that the transverse (x–y plane) phase space
grows sub-linearly with respective to Ne,0 until the virtual cathode limit (VCL)—one when the
space-charge forces associated with the positive counter ions at the emitting surface become
strong enough to reduce the efficiency of the photoemission [119, 124, 133, 134]. This is seen in
the left panel of Figure 4b where the yield over the drive laser power becomes sub-linear and
the charge particle flows switch from laminar to turbulent. In the specific UEM arrangement,
the observation is made at the detector where the peripheral hot electrons around the electron
pulse have been sliced off with an aperture in the beamline such that the delivered particle
number, Ne , is typical 5–10% of Ne,0 at the cathode [127]. Nonetheless, the presence of VCL is
represented by an inflection point (Figure 4b). Characterization of VCL is important as only when
driven above VCL, the stochastic phase space size of the pulse will significantly increase from
the onset of turbulence within the charge particle flow; the particle flow is otherwise laminar
in the regime below VCL [119]. This means that one can significantly gain transverse brightness
by increasing Ne,0 up to the brink of VCL. The effect translates to improving the performance
related to the transverse phase space, such as the spatial resolution of UEM or the q-resolution of
UED. Meanwhile, one finds the phase space along the z direction increases nearly linearly with
respect to Ne,0, and the pulse-width (∆z) grows as N 1/2

e,0 , also confirmed by the experiment [119].
From the right panel of Figure 4b where the longitudinal phase space size is translated into the
compressibility in time, one can conclude that even at VCL under just a fair Fa ∼ 2 MV/m in a DC
gun arrangement, a sub-ps resolution can easily be achieved from tuning the RF field to realign
the phase space.

The left panel of Figure 5 shows the setup of the electron-optical system for conducting the
UED and UEM experiments. The two approaches share a similar electron-optical system before
the specimen. A feature here is the incorporation of the RF cavity system, before and after the
specimen for realigning the longitudinal phase space structure. Effectively here, the RF cavity acts
as the longitudinal lens in a very similar role as the magnetic lens for controlling the phase space
structure in the transverse direction—a feature that is fully implemented in the conventional
TEM. The two lens systems combined allow the UEM/UED apparatus to achieve an optimal
pulse shape targeted by the different modalities [93, 121]. The additional optical system in UEM
consists of intermediate and projection lenses and the spectrometer, intended to decode the
nonequilibrium physics encoded in the phase space of the scattered particles in the modality
of imaging or spectroscopy [107, 108, 121, 135–142]; whereas without such optics (or set at the
diffraction mode in a UEM), the scattered electrons are focused onto the screen to form the
diffraction image directly.

The right panel of Figure 5 shows schematically how the operating parameters are set based
on the modality’s feature-of-merit (FOM), defined by the projected phase space. For example,
for coherent scattering, a key is to maximize the incident particle density projected along the
transverse momentum space. This can be achieved via the condenser lens adjusted to minimize
the tilt of the transverse phase space (px vs x in lab frame or ∆α vs ∆r in pulse frame) as the
pulse arrives at the sample. This can be considered as a pulse compression along px (or ∆α).
For ultrafast imaging where the resolution is typically dose-limited, the optics are frequently
optimized to produce a better focusing along x at the expense of beam coherence. Meanwhile,
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Figure 5. Configuration of an ultrafast electron microscope system. The main concept aims
to incorporate the high temporal resolution into an existing transmission electron mi-
croscope with the rearrangement of the electron optical system to accommodate a high-
density photo-electron source, which is driven by ultraviolet laser pulses. The electron
pulse coming off from the cathode rapidly develops into a chirped pulse, influenced by
the intrinsic strong Coulombic space-charge forces at the low energy stage. This collective
space-charge effect manifests not in a blowout of the phase space, but instead in a highly
correlated momentum-position phase space structures in both the longitudinal and trans-
verse directions; see right panel where the two phase spaces are depicted in (∆t , ∆E) and
(∆r , ∆α) respectively. To remediate the resulted pulse broadening, one or more RF cavi-
ties act as the longitudinal lenses in the beamline to recompress the projected phase space
along∆t or∆E , while a similar strategy along the transverse directions is handled by the ex-
isting magnetic lenses. These two combined lead to focusing both in the longitudinal (en-
ergy and time) and transverse (crossover and coherence) dimensions. In general, different
optical adjustments will allow the phase space of the incidence pulses to be realigned for
the best performance of diffraction, imaging, and spectroscopy without sacrificing the elec-
tron beam dose. The successful operation of the new RF lenses relies on synchronization
between the laser pulse and the cavity field, which is controlled by the phase-locked loop
electronics with feedback control to counteract phase jittering within the RF cavity field for
focusing; see the left panel. The physical limit of the performance is the phase space den-
sity, or brightness, of the pulse that can be delivered to the specimen. The resolution is de-
fined in the projected sub-phase space targeted by different modalities and the relevant in-
formation encoded in the scattering process is deconvoluted by the post-specimen optics
and projected onto the detector; see discussions in Refs [92, 93, 143].
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for achieving ultrashort time resolution, the adjustment is made via a compression along z
(∆t ), whereas for spectroscopy a compression along pz (∆E) is needed to monochromatize the
pulse. The post-specimen optics are typically tuned to project the proper phase space structure
of scattered pulse onto the screen; see e.g. Refs [93, 121] for optimization and mode matching
strategies. Their discussions are beyond the scope of this paper. As a result, the new approach can
sidestep the conventional collective SCE from a high-density beam and leads to the possibility
of multi-modal scattering and imaging experiments within a single platform [95]. This adaptive
optics strategy has been recently employed in the UED [23] and prototype UEM [108, 135]
experiments; some of which will be discussed in Section 6.

In Figure 6a, we give the scattering patterns from the ultrafast coherent electron pulses
delivered via the pulse compression schemes. The pulse width here is∼100 fs (Figure 4b), whereas
the transverse momentum compression by the condenser and objective lenses leads to a high
beam coherence length (∼40 nm; Ref. [23]). The combination of the two provides the resolutions
to probe long-range cooperativity over an ultrafast time window for the nonequilibrium CDW
phase transition. The order parameters of the CDW states are encoded in the satellite peaks as
shown in Figure 6b, including the higher-order satellites present due to the domain structures of
the CDW [144–148]. The satellite network from three degenerate CDW branches with momentum
wavevector Qi and their higher-order multi-Q components represents the Fourier spectra of
the real-space hexagonal domain state [149, 150]—so-called near-commensurate CDW (NC-
CDW) [144–148, 151], which can be converted from the scattering pattern; see Figure 6c. In
addition, the scattering from fluctuation waves tied to the electronic instabilities is often more
spread out in the momentum space and forms the diffuse scattering background [53, 56]. The
diffuse scattering gives central information on the pre-transitional phenomena dominated by
the preformed short-range orders or soft phonon modes. Given the scattering intensity from
these features are significantly smaller than the intensities of the Bragg peak (G) from the average
lattice unit cells, the useable dose on the sample is a key factor for successfully probing the
quantum material phase transitions [144,148,151]. Furthermore, ensuring no residual effect after
the pumping of thermally isolated thin specimens requires a low repetition rate (≤1 kHz). For
these reasons, the adaptive optics approach is the method of choice as it does not rely on the
aperture to improve the resolution.

6. Example systems

The possibility to access long-lived states with desired unconventional properties has motivated
an increasing number of ultrafast experiments exploring correlated quantum materials [1, 2, 4,
11, 12, 152]. In this section, we illustrate how the measurements of the nonequilibrium order
parameters by the ultrafast scattering, when connected with the Landau–Ginzburg formalism,
can be used to explore the global energy landscape of the nonequilibrium quantum materials
and study the nonequilibrium physics therein. We will focus on three prototypical systems,
i.e., CeTe3, 1T-TaS2, and VO2, all of which exhibit long-range states ordered on the lattice with
distinctive light-tunable and structurally coupled electronic phase transitions. The three systems
have varying strengths of electron correlation as well as different natures of electron-lattice
coupling, as depicted in Figure 7. The charge orderings range from purely incommensurate,
to near commensurate, to commensurate or even bond-ordered density waves, making them
representative systems for the comparisons. The nonequilibrium platform here focuses on the
ultrafast optical pump–scattering probe settings using typically isolated sub-50 nm scale thin
films or nanocrystals. The entire samples are covered within pump laser and probe electron
beams. The settings facilitate a condition where the pump laser with a similar penetration depth
as the film thickness introduces interference effect within the film and hence may establish a
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Figure 6. Diffraction of 1T-TaS2 thin film measured with an ultrafast electron diffraction
setup. (a) The diffraction pattern obtained at the beam energy of 100 keV. (b) A local
diffraction pattern constructed from refining all relevant Bragg peaks (CDW and lattice)
gives the distribution of satellites associated with the triply degenerate CDW branches
and the associated high-order harmonics of the CDW from inter-CDW coupling; these
features appear around each Bragg diffraction peak from the main lattice. The main CDW
satellites are marked by the respective momentum wavevector Qi, whereas the main lattice
peaks are marked with the reciprocal unit cell wavevectors G1 and G2. (c) The real-space
representation deduced from the CDW patterns showing the long-range hexagonal domain
structures. (d) The 13-atom supercell of the density wave in David-Star shape, presented in
the lattice distortion map.

uniformly excited material system in which the nonequilibrium state evolves initially from a
homogeneous quench. The sample is typically suspended freely over a fine grid held under the
vacuum environment. Therefore, one may safely assume that absorbed energy in the pumped
system is preserved to the entire probe window (over 1–2 ns). The pump–probe repetition rate is
set at 0.1 to 1 kHz, adjusted to ensure that the pumped system fully relaxes on the much longer
time scales. This platform allows us to discuss nonequilibrium dynamics as an internal relaxation
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Figure 7. The crystal structures of CeTe3, 1T-TaS2, and VO2 investigated by the ultrafast
scattering techniques.

process. We will discuss implications to the interpretation of the experimental results when the
conditions of pump-homogeneity are not met.

6.1. Competing degenerate broken-symmetry orders: rare-earth tritellurides

The rare-earth tritelluride (RTe3) compound is one of the most systematically studied CDW
systems to undergo continuous phase transition [153–155]. This system consists of square Te
planes, alternating with weakly coupled RTe slabs (see Figure 7). Despite the fundamental C4
symmetry in the 2D Te sheet to host CDW formation, the stripe phases are the predominant CDW
orders due to spontaneous symmetry breaking. We note, bearing on a small asymmetry owing
to the coupling between the two nonequivalent square Te nets [72], the dominant ground state
is the stripe phase along the c-axis. However, the recent inelastic X-ray scattering revealed pre-
transitional critical fluctuations in nearly equal strengths along both c and a-axes [156, 157]—
a signature of the two order parameter fields vying for the spectroscopic weight to become a
static order. Nonetheless, the SSB dictates that, upon ordering along the c-axis which removes a
significant amount of the potential a-CDW spectral weight [155, 158], subsequent formation of
a-CDW will be excluded [159].

The surprising light-induced formation of a new broken-symmetry order in the direction
orthogonal to the pre-existing state (a-CDW) was unveiled recently in the two light rare-earth
RTe3 family members of LaTe3 [22] and CeTe3 [23]. Given that the a-CDW does not exist in the
system prior to applying a fs near-infrared pulse, this is a rare scenario where the suppressed field
of a new broken-symmetry phase can be created from scratch over a relatively short timescale.
Therefore, from studying the real-time ultrafast dynamics of the CDW system in RTe3, it is
possible for one to gather crucial insight into how an SSB phase transition emerges out of
equilibrium beyond the mean-field description in a condensed matter system.

In the equilibrium state phase transition, there has been already a high degree of control
evidenced in the significant shift of the critical temperature Tc,1 by changing the rare-earth
element and applying pressure [153–155]. The effects, such as downsizing the gap size and

C. R. Physique — 2021, 22, n S2, 15-73



38 Xiaoyi Sun et al.

the CDW amplitude due to Lanthanide shrinking, are results of weakening the inter-orbital
coupling strengths that shape the FS [72]. Given the two CDW order parameters are already
strongly competing in the equilibrium state, it is possible to tip the balance of the competitions
thus transforming the free-energy surface by shifting the orbital states occupancies [160]. The
surprising introduction of a-CDW, even in a system deep inside the pre-existing order of c-CDW
by applying short near-infrared pulses (here Tb = 300 K ¿ Tc = 540 K), indeed reflects this.

The possibility of optically manipulating the free energy surface allows the RTe3 to be the pro-
totype system for transient control of nonequilibrium phases. The basic physics of competitively
driven transformation of the free-energy landscape and, as a result, the introduction of the hid-
den a-CDW has been given on a phenomenological ground; see Section 3. Here, we will validate
the theoretical hypotheses and focus on elaborating the more intricate microscopic dynamics
and the nonequilibrium processes enabling such phenomena. At the center stage of the discus-
sion is the ultrafast scattering-based approaches serving to capture the nonequilibrium order pa-
rameters and the associated field fluctuations. We will show how one uses such information to re-
construct a competitive global energy landscape poised to the different orderings upon quench
and the nonequilibrium physics it entails.

Transient dynamics in a system with two competing orders ηc and ηa , in this case, are recorded
using an RF-optics-augmented UED system with the transverse lenses tuned to optimize the q-
resolution [23, 92]. In particular, the amplitude dynamics as described in (9) are manifested in
the integrated intensity of the structure factor, ml (Q; t ), that one can retrieve from the dynamical
diffraction patterns (27). The spatially nonuniform order parameter evolution is also detected by
following the correlation lengths (ξ) of the system encoded in the width of the structure factor
(25). Taken from Ref. [23], Figure 8a shows the raw diffraction pattern where the main signature
of the broken-symmetry order at t = −1 ps is the c-CDW superlattice satellites at Ghkl ±Qc with
Qc = 0.28c∗ around the Bragg peaks of the square lattice at Ghkl . The inset shows the patterns
from the G401 region before (−1 ps) and after (+1 ps) the laser excitation. Clearly, by +1 ps the
system establishes a new pair of satellites at ±0.30 a∗ (Qa). The results inform the occurrence of
a new broken-symmetry phase on ≈1 ps timescale. The respective order parameter dynamics are
plotted in Figure 8b.

6.1.1. Method to retrieve global free-energy surface through ultrafast scattering-detected order
parameters

To begin with, we give a pedagogical description on how the experimental protocol helps
retrieve the Landau parameters based on controlled studies of transient metastable phases. The
basic assumption is that the quenched free-energy landscape will decide the coordinates of the
metastable states as its stationary points. Hence, by following the relative changes of the two
competing order parameters at the metastable stages as the controlling laser fluence (F ) is tuned
the bi-dimensional free-energy surface shaped by the competitions between the two sub-systems
can be evaluated. The coordinates of free energy minimum taken from the stationary points of
(11) are 

|ηc |2 = −(a′(T −Tc )+ Ã|ηa |2)

A′
4

|ηa |2 = −(a(T −Tc )+ Ã|ηc |2)

A4
.

(31)

These coordinates, equivalent to m̂Ql (t ) ≡ mQl (t )/mQc (t < 0) (l = a or c), are reported as a
function of F ; see inset of Figure 8b. We use the two critical fluences identified in Figure 8b to
set the scale of the Landau parameters. First, from the established critical energy density Ec,c ≈
0.64 eV/nm3 (converted from the applied fluence Fc,c ≈ 2.0 mJ/cm2 needed to suppress |ηc | to 0),
one derives the c-CDW-associated parameters: a = 4|Ec,c |/(Tc −Tb) = 1.05×10−2 eV·nm−3·K−1,
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and A4 = a(Tc −Tb) = 2.54 eV·nm−3. In addition, the successfully identified nonthermal critical
fluence Fc,a = 0.59 mJ/cm2 gives the critical condition over which a nonzero static |ηa | will be
created according to (31). From |ηc,th| ≈ 0.87 at Fc,a , one gets Ã = 4.10 eV·nm−3, a′ = 1.29 ×
10−2 eV·nm−3·K−1, and A′

4 = 22.0 eV·nm−3 by fitting the results with (31).

6.1.2. Impulse-adiabatic phenomenology

We point to the fact that with the above-the-gap excitation, the pump does not couple
to the order parameter directly; rather it heats up the carriers first and that suppresses the
CDW spectroscopic gap on a shorter timescale than the long-wave response associated with
the lattice order parameter. This is consistent with the observation of a carrier spectral weight
transfer and the adjustment of the FS topology within 100 fs by photoemission [160, 161];
whereas the overdamped suppression of the associated order parameter amplitude appears on
a slower (∼300 fs) timescale, observed by the scattering techniques (Figure 8b) [22, 23, 162].
These hierarchic temporal responses reflect the basic impulse-adiabatic phenomenology for the
description of the light-induced phase transition on the free-energy landscape.

The new bidimensional free-energy landscape is now plotted using the refined Landau param-
eters; see Figure 8c. We then seek to understand the dynamics of the subsequent order parameter
amplitude evolution following the quench presented in Figure 8b as a potential-driven process
on the free energy. Based on the local curvature of the potential surface, the initial dynamics shall
appear on a downward trajectory (see arrowed line in red in Figure 8c) along which the existing
order-parameter amplitude is significantly suppressed, manifesting in a nonthermal melting as
witnessed in the initial c-CDW state evolution. We note during this period there is no detectable
change in Q (top panel, Figure 8e). This means the order parameter is temporarily trapped at the
saddle point following the local steepest descent. Next, for the nonequilibrium system to estab-
lish the broken-symmetry phase with bi-directional components at the new global minimum, the
order-parameter dynamics must switch direction. This occurs in the next ≈1 ps based on the Q-
shift and the rise of a-CDW intensity (m̂a). However, in the evolution toward the new global min-
imum the order-parameter field is incoherent driven by fluctuation waves. Since the amplitude
mode is gapped, the rate-limiting step is the alignment of the local phase and hence the phase
rigidity controls the buildup time. Experimentally, this manifests in the expansion of the static
correlation length along with the order parameter amplitude (Figure 8b). The long-wave modes
order the field on increasingly larger scales at the bottom of the free energy surface—a scenario
described by coarsening as discussed in Section 2 and Figure 1c. Hence, the simple phenomeno-
logical free-energy model explains the stepwise manner in which the hidden state is introduced
into the system as observed by the UED experiment.

6.1.3. Connections between field instabilities and soft modes

Now we utilize further UED results to look into the microscopic details of the nonequilibrium
processes. Of particular interest here is to understand how the rise of the microscopic soft modes
is connected to the order-parameter field fluctuations in a nonequilibrium SSB driven by the
quench. Here, the nonadiabicity plays a role because of separation of scales. Along the |ηa |
direction, the order parameter field is initially disordered. Mathematically, a long-wave AM is
formed by coherently joining two counter-propagating soft modes. However, initially the order-
parameter field is unstable because of the upturned parabolic free energy at initial times [61,163].
Only the longest fluctuation wave (|k| → 0, ω→ 0) will be relevant to the formation of a single-
wavevector incommensurate CDW. The phase transition cannot be said to have happened if the
ensemble averaging is taken over a fluctuating order parameter field, where 〈|ηα|(r, t )〉 amounts
to zero. The rectification to form a static order from the dynamical modes here requires a
parametric growth of phase-coherent AM modes.
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Figure 8. Nonequilibrium dynamics into a hidden checkerboard order in CeTe3.
(a) Diffraction pattern of CeTe3 thin film. The inset shows the scale-up view of the pat-
terns near G401 before (−1 ps) and after (+1 ps) applying pump pulses. (b) The evolution
presented in terms of the diffraction integrated intensity for the order parameters. The in-
set shows the respective changes obtained at the metastable period (∼1.5 ps) as a function
of fluence. (c) The Landau–Ginzburg free-energy surface obtained for the F = 1.85 mJ/cm2

case. (d) Lattice phonon responses deduced by the momentum-dependent Debye–Waller
analyses. (e) (Top) The order parameter field evolution examined via |u0,ηa |2 and ∆Q̄c /Q̄c

respectively for a- and c-CDWs. Here, Q̄c is the mean wavevector of the c-CDW. (Bottom)
The vibrational ms phonon amplitude changes projected along [001] and [100] were ob-
tained from the Debye–Waller analysis. Panels a, b, d, e are adapted with permission from
Ref. [23].
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To understand the initial nonadiabicity pertaining to SSB driven by a quench, we track the
scattering weight transfer between SG and SQ. For evaluating q-dependent phonon dynamics,
one obtains the differential-mean-square lattice fluctuations∆u2

hkl by taking the logarithm of the
normalized m̂G (after excluding the contributions from the quasi-static CDW-related Bessel func-
tion terms; see (27)–(30). This results in a differential DWF, i.e., lhkl (t ) = e−2Mhkl (t )/e−2Mhkl (t<0) =
e−2∆Mhkl (t ), which can be taken at different Ghkl to determine the differential fluctuations∆u2

hkl =
2∆Mhkl projected in the direction of Ghkl ; see (20). The results of this analysis taken from an array
of Ghkl along different directions are shown in Figure 8d. The strong anisotropy in ∆u2 reflects
the underpinning energy landscape, or q-dependent electron–phonon coupling that shapes the
phonon dispersion curves of the lattice modes upon phase transitions. The large amplitudes of
motion reflected in the ∆u2

hkl along the [100] and [001] directions indeed reveal the predomi-
nance of the soft modes directly driven by the landscape changes. Their excitation, within the
first 500 fs (see Figure 7e), is clearly much faster than the generic laser-induced heating (over a
few ps).

Now, we turn our attention to the correspondingly determined long-wave parameters, specifi-
cally the order parameter amplitude |u0,ηa |2 and the momentum wavevector shift (see Figure 8e).
It is quite evident that the build-up of the long-wave modes appears mainly after the soft mode
amplitudes have peaked. The results obtained here highlight the essential different dynamics
due to separation of scales, and the close relationship between the fluctuation waves (both in
the symmetry-breaking and recovery processes) and the respective order-parameter evolution.
The empirical results also show nonergodicity between soft modes pertaining to the two CDW
systems. A period, where the soft mode amplitudes characterized by the ∆u2

100(t ) and ∆u2
001(t )

along the two perpendicular CDW fields diverge, is witnessed (Figure 8e, bottom panel). One can
easily correlate this period with the timescale where the metastable a-CDW phase is created and
then destroyed. This reaffirms the out-of-equilibrium phonon dynamics have a key role in sus-
taining the hidden state. Accordingly, the system thermalization timescale tth is determined to be
∼4.5 ps.

6.1.4. Nonthermal critical point

Finally, we address how conceptually one can unite the interaction quench with the temper-
ature quench to understand nonthermal SSB as a condensation process on a new free-energy
landscape. As is the case under the equilibrium condition, the local temperature of the CDW
state is a co-control parameter for the transient free-energy landscape when it is influenced to
undergo SSB by the laser interaction quench. Accordingly, we can introduce the concept of the
nonthermal critical point T ∗

c , which is defined by rearranging the Landau–Ginzburg equation:

T ∗
c,a = Tc,1 − Ã

a′ |ηc |2. (32)

First, one can see how this concept applies to suppress the formation of a-CDW under a com-
petitive SSB at equilibrium. Given the degenerate critical point Tc,1 = 540 K [154, 159], with the
c-CDW chosen as the equilibrium ground state (|ηc | = 1 at Tb = 300 K), the experimentally iden-
tified Ã and a′ shift T ∗

c,a to a lower temperature (222 K) than Tb . Furthermore, following the BCS
behavior, the |ηc | is expected to rise as Tb is lowered [154]. This means further cooling the system
in the broken-symmetry phase will continue to push the T ∗

c,a even lower. This explains why under
the equilibrium condition the a-CDW is suppressed once c-CDW becomes the dominant ground
state. However, the scenario will change entirely under a nonequilibrium condition where |ηc |
is driven to an amplitude below the critical threshold (|ηc,th| ≈ 0.87 from (12)) by an interaction
quench. In the case described in Figure 8b, the |ηc | is reduced down to 0.32 at the laser fluence
of 1.85 mJ/cm2, where the corresponding T ∗

c,a (508 K) is now well above Tb . Therefore, from the
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perspective of a-CDW, the system is now in a scenario akin to a deep temperature quench and
will undergo condensation to form a new broken-symmetry order in much the same way.

6.2. Metamorphosis in vestigial density-wave system: tantalum disulfide

Here we will approach a different type of light-induced hidden phases involving competitions
but not in the same vein as the RTe3 system. The system is 1T-TaS2, which belongs to a broad
class of layered transition metal dichalcogenide (TMDC) compounds [164]. Similar to RTe3,
these TMDC compounds have isolated 2D metallic layers; see Figure 7. However, the in-layer
atomic structure is triangular rather than square lattices within which the triply degenerate CDWs
emerge [164]. Of particular interest here is 1T-TaS2, which hosts nontrivial charge-density wave
orders driven by several factors: the instabilities at the Fermi surface, the large lattice distor-
tion possible, and the localized orbital that leads to a Mott–Hubbard gap at the low tempera-
ture [151, 164–166]. The hidden CDW state formation in 1T-TaS2 [18] was among the first that
was demonstrated in TMDC and since cross-examined by optical [167], resistivity [168], scan
tunneling microscopy (STM) [169–171], X-ray [172] and electron scattering [19, 173] techniques.
Besides1T-TaS2 [18, 19, 168, 169, 172], light-induced hidden states have also been found in 1T-
TaSe2 [174], 3R-Ta1+x Se2 [175, 176], and 1T-TaS1−x Sex [173].

Within the Ta layer, the low-temperature ground state forms 13-site clusters in which 12 out
of 13 Ta4+ ions are distorted towards the central Ta atom to a David-Star shape; see Figure 6d.
It is understood that the unpaired electron in a 13-site cluster with a large spin-orbital coupling
gives enough correlation to form a Mott insulator. The

p
13×p

13 superlattice clustering forces
the density-wave state to lock-in to the atomic lattice, forming the long-range commensurate
charge density order (C-CDW) under ambient pressure. Upon warming, the increasing electronic
instabilities deviate the CDW from its perfect commensuration with the lattice, driving a series
of discommensurate (DC) state. Upon warming from C-CDW, the ordering first changes to a
triclinic state (T-CDW) state at TC-CDW ∼ 220 K, then to a hexagonal nearly commensurate density
wave (NC-CDW) state at TH-NC ∼ 280 K, and finally to an incommensurate CDW (IC-CDW) state
at TIC ∼ 350 K. The material eventually loses the density-wave order and becomes metallic at
TM ∼ 540 K [146–148, 177].

The delicate density-wave ordering is also subject to tuning by chemical doping or applying
pressure and can generally lock into a certain type of nearly commensurate ordering before
the system entirely loses the David-Star clustering feature. Eventually, melting of the David-
Star clusters allows the system to adopt a purely sinusoidal form of single-wave vector IC-
CDW [178]. The multi-Q effect (Figure 6b) is pronounced in all forms of NC-CDW [144], in
which the CDW deforms from the sinusoidal shape by developing periodic phase slip at distance
ξD [179], forming the domain walls or discommensurate (DC) region. Within the domain, the
CDW maintains the commensurate ordering, whereas on average the NC-CDW state has an
incommensurate wavevector to avoid the penalty of raising the elastic energy as a whole [151,
178, 180]. This new self-organizing scheme as pointed out by McMillan [178] creates long-range
periodic DC textures. In principle, this discreteness effect from the longer-range lock-in scenario
will lead to stabilization at every possible topologically compatible DC network, so-called Devil’s
staircase [181]. In practice, only a few DC structures will develop out of balance between the
commensuration energy and instabilities driven by thermal excitations. The triclinic [182] and
hexagonal NC [53, 177] states identified in the equilibrium phase transitions belong to these DC
states [145, 178].

In these intermediate phases, the C-CDW characteristics are only partially lost by the increase
in itinerant instabilities. Therefore, they may be considered as a type of vestigial order [67,68,183].
Here, unlike the case for RTe3, the CDW transformation may be modelled on a single order
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Figure 9. Theoretical depiction of the CDW order parameter evolution in TaS2. (a) The
temperature dependence of various order parameters. (b) The two-dimensional landscape
hosting the various CDW orders. Panel b is adapted with permission from Ref. [19].

parameter η = |η|eiφ, where the deviation from φ(r ) = Qc · r locally produces additional free
energy gain [178–180]. With McMillan’s DC network additional terms in the Landau’s free-energy
equation are introduced where the CDW phase plays an explicit role in the lock-in energy. The
essence of McMillan’s model has been shown to describe CDW systems with different types of
commensurate orderings; see e.g. Refs [145, 180].

Taking the essence of McMillan theory and the chief experimental observables from the UED
experiments, one can give a similar phenomenological model [113, 184] to capture the essential
features in TaS2 CDW phase transition in which the free-energy density is given by

f = f0 +C |η|2(∇φ−QIC)2 −D|η|2 cos(φ−QC · r)+H.O. (33)

The first term f0 = A|η|2 +B |η|4, where A = α/2(T −TM ) has the expression like (1) and is the
leading order in the Landau–Ginzburg equation that defines a continuous phase transition. The
second term comes from the energy cost of distorting the CDW structure from its ideal IC state
set by the susceptibility. The third term reflects the lock-in effect, which favors the commensurate
order. The last term contains the additional higher-order CDW interactions and the multi-Q
effects [179]. It is easy to see from (33) that the most important factor setting the energy scale
is the CDW amplitude |η|, whereas the lock-in condition set by topology will determine the stable
Q that the vestigial order could settle (discreteness conditions). Here, the coefficients A, B, C, and
D are all positive, which allows (33) to capture the generic trend of IC-to-C transition [148, 180].
First, let us assume the system is homogeneous. Driven by the lock-in energy gain by the
amplitude increases upon lowering the temperature from TM , the Q evolves continuously and
creates a jump in both Q at TC-CDW; see solid line Figure 9a that is the case for the 2H-TaSe2

phase transition [47]. Now considering the inhomogeneity created by the DC network, relevant
to the 1T-polymorph, the CDW system gains additional stabilities by deformation under the
discreteness conditions. Here, deviating from the purely sinusoidal form by developing ∆φ(r) in
the associated DC network, additional jumps by the new vestigial orders are created; see dash
line in Figure 9a. Given that the magnitude of the Q does not change significantly, the free-energy
landscape can be cast in two effective parameters [19]: the amplitude (|η|) and the orientation
angle of Q (ϕ) with respect to Qc [148] measured in UED. Such a 2D free-energy landscape is
schematically depicted in Figure 9b.
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More exact models considering the multi-Q and high-harmonic effects will be required to
precisely determine the experimentally observed vestigial triclinic and hexagonal NC-CDW states
[145, 179]. We note, the delicate discommensuration model extended by Shiba and coworkers to
include all essential high-harmonics and multi-Q interactions based on diffraction [144,145,179]
can accurately predict the structure of the triclinic and hexagonal NC-CDW states, which have
been confirmed by STM experiment [185]. Nonetheless, the phenomenological model given
here, while ignoring the multi-Q and high-harmonic effects, is sufficient to capture the essential
physics of DC phase transitions.

With the phenomenological equation, we are now in a position to understand the basic
physics of photoinduced CDW transformation. While not a direct competitive scenario [23],
driving down the |η| via a laser quench can tip the balance between the commensuration
energy gain and the elastic energy cost, triggering the reorganization of the density waves as
discussed above. The narrow half-filled band is crucial for the low-temperature Mott phase and
the associated cluster-type structure distortions. Therefore, the optical interband excitation from
this localized band can lead to the effect of doping poised to shift the energy landscape before
carrier thermalization [186]. The experimental phenomenology relevant to the impulse-adiabatic
picture of unfolding the order-parameter free-energy landscape [18, 19, 167] is given by recent
experiments: trARPES shows the collapse of the Mott–Hubbard gap within 50 fs [186, 187], while
the carrier thermalization appears in ∼200 fs to reduce the Peierls gap [187]; the carrier-lattice
equilibrium proceeds on an even longer timescale (ps) which are probed by UED [19, 188–191].

Taking the lead from the interaction quench scenario in CeTe3 problem [23], we can identify
the critical thresholds into different DC states as identified by the equilibrium free energy equa-
tion. In principle, there is a direct mapping between the equilibrium phase transition and pho-
toinduced phase transition in this manner. By rearranging (33), we obtain

f = α

2
(T −T ∗

c,l )|η|2 +B |η|4 +H.O.,

with a new critical threshold T ∗
c,l shifted by the interaction quench:

T ∗
c,l = Tc,l −

2

Vα

∫
dr[C (∇φ−QIC)2 −D cos(φ−QC · r)], (34)

where V is the volume of the specimen excited by the laser and l denotes different thermal
states. However, the balance between the lock-in energy and the energy cost in deviation from
the natural QIC is expected to be different in the temperature and interaction-mediated (doping
and applying pressure) pathways. Therefore, the intermediate vestigial ordering will likely be
different. For example, a stable triclinic phase has not been known under pressure tuning [151,
192] or chemical doping [193, 194].

Nonetheless, this simple picture allows us to better understand the phase diagrams of
nonequilibrium phase transition reported by Han et al. [19] and Ravnik et al. [167]. In these stud-
ies, different metastable phases emerge on the ps or longer timescales. The thresholds for creat-
ing these states were found to be dependent on the absorbed photon density, rather than the exci-
tation energy. The UED experiments (Ref. [19]) gave the results on the CDW amplitude and orien-
tation angle for these states, which can be mapped into the Landau–Ginzburg free-energy land-
scape assuming they are the stationary conditions. In the spectroscopic investigation (Ref. [167]),
the time-domain amplitude mode was employed as an indicator for the shifting of the rigidity
associated with the free-energy basin supporting the emergence of a new type of CDW orders.
These two different views are complementary to each other.

To understand the role of photo-doping, two different pump laser wavelengths, 800 and
2500 nm, were employed. While in both cases, interband excitation (hence photo-doping) is
possible, the excess heat deposited per creation of an electron–hole pair is quite different in
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Figure 10. Photoinduced CDW re-ordering dynamics in 1T-TaS2. (a) Energy-density evolu-
tion of the CDW wavevector in thermal and photoinduced phase transitions. (b) Absorbed
photo density evolution of the CDW wavevector and the amplitude pumped by 800 and
2500 nm photons. (c) The short-time evolution of the CDW order parameters obtained at
2500 nm. (d) The temperature–photon-density phase diagram obtained at 150 ps pumped
by 800 nm photons. (e, f) Temperature-fluence phase diagrams obtained for the ultrashort
(0.1–100 ps) and ∼1 ms timescales pumped by 800 nm photons. Panels a–d are adapted
with permission from Ref. [19]; panels e–f are adapted with permission from Ref. [167].
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the two cases—differs by a factor of 3. In Figures 10a and b, the respective CDW amplitude and
orientation angle changes are recorded at delay t = 150 ps. The distinct shift in the orientation
angle gives a handle to compare phases driven by the two different excitation wavelengths. The
relevant changes obtained under the tuning by temperature are included for comparing results
based on the applied energy density into the system with the initial state temperature (base
temperature, Tb) set at 150 K well below the TC-CDW ≈ 280 K.

We note that from the diffraction results the eventually achieved IC structure (by 800 nm laser)
is consistent with that of a thermal state. However, the intermediate phases, identified by the
steps in the angular shift, appear to deviate slightly from the known triclinic and near commen-
surate phases [148, 182]. We also note that in the results obtained from the two different laser
excitations the correlation between the amplitude and orientation angle changes is excellent.
This allows Han et al. [19] to rescale the applied fluence into a common scale based on the ab-
sorbed photon density within the experimental uncertainties, taking into account the difference
in the absorption cross-sections from the two laser wavelengths. These results thus are in sup-
port of distinct pathways from the non-thermal transitions, irrespective of the applied photon
wavelengths. A notable difference is, while the 800 nm laser pulse can bring the system entirely
to the eventual IC phase, the 2500 nm excitation fails to reach the same level without causing irre-
versible change to the CDW system. This observation suggests that thermal energy plays a more
important role to fully establish IC-CDW than in the transitions into other vestigial orders.

The phase diagram reported by UED portrays the metastable phases that can persist up to
150 ps (Figure 10d) [19]. The time-resolved measurements using 2500 nm laser pulses however
confirm that the multi-stability nature of the light-induced free-energy landscape already ap-
pears on a relatively short timescale [25]. Three different fluences were applied targeting different
eventual phases based on the phase diagram established using the data at 150 ps; see Figure 10c.
The phase progression was tracked through |η| and ∆ϕ of the CDW. Without any exception, the
phase evolutions progress in a stepwise fashion [19]. First, at a higher photodoping level where
one may assume a greater number of free-energy basins will become accessible; see Figure 9b.
However, the steepest descent is only defined by the accessible pathway to the nearest energy
basin, and those different basins are separated physically by the length scales set by discreteness
conditions (orientation angles)—along which the slope of the free energy is significantly smaller.
This explains the stepwise behavior in which the transformation is taken place as the free-energy
landscape does not allow a straight path from the initial to the eventual state.

As shown by Figure 10c the metastable states that could be accessed over a shorter time period
are slightly different as the free-energy landscape will continue to evolve over time due to ther-
malization with the baths. Nonetheless, the key characteristics of these states, as characterized by
|η| andϕ, do not change significantly. This indicates that the reported vestigial orders are distinct.
Furthermore, from the width of the corresponding satellite scattering structure factors, these or-
ders generally possess a long correlation length. As the appearance of the metastable state is re-
laxational (9), the stronger initial quench due to carrier doping naturally leads to a deeper level
of the energy basin to be exposed before the system has time to thermalize. This is an important
point to raise because it shows that the impulsive unfolding of the energy landscape is key to set
the stage for the order parameter evolution as a relaxational dynamic.

The remarkable ability for the vestigial system to self-organize into different long-range phases
in a relatively short timescale shows the evolution is driven largely by the potential effect than the
stochastic dynamics. Should the excitation be by a longer pulse, as so demonstrated with a pulse
longer than 4 ps in the experiment by Stojchevska et al. [18] and during which the slowly doped
system has a sufficient time to interact with the bath, the order parameter evolution would be
more thermal-like, namely one would not be able to observe the reported HCDW (Refs [18, 167])
in this case.
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There is a growing body of evidences [167, 169, 172] suggesting that the first vestigial order (la-
belled initially as “T” phase in Ref. [19]) following the laser quench to be one that is identified
as HCDW. The key signature to identify a vestigial order is by its deviation from the commen-
surate ordering (Qc −δ) ∼ Qc∆ϕ, thereby defining a characteristic domain size, ξD = 0.69a/∆ϕ
(nm), related by the Fourier analysis [179]. The change in ϕ at the first critical point identified
in Figures 10a, b is ∼0.2°, which is much smaller than that of the triclinic phase at equilibrium
(∼1°). This signifies a much longer-range domain/discomemnsuration structure [179]. Interest-
ingly, this relevant length scale matches the characteristic length scale of the HCDW structure
revealed by STM [169], which also suggests the structure as chiral. A recent X-ray diffraction in-
vestigation of HCDW also indicated aϕ-shift and correlated the change with the loss of interlayer
dimerization [172]—which the authors attribute as a defining factor introducing the insulating
behavior in the C-CDW phase [195], although the relative roles of interlayer stacking and the
Mott physics for the insulator-metal transition in TaS2 are still debated [165, 171, 196–199]. The
three independent measurements give a similar laser threshold ∼1 mJ/cm2, for the light-induced
phase transition. Therefore, it is very likely the first vestigial order identified here to be the same
as HCDW first reported by Stojchevska et al. [18].

All the vestigial states identified by the UED experiments are demonstrated to reverse back to
the C-CDW after the pump–probe cycles of 1–10 ms. While the initial discovery of the persistent
HCDW is obtained at the lower temperature than studied by UED, with a higher base temperature
as investigated by Ravnik et al. the HCDW is shown to be less stable. This may explain why the
system is reversible over a ms repetition rate, making it subject to the pump–probe optical mea-
surements. To this end, the time-domain phase diagram established by Ravnik et al. (Ref. [167])
also gives a second threshold for transitioning into other types of ordering upon a higher level of
excitations—see Figure 10f. This second fluence threshold is ∼3 mJ/cm2, which again is consis-
tent with what reported by UED for transition into the second NC vestigial order via 800 nm laser
pulses (Figure 10a) [19]. However, we wish to point out a key difference between the two stud-
ies that the irreversibility or disordered states tend to emerge under a higher level of excitation
in the STM experiments; whereas in UED studies the system can be driven all the way to the IC
state while maintaining the long-range correlation in the photo-doping regime. This notable dif-
ference may be explained on the basis of distinction in the sample settings in the two experimen-
tal approaches. In the UED investigations, the specimens are typically exfoliated to the thickness
less than 50 nm and studied at a higher base temperature. This is in contrast to the STM experi-
ments where the nonequilibrium dynamics are induced at the surface of a bulk sample and typi-
cally required a lower temperature to induced a long-live HCDW [167]. Below, we investigate this
initial state sensitivity relevant to controlling the evolution of the vestigial orders.

6.3. Pump-inhomogeneity-driven dynamics

Recently from careful analyses of the order parameter responses through time-resolved opti-
cal techniques [200] and X-ray diffraction [201], transient stabilization of inverse order param-
eters [202–205] have been suggested. This possibility is explained on the basis that the broken-
symmetry state with local lattice distortion opposite to that of the ground date can be transiently
trapped due to the formation of domain walls [200, 206] between the two extrema phases. This
scenario was thought to originate from the short penetration depth of the laser pulse relative to
the sample thickness. The inhomogeneous excitation could lead to distinctly different phases at
different depths within the sample in systems with multiple stable alternative ground states. The
externally applied pressure or the strain induced due to sample-substrate mismatch has been
used to create a metastable state [168, 207]. It is possible that the light-induced inhomogeneity
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Figure 11. Quasi-particle (electrons and phonons) temperature evolutions in photoexcited
TaS2 thin films by the three-temperature diffusion model. (a) The laser excitation (800 nm,
50 fs) profile within the 45 and 150 nm thin films. The inset shows the histograms of the
intensity and temperature distributions along z taken at 4 ps. (b) The time (t )-depth (z)
evolution of the electronic temperature, Te (z, t ). (c) The time (t )-depth (z) evolution of the
lattice temperature, Tlattice(z, t ).
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may be yet another control parameter that plays a role in creating the metastable energy land-
scape.

We look into this issue by considering near-infrared laser excitations in samples with slab
thickness used in the UED experiment (45 nm) and one that is much larger (150 nm) representing
the bulk limit. A focus is to consider how different sample thickness settings will alter the
excitations and hence influence the interpretation of the results obtained from the different types
of pump–probe experiments. In Figure 11a we show that by simply changing the sample thickness
by a factor of ≈3, the excitation of the materials can be altered drastically. The differences are
most apparent by comparing the laser absorption intensity profile I (z), calculated for the 1T-
TaS2 [208] by solving the Maxwell’s equations [209,210]. In the same sub-surface region (0–45 nm)
from the top excited surface (z = 0), the 150 nm system shows an exponential-like decay profile
with an effective penetration depth of just ≈25 nm, which is expected as if the film is a bulk
sample. On the other hand, for the 45 nm film, the profile becomes nearly homogeneous. This
striking difference reflects the effect of the interferences active in the thinner film where a finite
optical penetration leaves a sizeable, reflected component for the waves to interfere internally.
This Fabry–Perot effect can sufficiently build up before the ≈50 fs pulse leaves the slab. It can even
create an inverted effect as shown in the 45 nm slab where the intensity from the back surface is
slightly higher than the one in the middle; see the left panel in Figure 11b.

To characterize the effect of interferometric modification, we calculate the normalized inten-
sity distribution given in a histogram (see inset of Figure 11a). The differential RMS value evalu-
ating the dispersion effect is calculated as:

σn =
√√√√ 1

N

∑
i

(
I (zi )

〈I (z)〉 −1

)2

.

We obtain aσn of 0.064 for the 45 nm film, whereas for the 150 nm film it is 1.244. It is intriguing to
observe how this initial laser intensity profile will drive the diffusion of the carriers and phonons
in the systems. The exchange of kinetic energies between the carriers and phonons, which
defines respective effective temperatures for electrons, SCP, and WCP subsystems, is described
by the three-temperature model (3TM) (Section 5 and the Appendix of this paper). We note the
typical 3TM [13, 109–112] is conceived mainly for a homogeneous system. To consider diffusions
by the hot carriers and phonons excited more significantly at the top surface, we set up the
diffusion equations [211] coupling to 3TM and establish the three-temperature diffusion model
(3TDM) [212] to allow us capturing the spatial temperature profile evolution. Here, we report on
the temperature profiles Te (z, t ) and Tlattice(z, t ) for the electron and lattice subsystems that will
be relevant to addressing the complementary perspectives of the microscopic dynamics probed
by the ultrafast scattering, trARPES, THz spectroscopy, and optical reflectivity techniques.

We set up the problem by considering the ultrafast dynamics of electron temperature, Te (t ),
made available recently for 1T-TaSe2 by trAPRES experiments [174]. We apply the 3TDM with
the 3TM coupling parameters determined based on fitting the experimental Te (t ) data. These
parameters are used as the generic coupling constants and applied to the 1T-TaS2 dynamics.
We note that from the fitting of the coupling constants between the electron subsystem, SCP
and WCP, we derive three characteristic timescales for “electron–phonon” coupling: 0.5, 1.8
and 40 ps, which lead to a general ps heating dynamics of the lattice consistent with many
recent experiments [189–191, 213]. We then report in Figures 11b, c the transient temperature
maps Te (z, t ) and Tlattice(z, t ) with the mean lattice temperature calculated according to Tlattice =
αT SCP+(1−α)TWCP, whereα= 0.1 as the fraction for SCP is determined also from the fitting. The
details of the modeling and the parameters used are listed in the Appendix.

The full results for the first 5 ps are depicted in Figures 11b, c in the dynamical temperature
maps of Te (t , z) and Tlattice(t , z). To see the effects of diffusion, one can compare the temperature
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profile at a given time (the results from 500 fs and 4 ps are highlighted) with the initial I (z).
Notably, for the 150 nm film, diffusion strongly modifies the temperature profile already in the
sub-ps timescale in the top surface region, which is probed by trARPES and X-ray diffraction.
From the results obtained at 500 fs for the 150 nm film, the diffusion effect creates a nearly
homogeneously excited top region (≈10 nm) and a sub-surface region where a sharp decay
occurs; see the right panel in Figure 11b. However, over the entire period of observation, the
strong inhomogeneous profile over the 150 nm film has not been lifted in the temperature
evolutions. Meanwhile, for the 45 nm film the diffusion effects have improved the uniformness
of the temperature profile further, as indicated in the σn calculated for Te (t , z) and Tlattice(t , z)
going from 0.064 of I (z) to 0.015 and 0.020 respectively. The high degree of uniformness starting
even at the short timescales is expected to be an important aspect in characterizing the critical
dynamics associated with the nonequilibrium phase transitions.

We examine how this pump-associated inhomogeneity affects the experimental results. Lo-
cally applying the impulse-adiabatic scenario for introducing the free-energy landscape, the
strong inhomogeneity scenario is expected to have a direct consequence on the order param-
eter competitions in the key length scales. This effect has been recently reported for SmTe3 sys-
tem [201], but the phenomenon has been discussed earlier for TbTe3 [200]. The authors posited
that the excitation intensity gradient may lead to phase separation along the slab making the do-
main wall formation between the highly excited region and below. The domain wall formation
is said to have helped stabilize the formation of inverse order parameters which were recently
hinted also in other TMDC systems [202–205].

We now discuss how the pump-inhomogeneity-driven dynamics affect the dynamical order
parameter measurements. It may be now apparent that employing a reasonably thin or small
volume specimen will present a better chance to investigate the delicate nonequilibrium critical
dynamics. The homogeneous initial condition in the pump profile allows the volume- integrated
scattering intensity profile to reveal the true statistics of the nonequilibrium phases in the
transient evolution of the state. In contrast, while the surface sensitive probe also samples a
relatively homogeneous region, the dispersion effect is less well-defined with the diffusion effects
present in nearly all the time. This energy dissipation from the surfaces however might help
reduce the bath temperatures in the region that couples to the light-induced state. The study
of CeTe3 suggests this may lead to a slower decay of the transiently induced hidden phase [23].
In general, σn sets a limit on the ability to characterize the width of the phase transition curves
and the critical thresholds which are crucial for modeling the nonequilibrium phase transitions
as discussed earlier. In addition, the 3TDM investigation here shows that to cross-correlate the
results from the different types of measurements, the empirically derived critical thresholds will
need to be adjusted to consider the excitation profile differences. Such differences are likely to
play a role in properly assigning the optical doping concentration in Figures 10d–f.

Two different possibilities of additional phase control might result from the pump-induced
inhomogeneity. Forming domain walls between competing broken-symmetry phases is one of
them. The second control could be the strain effect introduced by the dynamical inhomogeneity,
which will be most dominant in a system where different morphologies or lattice structures are
created during the phase transition. Such effect could be mediated by the interlayer couplings in
layered quantum materials.

6.4. UEM experiments

The ultrafast electron microscopy provides a unified setting to probe the order parameter dy-
namics in both the real space and momentum space. This can potentially address the ques-
tions concerning inhomogeneities both in terms of the sample as well as the pump setting as
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discussed earlier. Central to the multi-messenger approach is to cross-correlate the information
obtained about the same illuminated materials in spectral, imaging, and diffraction modalities.
Thus far, the discussion of nonequilibrium phase transition presumes a homogeneous dynamical
system—one that does not always occur as discussed earlier.

Transmission electron microscope (TEM) provides information of the microscopic features in
greater detail than optical approaches. Such information is highly valuable in cross-examining
the results provided through spectroscopic or diffraction approaches that typically integrate sig-
nals across the region of the entire probe. Unpacking site-specific information requires adjust-
ing only the post-specimen imaging optics of the TEM [143,214], which, when switched from the
diffraction setting to imaging, offers a direct view of the dynamical system in exactly the same
pump and probe conditions at the sample plane.

There are multiple ways with which the imaging contrast can be created under a TEM. In
Figure 12a we present the typical exfoliated sample images of TaS2 obtained using the ultrafast
electron microscope. The image is obtained in the so-called bright-field mode in which an
aperture at the back focal plane of the objective lens (the diffraction plane) passing only the
unscattered beam to form the image [215]. In this geometry, the mass-thickness determines the
baseline of the intensity level—e.g. see the thinner film at the edge and the small debris left on
top of the film are respectively lighter and darker than the general area of the 40 nm film. But even
with the same film thickness, the diffraction effect produces fringes, so-called bend contour, from
the sample curvature [215].

The diffraction-mediated contrast is sensitive to the inclination of the sample relative to the
beam. At the regions of the bright or dark fringes, selected by a tilt angle, the diffraction contrast
is enhanced drastically [215]. This is utilized to measure the acoustic waves created as a side
product of the laser excitation. The waves traveling back and forth between the front and the
back surfaces form a standing wave pattern modulating the sample thickness [216–223]. At the
level of exciting density-wave phase transition (∼1 mJ/cm2 in fluence), the lattice acoustic wave
amplitude is expected to be less than 1% of the lattice constant based on heating [146, 224, 225].
However, the intensity modulation from the bend fringes can achieve resolution better than
0.01%, serving as a powerful way to resolve the out-of-plane dynamics.

The dynamical contrast based on the oscillation frequency can offer a measurement of sample
thickness to the precision of mono-stacking layer [217, 222]. This is shown in comparing the
results from different regions, marked in A, B, C, and D in Figure 12c; here in the region B the
film oscillates in the direction opposite to that of the regions A, C, D. Taking the oscillation out to
400 ps, the oscillation from region D is slightly out of sync with the rest. From the phase difference,
one can determine the delay of 6 ps being developed and gives a local film thickness of 0.59 nm
(one Ta layer; Figure 7) higher than the other areas.

Of particular interest is to compare the out-of-plane crystal oscillation with the photoinduced
CDW order parameter dynamics, which one obtains by switching to the diffraction mode, as
shown in Figure 12b. Both experiments are conducted under the same sample pump conditions
(the ∼1 mJ/cm2, 50 fs near-infrared pulse illumination in nearly normal incidence at the rep-
etition rate of 1 kHz). It is interesting to see the two dynamics decouple from each other. The
CDW order parameter responds to the laser quench within the first 500 fs, and yet it takes more
than 5 ps for the acoustic wave amplitude to start building up. The results here show there is no
impulsively driven strain wave created over the first few ps, which is anticipated due to the fact
that the in-plane heating, which is much more effective here, is largely homogeneous across the
layer as predicted for the 45 nm film (Figure 11). Furthermore, the slow onset and the persistent
oscillation of the out-of-plane mode and the absence of such signatures from the CDW order
parameter dynamics indicates that the light-induced phase transition behavior is largely a 2D
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Figure 12. Ultrafast electron microscopy investigation of 1T-TaS2 thin film. (a) The bright-
field image (BFI) of the TaS2 thin film taken under the UEM in full and difference images.
The full image is taken at t =−20 ps; while the difference image is taken by subtracting the
negative-time full image with one obtained at t = 15.5 ps. (b) The BFI intensity oscillation
versus the CDW satellite intensity evolution in the first 20 ps upon applying 1.5 mJ/cm2

near-infrared laser pulse. (c) BFI intensity oscillations at selected regions of the image (see
(a)). Region A, B and C have the same time period (T ) of 27.20 ± 0.05 ps. A and B are out
of phase. Area D has a slightly different time period 27.60 ± 0.08 ps, which is 1.5% higher
than the other areas. After 14 cycles of oscillation, we can see a clear offset from area D.
The longitudinal speed of sound along the c-axis is v ≈ 3 nm/ps [54, 227]. The sample
thickness can be estimated by d = vT /2 ≈ 40 nm. The 1.5% difference in the time periods
gives ∼0.59 nm difference in thickness, which is almost exactly 1 van der Walls layer of TaS2.

phenomenon—although one fully expects the 3D structural relaxation [225, 226] will take place
when the new 2D structure motif is established and the system thermalizes eventually.

6.5. Light-induced states in strained vanadium dioxide nanocrystals

Vanadium dioxide is a prototypical phase change material in which a strong metal-to-insulator
transition (MIT) occurs near room temperature (TM = 68 °C) [228, 229], making it a subject of
strong interests in applied fields [230, 231]. In MIT, distinct changes in the lattice symmetry

C. R. Physique — 2021, 22, n S2, 15-73



Xiaoyi Sun et al. 53

Figure 13. VO2 structure phase diagram. (a) The schematic phase diagram of VO2. The lay-
out of the structures highlights the vanadium atom distortions in the A and B sublattice
chains (oxygen atoms are omitted). The shaded areas represent the unit cell. (b) The two
types of structural distortions up and ut along sublattice chains couple to form the struc-
tural order parameters η1 and η3 for describing phase transitions between R to different
broken-symmetry phases [229, 249].

from rutile to monoclinic are involved. The equilibrium temperature-stress/temperature-doping
phase diagram involving a triple critical point [232–234] between the rutile (R) and the two
monoclinic phases (M1 and M2) is depicted in Figure 13a. However, decoupling phenomena
between MIT and structure phase transition (SPT) have also been reported in scenarios with
additional stimulation by light [235, 236], or applications of external field or current [237], as well
as under strain [238, 239] or driven by the interfacial carrier doping [240, 241]. These unexpected
complex phase change behaviors casted in doubt the conventional wisdom of MIT based on a
simple extension of the Peierls [242] or Mott [243] physics, but rather a picture where both Peierls
and Mott physics are involved, referred to as Peierls–Mott or Mott–Peierls mechanism [244–248].

The VO2 SPT, which intimately couples to different types of MIT, can be described over the
two types of antiferroic structural distortion along cR [251]: up, longitudinal V shift (∼0.14 Å)
forming V–V pairs and ut, transverse V shift (∼0.18 Å) twisting the V–V chain away from cR [229];
see Figure 13b separately in red and green dots representing the movements. Empirical data have
suggested that these two types of distortions are not independent. Two degenerate representa-
tions involving the coupled up and ut distortion occurring separately in two sub-lattice chains
(A and B) are outlined in Figure 14b as η1 and η3 (following the convention used in Ref. [249])
where up and ut are located in the orthogonal (110)R and (11̄0)R planes of the rutile structure.
Alternatively, one may also consider η2 and η4 where the sequence of up and ut in the orthogonal
(110)R and (11̄0)R planes are switched. However, only one such a pair is required to construct the
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Figure 14. VO2 structure phase diagram. (a) The diffraction curves modelled after different
VO2 phases and the corresponding diffraction difference map highlighting the change in
intensities relative to the unpumped M1 phase (t < 0). (b) The empirical energy density
(∆H)—temperature (Tb) and photon density (nλ)—temperature (Tb) phase diagrams for
VO2 phase transitions obtained under two different pumping wavelengths. (c) Selected
diffraction evolution at the short time. (d) The (402̄)M diffraction evolution at a longer
time showing a cross-over behavior. (e) Schematic free-energy changes that drive a non-
straightforward path from M1 to R state. The intermediate structure domain is that of the
M2, but not exact; hence noted as M∗

2 . (f) The structure pathway under the hole doping,
involving M2. Panels a–e are adapted with permission from Ref. [250].
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Landau–Ginzburg free-energy density functional for VO2 written as [249]:
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2
(T −TM )

∑
i
η2

i +
1

4

∑
i , j

bi jη
2
i η

2
j +

1

6

∑
i , j

di jη
2
i η

4
j (35)

where the 4 known stable phases can be identified as the local minimum states with the coor-
dinates of the free-energy basins at (0,0) for R, (η,η) for M1, (η,0) for M2, and (η,η′) for T (tri-
clinic phase) [249]. In this representation, M2 state, considered as an intermediate between R
and M1 [234, 252] under hole doping or tensile stress (Figure 14a) can transform continuously to
M1 or R—by simply a progressive η3 or η1 distortion, respectively [229, 249].

These structural distortions may be linked to the electronic changes at the MIT. The ut shift
destabilizes the π∗ state and provokes an interband charge transfer from π∗ to the quasi-1D
d// band, which becomes half-filled and can then trigger the Peierls instability to open up an
insulating gap through the V–V pairing (up) in the M1 state [228]. However, electron–electron
correlations may not be ignored in this scenario [243, 252]. The NMR studies have found that the
electron gas in the metallic rutile state is weakly correlated, while the electrons are localized in
the dimerized V–V chains in M1 [234].

Given that VO2 also exhibits key characteristics of electron-lattice-coupled competitions
found in RTe3 and TaS2, it is intriguing to ask if there will be a light-induced metastable state
whose properties are unlike any known thermodynamic phase of VO2? Before addressing this,
we first note that recent advances from ultrafast measurements have provided rich literature
to cast light on the microscopic mechanism of phase transition induced by light excitations.
The ultrafast transient electron dynamics investigated by optical [253–255], THz [256–258] and,
trARPES [259, 260] generally suggested a more rapid collapse of the band gap when compared to
the structure transformations, which were investigated by the diffraction techniques [235, 250,
261–263]. In addition, the transition thresholds as identified by various spectroscopy techniques
were found to be smaller than those of the diffraction approaches [250]. These results were taken
as indicators that IMT and SPT are decoupled in light-induced phase transitions. However, a re-
cent re-examination of relevant ultrafast spectroscopic measurements has called into question
some of the early claims, citing the differences in the pump–probe repetition rates and sample
settings as the causes for discrepancies [120]. These issues remain unsettled and remind us of the
challenging topics related to the cross-examinations. At the heart of the debates are not simply
the nonequilibrium physics from the Peierls distortions versus the electron correlations [228,229]
but also the issues pertaining to the sample conditions [231,264], such as the strain, disorder, and
interfaces that all play a role in the photoinduced phase transitions.

Here, we give a simple phenomenological nonequilibrium model that might unify the under-
standing of different recent results from UED, trARPES, and optical measurements. It is based on
the impulse-adiabatic free-energy evolution picture as one gives to understand the phase tran-
sition of the density wave systems. Upon ultrafast laser excitation, a transient free-energy sur-
face is created in which the M1 structure is no longer the lowest energy basin [249]. Here, the
monoclinic phase of VO2 is characterized by two effective distortive parameters: the twisting an-
gle ϕ and pairing displacement δ (Figure 13b), which can be directly deduced by analyzing the
powder diffraction of VO2 in the UED experiments. The trajectory of the two distortive parame-
ters which are linked to η1 and η3 (Figure 13b) can map the phase transition over the new land-
scape. Because the eventual R phase has an energy basin where both η1 and η3 are zero [234,249],
the relative dynamics of the transient state can be described on the new free-energy surface as
symmetry-recovery by melting the two order parameters—simultaneously or sequentially.

The impulse-driven new energy landscape mediating the phase evolution is justified from
the initial rapid suppression of the distortive symmetry-breaking parameters. The events have
been recorded by the UED experiments [235, 250, 261], which show the static amplitude of
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the pairing disappears within the first 300 fs of applying laser pulses beyond a threshold Eth.
Meanwhile, trARPES has reported the Mott–Hubbard gap collapses on an even shorter timescale
(<100 fs) [255, 259, 265], which is understood as driven by the photocarrier doping [255, 265] to
both the localized bonding and nonbonding orbitals [265]. Below the threshold dose, the laser
excitation typically leads to coherent gap dynamics at 6 THz, observed by the transient THz
conductivity [256–258] and optical reflectivity measurements [254, 255]. This coherent phonon
signature is effectively the amplitude mode and has been successfully employed as a marker
for monitoring the presence of the M1 order [254, 255]. The density functional theory (DFT)
calculation [265] puts an optical doping density at 1021 e–h pairs/cm3 that is needed to entirely
soften the landscape supporting the experimental findings.

The DFT found that the characteristic pretransition 6 THz coherent phonon generation upon
optical excitation is tied to the perturbative change of the free energy of the monoclinic phase,
induced by hole carrier doping of the Mott phase. The V-shift associated with this displacive
mode is in the monoclinic bM–cM plane, which is the (01̄1)R plane of the rutile structure [265].
Therefore, there is no obvious route to continuously change the M1 phase to the R phase through
rectifying the coherent distortive mode excited by hole-doping. Additional (transverse) modes
have to be involved as well due to the nonzero contributions from the distortive components,
i.e., up and ut, of the order parameters out of the (01̄1)R plane.

We now consider the role of sample settings. The hidden 1D characteristics of VO2 phases
give a very prominent lattice constant changes along the crystalline cR direction during the
symmetry-breaking phase transition. End-clamping the VO2 nanobeams, grown along cR, upon
cooling from the R phase is equivalent to applying tensile stress, which is known to induce the
intermediate M2 phase [234,249,252]. This occurs because applying tensile stress or hole doping
tips the balance of the cooperative symmetry-breaking between η1 and η3, which is maintained
during the thermal R–M1 transition under ambient pressure. On the other hand, in studying
ultrafast VO2 phase transition the stress is transiently induced by the rapid heating across TM

where the lattice expands disruptively. Stress relief is a key step involved in the transition between
M1 and R phases [263]. This calls into consideration of the feedback effect from the internal
pressure created during phase evolution on the external control parameter. Crystal cracking upon
rapid heating has also been a well-known problem [266] in studying bulk or epitaxially grown
materials in the pump–probe studies [25]. To remediate these effects, employing free-standing
nanobeams or microbeams [267, 268] or small-volume [269] VO2 crystals can not only preserve
the intrinsic first-order transition characteristics but also maintain the integrity over repeated
experimental cycles without causing the sample to crack.

Taking the transient stress into account, Tao et al. conducted the UED experiments using
31 nm VO2 crystalline grains deposited on the non-epitaxial Si membrane (9 nm) [250]. The
sample excitation involves both 800 nm and 2000 nm laser pulses—a setting similar to the
study of the TaS2 system to verify the photodoping effect driving the nonequilibrium phase
transitions. The powder diffraction patterns of VO2 phase transitions are presented in Figure 14a.
The inhomogeneous crystalline grain size distribution leads to a dispersion effect manifested in
the line-broadening in the diffraction, which can be attributed to the surface-strain size effect.
Given the high sensitivity of VO2 phase transition to the strain, the size dispersion also leads
to a broadening of TM in the transition curves. The broadening effect is naturally extended to
the pump-induced state under both pump wavelengths; see Figure 14b for the transition curves
taken based on the diminishments of the monoclinic reflections, such as (302̄)M .

It was shown that a stable R phase can be introduced at the +150 ps time period by ultrafast
pulses of 800 nm and 2000 nm wavelengths, respectively. The transient phase transitions occur
despite that the calculated absorbed energy density is much lower than what is typically required
for thermodynamically heating up the crystal lattices from the base temperature (Tb) to TM ; see
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Figure 14b top panel. Similar to the case of TaS2 this nonthermal scenario is reconciled by joining
the scales for phase transition using the absorbed phonon density nλ rather than the deposited
energy ∆H for comparison; see Figure 14b bottom panel. Incidentally, the threshold behavior
set by the disappearance of the monoclinic features is at the level of 4× 1021 e–h pairs/cm3 at
low temperatures. This is in the range of what was presented for the carrier-doping-induced
collapse of the Mott–Hubbard gap—a proof that the applied photon dose would be sufficient
to transform the monoclinic free-energy surface despite of being sub-thermal, paving the way
for photoinduced phase transitions.

However, from the free-energy perspective the heating effect must also be considered, espe-
cially in this cooperative system where a strong shift in TM is known from applying pressure or
doping (Figure 13a). Hence, similar to the case of TaS2, the effective critical temperature T ∗

M for
the phase transition (34) could be downshifted by the photo-doping effect. This explains why a
lower laser dose is needed for the transition into R; whereas by the same reasoning, increasing Tb

shall also decrease the required laser dose—an effect observed in Figure 14b closer to TM .
For a sufficiently small crystalline specimen, one may argue that the system may self-manage

the elastic stress and favors a homogenous state to reduce the free-energy cost as the microbeam
experiments have repeatedly confirmed [231]. This makes the experiments by Tao et al. [250]
interesting with regard to the dynamics of stress relief [263] and its implication for the pho-
toinduced phase transition. There is a better chance of seeing a more stable free-energy basin
or saddle point from the order parameter dynamics if the pump fluence is placed just above
the critical threshold. This allows the relaxation dynamics to map the intermediate landscape
with less heating-related blurring induced by coupling to the stochastic bath set up by laser
pumping. The chosen fluences in the comparative experiments are set at 20% above the mean
threshold, corresponding to the two sigmas of the transition window (Figures 14a, c, d) for two
wavelengths.

The line-scan data of the raw diffraction images with the pre-pumped state pattern subtracted
(diffraction difference image) to show the pump-induced state evolution are depicted in Fig-
ure 14a as the color map. The general trend of ultrafast evolution of the multi-step changes in the
representative group of symmetry-breaking and recovery Bragg peaks are shown (see the down-
ward moving and up-warding moving raw peak intensities respectively in Figure 14c where an
initial sub-ps decrease of diffuse background offsets the scale), which, in a broad stroke, are quite
similar to the other UED investigations of systems with larger grain sizes [236] or single crys-
tals [261]. Here, the universal collapse in intensities of pairing-related peaks and a slower increase
in intensities of the higher symmetry peaks of the rutile state are quite pronounced. We take these
signals as an evidence showing the route from the initial state of M1 to the eventual state of R is
not direct. This reminds us of the same phenomenology in the previous two systems where we
also see the interaction quench leads to a different order-parameter basin or saddle point before
turning toward that of the eventual state.

The gentler quench (here for 800 nm it is at ∼8.5 mJ/cm2, which is 2–5 times smaller than the
deep quench investigations [236,259,270]) does give more details of the trajectory reflecting order
parameter evolution immediately following the intensity drop of the low-symmetry peaks; here a
slower second decay in intensities appears on a similar time scale to the rise of the high-symmetry
Bragg peaks after their delayed onset. However, the high-symmetry groups will continue to
evolve. On this longer evolution (Figure 14d), the behaviors from the two different excitations
will diverge after 10 ps where the higher photon energy pulse leads to a quicker turning over in
the (402̄)M (a high-low symmetry mixed peak; see Figure 14d) dynamics to settle on a more even
level characteristic of the R phase than the trajectory taken by the 2000 nm case.

An acoustic modulation of the peak intensity characteristic of the breathing mode of the
nanoparticles was also identified driven by impulsive heating on the ps timescale (Figure 15d).
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Figure 15. Performance of UED/UEM instrumentation. The data are extracted from the
recent literatures of the photoemission keV DC gun UED and UEM with [87, 88, 91, 92] and
without [83, 92, 95–97, 99, 100, 102–104, 107] pulse compression and the MeV RF gun UED
systems [81, 82, 85, 86, 90, 98, 205]. The Te,0 represents the source effective temperature, a
property of the energy spread in the cathode region.

The frequency changes evidence a shift in the elastic speed of sound from one characteristic of
the monoclinic phase to the slower one of the rutile phase, occurring interestingly on roughly
the same timescale as the (402̄)M intensity changes. These results seem to indicate that the
acoustic potential of the broken-symmetry state only changes into that of the melted phase after
the transient stress is released, as unveiled by acoustic modulations. The less distinct turning
over behavior under the 800 nm excitation leads one to believe the transient state characteristics
would be even less distinct if a higher excitation fluence were applied. An increase in the diffuse
background observed here is consistent with more heat being generated by the 800 nm pulses.
The transient heating, while largely impacting the system after the impulse period, will modify
the adiabatic free-energy surface with an increased base temperature along the path that makes
the trajectory more like the thermodynamic one with a larger stochastic blurring effect; see the
deep quench scenario (F À Fc ) in Figure 14e. The recent ultrafast thermal diffuse scattering
studies of VO2 phase transition under a deep quench have shown the transition pathway to be
largely stochastically driven [270].
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As the photo-doping effect is involved, it is intriguing to consider the role of the M2 known
to be introduced under a moderate level of hole doping. However, more excessive hole doping
will drive the system eventually to the R phase where the M2 state may pose as a saddle point.
A simple structural model based on the homogeneous system evolution suggests this is a more
likely scenario. The structural model applies a continuous change in (ϕ, δ) to fit the experimental
results with the coordinates of the M1 phase as the starting point, as presented in Figure 14e.
Unsurprisingly, the data cannot be reconciled with a direct path from M1 to R [250]. The best fit
to the results requires the two sub-lattice to act differently as is the case of the M1–M2 transition
where only one order parameter (η3) is to be melted. The short period of metastability and limited
gains in strength signifies that the lattice instabilities normally associated with the M2 symmetry
are gaining, but it is unlikely to be consolidated into a long-range order. The digression into the
M2 structural domain is simply because, when induced, the M2 basin/saddle point is closer to
the initial ground state than the R basin on the free-energy surface. To further transition into R,
the additional order parameter (η1) needs to be melted. This situation occurs, as indicated by the
findings, as an energetically more favorable path after the system has entered the domain of M2

but not before.
One cannot rule out yet other vestigial orders, as predicted by the free-energy equation

with all four independent order parameters considered [249] may be involved. However, the
gateway picture proposed here based on a non-straightforward order parameter trajectory is
different from an isostructural solution identified as a monoclinic metallic phase [236,262]. Some
modification of the structure distortion prototypical to M1 might still contribute to the difference
map (Figure 15a) as the low-frequency background. Future more precise experiments allowing a
better momentum resolution to distill out different symmetry-breaking contributions shall help
address this topic.

7. Summary and future perspectives

In this topical review, we discussed a set of results that provide important insights into ultra-
fast nonthermal control of quantum materials, in particular, the photoinduced phase transitions
to thermodynamically inaccessible states by ultrashort optical excitation in RTe3, TaS2 and VO2.
Here, one utilizes light to shift the electronic interactions, break or restore the crystal symme-
tries to change the balance between competing phases to stabilize novel quantum phases out
of equilibrium. Their nonequilibrium behaviors as probed by ultrafast electron scattering have
revealed the interplays between the co-control parameters introduced by the pump responsible
for the free energy: the local effective temperature and the interaction quench. Useful concepts in
conjunction with the Landau–Ginzburg paradigm of description, such as the nonthermal critical
point and the local effective temperatures, are introduced to facilitate the understanding of both
the heating and interaction effects necessarily to account for the observed evolution of the order-
parameter dynamics. In order to realize robust ultrafast control of nonthermal states, the stud-
ies here show it is desirable to minimize energy absorption while promoting a controlled mod-
ification of the free-energy landscape through different frequency optical quench. The studies
also unveil the need for understanding the role of dissipation and properly considering pump in-
homogeneity to reach a cross-platform understanding of ultrafast nonthermal controls reported
using different pump–probe experimental settings.

As the present paper focuses on the quench dynamics and the relevant nonequilibrium
landscape for their description, we intentionally leave out key fields of photoinduced phase
transitions mediated by different pump schemes; other nonequilibrium routes to stabilize novel
phases of matter include nonlinear phononics and Floquet control under periodic driving; e.g.,
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see recent reviews [271, 272]. In these studies, instead of driving the system through above-the-
gap carrier excitations by applying brief high-frequency photons, lower-energy or off-resonance
laser fields are preferred to avoid excessive absorption. Furthermore, exploring nonequilibrium
universities under a soft quench to the proximities of the nonthermal critical point shall reveal
the salient features of the transient energy landscape inaccessible at equilibrium. These topics
are ripe for future investigations.

The experiments discussed above demonstrate how the advance of ultrashort electron pulses
into brighter and more coherent territories will have a far-reaching impact on nonequilibrium
quantum material sciences. While the FEL-based X-ray sources, including the latest development
of seeded FEL, will remain the ultimate powerhouse for achieving high resolutions, the ultrafast
high-brightness electron sources will revolutionize the research on mesoscopic sciences with
integrated multi-messenger approaches. Given the high-brightness electron source and FEL
ultrafast instrumentation share many core technologies, such as the precise synchronization
between the source and the pump optical fields, the RF accelerator and optical controls, and
the detector technologies, the two fields will likely advance together. Indeed, the transformation
from integrating the RF accelerator technologies into the UED and the next-generation UEM
instrumentation has been tremendous. From the source brightness perspective, the utilities
of the electron sources, while still technically challenging to implement to the fullest, remain
largely under-explored. This is evident in comparing the performances of UED and UEM plotted
in terms of time resolution (∆tpp ) and particle numbers in Figure 15, summarized from the
recent literatures. Here the comparisons are hard to be precise given the broad varieties of
system configurations. Nonetheless, for a given type of instrument the trends that ∆tpp largely
follows the N 1/2

e,0 as discussed in ML-FMM are quite clear. This gives some confidence in giving
projections on the future faces of the technologies with the knowledge from the ML-FMM
simulations.

With the mesoscopic material applications in mind, the future of ultrafast electron sciences
shall lie in the high-flux regime with potentially the ability to conduct single-shot experiments.
This is because the intrinsic high electron scattering cross-section sets a relatively low bar of the
required Ne,0 of 106–108 (based on applications), which are accessible by both the photoemission
DC and RF guns at their respective virtual cathode limit of emission. The implementation of pulse
compression schemes easily boosted the temporal resolution into sub-ps regimes at such high-
flux limits; see Figure 15. However, we want to emphasize that in both types of instrumentation,
the current levels of performance are strongly influenced by the RF system and the beamline
(both optical and electron) stabilities that affect the arrival time and the precision of the time
and energy focusing at the samples. The performance can be further improved by a factor
of 10 before reaching the physical limits set by the beam brightness. With complete control
of the electron pulse parameters under advanced compression and streaking schemes, it is
possible to obtain pulses with few femtosecond durations with MeV RF UED system and few
tens of fs for the keV DC gun systems, operating near the virtual cathode limit. Clearly, the
facility-based MeV UED systems will ultimately be the prime options for most dose-hungry
and high-temporal-resolution-prone experiments, and likely rival many FEL-type experiments
in these directions in the years to come. Putting the ultimate temporal resolution and dose
aside, the keV DC gun system, however, will excel in the momentum and energy resolutions.
Armed with the matured technologies developed for the current electron microscopes at the
familiar beam energy scale, we envision in the decade ahead, a major push will be in obtaining
robust resolutions for a true multi-messenger approach that combines diffraction, imaging, and
spectroscopy under a single platform. To reach the resolution limits set by the source brightness
of the DC-gun designs (.50 fs, .1 nm, and .100 meV levels close to the virtual cathode limit
respectively), the development of ingenious schemes to integrate beam stabilization, pump–
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probe synchronization and implementing suitable electron optics/detector technologies will be
the main focus.
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Appendix A. Three-temperature diffusion model (3TDM) calculation

The 3TDM considers the microscopic energy relaxations following the electronic laser quench
in the quantum materials. This model extends on the conventional three-temperature model
(3TM) [13, 109–112], where one typically assumes the absorbed photon energy is deposited into
the electronic sub-system and internally thermalizes instantaneously. The subsequent relaxation
involves energy transfer from the electrons to a subset of phonons strongly coupled to the initial
electronic excitation, referred to as strongly coupled phonons (SCP), and also to the rest of the
lattice modes that are less efficiently coupled, referred to as weakly coupled phonons (WCP). The
dynamics of energy relaxation are described by a set of coupled differential equations with the
local temperature Ti and specific heat Ci prescribed to each subsystem. In the simplest form of
3TM without considering the diffusion effects, one may write the coupled rate equation Ci∂t Ti =
−Gi− j (Ti −T j )−Gi−k (Ti −Tk ), where Gi− j is the coupling constant between the subsystems i and
j . In this picture, the characteristic timescale for energy transfer (i → j ) is given by: τ−1

i j =Gi− j /Ci .
Hence, a larger specific heat typically slows down the dynamics of energy transfer from the
subsystem. This schematic three-temperature model is given in Figure A16 where the extent of
partition of specific heat between the SCP and WCP is given by the fraction α.

However, such a model is not complete for an inhomogeneous system driven also by the
diffusion effects. This is exemplified in the trARPES and the grazing incidence X-ray diffraction
experiments conducted predominantly over the surface regions where the energy dissipation
into the bulk interior is important for considering the nonequilibrium phase transition. To this
end, the 3TDM considers the non-Fourier thermal diffusion of carriers and phonons [211]. The
full description of the 3TDM is given in Ref. [212]. Here, we apply the 3DTM to give key predictions
about the dynamical behaviors involving different sample thickness settings typical for the UED
and trARPES experiments. The calculation is based on a near-infrared (800 nm) pump pulse with
a duration of 50 fs at 45° incidence and S-polarization.

The goal here is to illustrate how varying the excitations in the materials (based on solving the
Maxwell equation; see Section 6.3) may lead to drastically different nonequilibrium temperature
relaxation profile in two different thin films (45 and 150 nm). The results will impact the evolution
of the developed nonequilibrium phases therein, which are probed by UED and trARPES. For
establishing a common baseline, the detailed Te (t ) dataset made available recently by trARPES
on 1T-TaSe2 is employed as the target for refining the 3TDM model. The key parameters that
reproduce the dynamics are given in Table A1. Here, the model considers 150 nm and the
Te (t ; z = 0) is calculated to reproduce the data; see Figure A16. Given the three-way dynamical
couplings, it is generally difficult to directly isolate the relaxation times from the data, but
based on the refined 3TDM parameters and τ−1

i j = Gi− j /Ci , we may give nominal values of
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Figure A16. The effective temperature calculations based on the three-temperature diffu-
sion model. (a) The schematic picture of the three-temperature model with the initial ex-
citation energy from laser first stored in the electronic subsystem, then transferred to the
lattice subsystem which is sub-divided into two types of phonon manifolds (SCP and WCP)
due to the coupling hierarchy. (b) The temperatures obtained for different subsystems using
the three-temperature diffusion model (3TDM) in thin film geometry [212]. The 3TDM cal-
culates the surface electronic temperature evolution, Te (t ) in solid blue line, for 1T-TaSe2 at
0.69 mJ/cm2 and compared with the data (light blue dots) taken from the trARPES (see Sup-
plementary Materials from Ref. [174]). The parameters used in the calculations are listed in
Table A1. Alternatively, under the same pump condition, 〈Ti (t )〉 are obtained for a 45 nm
1T-TaS2 thin film with the bracket denoting averaging, relevant to the study by the ultrafast
scattering techniques; see text for discussion.

τel-SCP = 0.5 ps, τel-WCP = 1.8 ps, and τSCP–WCP = 40 ps, which are in general agreements with
the reports of electron-phonon coupling times of 0.5–4 ps for these systems [18, 19, 187–191].
The same calculation is then conducted for the 45 nm film, whereas discussed in Section 6.3,
and a significantly more homogenous profile can be obtained due to the interference effect.
With the UED experiments in mind, here we give the temperatures (noted in bracket) averaged
over the entire slab. The lattice temperature is calculated as Tlattice =αTSCP + (1−α)TWCP, where
α = 0.1 is determined from fitting. The time and depth-dependent temperature profiles for the
two different films are given in Figures 11b and c.

To consider the temperature profile away from surface regions, the out-of-plane electron
thermal conductivity Ke plays an important role. The nominal value used in the simulation
is derived from the out-of-plane resistivity ρ⊥ = 1.0× 10−5 Ω·m but the reported value for ρ⊥
differed by an order of magnitude in different measurement geometries; see Refs [274] and [275].
The impact of different ρ⊥ on the excited material temperature profile is evaluated for the 150 nm
film. Increasing Ke by 10 (ρ⊥ = 1.0×10−6 Ω·m), theσn calculated for Te decreases by 40% whereas
decreasing Ke by 10 (ρ⊥ = 1.0× 10−4 Ω·m), σ for Tlattice increases by 20%. The impacts on the
lattice temperature track generally with Te changes. These calculations are taken at 4 ps when
Te and Tlattice reach a fair level of thermalization. The calculation here shows that the different
ρ⊥ values reported in the literature have some effects on the pump inhomogeneity profile.
In general, reducing ρ⊥ will lead to a higher homogeneity in the temperature profiles. This is
relevant as one generally expects that ρ⊥ will be smaller in the pumped state—a phenomenon
that should be resolvable by studying long-time relaxation dynamics with the help of 3TDM
modeling.
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Table A1. Parameters for three-temperature diffusion model

Name Meaning Parameters used for 1T-TaS2

Ce = γTe Electron heat capacity γ= 12.96 J·m−3·K−2 (Ref. [273])
τe Electron relaxation time 0.2 ps (Ref. [213])

Ke = LrtzTe
ρ⊥

a
Out-of-plane electron thermal con-
ductivity

ρ⊥ = 1.0×10−5 Ωm (Refs [274] and [275])

Kl
b Out-of-plane lattice thermal con-

ductivity
0.5 (W·m−1·K−1) (Refs [274] and [276])

Ctot Total nuclear heat capacity 1.85×106 (J·m−3·K−1) (Ref. [189])
α Strongly coupled phonon fraction 0.1 (Ref. [212])

Gel-SCP Coupling constant between electron
and strongly coupled phonons

2.5×1016 W·m−3·K−1

Gel-WCP Coupling constant between electron
and weakly coupled phonons

1.0×1014 W·m−3·K−1

GSCP–WCP Coupling constant between strongly
coupled phonons and weakly cou-
pled phonons

6.0×1016 W·m−3·K−1

a The calculation of electronic thermal conductivity follows the Wiedemann-Franz law. Lrtz
is the Lorentz number, and Lrtz = 2.44×10−8 W·K−2.
b The out-of-plane lattice thermal conductivity is taken to be 1/10 of the in-plane value
reported in Ref. [276], based on the understanding that the two typically differs by an order
of magnitude [274].
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