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Abstract. The notions of negative refraction and negative index, introduced by V. Veselago more than 50
years ago, have appeared beyond the frontiers of macroscopic electromagnetism and purely formal during
30 years, until the work of J. Pendry in the late 1990s. Since then, the negative index materials and the
metamaterials displayed extraordinary properties and spectacular effects which have tested the domain of
validity of macroscopic electromagnetism. In this article, several of these properties and phenomena are
reviewed. First, mechanisms underlying the negative index and negative refraction are briefly presented.
Then, it is shown that the frame of the time-harmonic Maxwell’s equations cannot describe the behavior
of electromagnetic waves in the situations of the perfect flat lens and corner reflector due to the presence of
essential spectrum at the perfect −1 index frequency. More generally, it is shown that simple corner structures
filled with frequency dispersive permittivity have a whole interval of essential spectrum associated with an
analog of “black hole” phenomenon. Finally, arguments are provided to support that, in passive media, the
imaginary part of the magnetic permeability can take positive and negative values. These arguments are
notably based on the exact expression, for all frequency and wave vector, of the spatially-dispersive effective
permittivity tensor of a multilayered structure.

Résumé. Les notions de réfraction négative et d’indice négatif, imaginées par V. Veselago il y a plus de 50 ans,
ont semblé au-delà des frontières de l’électromagnétisme macroscopique et sont restées purement formelles
pendant 30 ans, jusqu’aux travaux de J. Pendry à la fin des années 1990. Depuis lors, les matériaux à indice
négatif et les métamatériaux ont montré des propriétés extraordinaires et des effets spectaculaires qui ont
mis à l’épreuve le domaine de validité de l’électromagnétisme macroscopique. Dans cet article, plusieurs de
ces propriétés et phénomènes sont passés en revue. Tout d’abord, les mécanismes sous-jacents aux indices
négatifs et à la réfraction négative sont brièvement présentés. Ensuite, il est montré que le cadre des équations
de Maxwell harmoniques en temps ne peut pas décrire le comportement des ondes électromagnétiques dans
les situations de la lentille plate et du réflecteur en coin parfaits en raison de la présence de spectre essentiel
à la fréquence où l’indice prend la valeur −1. Plus généralement, il est montré que de simples structures en
coin remplies d’une permittivité dispersive en fréquence ont un intervalle entier de spectre essentiel associé
à un analogue du phénomène de « trou noir ». Enfin, des arguments sont fournis pour soutenir que, dans
les milieux passifs, la partie imaginaire de la perméabilité magnétique peut prendre des valeurs positives et
négatives. Ces arguments reposent notamment sur l’expression exacte, pour toutes les fréquences et tous les
vecteurs d’onde, du tenseur de permittivité effective avec dispersion spatiale d’une structure multicouche.

Keywords. Negative index, Metamaterials, Frequency dispersion, Corner mode, Spatial dispersion, Passivity,
Permeability.
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1. Introduction

The notion of negative index of refraction has been introduced more than 50 years ago by V.
Veselago [1]. The refraction at an interface separating two media with positive and negative
refractive indices is subject to the usual Snell–Descartes law:

n1 sinφ1 = n2 sinφ2. (1)

Consequently, if the refractive indices n1 and n2 of the two media have opposite sign, e.g. n1 > 0
and n2 < 0, then the refraction angles φ1 and φ2 have also opposite sign, so that the ray is
negatively refracted at the interface (see Figure 1). In macroscopic electromagnetism, media with
negative refractive index can be modelled by magnetodielectric materials with simultenously
negative values of the dielectric permittivity ε and magnetic permeability µ [1]. In such media,
the wave vector k has opposite direction from the Poynting vector S = E × H , and the triplet
formed by the electric field E , the induction field H and the wave vector k is left-handed. Thus V.
Veselago also coined a medium with negative refractive index a “left-handed material” [1].

Since no material can be found in nature with simultaneously negative values of the permit-
tivity ε and permeability µ, the notion of negative refractive index has appeared beyond the fron-
tiers of macroscopic electromagnetism and thus remained purely formal for thirty years, until the
work of J. Pendry in 1999. In [2], J. Pendry et al. showed that “microstructures built from nonmag-
netic conducting sheets exhibit an effective magnetic permeability µeff, which can be tuned to val-
ues not accessible in naturally occurring materials”, paving the way towards artificial magnetism,
negative index materials and, more generally, metamaterials with extraordinary properties. Since
then, the notion of negative index material has opened a vast range of possibilities and has tested
the domain of validity of macroscopic electromagnetism.

In this paper, a brief overview of the electromagnetic negative index materials is presented
through the mechanisms underlying the negative index of refraction, the negative index and the
proposal of the perfect −1 index lens. The fundamental role of frequency dispersion in negative
index materials and metamaterials is shown. Then, the spectral properties of corner structures
with frequency dispersive permittivity are analyzed and an analog of “black hole” phenomenon
is discussed. Finally, the key role of spatial dispersion (or non-locality) in effective permeability
and metamaterials is highlighted. In particular the question on the sign of the imaginary part of
the permeability in passive media is addressed. The new phenomena and questions brought by
these topics within the frame of the macroscopic electromagnetism will be discussed.

2. Mechanisms underlying negative index materials

Media with negative refractive index have appeared unavailable since no natural medium may
have simultaneously permittivity ε and permeability µ with real part taking negative values. In-
deed, negative values of the permittivity occur in metals at frequencies around the visible range
while, in the same range, the values of the permeability must be restricted around that of vac-
cum permeability [3]. The range of possible macroscopic electromagnetic responses has been
first extended with the works on the so-called bounds on the effective parameters of composite
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Figure 1. Refraction at an interface separating two media with positive refractive indices
(left) and with positive and negative refractive indices (right).

materials, for instance on the effective permeability [4] and permittivity [5–8]. For given permit-
tivity constants and volume fractions of the components constituting a composite, such bounds
characterize the set of possible macroscopic responses and identify the microstructure produc-
ing the extreme effective parameters in this set, see the book of G. Milton [9] for an extensive pre-
sentation of the bounds of composites. These works on bounds offered new possibilities in terms
of achievable values of permittivity and anisotropy. These works have been however restricted to
the quasistatic regime in the frame of classical homogenization [10], where the effective param-
eters result from an averaging process. In this frame, the range of frequencies with negative val-
ues of permittivity cannot be significantly extended and, moreover, the effective permeability re-
mains equal to the vacuum permeability as soon as the components constituting the composite
are non-magnetic, leaving the negative refractive index unachievable in theory and in practice.

The fundamental steps that led to the negative indices have been completed thanks to the
works of J. Pendry and his colleagues. Back in 1996, they proposed three-dimensional network
structures made of thin metallic wires and showed theoretically, numerically and experimentally
that such structures exhibit metallic behavior with low plasma frequency in the range of GHz
[11, 12]. In such structures, the plasma frequency of the original metal ωp , which is proportional
to the ratio

√
N /meff of the electron density N and the electron effective mass meff, is made

lower using two mechanisms: (i) the electron density N is reduced since the fraction of metal
in the wires network is lower than in the bulk metal and (ii) the electron effective mass meff

is enhanced by confining the electrons in the thin wires. With these mechanisms, the effective
plasma frequency is strongly reduced and the metallic behavior encountered in the visible range
is extended to the Ghz range, which allows effective permittivity with negative values in a new
range of frequencies. Then, in 1999, these physicists proposed structures made of the so-called
split rings that exhibit resonant effective magnetic permeability in the GHz range [2]. Here,
the magnetic response is induced by loops of current in the rings. In addition, this magnetic
response is enhanced by introducing a thin split which makes the split ring equivalent to a LC
resonator, the capacitance C resulting from the thin split and the inductance L resulting from
the ring. The resonance is essential since it enhances the effective magnetic response and thus
offers the possibility to address negative values of the effective permeability. Finally, combining
these conducting non-magnetic split ring resonators with thin wires, D. Smith et al. proposed a
composite medium with simultaneously negative permittivity and permeability in the GHz range
[13]: this work enabled the experimental demonstration in the Ghz range of a negative refractive
index [14], the extraordinary electromagnetic property imagined by V. Veselago in 1968 [1].

It is stressed that, in this new kind of metallic composites proposed by J. Pendry and his col-
leagues, the microstructure induces resonances in the effective electric and magnetic responses,
which makes the nature of the underlying mechanism different from the one encountered so far
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in classical homogenization and in the bounds of composites. Hence this new kind of composites
offering extraordinary properties has been coined metamaterials in 2001 [15].

The implementation of metallic resonant composites operating at frequencies higher than
Ghz appeared difficult and remains challenging, notably in the visible range, because of the
requirements on the dimensions of the nanostructures and the presence of absorption in metals.
However, in the visible and the near-infrared, purely dielectric periodic strutures, or photonic
crystals [16, 17], have been exploited to obtain negative refraction at in interface separating such
a structure and a homogeneous medium [18, 19]. In that case the resonance is not produced
by the solely resonator itself (e.g. a split ring) but by the interaction between the dielectric
particles periodically arranged. This resonant interaction requires that the distance between
the particles be comparable to the wavelength, which results in severe limitations to consider
a photonic crystal as an effectif homogeneous medium. Nevertheless, their ability to induce
negative refraction in the visible range may have important consequences.

The mechanism leading to negative refraction with photonic crystals exploits the richness, in
such periodic structures, of the dispersion law, i.e. the relationship ω(k) between the frequency
ω and the Bloch wave vector k . Indeed, the propagation of electromagnetic waves is governed by
the group velocity v g [20–22] defined as the gradient of the dispersion law: v g = ∂kω(k). At an
interface separating a homogeneous medium from a photonic crystal, the tangential component
k∥ of the (Bloch) wave vector k , parallel to the interface, is conserved according to the invariance
of the periodic structure under the discrete set of lattice translations {±a,±2a,±3a, . . .}. There-
fore, if the group velocity v g has opposite direction from the wave vector k , then this invariance
of the tangential component k∥ of the wave vector results in the sign change of the tangential
component v∥

g at the interface. Such a situation, where the group velocity v g and the Bloch wave
vector k have opposite signs, can be realized thanks to the folding of the dispersion law in pho-
tonic crystals, as represented on Figure 2. Detailed analyses and numerical demonstrations of
negative refraction of electromagnetic waves in photonic crystals can be found in [18,19,21], and
experimental verification in [23].

The discovery of metamaterials and of their extraordinary properties stimulated the devel-
opment of new homogenization techniques and effective medium theories, beyond the classi-
cal homogenization operating in the quasistatic limit, i.e. where the size of the microstructure
tends to zero [10]. Indeed, classical homogenization results in an averaging process which can-
not report properties like artificial magnetism and negative refractive index from purely dielec-
tric constituents. For instance, the analysis of metamaterials with negative permittivity and per-
meability [24] has shown that the effective parameters of such structures are not quasistatic.
Hence, in addition to the seminal works of J. Pendry [2,11,12], several new techniques have been
proposed in applied mathematics and theoretical physics, extending the notion and validity of
homogenization and of effective medium theory to new situations, see reference [25] for a re-
view in 2009. The classical two-scale homogenization technique [26] has been extended to high-
contrast inclusions [27] and led to the prediction of effective permeability. The retrieval method,
based on the extraction of constitutive parameters from Fresnel reflexion and transmission co-
efficients, has been investigated for layered metamaterials [28, 29]. The classical quasistatic limit
as been also overcome in the case of periodic metamaterials made of dielectric meta-atoms, by
an approach relating the macroscopic fields to the microscopic fields averaged over the Floquet
unit cell [30–32], which can be considered as an extension to periodic arrays of meta-atoms of the
classical derivation of macroscopic Maxwell’s equations [33]. Also, perturbative expansions with
respect to the frequency have been proposed: when starting from the quasistatic limit [34], it has
been shown that the first order in frequency reports magnetoelectric coupling while the second
order in frequency reports effective magnetism (the higher orders bringing refined corrections to
all these parameters), a mechanism similar to the expansion on the wave vector [3,35]; and when
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Figure 2. Effect of the folding of the dispersion law on group velocity. The red cone
represents the dispersion law in a homogeneous medium with positive index: the group
velocity v g and the wave vector k in abscissa point in the same direction. The blue curve
represents the dispersion law in a photonic crystals: if the dispersion law is unfolded
(dotted blue curve) then the group velocity ug and the wave vector k both point in the same
direction; if the dispersion law is folded (continuous blue curve) then the group velocity
v g and the wave vector k point in opposite directions. At the couple (ω,k) indicated by
the black circle, the folded dispersion law must be considered and the photonic crystal
generates negative refraction.

starting from higher bands, it has been shown [36, 37] that the structure can be homogenized
using the two-scale homogenization, leading to the notion of high frequency homogenization.

These non-asymptotic techniques revealed the importance of the effect of the physical bound-
aries of metamaterials and periodic structures [38–45]. They also highlighted the crucial role of
the non-locality or spatial dispersion [29–32, 35, 42, 46, 47] in metamaterials and negative refrac-
tive index structures. In general, the modelling of metamaterials and periodic composites with
techniques beyond the classical quasistatic limit, results unavoidably in the definition of effec-
tive parameters depending on (ω,k), the frequency (frequency dispersion) and the wave vector
(spatial dispersion). Frequency and spatial dispersions are inherent to metamaterials and neg-
ative refractive media, which generated numerous questions and investigations on the causal-
ity principle and passivity of effective parameters [48–53]. In the next sections, these questions
related to the dispersion are addressed.

3. The perfect lens and the spectral properties of frequency dispersive structures with
negative permittivity

The most spectacular devices based on metamaterials are probably the perfect lens [54] and
the invisibility cloak [55–57] proposed by J. Pendry. These propositions generated numerous
interesting discussions and investigations in the community of classical electrodynamics. For
the invisibility, the possibility to perfectly hide an obstacle implies that the solution to Maxwell’s
equations is strictly the same outside the invisibility cloak, independently of the obstacle inside
the cloak, to that one would have in the absence of scattering object and cloak (so in free space).
As a consequence, if the invisibility cloak is causal and passive, then the perfect invisibility can
occur only at isolated frequencies [58]. Indeed, let E (x ,ω) and E 0(x ,ω) be the time-harmonic
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electric fields oscillating at the frequency ω in the presence of the cloak, respectively with and
without the obstacle. For perfect invisibility, these two electric fields are equal for position vector
x outside the cloak: E (x ,ω) = E 0(x ,ω). As for causal and passive media these electric fields
are analytic functions of the frequency (as soon as ω has positive imaginary part) [59], they
must be equal either for isolated frequencies ω, or for all real frequencies. Perfect invisibility
is therefore only achieved at isolated frequencies and is impossible over a frequency interval.
These arguments show that a causal and passive invisibility cloak must be a frequency dispersive
structure.

Frequency dispersion is also an important dimension of negative index materials and the
perfect lens. In 1968, V. Veselago introduced the notion of negative index of refraction and showed
that a simple plate of such a medium with thickness d “can focus at a point the radiation
from a point source located at a distance l < d” [1]. In 2000, J. Pendry extended this flat lens
to negative index material including evanescent waves, and concluded that it makes a perfect
lens with infinite resolution [54], beyond the diffraction limit. This perfect lens and the many
potential applications have been debated in the literature with intense discussions about the
infinite resolution and the underlying arguments [60–63], the divergence of the field [64], the
causality principle [64, 65], and even about the existence of negative index [65, 66]. The difficulty
comes from the presence of a singularity in the Green’s function and the solution of the time-
harmonic Maxwell’s equations at the frequency ω1 of the perfect −1 index, where the relative
permittivity and permeability take simultaneously the value −1: ε(ω1) = −ε0 and µ(ω1) = −µ0,
where ε0 andµ0 are respectively the permittivity and the permeability in vacuum. This singularity
is unusual since, in mathematics, it appears at the frequency ω1 which is an eigenvalue with
infinite degeneracy of the operator associated to the Maxwell’s equations [67], i.e. at a frequency
in the essential spectrum of Maxwell’s equations. In physics, the strategy may be to consider the
low absorption limit: a small absorption is introduced, e.g. ε(γ) = −ε0 + iγ and µ(γ) = −µ0 + iγ
with γ > 0, so that the time-harmonic Maxwell’s equations are well posed for γ > 0 [63], and
then the limit γ ↓ 0 is taken. However, the solution of time-harmonic Maxwell’s equations does
not converge when the absorption γ tends to zero. Therefore the low absorption limit fails in
the situation of the flat lens at the frequency ω1 of the perfect −1 index. In other words, one
can conclude that the solution to the time-harmonic Maxwell’s equations does not exist at the
frequency ω1 in the case of the perfect lens. Such situations where the time-harmonic Maxwell’s
equations have no solutions have been also uncountered with active (or gain) media [68–70].

The absence of solutions to the time-harmonic Maxwell’s equations generated difficulties to
analyze the behavior of the perfect flat lens, to the point of even questioning the possibility
and the existence of perfect negative index media. The solution to all these difficulties lies in
rigorously taking into account the frequency dispersion.

It has been noticed by V. Veselago in his seminal article [1] that the permittivity and the per-
meability must depend on frequency in negative index media. This requirement, which is a
consequence of the causality principle and the passivity, can be established from the general-
ized expression of the Kramers–Kronig relations [59, 67, 71, 72] corresponding to the Herglotz–
Nevanlinna representation theorem [73]. For a complex frequencyωwith positive imaginary part,
Imω> 0, this generalized Kramers–Kronig expression of the permittivity is [67]

ε(x ,ω) = ε0 −
∫
R

dν
σ(x ,ν)

ω2 −ν2 , σ(x ,ν) = Im
νε(x ,ν)

π
≥ 0, (2)

where the relation σ(x ,ν) ≥ 0 is a consequence of the passivity [67]. Notice that the quantity
σ(x ,ν) is a generalized function of ν and may contain Dirac contributions (for instance in the
non-aborptive case [67, 73]). This passivity requirement for real frequency ν can be extended
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to complex frequencies ω with positive imaginary part, since the imaginary part of the integral
multiplied by ω in the expression above is positive:

Imωε(x ,ω) ≥ Imωε0. (3)

Let ω1 be a real frequency at which the imaginary part of the permittivity vanishes. Then
σ(x ,ω1) = 0 and the integral in the expression

ω1ε(x ,ω1) =ω1ε0 −
∫
R

dν
σ(x ,ν)

ω1 −ν
, (4)

is well-defined and real. Considering the derivative of this equation and using thatσ(x ,ν) ≥ 0, the
following well-known inequality [1, 3] is obtained: if Imε(x ,ω1) = 0, then

Re
∂ωε

∂ω
(x ,ω1) ≥ ε0 ⇐⇒ Reε(x ,ω1) ≥ ε0 −Re

∂ε

∂ω
(x ,ω1). (5)

This inequality means that, if the permittivity ε(x ,ω1) takes at the frequency ω1 a real value
less than the vacuum permittivity ε0, then the derivative of the permittivity with respect to the
frequency cannot vanish at the frequency ω1. This corresponds precisely to the case of negative
index materials and, more generally, to the situations offered by metamaterials for which the
effective permittivity (and possibly the effective permeability) takes negative values or values
below ε0. Therefore, the frequency dispersion must be considered in negative index media and in
metamaterials (for instance for effective refractive index below unity, also called ultra-refraction).
Otherwise, the absence of frequency dispersion introduces contradictions with the causality
principle or the passivity requirement.

A canonical approach for frequency dispersion has been established in 1998 by A. Tip with
the auxiliary field formalism [71]. This formalism has been originally introduced to define
a proper frame for macroscopic Maxwell’s equations in absorptive and frequency dispersive
dieletric media, for their quantized version [71, 74], and for the generalization of the density of
states and the description of the atomic decay in absorptive and frequency dispersive structures
[71, 75]. This formalism is based on the introduction of auxiliary fields so that macroscopic
Maxwell’s equations can be written equivalently as a unitary time evolution equation involving
both electromagnetic and auxiliary fields: the new augmented system satisfies an overall energy
conservation and the frequency dependence of the permittivity is transferred to the auxiliary
fields. In other words, this general technique transforms a time-dependent and non self-adjoint
dissipative operator into a time-independent and self-adjoint augmented operator. In 2005,
A. Figotin and J. Schenker have shown that this auxiliary field formalism introduced by A. Tip
is precisely the unique minimal self-adjoint extension of the dissipative Maxwell’s equations
[76]. This canonical formalism has been extended to magnetodielectric materials in order to
describe frequency dispersive negative index materials [67]. It has been shown that the time
evolution of a system comprising a perfect −1 index material, i.e. with a frequency ω1 at which
ε(x ,ω1) = −ε0 and µ(x ,ω1) = −µ0 (for x in the −1 index material), is well-defined since the
electromagnetic energy remains finite at all times as soon as this is the case at the initial
time: hence the compatibility of the existence of perfect negative index materials with causality
principle and passivity has been unambiguously established using the canonical extension of
Maxwell’s equations [67].

In the case of the flat lens with perfect −1 index at the frequency ω1, the Green’s function
has a pole at the frequency ω1 [67, 77, 78] and the time-harmonic Maxwell’s equations has no
solution at the oscillating frequency ω1: the time-harmonic frame fails in the case of the flat lens
with perfect −1 index (or perfect negative index). However, according to the canonical frame
of the auxiliary field formalism, the solution to (time-dependent) Maxwell’s equations is well-
defined at all time if it is the response to an external current source [67] as in Figure 3. The long-
time behavior of such a solution can be considered for a current source turned on at an initial
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Figure 3. An external current source J (x , t ) swithed on at the intial time t = 0 and then
oscillating at the frequency ω1. This source is located at the vicinity of a plane interface
separating the vacuum from a medium with perfect −1 index at the frequency ω1.

Figure 4. The reponse of the external current source swithed on at the intial time t = 0
and then oscillating at the frequency ω1. The amplitude of the evanescent waves at the
plane interface separating the vacuum from the perfect −1 index medium (see right panel)
is linearly increasing with time (see left panel).

time and then oscillating with the operating frequency ω1 [67, 77, 78]. In the case of a single
plane interface separating a perfect −1 index medium and vacuum (“single interface” case), it
has been shown that the evanescent components of this time-dependent solution have their
amplitude increasing linearly with time [77–79], see Figure 4. Consequently, this solution does
not converge for long times to the solution to the corresponding time-harmonic problem: the
limiting amplitude principle is not valid in this case [79]. The situation is similar in the case
of the perfect flat lens (two plane interfaces delimiting a −1 index layer from vacuum, or “two
interfaces” case), leading to the conclusion that the image of a point source by the perfect −1 flat
lens is not a point image [77,78]. An analyzis based on the calculation of the spectral projector [79]
provided the complete characterization of the spectral properties in the “single interface” case. In
particular the presence of essential spectrum in Maxwell’s equations has been highligthed at the
−1 frequency ω1 which is an eigenvalue with infinite degeneracy [67, 79].

It turns out that the extraordinary property of the perfect −1 index and the induced phenom-
ena in the perfect flat lens are related to the presence of essential spectrum in Maxwell’s equa-
tions. Thus the complete characterization of the spectral properties of frequency dispersive and
negative index structures appears to be an important issue. For instance, a perfect corner reflec-
tor made of two orthogonal planes delimiting positive and negative index media makes a cavity
that traps light and where the density of states appears to be infinite [80–83]. This infinite density
of states has been related to the existence of an infinite number of modes at the −1 index fre-
quency [80,83], i.e. the −1 index frequency is also included in the essential spectrum as an eigen-
value with infinite degeneracy in this case of the perfect corner reflector. Next, further investi-
gations have shown that two dimensional Maxwell’s systems with corners delimiting a medium
with positive permittivity (e.g. vacuum) from a medium with negative permittivity (and—or—a
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Figure 5. Left: a two-dimensional corner structure of angle α delimiting a frequency dis-
persive medium of permittivity εd (ω). Right: the 2π-periodic one-dimensional layered
structure obtained after the change of variable r 7−→ u = ln(r /r0) and the assumption con-
sidering that the modes are localized in the vicinity of the corner.

negative permeability) bring up essential spectrum for an interval of negative values of the per-
mittivity around −ε0 (or around the permittivity ratio −1) [84–87]: for example, in the case of a 90
degrees corner, there is essential spectrum for the permittivity interval [−3ε0,−ε0/3]. This essen-
tial spectrum is associated with an analog of “black hole” phenomenon occurring in the vicinity
of a corner which behaves like an unbouded domain. Such unusual effect and spectral proper-
ties, originally reported in the case of the negative index perfect corner reflectors, appears to be
omnipresent in Maxwell’s systems with corners delimiting a frequency dispersive medium [88].
Indeed, let the permittivity εd (ω) of the frequency dispersive medium be given by the Drude–
Lorentz model:

εd (ω) = ε0 −ε0
Ω2

ω2 + iγω−ν2 , (6)

where Ω, ν and γ are positive real constants. Then, there always exists a complex frequency
ω1 at which εd (ω1) = −ε0: ω1 = −iγ/2±

√
ν2 +Ω2/2−γ2/4. And, for example, in the case of a

90 degrees corner, the permittivity interval [−3ε0,−ε0/3] is spanned for the following range of
complex frequencies[

− iγ/2±
√
ν2 +Ω2/4−γ2/4,−iγ/2±

√
ν2 +3Ω2/4−γ2/4

]
. (7)

If the permittivity is given by a more general expression, for instance a finite sum of Drude–
Lorentz contributions, then the number of segments in the complex plane of frequencies, gener-
ally curved, increases like the degree of the polynomials involved in the permittivity expression.
Hence the intervals of essential spectrum appear unavoidable in frequency dispersive systems
with corners.

The main arguments exhibiting the presence of essential spectrum can be the following [85]:
let α in ]0,2π[ be the angle of a two-dimensional corner filled with a dispersive mediumof
permittivity εd (ω) and x = (r,φ) the considered cylindrical coordinates (see Figure 5). The
permittivity of the system is independent of the radial variable r : ε(x ,ω) = ε(φ,ω), ε(φ,ω) = εd (ω)
for an azimuthal variableφ in [0,α] and ε(φ,ω) = ε0 forφ in [α,2π] . In the time-harmonic regime,
the magnetic field component H(r,φ,ω) of the transverse magnetic waves is the solution to the
Helmholtz equation

1

r

∂

∂r
r
∂H

∂r
+ ε

r 2

∂

∂φ

1

ε

∂H

∂φ
+ω2εµ0 H = 0, (8)
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where the dependence on (r,φ,ω) has been omitted. Then the change of variable r 7−→ u =
ln(r /r0) is performed in this Helmholtz equation (see Figure 5). The magnetic field component
H̃(u,φ,ω) = H(r0eu ,φ,ω) is now solution to

∂2H̃

∂2u
+ε ∂

∂φ

1

ε

∂H̃

∂φ
=−r 2

0 e2uω2εµ0 H̃ , (9)

where the dependence on (u,φ,ω) has been omitted. Assuming that the modes generated by the
corner are localized in the circle of radius r0, i.e. H̃(u,φ,ω) ≈ 0 for u positive, and choosing the
radius r0 small enough, then the right hand side in (9) can be neglected and set to zero. Next, a
Fourier decomposition H̃(u,φ,ω) 7−→ Ĥ(k,φ,ω) is applied, and the resulting equation is exactly
that for a periodic one-dimensional layered structure (see Figure 5):

ε
∂

∂φ

1

ε

∂Ĥ

∂φ
−k2Ĥ = 0. (10)

Hence, the existence of a mode 2π-periodic with respect to the azimuthal variable φ is subject to
the following condition [89]:

cosh[kα]cosh[k(2π−α)]+ 1

2

[
ε0

εd (ω)
+ εd (ω)

ε0

]
sinh[kα]sinh[k(2π−α)] = 1. (11)

For k = 0 the equality is achieved but the solution is trivial (constant) and yields vanishing electric
field. Hence the existence of a corner mode is subject to a solution for k 6= 0. The function on the
left hand side is made of two terms: the first term with the cosh functions starts from 1 at k = 0
and then is growing to +∞; thus the second term with the sinh functions must decrease towards
−∞, which requires a real negative value for εd (ω). Since the factor in front of the sinh functions
has absolute value greater than 1 (except in the case εd (ω) =−ε0 where it equals 1), the sum of the
two terms in the left hand side tends to −∞ for large values of k. Therefore, to obtain a solution
k 6= 0 to (11), it is enough that the second derivative at k = 0 of the function on the left hand side
be positive. This second derivative is

α(2π−α)

[
α

2π−α + 2π−α
α

+ ε0

εd (ω)
+ εd (ω)

ε0

]
, (12)

which is positive if and only if

εd (ω)

ε0
∈ [−Iα,−1/Iα], Iα = max

{
α

2π−α ,
2π−α
α

}
. (13)

Notice that, for α=π, i.e. when the corner becomes a plane interface, the number Iα = 1 and the
interval reduces to the point −1. In that case, one can check that the condition (11) is achieved
for all k if α=π and εd (ω) =−ε0. The radial dependence of the corner modes is given by

r 7−→ exp[ik lnr /r0] (14)

which is oscillating with spatial frequency tending to infinity when r −→ 0. As a result, the electric
field, deduced from the derivative, has a singularity like 1/r and then is not square integrable,
i.e. is not finite energy. This behavior, represented on Figure 6, is different from the previous
results reported in the textbooks [90] where only dielectric materials with positive permittivity
and conducting materials have been considered, leading to the strongest singularity in 1/

p
r and

to finite energy fields [90, Sections 5.2, 5.3 and 9.7.5]. In the present case of negative permittivity,
the corner modes have infinite energy and are then “generalized eigenvectors” associated with
the essential spectrum corresponding to the frequencies ω such that the ratio εd (ω)/ε0 is in the
interval [−Iα,−1/Iα] [88]. The radial dependence of these corner modes, with oscillations with
spatial period tending to zero, makes an analog of “black hole” phenomenon occuring at the
corner (see Figure 6). Indeed, the modes appear to propagate infinitely slowly and to accumulate
energy when approaching the corner as if they were trapped by the corner which would behave
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Figure 6. Left: the radial dependence of the electric field of a corner mode with amplitude
increasing like 1/r and spatial frequency tending to infinity like ln(1/r ) when r −→ 0. Right:
a representation of the electric field of a corner mode at the vicinity of the corner.

like a semi-infinite open space. Finally, notice that it can be shown that there is no essential
spectrum associated with the corner of angle α outside the interval [−Iα,−1/Iα] using a “T-
coercivity” argument [84–87].

This new and extraordinary behavior of corner modes exhibited in systems with negative
permittivity (and—or—negative permeability) raises numerous challenging questions in applied
mathematics (e.g. three-dimensional corners [81]), in physics with the analog of “black hole” phe-
nomenon and in numerical modelling. In particular, it is stressed that the presence of the essen-
tial spectrum implies difficulties in the computation of modes of dispersive structures, with the
lack of convergence in a frequency domain around the essential spectrum where the permittiv-
ity takes real negative values [91–93]. This unavoidable perturbation of numerical computation
represents a challenging task in the method of quasi-normal modes expansion [92,93]. The intro-
duction of perfectly matched layers at the corners [94] could be a promising way to address this
task.

The perfect flat lens [54] and its generalization such as the perfect corner reflector [80, 82, 83]
highlighted situations where, at the perfect −1 index frequency ω1, the frame of the time-
harmonic Maxwell’s equations has no solutions and thus appears inappropriate to describe
the behavior of electromagnetic waves. Such In addition, the presence of essential spectrum
has been identified at the perfect −1 index frequency ω1 which is an eigenvalue with infinite
degeneracy for the perfect flat lens and corner reflector. Recently, it has been shown that more
conventional structures like frequency dispersive corners also display essential spectrum [84–87]
for a whole interval of frequencies for which there is no solution to the time-harmonic Maxwell’s
equations. However, it has been shown that the auxiliary field formalism introduced by A. Tip
[71] provides a canonical approach for all these extraordinary situations with perfect negative
index [67], metamaterials and negative permittivity where the frequency dispersion plays a vital
role. In particular, it is stressed that this auxiliary field formalism offers the possibility to analyze
rigorously a negative permittivity corner which makes an analog of “black hole” phenomenon.

4. Spatial dispersion and the imaginary part of the effective permeability

The modelling of metamaterials and negative index materials highlighted the role of spatial
dispersion (or non-locality) [29–32, 35, 42, 46, 47] in composites displaying effective permeability.
It makes sense since, in usual bulk materials, the magnetic properties can be derived from the
electric permittivity tensor ε(k ,ω) depending on the frequencyω and the wave vector k [3,35,95].
Indeed, consider the Maxwell’s equations in a homogeneous and isotropic magnetodielectric
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medium with permittivity ε(ω) and permeability µ(ω). For monochromatic plane-waves with
space-time dependence in exp[i(k · x −ωt )] these equations become

k ×E =ωµ(ω)H , k ×H =−ωε(ω)E , (15)

and, after eliminating the field H ,

k × 1

ωµ(ω)
k ×E +ωε(ω)E = 0. (16)

This last equation can be written

k × 1

ωµ0
k ×E +k ×

[
1

ωµ(ω)
− 1

ωµ0

]
k ×E +ωε(ω)E = 0. (17)

Thus, defining the dielectric tensor

ωε(k ,ω) =ωε(ω)−
[

1

ωµ(ω)
− 1

ωµ0

](
k2 −kk

)
, (18)

where k2 = k · k and kk is the rank-two tensor acting as kk ·E = (k ·E )k , the Equation (16) is
equivalent to

k × 1

ωµ0
k ×E +ωε(k ,ω) ·E = 0 (19)

for isotropic permeability µ(ω). Hence a magnetodielectric medium can be described by only
the electric permittivity tensor ε(k ,ω). Conversely, the permeability µ(ω) can be derived from
the permittivity tensor. Let Plg and Ptr = 1−Plg be the orthogonal projections on the subspaces
parallel (or longitudinal) and perpendicular (or transverse) to the vector k :

Plg =
kk

k2 , Ptr = 1− kk

k2 . (20)

For isotropic permittivity ε(ω) and permeability µ(ω), the permittivity tensor (18) can be decom-
posed on these subspaces

ε(k ,ω) = εlg(k ,ω)Plg +εtr(k ,ω)Ptr, (21)

where εlg(k ,ω) = ε(ω) and εtr(k ,ω) = ε(ω)−[1/µ(ω)−1/µ0]k2/ω2 are the longitunal and transverse
components of the tensor. Hence, the permeability can be retrieved from the permittivity tensor
according to the well-known relation [3, 35]

1

ωµ(ω)
= 1

ωµ0
+ lim

k→0

ωεlg(k ,ω)−ωεtr(k ,ω)

k2 . (22)

Notice that this relation between the permeability and the permittivity tensor with spatial disper-
sion is established for bulk infinite media which are not delimited by boundaries.

Although the two descriptions of magnetodielectric media seem to be equivalent, the intro-
duction of spatial dispersion and the gathering, in the permittivity tensor, of all the magnetic
and dielectric properties of the materials, break the symmetry between the fields E and H in the
Maxwell’s equations. However, the symmetry between these fields and between the permittivity
and permeability is widely used in textbooks of classical electrodynamics [3, 33, 90]. In particu-
lar, the Kramers–Kronig relations and the passivity requirement for the permittivity are gener-
ally also considered as valid for the permeability: for instance, it is generally considered that the
imaginary of permittivity is positive [3, Section 80], Imµ(ω) ≥ 0, which becomes for all frequency
ω with positive imaginary part

Imωµ(ω) ≥ Imωµ0. (23)

Nevertheless, it turns out that the behaviors of the permittivity and the permeability are different
in the static regime [3, 33]: unlike the static permittivity ε(0) (i.e. ε(ω) at the limit ω→ 0), which
always takes real value greater than ε0, the static permeability µ(0) (i.e. µ(ω) at the limit ω→ 0)
can take real values either greater (paramagnetic media) or less (diamagnetic media) than µ0.
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This alternative for the static permeability seems in contradiction with the causality principle
and the passivity. Indeed, the generalized Kramers–Kronig relation (4) applied to the permeability
implies

µ(0) =µ0 + 2

π

∫ ∞

0
dν

Imµ(ν)

ν
, (24)

which requires for µ(0) to be greater than µ0 if Imµ(ω) ≥ 0 for all positive real frequencyω [48]. In
the textbook [3], this contradiction is explained by the frequency range where the macroscopic
magnetic permeability makes sense, which is limited to the relatively low frequencies. Conse-
quently, it is specified in [3, Section 82] that the Kramers–Kronig relations like (4) and (24) must
be modified for the magnetic permeability. Hence the requirement on the imaginary part of the
permeability, Imµ(ω) ≥ 0, has been confirmed in reference [3].

The introduction of metamaterials and negative index materials with effective permeability
led to revisit these statements. Indeed, it has been found that the effective parameters of meta-
materials present anomalous dispersion: in [96], “the resonant behavior of the effective magnetic
permeability is accompanied by an antiresonant behavior of the effective permittivity” and “the
imaginary parts of the effective permittivity and permeability are opposite in sign”. These numer-
ical results first generated some controversy [97, 98], but next the anomalous dispersion and the
possibility for negative imaginary part of the effective permeability have been confirmed by sev-
eral studies, which generated a series of investigations. For instance, fundamental questions on
the Poynting vector and the energy have been adressed [48,49], the validity of the Kramers–Kronig
relations for the magnetic permeability has been examined [51], the validity of the causality prin-
ciple and the physical meanining of the metamaterials constitutive parameters has been ana-
lyzed [50, 52].

Hereafter, the objective is to bring arguments supporting that the imaginary part of the
magnetic permeability µ(ω) in passive media can take both positive and negative values, i.e.
that the relation (23) is not valid. In contrast, these arguments support that the Kramers–Kronig
relations make sense for the permeability. Since these claims are in contradiction with the
electrodynamics based on the symmetry between, in one hand, the electric field E and the
permittivity ε(ω) and, in the other hand, the magnetic induction field H and the permeability
µ(ω), the description with the dielectric tensor ε(k ,ω) and spatial dispersion is considered.

First, a simple model with spatial dispersion is considered, the hydrodynamical model [99,
100], with the permittivity tensor expression

ε(k ,ω) = ε0 −ε0
Ω2

ω2 + iωγ−ω2
0 − v2k2

Plg −ε0
Ω2

ω2 + iωγ−ω2
0

Ptr. (25)

Using the relation (22), it is possible to define from this model the magnetic permeability

1

ωµ(ω)
= 1

ωµ0
−ωε0

Ω2v2

(ω2 + iωγ−ω2
0)2

, (26)

and to obtain for the imaginary part at real frequency

Im
1

ωµ(ω)
= ε0

2γΩ2v2ω2(ω2 −ω2
0)

[(ω2 −ω2
0)2 +ω2γ2]2

. (27)

This result clearly shows that the imaginary part of the obtained permeability can take both
positive and negative values, depending on ω2 is smaller or larger than ω2

0. In addition, from the
expression (26) of the permeability, the following identity, similar to the relation (24), is derived∫ ∞

0
dν Im

1

νµ(ν)
= π

2

[
1

µ(0)
− 1

µ0

]
= 0, (28)

where it has been used that µ(0) = µ0 to obtain that the integral vanishes. This last identity
confirms that the imaginary part of the permeability must take positive and negative values.

C. R. Physique, 2020, 21, n 4-5, 343-366



356 Boris Gralak

The same results can be obtained starting from a general permittivity tensor ε(k ,ω), provided
the asymptotic behavior at large complex frequencies with positive imaginary part,

ε(k ,ω) −→
|ω|→∞

ε0 − Ω
2

ω2 , (29)

is independent of the wave vector k [101]. In combination with the analytic properties of the per-
mittivity in the half plane of complex frequencies with positive imaginray parts, this asymptotic
behavior implies the identity, or sum rule,∫ ∞

0
dν Imνε(k ,ν) = πΩ2

2
, (30)

also independent of the wave vector k [101, 102]. Since the permeability (22) is defined from the
term quadratic in k in the tensor ε(k ,ω), its imaginary part must be subject to [101, 102]∫ ∞

0
dν Im

1

νµ(ν)
= 0. (31)

Thus, starting from a general permittivity tensor, it can be shown that the imaginary part of the
permeability must take positive and negative values. It is stressed that these last arguments,
implying that µ(0) = µ0, exclude the existence of media with magnetic properties in the static
regime, i.e. with µ(0) 6= µ0. This limitation can be however overtaken considering a permittivity
tensor ε(k ,ω) with an essential singularity at the point (k ,ω) = (0,0) [101]. A simple example is
the hydrodynamical Drude model, i.e. the expression (25) with ω0 set to 0, which leads to the
permeability

1

µ(ω)
= 1

µ0
−ε0

Ω2v2

(ω+ iγ)2 , (32)

corresponding to a diamagnetic medium with µ(0) < µ0. Notice that, in that case, the imaginary
part of ω 7−→ ωµ(ω) is negative for all real frequency ω, i.e. its sign does not change. A param-
agnetic medium could be obtained by inverting the (k ,ω)-dependence of the longitudinal and
transverse components of the permittivity tensor in the expression (25). In addition, it is stressed
that another possibility to overpass the limitation (31) may be to consider an asymptotic behavior
different from the one (29) considered in [101].

The possibility for the imaginary part of the permeability to take positive and negative values
is now investigated through the effective permeability of a composite medium. Here, a stack
of non-magnetic homogeneous layers is considered. Indeed, the simplicity of such a structure
makes it possible to define exactely, using the retrieval method, an effective permeability for all
frequencies and wave vectors. In addition, it has been shown that the effective parameters of a
multilayered structure present the suitable properties to ensure the causality principle and the
passivity requirement [53]. Hence, this composite medium is a good candidate to investigate the
sign of the imaginary part of the effective permeability.

A stack of non-magnetic homogeneous layers of total thickness h with a plane of symmetry at
mid-height is considered (see left panel in Figure 7). The space variable in the stacking direction
is denoted by x. The multilayered structure is located between the planes x = −h and x = 0
and is described by the frequency dispersive and isotropic permittivity ε(x,ω), the magnetic
permeability being set to the permeability of vacuum µ0. Outside the multilayered structure,
i.e. for x < −h and x > 0, the permittivity is set to ε0. In practice, ε(x,ω) is piecewise constant
with respect to z and, according to the symmetry of the structure, ε(−x,ω) = ε(x − h,ω). The
structure (and the permittivity) is invariant under translations in the plane parallel to the layers
and thus a two-dimensional Fourier decomposition is performed in these tangential directions:
the two-component wave vector resulting from this Fourier decomposition is denoted by k∥
and k∥ = √

k∥ ·k∥ is its norm. Then, the time-harmonic Maxwell’s equations become a set of
two independent scalar equations for the electric and magnetic fields components orthogonal
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Figure 7. Left: the considered multilayered structure with a plane of symmetry described
by the frequency dependent and isotropic permittivity ε(x,ω). Right: the equivalent effec-
tive medium described by the effective permittivity εeff(k∥,ω) and permeability µeff(k∥,ω).

to both k∥ and the stacking direction. Let U e (x,k∥,ω) and U m(x,k∥,ω) be these components of
the electric and magnetic fields: for w = e,m, the Maxwell’s equations take the form

∂

∂x

1

ξw (x,ω)

∂

∂x
U w (x,k∥,ω)+

ω2µ0ε(x,ω)−k2
∥

ξw (x,ω)
U w (x,k∥,ω) = 0, (33)

where ξe (x,ω) = µ0 and ξm(x,ω) = ε(x,ω). The solutions to these equations can be determined
from the 2×2 transfer matrices T e (k∥,ω) and T m(k∥,ω) relating the values of the fields’ tengential
components parallel to the layers at the planes x = 0 and x =−h [41,53]. For w = e,m, the general
expression of these transfer matrices is [53]

T w (k∥,ω) =
[

Aw (k∥,ω) B w (k∥,ω)
C w (k∥,ω) Aw (k∥,ω)

]
, (34)

where the coefficents are analytic functions in the half plane of complex frequencies ω with
positive imaginary part and are related by the identity

Aw (k∥,ω)2 −B w (k∥,ω)C w (k∥,ω) = 1. (35)

Each transfer matrix T e (k∥,ω) and T m(k∥,ω) is thus determined by two independent parameters.
In particular, defining, for w = e,m,

kw
⊥ (k∥,ω) = 1

ih
ln

[
Aw (k∥,ω)+ i

√
1− Aw (k∥,ω)2

]
,

X w (k∥,ω) =
√

B w (k∥,ω)

C w (k∥,ω)
,

(36)

the transfer matrices (34) can be equivalently expressed as

T w (k∥,ω) =
[

cos
[
kw
⊥ (k∥,ω)h

]
isin

[
kw
⊥ (k∥,ω)h

]
X w (k∥,ω)

isin
[
kw
⊥ (k∥,ω)h

]
/X w (k∥,ω) cos

[
kw
⊥ (k∥,ω)h

]] . (37)

It is stressed that the imaginary part of the parameter kw
⊥ (k∥,ω) cannot vanish for frequencies

ω with postive imaginary part [53], otherwise this would allow the existence of Bloch modes in
the one-dimensional system resulting from the periodic stacking of the multilayered structure
[53, 103]. The sign of the imaginary part of kw

⊥ (k∥,ω) can be chosen positive, i.e.

Imω> 0 =⇒ Imkw
⊥ (k∥,ω) > 0, (38)

which fix the sign of the square root in the definition (36) of the second parameter X w (k∥,ω).
This remarkable property (38) ensures that the definition (36) preserves in the domain Imω > 0
the analytic property of the parameters kw

⊥ (k∥,ω) and X w (k∥,ω) since Aw (k∥,ω) cannot take the
values ±1 and B w (k∥,ω) and C w (k∥,ω) cannot vanish.
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The transfer matrices and thus the four independent parameters kw
⊥ (k∥,ω) and X w (k∥,ω)

fully determine the solution to Maxwell’s equations outside the multilayered structure. For in-
stance, the fields reflected and transmitted by the multilayered structure can be expressed from
these four parameters. Thus, these parameters can be used to define an homogeneous effec-
tive medium that will lead to the same solutions to Maxwell’s equations outside the multilay-
ered structure. Notice that this procedure corresponds to the retrieval method [28, 29]. The ho-
mogeneous effective medium must be described by four effective parameters with the (k∥,ω)-
dependence. According to the symmetry of the structure, let εeff(k∥,ω) and µeff(k∥,ω) be the ef-
fective anisotropic permittivity and permeability defined by, for w = e,m,

ξw
eff(k∥,ω) =

ξ
w
∥ (k∥,ω) 0 0

0 ξw
∥ (k∥,ω) 0

0 0 ξw
⊥ (k∥,ω)

 , ξe =µ, ξm = ε, (39)

where ξw
∥ (k∥,ω) are the components in the plane parallel to the layers and ξw

⊥ (k∥,ω) are the
components in the stacking direction. In this effective medium, the Maxwell’s equations for the
components U e (x,k∥,ω) and U m(x,k∥,ω) of the electric and magnetic fields become

∂2

∂x2 U w (x,k∥,ω)+
[
ω2µ∥(k∥,ω)ε∥(k∥,ω)−k2

∥
ξw
∥ (k∥,ω)

ξw
⊥ (k∥,ω)

]
U w (x,k∥,ω) = 0, (40)

where ξe =µ and ξm = ε. The transfer matrices T e
eff(k∥,ω) and T m

eff(k∥,ω) corresponding to a layer
of the effective medium with thickness h are, for w = e,m,

T w
eff(k∥,ω) =

[
cos

[
kw

eff(k∥,ω)h
]

isin
[
kw

eff(k∥,ω)h
]

X w
eff(k∥,ω)

isin
[
kw

eff(k∥,ω)h
]
/X w

eff(k∥,ω) cos
[
kw

eff(k∥,ω)h
]] , (41)

where
kw

eff(k∥,ω) =
√
ω2µ∥(k∥,ω)ε∥(k∥,ω)−k2

∥ξ
w
∥ (k∥,ω)/ξw

⊥ (k∥,ω),

X w
eff(k∥,ω) =ωξw

∥ (k∥,ω)/kw
eff(k∥,ω).

(42)

As a final step, the identification of the transfer matrices of the multilayered structure with the
ones of the effective medium provides the four equations kw

eff(k∥,ω) = kw
⊥ (k∥,ω) and X w

eff(k∥,ω) =
X w (k∥,ω), with w = e,m. These four equations define the following components of the effective
permittivity and permeability:

ωε∥(k∥,ω) = km
⊥ (k∥,ω)X m(k∥,ω),

1

ωε⊥(k∥,ω)
= ke

⊥(k∥,ω)X e (k∥,ω)−km
⊥ (k∥,ω)/X m(k∥,ω)

k2
∥

,

ωµ∥(k∥,ω) = ke
⊥(k∥,ω)X e (k∥,ω),

1

ωµ⊥(k∥,ω)
= km

⊥ (k∥,ω)X m(k∥,ω)−ke
⊥(k∥,ω)/X e (k∥,ω)

k2
∥

.

(43)

The components µ∥(k∥,ω) and µ⊥(k∥,ω) of the effective permeability µeff(k∥,ω) have been de-
fined for a non vanishing parallel wave vector k∥ while the definition (22) is at the limit k −→ 0.
However, it is possible to define a permeability depending upon the wave vector as [101]

1

ωµ(k ,ω)
= 1

ωµ0
+ ωεlg(k ,ω)−ωεtr(k ,ω)

k2 , (44)

which preserves the equivalence of the descriptions of an isotropic medium by ε(ω) andµ(ω) and
by the permittivity tensor ε(k ,ω) with expression (18).

It is stressed that the four functions ε∥(k∥,ω), 1/ε⊥(k∥,ω), µ∥(k∥,ω) and 1/µ⊥(k∥,ω) defining
the effective parameters, are analytic with respect to the frequency ω in the upper half complex
plane of ω with positive imaginary part. This is a consequence of the analytic properties of the
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parameters kw
⊥ (k∥,ω) and X w (k∥,ω) which follow from the relation (38). Also, for the parameters

1/ε⊥(k∥,ω) and 1/µ⊥(k∥,ω) the numerators vanish when k∥ −→ 0 since in that case the solutions
of two equations for e and m waves are identical, which implies ke

⊥(0,ω) = km
⊥ (0,ω) and X e (0,ω) =

1/X m(0,ω). Hence the effective parameters have the analytic properties required by the causality
principle and the derivation of the Kramers–Kronig relations.

The consequences of the passivity on the effective parameters should be derived from the
relation Imωε(x,ω) ≥ Imωε0. Let the multilayered structure be periodically stacked so that it fills
all the semi-infinite space x < 0: ε(x,ω) = ε(x −h,ω) for x < 0 and ε(x,ω) = ε0 for x > 0. Let e⊥ be
the unit vector in the stacking direction x and ∇(k∥) the differential operator (ik∥+e⊥∂/∂x) after
the Fourier decomposition in the plane parallel to the layers. After the Fourier decomposition,
the Helmhotz operator H(ω) for the multilayered stack is

H(k∥,ω)E (x) =−∇(k∥)× 1

ωµ0
∇(k∥)×E (x)+ωε(x,ω)E (x), (45)

where the (k∥,ω)-dependence of the electric field has been omitted. Let Heff(k∥,ω) be the
Helmhotz operator of the effective structure which coincides with (45) except for the domain
x < 0 where ε(x,ω) and µ0 are replaced by εeff(k∥,ω) and µeff(k∥,ω). An electromagnetic source
J (x) outside the composite is considered, i.e. J (x) = 0 if x < 0. The electric field generated by this
source in presence of the multilayered structure is the solution to

H(k∥,ω)E (x) = J (x), (46)

and the electric field generated by this source in presence of the effective structure is the solution
to

Heff(k∥,ω)E eff(x) = J (x). (47)

The two electric fields are identical outside the multilayered structure: E (x) = E eff(x) if x > 0.
Thus, defining the inner product by 〈

E , J
〉= ∫

R
dx E (x) · J (x), (48)

the identity
〈

E eff, J
〉= 〈

E , J
〉

holds for all source J (x) vanishing for x < 0, and takes the form〈
E eff, Heff(k∥,ω)E eff

〉= 〈
E , H(k∥,ω)E

〉
. (49)

Notice that the integrals are well-defined as soon as the imaginary part of the frequency is strictly
positive: Imω > 0. In order to take the limit Imω −→ 0, it is assumed that there is a material in
the multilayered stack with absorption, i.e. Imωε(x,ω) > 0 at some x < 0. Then, considering the
imaginary part, the identity (49) implies for real frequencies ω

Im
〈

E eff, Heff(k∥,ω)E eff
〉= 〈

E , Imωε(ω)E
〉> 0. (50)

Notice that the integrals over x in this relation (50) reduce to the domain x < 0. Let P e and
P m = 1−P e be the orthogonal projections on the electric and magnetic waves:

P e = 1− k∥k∥
k2
∥

−e⊥e⊥, P m = k∥k∥
k2
∥

+e⊥e⊥, (51)

where the rank-two tensors act as k∥k∥ ·E = (k∥ ·E )k∥ and e⊥e⊥ ·E = (e⊥ ·E )e⊥. For x < 0 the
electric field E eff(x) is the solution to Heff(k∥,ω)E eff(x) = 0 and thus, for w = e,m,

∇(k∥)×P w ·E eff(x) = ik w×E eff(x), k w = k∥−kw
⊥ (k∥,ω)e⊥, (52)

where the (k∥,ω)-dependence of the vectors k w (k∥,ω) is omitted. Notice that the minus sign in
front of the component along e⊥ has been chosen according to the condition (38) in order to
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ensure the exponential decrease of the transmitted field at the limit x −→−∞. Hence, for x < 0, it
is obtained

Heff(k∥,ω)E eff(x) = ωεeff(k∥,ω)E eff(x)

+ke× 1

ωµeff(k∥,ω)
ke×P e ·E eff(x)

+km× 1

ωµeff(k∥,ω)
km×P m ·E eff(x). (53)

Considering, for w = e,m, the operation k w× as a rank-two antisymmetric tensor, the relation
(50) implies that the rank-two tensor

ωεeff(k∥,ω)+ke× 1

ωµeff(k∥,ω)
ke×P e +km× 1

ωµeff(k∥,ω)
km×P m (54)

has positive imaginary part. Since P m ·km = km and P e ·km = 0, the contraction of the tensor
above by km and its complex conjugate k

m
provides the relation

Imωk
m ·εeff(k∥,ω) ·km = k2

∥ Imωε∥(k∥,ω)+|km
⊥ |2 Imωε⊥(k∥,ω) > 0. (55)

Thus a condition forcing the imaginary part of the effective permittivity components to be
positive is obtained. On the other hand, there is no condition on the imaginary part of the
effective permeability. Indeed, some arguments lead to the conclusion that the imaginary part
of the effective permeability ωµeff(k∥,ω) must take positive and negative values.

As pointed out when it has been defined (43), the inverse effective permeability 1/µeff(k∥,ω)
is an analytic function in the upper half plane of complex frequencies ω with positive imaginary
part (notice thatωµ∥(k∥,ω) cannot vanish as well as ke

⊥(k∥,ω) and X e (k∥,ω)). This follows from the
analytic properties of the permittivity ε(x,ω) of the multilayered structure and the contruction
of the effective parameters. In addition, since the permittivity ε(x,ω) tends to that of vacuum
ε0 when |ω| →∞, all the effective parameters tend as well to ε0 and µ0. Hence the relation (24)
deduced from the Kramers–Kronig relations is true for the inverse effective permeability at k∥ = 0:

1

µeff(0,0)
= 1

µ0
+ 2

π

∫ ∞

0
dν Im

1

νµeff(0,ν)
. (56)

And, more generally, the same relation is obtained when the wave vector k∥ is set to k2
∥ =

ω2ε0µ0u2
∥ with u2

∥ < 1, which corresponds to an excitation at a fixed angle. Next, it is used that the
quasistatic limit providesµeff(0,0) =µ0 since the starting multilayered structure is non-magnetic:
the relation (56) becomes ∫ ∞

0
dν Im

1

νµeff(0,ν)
= 0. (57)

Hence it can be concluded that the imaginary part of the effective permeability µeff(0,ν) must
take positive and negative values. Notice that, if the permittivity ε(x,ω) of the multilayered
structure is well-defined for all frequency ω, then the inverse effective permeability 1/µeff(k∥,ω)
is also exactely and well-defined for all frequency ω. Thus, in the present case, contrary to the
situation described in [3, Section 82], the Kramers–Kronig relations and the integrals (56) and
(57) make sense.

Finally, it can be checked that the Kramers–Kronig relations and the resulting sum rules
are consistent for the effective permittivity. According to the analytic properties of the inverse
effective permittivity, the relation (56) is true for εeff(k∥,ω):

1

εeff(0,0)
= 1

µ0
+ 2

π

∫ ∞

0
dν Im

1

νεeff(0,ν)
. (58)
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The value of the effective permittivity of the multilayered structure at the quasistatic limit is given
by [34]

ε∥(0,0) =
∫ 0

−h
dx ε(x,0),

1

ε⊥(0,0)
=

∫ 0

−h
dx

1

ε(x,0)
. (59)

Since the permittivity of the multilayered structure takes real values greater ε0 at the static limit
[3], then this is also the case for the effective permittivity: ε∥(0,0) > ε0 and ε⊥(0,0) > ε0. These
relations are consistent with the sum rule (59) and the condition (55) on the imaginary part of the
effective permittivity.

These arguments confirm the lack of symmetry between the permittivity ε(ω) and the perme-
ability µ(ω). In that case it is relevant to consider the Maxwell’s equations with spatial disper-
sion. In this article, the exact and explicit expression of the effective parameters of a multilay-
ered structure has been derived for all the frequencies ω and wave vector k∥. According to (53),
the expression of the corresponding effective permittivity tensor with spatial dispersion takes the
form

ωε
eff

(k ,ω) =ωEeff(k ,ω)+k ×
[

1

ωUeff(k ,ω)
− 1

ωµ0

]
k×, (60)

where the “permittivity part” Eeff(k ,ω) and the “permeability part” Ueff(k ,ω) should be expressed
from εeff(k∥,ω) and µeff(k∥,ω). The coefficients of the tensor ε

eff
(k ,ω) depending on (k ,ω) are

different from the effective parameters depending on (k∥,ω) in the rank-two tensor (54) because
they do not take into account the dispersion laws for w = e,m: k(ω) = k∥±kw

⊥ (k∥,ω)e⊥. Thus the
following functions are introduced for w = e,m:

K w (k,ω) =
√

k2 −kw
⊥ (k∥,ω)2, (61)

where the sign of the square root will not play a role since all the coefficients and parameters used
here depend on the square of k∥ (the starting equations (33) and (40) depend on k2

∥ ). Defining the
“permittivity part” as

Eeff(k ,ω) = εeff(K e (k,ω),ω)P e +εeff(K m(k,ω),ω)P m , (62)

it is obtained for w = e,m that K w (k,ω) equals k∥ and Eeff(k ,ω)P w equals εeff(k∥,ω)P w when
the dispersion law is complied at k(ω) = k∥ ± kw

⊥ (k∥,ω)e⊥. Similarly, using that the rank-two
antisymmetric tensor k× acting on P m gives P e acting on k×, the “permeability part” of the
tensor can be defined as

Ueff(k ,ω) =µeff(K e (k,ω),ω)P m +µeff(K m(k,ω),ω)P e . (63)

Notice that the projections P e and P m , defined by (51), depend on the vector k∥ and, conse-
quently, the “permittivity part” Eeff(k ,ω) and the “permeability part” Ueff(k ,ω) depend on the
vector k although the effective parameters only depend on the norm k∥. Finally, substituing the
expressions (62) and (63) in (60), the effective permittivity tensor is given by

ωε
eff

(k ,ω) =ωεe
eff

(k ,ω)P e +ωεm
eff

(k ,ω)P m , (64)

where, for w = e,m,

ωεw
eff

(k ,ω) =ωεeff(K w (k,ω),ω) +k ×
[

1

ωµeff(K w (k,ω),ω)
− 1

ωµ0

]
k × . (65)

Hence the effective permittivity tensor ε
eff

(k ,ω) has been constructed for all frequency ω

and wave vector k . This exact and explicit expression of an anisotropic permittivity tensor
with spatial dispersion could be the starting point of further investigations on spatial disper-
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sion in macroscopic electromagnetism. As a first result, it has been shown that the imaginary
part of the effective permeability of a passive multilayered structure must take positive and
negative values.

5. Conclusion

The advent of negative index materials opened questions that have tested the domain of valid-
ity of macroscopic electromagnetism. The existence of a negative index of refraction appeared as
unreachable during more than 30 years until the introduction of microstructured resonant media
and metamaterials. Then, considerable progress has been made in the engineering and the de-
sign of microstructured media reporting extraordinary properties. In this article, several mech-
anisms leading to negative index and negative refraction have been briefly reviewed: the origi-
nal ideas developed by J. Pendry and his colleagues with the design of microstructured metallic
media displaying electric and magnetic resonances; the exploitation of the richness of the dis-
persion law in dielectric photonic crystals to obtain negative refraction; and the development
of numerous non-asymptotic homogenization techniques and effective medium modellings for
composite media. All these advances over the last twenty years are now particularly exploited in
the design of metasurfaces [104, 105] and topological insulators [106, 107]. They have also been
extended to other classical waves equations in acoustics, mechanics and hydrodynamics [108].

Then, it has been seen how the extraordinary properties of negative index materials and
metamaterials must be associated with frequency dispersion and spatial dispersion. In addition,
it has been shown that the time-harmonic Maxwell’s equations cannot describe properly systems
like the perfect negative index flat lens or corner reflector. On the other hand, the introduction
of the auxiliary field formalism provides a canonical approach to describe frequency dispersive
negative index structures. It has been shown that the spectacular effects in the perfect flat
lens and corner reflector are associated to the presence, at the prefect −1 index frequency,
of essential spectrum in the Maxwell’s equations. More generally, the presence of intervals of
essential spectrum has been highligthed in corner structures at frequencies where frequency
dispersive permittivity takes negative values. This essential spectrum generated by the corner is
associated with an analog of “black hole” phenomenon, the corner behaving like an unbounded
domain. This raises challenging and fascinating questions in applied mathematics (e.g. in the
case of three-dimensional corners), in physics with the analog of “black hole” phenomenon and
in numerical modelling for the computation of modes of dispersive structure (e.g. in the quasi-
normal modes expansion). In particular, the canonical formalism for dissipative and frequency
dispersive Maxwell’s equations, the auxiliary fields formalism, offers the opportunity to analyze
rigorously an analog of “black hole” phenomenon.

In the last section, it has been shown how the effective permittivity, which has been intensively
analyzed for negative index materials and metamaterials, highlighted ambiguities in the passiv-
ity requirement and Kramers–Kronig relations for the permeability. In this article, several argu-
ments have been reported to support that, in a passive medium, the imaginary part of the per-
meability can take positive and negative values. This statement is in contradiction with the usual
presentation of macroscopic electromagnetism where the permittivity and the permeability are
introduced in a symmetric way, and thus in passive media both have positive imaginary part. The
approach considered here was to define the permeability from the permittivity with spatial dis-
persion, which breaks the symmetry between the permittivity and the permeability. The effective
permeability of a passive and non-magnetic multilayered structure has been derived exactly for
all frequency and wave vector: in that case, it has been shown that the effective permeability is
subject to the Kramers–Kronig relations and has imaginary part taking positive and negative val-
ues. In addition, the full effective anisotropic permittivity tensor with spatial dispersion has been
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derived explicitely for all frequency and wave vector and could be the starting point of further
investigations on spatial dispersion in macroscopic electromagnetism.
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