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Abstract. In this work, we propose a comparative study of fatigue assessment of artificial surface defects
based on affected depth (AD). The defect is assumed to be a void (semi-spherical, elliptical, or circumferential
notches) on the surface of a material subjected to fatigue loading.

An elastic–plastic model of Chaboche is implanted in Abaqus to simulate the cyclic Finite Element (FE)
calculations.

The AD model is exploited with Crossland, Dang Van, and Papadopoulos fatigue criteria to determine
Kitagawa diagrams. The experimental data of the defective material C35 steel are used for model validation
and comparison. The proposed comparative study of fatigue assessment provides interesting results.
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1. Introduction

Various studies have aimed to provide different methods to predict the fatigue limit of notched
material.

Benedetti et al. [1] used the Theory of Critical Distances (TCD) combined with the multiaxial
fatigue criterion to predict the notch fatigue strength of ductile cast iron.

Different multiaxial criteria were adopted and combined with the TCD approach [2] to ac-
count for the notch sensitivity of the material. A comparative study showed that the Carpinteri
criterion leads to a better fatigue prediction, considering different critical TCD lengths under
Mode I and Mode III loads.

Endo and Yanase [3] suggested a method to assess the lower bound of the fatigue limit of duc-
tile cast iron under combined loading. This approach evaluated the influence of microstructural
inhomogeneities (graphite and small casting defects) and the multiaxial loading conditions on
the fatigue strength.

Murakami [4] defined the defect size parameter, named
p

area, to interpret the influence of
the geometry defect on the fatigue life of defective material. It is calculated by the root square
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of the projected area of the defect on the plane perpendicular to the direction of the maximal
principal stress. He proposed an empirical approach based on fatigue experimental results and
established a relationship between the High-Cycle Fatigue (HCF) limit, the parameter, and the
material hardness. The application of Murakami’s model was limited to uniaxial fatigue loading
and it did not take into account other modes of loadings for different defect forms.

Subsequently, Endo et al. [5] suggested an extension of the approach put forward by Murakami
for biaxial loads. A criterion was presented for the fatigue limit assessment of the defective
material subjected to combined axial and torsional loadings. Based on experimental tests using
specimens with hole defect (diameter was 100 or 500 µm), the criterion is validated and good
results were obtained for different phases between axial and torsional loads.

Based on the method of Murakami, a new approach for predicting fatigue limit has been
suggested by Borsato et al. [6] and has been applied on ductile cast iron with solidification
notches, such as microshrinkage porosities or chunky and spiky graphite. Their proposed model
explained the material properties, especially the yield strength and the ultimate strength, leading
to a better prediction of the fatigue limit of ductile irons with different types of solidification
defects.

Taylor et al. [7] developed the Critical Distance Method (CDM) to evaluate the fatigue limit for
the cracked or notched material using the linear elastic fracture mechanics method. The authors
proposed three methods to evaluate the fatigue limit of bodies containing a stress concentration:
point method, line method, and area method. The point method consisted of comparing the
maximal local stress at a single point to the smooth sample fatigue limit. However, the line
method and the area method used a comparison between the average value of the maximal
local stress along a line or over an area and the smooth sample fatigue limit. The CDM provides
interesting results for the small notch.

After several fatigue tests on materials with defects, Nadot et al. [8] emphasized that the ini-
tiation of short cracks was at the tip of the defect and the propagation of cracks was perpendic-
ular to the maximal principal stress direction. The Defect Stress Gradient (DSG) approach was
suggested by Nadot to assess the fatigue life of defective C35 steel subjected to a multiaxial cyclic
loading.

To describe the impact of a defect in the fatigue criterion, the authors introduced a stress
gradient term. This technique then took into account the defect type, form, and size. The DSG
method showed good results for defects from 100 µm to 1000 µm. However, this method was
limited to full-size components using the Finite Element (FE) submodel.

Nasr et al. [9] used the hypothesis confirmed by Papadopoulos and Panoskaltsis [10] on the
effect of the hydrostatic pressure gradient and the non-influence of the shear stress gradient. FE
computations were utilized to evaluate this gradient over a distance equal to the size of the defect
area at the tip of the defect. This method was applied only for spherical defects and it ignored
elliptical defects.

Nasr et al. [11] put forward an approach that predicted the probabilistic HCF behavior of
nodular cast iron. The criterion adopted was based on the gradient of the hydrostatic stress.

The assessment of the Crossland stress around the defect required numerical FE simulation
for each size at different loading levels. To minimize the frequency of simulation by the FE,
Nasr adopted the technique of response surfaces to affect the dispersion due to the defect size.
After replacing FE calculations with the response surfaces method, the authors used the Monte
Carlo algorithm to calculate reliability. The results obtained were in good agreement with the
experimental results. This method was applied only for spherical defects and it ignores other
forms of defects based on the Crossland criterion.

With the aim to investigate the influence of different geometries of the defect and stress
gradient on fatigue strength, Morel et al. [12] proposed a comparison between defects.
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A multiaxial criterion was used to predict the experimental results of the steel C35 subjected to
tensile and torsion loads. The authors affirmed that the effect of stress gradient was more impor-
tant than the effect of size and shape of the notch.

The main focus of our work is to propose a comparative study of fatigue assessment of
defective material based on AD suggested by Nasr et al. [13]. The FE calculations are performed
for C35 steel with spherical, elliptical, and circumferential defects for diverse sizes and different
loadings which lead to determining the equivalent stress for three fatigue criteria near the defect.

The predictions are consistent with the experimental investigation. After that, a comparison is
made between the AD models based on the three criteria.

2. Material

In this study, the experimental data of C35 steel are used to analyze the stress distribution close
to the defect. A study carried out on the microstructure of this material by Billaudeau et al. [14]
showed that this steel had two structural components: the perlite and the ferrite. The average
grain size for each phase was 16 µm for the perlite and 22 µm for the ferrite (Figure 1).

The main mechanical properties and endurance limits of C35 steel are reported from the
experimental research of Billaudeau et al. [16] (Table 1).

To investigate the impacts of the shape and size of the defect on the fatigue limit, artificial
defects are inserted in the middle length of the fatigue specimens. The technique of electric

Figure 1. Representation of microstructure of steel C35 [15].

Table 1. Mechanical properties and endurance limits of C35 steel [16]

Young’s modulus E (GPa) 212
Poisson’s ratio ν 0.3

Monotonic yield strength Rp0.2 (MPa) 353
Cyclic yield strength Rp0.02cy (MPa) 278

Tensile strength Rm (MPa) 582
Tension defect-free fatigue limit (R =−1) σD−1 (MPa) 236 ± 12
Torsion defect-free fatigue limit (R =−1) τD−1 (MPa) 169 ± 9
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Figure 2. Scanning electron microscope image of defects introduced by spark-machining:
(a) shape of electrode for the spherical defect; (b) elliptical defect; (c) spherical defect [14].

discharge machining [16] is applied to create artificial defects (Figure 2). This procedure permits
reproducing defects and controlling shapes and sizes. The size varies in the (100 µm–1000 µm)
range. To estimate the defect size, we refer to the Murakami parameter “

p
area” where the size

is characterized by the root square of the “area” parameter (“area” of the projection of the defect
projected onto the plane perpendicular to the direction of the maximal principal stress).

After introducing the defect, the C35 samples are tempered at 500° for one hour. This treatment
relaxes residual stresses created during preparation.

3. HCF criteria

In this work, Crossland, Dang Van, and Papadopoulos HCF criteria are adopted with the AD
concept to determine the fatigue strength of the defective material.

3.1. Crossland criterion

The Crossland criterion is used, and it is defined by the equivalent stress given by (1) [17]:

σeqCr =
√

J2,a +αc Pmax ≤βc (1)

where
√

J2,a is the amplitude of the square root of the second invariant of the stress deviator
obtained by a double maximization over the loading period (T ):√

J2,a = 1

2
p

2
max
ti ϵT

{
max
t j ϵT

√
(S(ti )−S(t j )) : (S(ti )−S(t j ))

}
. (2)

In (2), S(ti ) and S(t j ) are the cyclic stress deviator tensors at two different instants ti and t j , and

Pmax is the maximal hydrostatic stress during a loading cycle calculated as follows (3):

Pmax = 1
3 max

tϵT
{σ11(t )+σ22(t )+σ33(t )}. (3)

Material parameters αc and βc are identified from simple uniaxial tests (4) and (5): the fully
reversed tension fatigue limit σD−1 and the fully reversed torsion limit τD−1:

αc = 3
τD−1

σD−1
−p

3 (4)

βc = τD−1, (5)

where σD−1 denotes the fatigue limits of the defect-free material under fully reversed tension,
and τD−1 represents the fatigue limits of the defect-free material under fully reversed torsion.
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3.2. Dang Van criterion

The Dang Van criterion is a stress-based multiaxial fatigue criterion. Dang Van proposed a
combination of local shear τ(t ) and hydrostatic stress σH (t ) [17].

Equation (6) is used to formulate the Dang Van criterion:

σeqDV = max[τ(t )+αDVσH (t )] ≤βDV, (6)

where αDV and βDV are material parameters defined using (7) and (8):

αDV = 3

(
τD−1

σD−1
− 1

2

)
(7)

βDV = τD−1, (8)

where τD−1 is the fatigue limit in fully reversed torsion and σD−1 is the fatigue limit in fully
reversed tension.

3.3. Papadopoulos criterion

Papadopoulos proposed a mesoscopic approach when the accumulated plastic strain under an
external loading is evaluated at a scale on the order of a grain.

Papadopoulos suggested that the criterion would take the form of a linear combination of
the maximal amplitude of the generalized shear stress Ta in the critical plane and the highest
hydrostatic stress value σhyd in the mesoscopic scale [17].

Equation (9) presents the criterion.

σeqPap =
√
〈Ta2〉+αPapσhyd,max ≤βPap. (9)

The constants βPap and αPap can be defined as (10) and (11):

βPap = τD−1 (10)

αPap =
σD−1−τD−1p

3
τD−1

3

. (11)

4. FE simulation

The FE calculation carried out shows that the most stressed plane is the plane perpendicular to
the direction of the maximal principal stress. In addition, previous studies [18] have claimed that
the fatigue crack always initiates at the tip of the defect in the maximal shear plane. Therefore,
consideration will be given to the variation in the fatigue equivalent stress near the defect. Defects
are visualized on the sample surface subjected to torsion and tension loadings.

To simulate the stress distribution next to the defects, simplified models are proposed taking
into account loading and geometric symmetries by using the commercial FE code ABAQUS [19].

Figure 3 illustrates the loads and boundary conditions of simplified parts under tension and
torsion loadings.

Linear tetrahedral solid element C3D4 with four nodes is used for meshing a simplified part.
Meshing is refined and optimized around the defects.

Figure 4 depicts the mesh employed during the use of a linear tetrahedral solid element with
four-node C3D4.

An elastic–plastic model is adopted to simulate the cyclic FE calculations. The combined cyclic
hardening behavior law is used to model the mechanical behavior of the material. It combines
the isotropic and nonlinear kinematic hardening laws.
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Figure 3. Completed and simplified model with load and boundary conditions: (a) tension
loading; (b) torsion loading [13].

Figure 4. Refined mesh in front of a defect.

The cyclic behavior of C35 steel was studied by Gadouini et al. [20]. The tested specimens were
subjected to imposed cyclic strain amplitudes.

The properties of the C35 steel for the EF calculation were extracted from the stress–
deformation hysteresis curve, as illustrated in Figure 5.

5. Affected depth approach (background)

The AD approach was developed by Nasr et al. [13] for materials containing surface defects and
subjected to periodic loadings. This approach calculated the fatigue limit of defective materials
by using the HCF criteria. The authors proposed an AD aw defined as the depth from the tip of the
defect to the inside of the sample, where the Crossland criterion was violated. It was concluded
that aw was independent of the size of the defect. For each size of the defective material,
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Figure 5. (a) Monotonic and cyclic tension curves, (b) plastic stress–strain cyclic stabilized
curve (experimental result for the C35 material without defect) [20].

the fatigue limit could be evaluated by controlling the AD depending on the load amplitude, as
given in the following model (12):

σeqCr(aw ) ≤βc , (12)

whereβc = τD−1 is the fully reversed torsion fatigue limit of the defect-free material, and aw is the
parameter identified from one experimental fatigue limit of the defective material by numerical
simulation.

Figure 6 shows the method proposed to evaluate the fatigue limit of material with defects
under tensile or torsional loadings. First, we represent the simplified model. After determining
the AD, the Crossland equivalent stress is calculated at aw depth from the tip of the defect
σeqCr(aw ) and compared to βc . If Crossland equivalent stress at the AD is greater than βc

(σeqCr(aw ) >βc ), the calculation will be repeated with an applied loading P less than that applied.
If Crossland equivalent stress at the AD is less than βc (σeqCr(aw ) < βc ), the calculation will
be repeated with an applied loading P greater than that applied. The defective fatigue limit is
obtained when the Crossland equivalent stress is equal to βc .

6. Comparative study of criteria fatigue lifetimes based on affected depth

6.1. Identification of affected depth for three criteria

Based on the AD approach, we propose to determine the AD aw of C35 for the three HCF criteria
(Crossland, Dang Van, and Papadopoulos). This analysis allows us to estimate the AD as the depth
from the tip of the defect into the interior of the specimen, which is subjected to its experimental
defective fatigue limit where the fatigue equivalent stress is greater than βc = 169 MPa.

Numerical simulation is applied to a sample with a spherical defect (size =p
area = 400 µm),

and it is subjected to its experimental defective fatigue limit equal to 150 MPa under the same
tension loading at load ratio Rσ =−1. The acquired findings are illustrated in Figure 7.

Figure 7 depicts the equivalent stress distribution for three criteria for the same defect size
subjected to the same tension loading near the fatigue limit for the same defect size. The
equivalent stress exceeds the maximal value in front of the defect. It then focuses on decreasing
the value until an asymptotically constant value is reached.
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Figure 6. Iterative calculation to search for fatigue limit of a sample containing defect.

For the AD model based on Crossland criterion, the AD is about awCr = 50 µm. The Dang
Van equivalent stress reaches the value βc at a depth equal to awDV = 40 µm. Hence, the AD
corresponding to Papadopoulos criterion is equal to awPap = 60 µm.

6.2. Fatigue limit calculation based on three HCF criteria

Kitagawa’s diagram is simulated by the assessment of the fatigue limits for different defect sizes
to validate the AD model. For the C35 material and the loading path, one experimental fatigue
limit of the defective material is needed to identify the aw parameter.

In previous investigations, Nasr et al. [13] showed that the AD parameter was independent of
the defect shape. Therefore, for the elliptical void and the notched void, we keep the same aw

parameter corresponding to the spherical defect determined later.
Based on this finding, three HCF criteria are compared with the experimental tests employing

three types of defects.
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Figure 7. Equivalent stress distribution for three criteria under the same tension loading at
load ratio Rσ =−1 (σa = 150 MPa and

p
area = 400 µm).

Table 2. Fatigue limits under torsion and tension loadings for different types of defects

Defect geometry Loading Defect size (µm) Experimental fatigue limit (MPa) Ref.

Spherical

Tension
170 195

[16]

400 150
900 135

Torsion
170 160
400 145
900 125

Elliptical transverse Tension
170 200
400 155

Elliptical longitudinal Tension
40 236

170 225
370 220

Circumferential
Tension

320 85

[12]
730 90

Torsion
320 83
730 62

Table 2 shows the results of fatigue tests of the C35 steel loaded in tension and torsion. The
specimens are cycled on 107 cycles [16].

6.2.1. Spherical defects

To predict the fatigue life of spherically defective parts, two loading types are used. In this
order, two Kitagawa diagrams are proposed for modeling the influence of spherical defects
subjected to torsion and tension loadings.
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Figure 8. Kitagawa diagram using AD model for C35 steel subjected to fully reversed torsion
at load ratio Rσ =−1, for spherical pore, for three HCF criteria compared with experimental
results [16].

(a) Fully reversed torsion loading (Rσ =−1)
Figure 8 demonstrates the variation in the fatigue limit for C35 steel subjected to a

fully reversed torsion stress for spherical defects using three HCF criteria as a function of
the defect size.

(b) Fully reversed tension loading (Rσ =−1)
Figure 9 provides Kitagawa’s diagram applied for defective C35 steel with a spherical

pore to analyze the stress distribution under a tension loading at load ratio Rσ =−1 based
on the three HCF criteria.

The results provided by Kitagawa’s diagram (Figures 8 and 9) and applied for specimens
containing spherical defects loaded in tension and torsion are as follows:

• The AD models based on the three HCF criteria lead to very encouraging results when
compared to the experimental results [16].

• As the defect size increases, the fatigue limit decreases and tends towards an asymptotic
value for both loading modes.

• The comparison of the three criteria with the experiments indicates that the AD model
using the Crossland approach yields better correlation with the experimental results than
that by Dang Van and Papadopoulos criteria for the spherical defect.

6.2.2. Elliptical defects

In order to validate the applicability of the suggested model in describing the effect of the
shape of the defect, an AD model with an elliptical pore is adopted.

In this regard, two Kitagawa diagrams are utilized for modeling the influence of elliptical
defects subjected to transversal and longitudinal dispersion tension loading.

(a) Elliptical defect subjected to longitudinal dispersion tension loading
Figure 10 presents Kitagawa’s diagram carried out to estimate the fatigue limit around

the elliptical defect subjected to tension loading with longitudinal dispersion.
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Figure 9. Kitagawa diagram using AD model for C35 steel subjected to fully reversed ten-
sion at load ratio Rσ =−1, spherical pore, for three HCF criteria compared with experimen-
tal results [16].

(b) Elliptical defect subjected to tension loading with transverse dispersion
Figure 11 compares the experimental results [16] and simulated Kitagawa–Takahashi’s

diagrams related to three HCF criteria for C35 steel with an elliptical transverse pore
subjected to fully reversed tension.

The predictions observed in Figures 10 and 11 highlight the fact that:

• The proposed model provides good results for transverse elliptical defects and demon-
strates that longitudinal defects do not affect the fatigue limit.

• The suggested model gives good results for transverse and longitudinal elliptical defects
and proves that the AD model based on the Crossland criterion shows better correlations
with experimental results.

6.2.3. Circumferential notches

Another shape of a defect is used to improve the proposed model. Figure 12 illustrates a
simplified model using circumferential notches subjected to fully reversed tension and torsion.

(a) Fully reversed torsion loading (Rσ =−1)
The obtained results of the application of the AD model for the C35 steel containing

circumferential notches subjected to torsion are illustrated in Figure 13.
(b) Fully reversed tension loading (Rσ =−1)

For defective C35 steel subjected to the tension load, predicted Kitagawa diagrams
corresponding to circumferential notches are presented in Figure 14.

Figures 13 and 14 affirm that:

• For circumferential notches, the fatigue limits decline with the defect size and lead to an
asymptotic value, similarly to tension and torsion loadings.
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Figure 10. Kitagawa diagram using AD model for C35 steel subjected to fully reversed ten-
sion at load ratio Rσ =−1, for longitudinal elliptical pore, for three HCF criteria compared
with experimental results [16].

Figure 11. Kitagawa diagram using AD model for C35 steel subjected to fully reversed
tension at load ratio Rσ =−1, for transverse elliptical pore, for three HCF criteria compared
with experimental results [16].

• The comparison with the experimental results in [12] shows that the AD model can
analyze the effect of the defect geometry on the fatigue strength.

• The comparison with the experimental results shows that the AD model based on Cross-
land applied to the C35 steel subjected to fully reversed tension with circumferential
notches leads to better results.

• This comparative study of criteria fatigue lifetimes related to circumferential notches
shows that the AD model based on Crossland leads to better results for both loading
modes.
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Figure 12. Simplified model with circumferential notches subjected to tension loading.

Figure 13. Kitagawa diagram using AD model for C35 steel subjected to fully reversed
torsion at load ratio Rσ =−1, for circumferential notches, for three HCF criteria compared
with experimental results [12].

7. Kitagawa diagram for spherical, elliptical, and circumferential notches

In order to study the influence of the morphology of the defect, three types of artificial defects are
compared: spherical, elliptical, and circumferential.
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Figure 14. Kitagawa diagram using AD model for C35 steel subjected to fully reversed
tension at load ratio Rσ =−1, for circumferential notches, for three HCF criteria compared
with experimental results [12].

Figure 15. Kitagawa diagram using AD model based on Crossland criterion for C35 steel
subjected to fully reversed tension at load ratio Rσ =−1.

Kitagawa–Takahashi diagrams are considered under tension loadings. The computed results
are represented in Figure 15.

Figure 15 shows that for three defect types, Kitagawa–Takahashi diagrams present two
different parts: (i) a first part for the small defects (size less than 400 µm) where the defect has
a significant effect on the HCF limit and where it decreases as a function of the defect size, and
(ii) a second part for the large defects (size goes from 400µm to 1000µm). For the second part, it is
observed that by increasing the defect size, the HCF limit remains almost constant. This demon-
strates that the defect size effect on the HCF limit decreases.
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However, the Kitagawa diagrams prove that the transverse-elliptical and spherical fatigue
limits are bigger than the circumferential limit. In addition, for the two defect types, transverse-
elliptical and spherical, the stress distributions are very close, while for the circumferential defect
they are lower.

It is noted that for a big circumferential notch, the defect-free fatigue limit is reduced by more
than 75%, whereas it goes down by only 50% for the elliptical and spherical defects. It can be
therefore concluded that the circumferential notch has an important effect and is much more
significant on the C35 tension fatigue limits.

Consequently, and to better study the influence of the defect morphology, it appears neces-
sary to estimate the stress concentration induced by different shapes of surface defects (circum-
ferential notches, transverse elliptical pores, and spherical pores) on the fatigue strength.

Thus, numerical simulation is conducted to determine the elastic–plastic stress concentration
factor Kt at a highly loaded point.

It is observed that Kt is equal to 2 all over the equator of the spherical pore on the plane
perpendicular to the tension direction. For the transverse elliptical pore, Kt reaches the value
2.4 at the maximal loaded point (the tip of the defect). Finally, the stress concentration factor of
the circumferential notches is the highest, where Kt is about 3.5 at the maximal loaded point.

To sum up, the fatigue limit is affected by the circumferential defect earlier than the elliptical
and spherical pores. Hence, it is important to note that the AD approach properly explains the
effect of the morphology of the defect.

8. Conclusion

In this study, the fatigue life assessment has been conducted based on the concept of the AD
approach and has been applied to the defective C35 material under cyclic loading.

To illustrate the morphology influence of the defect, three types of defects (spherical, elliptical,
and circumferential notches) have been considered.

Simplified FE models considering loading and geometry symmetries have been generated to
find out the stress distribution near the defect subjected to torsion and tension loadings at a load
ratio Rσ =−1.

The AD approach has been used to predict the Kitagawa–Takahashi diagrams for three void
types using three multiaxial fatigue criteria Crossland, Dang Van, and Papadopoulos.

For each type and size of a defect, only one experimental fatigue limit for C35 steel has been
needed to assess all fatigue limits under tension or torsion loadings at a load ratio Rσ =−1.

Then, the computed results have shown a good agreement with the experimental investiga-
tions and confirmed that the AD parameter can characterize the effect of defects on the fatigue
behavior for diverse defect types.

In addition, this approach can be developed with different HCF criteria and can evaluate the
fatigue resistance of defective materials.

The comparison of the three AD models based on three criteria with the experimental results
has indicated that the predicted Crossland approach provides better correlations with the exper-
imental results for a different defect type than that by Dang Van and Papadopoulos criteria.

Finally, to investigate the influence of the defect morphology, three types of artificial defects
have been compared: spherical, elliptical, and circumferential. Moreover, the stress concentra-
tion induced by different shapes of surface defects has been evaluated.

The defect has been simply modeled by a surface void. It will be interesting to try to find other
defect models to come closer to the natural defect morphology. It is very important to study the
performance of the AD parameter against other types of materials with various structures and
proprieties.



562 Marwa Youssef and Anouar Nasr

The results have been obtained for only three types of defects, so it will be significant to test
the AD model for materials containing other types of defects such as the circumferential V-notch,
the inclusion, and the drilled holes.

In this work, the defect has been just tested under pure tension and pure torsion with constant
amplitude loadings. Some perspectives of this study are to validate the AD approach for defec-
tive materials subjected to complex multiaxial loadings such as combined tension and torsion
loadings, as well as variable amplitude loading conditions.

Nomenclature
p

area Equivalent defect size of defect perpendicular to the direction of the maximum
principal stress (µm)

HCF High-Cycle Fatigue
aw Affected depth at fatigue limit (µm)
awCr Affected depth for Crossland criterion (µm)
awDV Affected depth for Dang Van criterion (µm)
awPap Affected depth for Papadopoulos criterion (µm)
E Young’s modulus (GPa)
Rm Ultimate tensile strength (MPa)
Rp0.2 0.2% monotonous yield stress (MPa)
Rp0.02cy 0.2% cyclic yield stress (MPa)
Rσ Load ratio: Rσ =σmin/σmax

ν Poisson’s ratio
J2,a Amplitude over load cycle of the second invariant of deviatoric stress tensor

(MPa2)
S(ti ) and S(t j ) The periodic deviator stress tensor in two diverse instants (ti and t j )

Pmax Is the maximal hydrostatic stress during a loading cycle (MPa)
σa Amplitude of tension loading (MPa)
σD−1 Fatigue limit under fully reversed tension of defect-free material (MPa)
τa Amplitude of torsion loading (MPa)
τD−1 Fatigue limit under fully reversed torsion of defect-free material (MPa)
αc Coefficient in Crossland criterion
βc Material parameter in Crossland criterion (MPa)
αDV Coefficient in Dang Van criterion
βDV Material parameter in Dang Van criterion (MPa)
τ(t ) Local shear (MPa)
σH (t ) Hydrostatic stress (MPa)
αPap Coefficient in Papadopoulos criterion
βPap Material parameter in Papadopoulos criterion (MPa)
σhyd Hydrostatic stress value (MPa)
Ta The generalized shear stress (MPa)
σeqCr Crossland equivalent stress (MPa)
σeqDV Dang Van equivalent stress (MPa)
σeqPap Papadopoulos equivalent stress (MPa)
Kt Elastic–plastic stress concentration factor
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