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Abstract. We present a (partial) historical summary of the mathematical analysis of finite difference and
finite volume methods, paying special attention to the Lax–Richtmyer and Lax–Wendroff theorems. We then
state a Lax–Wendroff consistency result for convection operators on staggered grids (often used in fluid flow
simulations), which illustrates a recent generalization of the flux consistency notion designed to cope with
general discrete functions.
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The finite volume method (FVM) has been used for over 60 years in computational fluid me-
chanics, and more than 30 years in solid mechanics. However, while the finite element method,
also introduced in mechanics, had already been the object of several mathematical works at the
turn of this millenium, the American Mathematical Society’s (AMS) 2000 Classification only men-
tions the term “finite volume” in sections 74S10 (Mechanics of deformable solids) and 76M12
(Fluid mechanics); it was not until 2010 that this term appeared in section 65 “Numerical analy-
sis” (65M08, 65N08).

In some respects, the FVM is close to the finite difference method (FDM): for instance it has
often been called “conservative finite difference method” by the hyperbolic numerical commu-
nity, and “finite difference method” in the oil industry. It might be for this reason that the first at-
tempts to show the convergence of the FVM were to try and copy the FDM framework. We show in
the first section below that the famous Lax–Richtmyer theorem developed for linear FD schemes
fails to give an adequate answer, even for a linear finite volume (FV) scheme. We then turn to
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the Lax–Wendroff theorem that gives two fundamental tools for the analysis of FV schemes, and
recapitulate the main steps of the proof of convergence of the schemes that were derived in the
90’s. In Section 4, we extend the Lax–Wendroff theorem to the case of staggered meshes and show
how it can be used for the celebrated MAC grid.

1. The finite difference method and the Lax–Richtmyer theorem

In classical numerical analysis textbooks, we are taught that, in order to show the convergence of
a finite difference (FD) scheme, one should show its stability and its consistency. The founding
result in this regard is the Lax–Richtmyer theorem [1] due to P. D. Lax, who exposed it in a seminar
at NYU in 1954. The so-called Lax equivalence theorem can be summarized as follows (see for
example [2, Theorem 1.5.1]):

Theorem 1.1 (Lax–Richtmyer). Consider a linear partial differential equation for which the
initial value problem is well posed, and a FD scheme consistent for its approximation; then this
scheme is convergent if and only if it is stable.

In some articles and textbooks (see for instance [3, p. 142]), maybe because of the name
“equivalence theorem”, and because uniform meshes are considered, the Lax–Richtmyer theorem
is replaced by the equivalence

“consistency + stability ⇐⇒ convergence” (1)

However, Theorem 1.1 does not state the equivalence (1), which, in fact does not hold in the
general case of a PDE which is discretized with a non-constant space step, even in the linear case.
As an example, let us consider the approximation on R×]0,T [, where T > 0 is the final time of the
study, of the linear transport equation

∂t u(x, t )+∂x (au)(x, t ) = 0, x ∈R, t ∈ ]0,T [, (2)

u(x,0) = uini(x), x ∈R, (3)

for some given a > 0, and initial data uini ∈ C∞
c (R,R), with ∂t (resp. ∂x ) the time (resp. space)

partial derivative. Let ū(x, t ) = uini(x − at ) be the exact (unique) solution of this problem. The
FDM applied to (3) is classically defined by choosing a strictly increasing sequence (xi )i∈Z of real
numbers, such that h := maxi∈Z(xi+1 − xi ) < ∞ and h = mini∈Z(xi+1 − xi ) > 0, and a time step
δt = T /N , for N ∈Nwith N > 1 (here a constant time step is considered for simplicity). The initial
data is discretized by defining the following quantities that depend on h implicitly:

u0
i = uini(xi ) for any i ∈Z. (4)

Since some upwinding is indeed necessary for stability purposes, the approximation of ∂x u at the
point xi is upwinded, so that the FD scheme reads

un+1
i −un

i

δt
+a

un
i −un

i−1

hi−1/2
= 0 for any i ∈Z and n ∈ �0, N −1�, (5)

with hi−1/2 = xi − xi−1. In this context, the definition of the terms consistency, stability and
convergence is the following:

• Consistency: it requires two conditions:
– the consistency of the discretization of the initial condition, that is

lim
h→0

max
i∈Z

|u0
i −uini(xi )| = 0. (6)
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– the consistency of the discretization of the PDE (2); setting tn = nδt for n ∈ N, it
reads:

lim
h→0
δt→0

max
i∈Z,n∈�0,N−1�

∣∣∣∣u(xi , tn+1)−u(xi , tn)

δt
+a

u(xi , tn)−u(xn
i−1, tn)

hi−1/2

∣∣∣∣= 0. (7)

• Stability: There exists C depending only on uini (and thus not on h nor on δt ) such that

max
i∈Z,n∈�0,N−1�

|un
i | ≤C . (8)

• Convergence: maxi∈Z,n∈�0,N−1� |un
i −u(xi , tn)|→ 0 as h → 0.

Clearly, condition (4) ensures the consistency condition (6) on the initial condition. Moreover, the
consistency condition (7) on the PDE can be obtained by Taylor expansions. Finally, the stability
condition (8) can be shown under the CFL (Courant–Friedrichs–Lewy) condition aδt ≤ h. The
conditions for the Lax–Richtmyer to hold are therefore satisfied, and the convergence of the
scheme (4)–(5) is thus proven.

Consider now a variant of the scheme (5) obtained by keeping (4), but replacing hi−1/2 by
hi = (xi+1 −xi−1)/2 in (5):

un+1
i −un

i

δt
+a

un
i −un

i−1

hi
= 0 for any i ∈Z and n ∈ �0, N −1�. (9)

In the specific case where x2k+1 − x2k = h/2 and x2k+2 − x2k+1 = h for all k ∈ Z, we get that
hi = 3/4h for all i ∈Z and the consistency property no longer holds. Therefore, if the equivalence
(1) were true, the scheme (4)–(9) would not be convergent in the above sense. However, let us
show that this scheme is in fact convergent in the same sense. Let us write the finite difference
scheme obtained at the points x̃i = (xi +xi+1)/2 instead of the points xi , defining the values ũn

i :

ũ0
i = uini(x̃i ) for any i ∈Z, (10)

and
ũn+1

i − ũn
i

δt
+a

ũn
i − ũn

i−1

hi
= 0 for any i ∈Z and n ∈ �0, N −1�. (11)

Then the scheme (10)–(11) again satisfies the consistency condition (6), and satisfies the con-
sistency condition (7) since hi = x̃i − x̃i−1. The stability condition (8) can again be shown under
the CFL condition aδt ≤ h ≤ 3/4h. Hence the Lax–Richtmyer theorem yields the convergence of
the values ũn

i to u(x̃i , tn). Using |ũ0
i −u0

i | ≤ h max |u′
ini|, the maximum principle applied to the

difference ũn
i −un

i , solution to the equation obtained by subtracting (9) to (11), shows that

max
i∈Z,n∈�0,N−1�

∣∣ũn
i −un

i

∣∣≤ h max |u′
ini|,

which implies that

max
i∈Z,n∈�0,N−1�

|un
i −u(xi , tn)| ≤ 2h max |u′

ini|+ max
i∈Z,n∈�0,N−1�

|ũn
i −u(x̃i , tn)|,

leading to the convergence of the scheme in the same sense as above. This example shows that
on the one hand the direction ⇐ of (1) is not true, and that on the other hand the Lax–Richtmyer
theorem cannot be applied directly to obtain the convergence of such a scheme, since the scheme
is not consistent in the above defined sense. In fact, the scheme (9) is the 1D upwind FV scheme
with the control volumes ](xi−1 +xi )/2,(xi +xi+1)/2[, as shown in the next section. In the scheme
(5), the partial derivative ∂x u is upwinded. In the scheme (9), the unknown u itself is upwinded.

Note that the equivalence (1) also does not hold in the case of an elliptic operator, see
the example of a non-uniform 1D mesh in [4] or [5, Section 5.2]. For the analysis of such
schemes, other notions must be introduced, and it seems that Peter D. Lax first identified them,
in collaboration with B. Wendroff.
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2. The finite volume method and the Lax–Wendroff theorem

In a very famous article of 1960, P. D. Lax and B. Wendroff [6] consider discretization schemes
for nonlinear hyperbolic systems of conservation laws and show that if a conservative scheme
with consistent fluxes, in the sense that they define and which is stated below (see Section 2.2),
converges a.e. and boundedly towards a limit, then this limit is necessarily a weak solution of
the system. We call this property Lax–Wendroff (LW) consistency. The notions of flux consistency
and flux conservativity highlighted in [6] are truly fundamental for the convergence analysis of
the FVM for the hyperbolic equations considered in [6], as are their extensions to elliptic and
parabolic conservation equations. In order to explain these terms, we consider, again in the 1D
case, a general differential form of a conservation law, written on the whole spaceR and on a time
interval ]0,T [ where 0 < T <+∞ is the final time:

∂t u(x, t )+∂xF(x, t ) = 0, (12)

stating the conservation of the quantity u at each point x ∈ R and each time t ∈ ]0,T [, with F a
vector function depending only on x and t through the unknown u. In addition to this equation,
an initial condition is assumed to be given on u. Simple examples of such a conservation law
include

• the transport equation F(x, t ) = au(x, t ) (linear hyperbolic equation, introduced in the
previous section),

• the heat equation F(x, t ) =−∂x u(x, t ) (linear parabolic equation),
• Burgers’ equation F(x, t ) = u2(x, t ) (nonlinear hyperbolic equation),
• the porous media equation F(x, t ) =−∂x up (x, t ), p > 1 (nonlinear parabolic equation).

The FVM consists in approximating the integral form of the conservation law, that is to say the
balance on the time–space cuboid ]x, x + δx[×]t , t + δt [ (for given δx > 0 and δt > 0), rather
than the PDE itself (this corresponds to the way such an equation is derived from physical
conservation principles). Note that with a non-zero source term on the right-hand side of (12),
the equation is then usually renamed “balance law”, and this modification poses no problem for
a FV discretization. The integral form relative to the differential form (12) of a conservation law
reads ∫ x+δx

x
(u(x, t +δt )−u(x, t )) dx +

∫ t+δt

t

(
F(x +δx, t )−F(x, t )

)
dt = 0. (13)

Let (]xi−1/2, xi+1/2[)i∈Z be a family of intervals of R (also called control volumes or grid cells), with
xi−1/2 < xi+1/2 and such that ∪i∈Z]xi−1/2, xi+1/2[ = R (or Ω ⊂ R), and let δt = T /N , N > 1 (the
time step could be taken non-constant). Let xi be some chosen point in the cell ]xi−1/2, xi+1/2[
(the choice of this point is constrained by the flux consistency property in the case of elliptic
or parabolic problems, but not in the hyperbolic case, contrarily to the FD consistency in the
sense of the previous section). The discrete unknowns, {un

i , i ∈ Z, n ∈ {0, . . . , N }} are expected to
be approximations of u(xi , tn) with tn = nδt . The integral form (13) is written on each control
volume ]xi−1/2, xi+1/2[ and time interval ]tn , tn+1[, leading to the following FV scheme (with an
explicit time scheme for the sake of simplicity):

hi
un+1

i −un
i

δt
+F n

i+1/2 −F n
i−1/2 = 0 for any i ∈Z and n ∈ �0, N −1�, (14)

where hi = xi+1/2 − xi+1/2, and F n
i+1/2 is the numerical flux, which will be expressed in terms

of the discrete unknowns to yield a numerical approximation of F(xi+1/2, tn). Note that F n
i+1/2

is the numerical flux outgoing ]xi−1/2, xi+1/2[ to the right and its opposite is the numerical flux
outgoing ]xi+1/2, xi+3/2[ to the left: this copies the situation of the exact flux F(xi+1/2, tn). This
is the well-known “local conservativity” or “flux conservativity” property, which is important in
physical applications, but also fundamental in the mathematical analysis of the FVM. Indeed, it



Robert Eymard et al. 5

is thanks to this property that we may hope to prove some convergence properties of the method,
both for elliptic or parabolic type and for hyperbolic equations despite the loss of the consistency
in the FD sense, as presented in the first section of this paper.

2.1. Flux conservativity

Writing the FV scheme in one dimension naturally ensures the numerical flux conservativity,
since only one flux is defined: Fi+1/2 at the interface xi+1/2. In a multi-dimensional framework,
(d = 2 or 3) the PDE (12) is written as ∂t u +divF = 0, where F is a vector function of x and t and
div the space divergence operator. The scheme (14) is now written for a control volume K :

|K |un+1
K −un

K

δt
+ ∑
σ⊂∂K

|σ|F n
K ,σ = 0, n ∈ �0, N −1�, (15)

where |K | (resp. |σ|) is the volume or surface of K (resp. the surface or length of |σ|) and |σ|F n
K ,σ

is the numerical outgoing flux from K through the face σ; it is an approximation of the ougoing
normal flux

∫
σF(x, tn)·nK ,σ (where nK ,σ is the normal vector toσ outward K ), which is expressed

in terms of the discrete unknowns (un
M )M∈M :

F n
K ,σ =F n

K ,σ((un
M )M∈M ).

In 2 or 3D, the numerical flux is defined on either side of the interface σ. Suppose that the
interface σ separates the control volumes K and L, which we write as σ = K |L, then the flux
conservativity reads

F n
K ,σ =−F n

L,σ. (16)

2.2. Flux consistency

Let us turn back to the 1D case, for ease of notations. The numerical flux is said to be consistent
if for a sequence of time and space discretizations, indexed by m and such that h(m) → 0 and
δt (m) → 0 as m →+∞, one has

max
i∈Z,n∈�0,N−1�

|F(xi+1/2, tn)− F̃ n
i+1/2|→ 0 as m →+∞,

where F̃ n
i+1/2 is the quantity obtained from F n

i+1/2 when replacing the discrete unknowns by the
values of a regular function u:

F̃ n
i+1/2 =F n

i+1/2((u(xi , tn))i∈Z).

In the context of nonlinear hyperbolic equations, F(xi+1/2, tn) = f (u(xi+1/2, tn)) with f ∈ C (R,R),
this definition of consistency is equivalent to the usual notion of consistency introduced by Lax
(written here for a two-point scheme):

F n
i+1/2(u,u) = f (u)

if one assumes F n
i+1/2 to be Lipschitz continuous, or at least, “lip-diag” see [7, Remark 5.2]. In the

context of the heat equation (F (u) =−∇u), the numerical flux

F n
i+1/2 =F n

i+1/2(un
i ,un

i+1) =−un
i+1 −un

i

hi+1/2
with hi+1/2 = xi+1 −xi , (17)

is consistent in the above sense, since, for a regular function u,

F(xi+1/2, tn) =−∂x u(xi+1/2, tn)
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and

F̃ n
i+1/2(u(xi , tn),u(xi+1, tn)) = −u(xi+1, tn)−u(xi , tn)

hi+1/2

= −∂x u(xi+1/2, tn)−hi+1/2∂
2
xx u(c, tn), c ∈ ]xi , xi+1[.

We notice that in this case the flux depends on the choice of the points xi .

3. Stability, compactness, convergence

3.1. Stability

There are different notions of stability of a numerical scheme. The notion which is of interest
in the context of the convergence of a numerical scheme for a general, possibly nonlinear, PDE
is an estimate on the approximate solutions, independently of the mesh. For instance, the L∞

stability of a linear FD scheme for a linear elliptic equation may be obtained by writing the
scheme in matrix form and by obtaining a bound of the infinity norm of the inverse of this matrix.
Even though the FV approximate solutions are piecewise constant, the estimates are obtained in
a norm which is in close relation with the one used for the estimates on the solutions of the
continuous problem, and which depends of course on the considered problem; the notion of
stability in the FVM is therefore linked to the stability of the continuous problem. Let us take two
examples:

• the heat equation on [0,1] with homogeneous Dirichlet conditions: the natural norm for
the continuous problem is L2(H 1

0 ), and the associated discrete norm corresponding to
the choice (17) is L2(H 1

0,d ) with

‖u‖H 1
0,d

=
(

M∑
i=0

hi+1/2

(
ui+1 −ui

hi+1/2

)2
)1/2

,

where M is the number of control volumes and u0 = uM+1 = 0 and with hi+1/2 = xi+1−xi .
We denote by u the weak solution of the heat equation and uapp the solution of the time-
implicit scheme (implicit schemes are a natural choice for parabolic equations to avoid
a condition of type δt ≤C h2). The function uapp is a piecewise constant function which
is equal to un

i on the cuboid ]xi−1/2, xi+1/2[×]tn , tn+1[. In the continuous PDE setting, an
L2(H 1

0 ) estimate on u is obtained by taking u as a test function in the weak formulation
of the heat equation, and integrating by parts. Similarly, the L2(H 1

0,d ) estimate on uapp is
obtained by multiplying the i -th discrete equation by δt un

i , summing over i and n and
performing discrete integrations by parts (obtained by changes of indices in the sums).
An L2(L2) estimate on the approximate solutions then follows with a discrete Poincaré
inequality [5, Lemma 9.1].

• the transport equation on Rn , with initial condition uini ∈ L∞: the natural norm for the
continuous problem is L∞. It is classical and easy to show that the scheme (14), with
the upwind flux Fi+1/2 = a ui , is stable, see for example [5, Lemma 20.1], under a CFL [8]
condition.

3.2. The linear case: stability + conservativity + flux consistency =⇒ convergence

Convergence for linear operators are often obtained through error estimates (the same technique
as in the proof of stability is applied to the error between the approximate solution and the
exact one); the compactness analysis of sequences of approximate solutions is another means,
which also gives the existence of a solution (see [8] for a seminal paper on this type of proof).
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Let us detail this second means, which extends to nonlinear operators. Consider a sequence of
approximate solutions, on meshes whose space and time steps tend to 0. The general principle
of proof of convergence is then the following. Thanks to the stability, a uniform (with respect to
the discretization parameters) estimate on the approximate solutions holds in a Lebesgue space,
and so there exists a sub-sequence of this sequence which converges weakly (or ?-weakly) in
that same Lebesgue space. Each equation of the scheme is then multiplied by the interpolation
of a regular test function and by the time step; the summation of all these equations over the
time index and space indices, and an integration by parts (using the conservativity of the fluxes)
are performed so as to shift the discrete derivatives from the discrete unknowns to the regular
test function (the flux consistency which is used on the test functions is thus that given by the
dual discrete operator). Since the problem is linear, the weak convergence of the approximate
solutions suffices to pass to the limit in all terms; however the parabolic and hyperbolic cases
exhibit some different difficulties.

3.2.1. Elliptic or parabolic case

The passage to the limit can be performed thanks to the consistency of the flux, see e.g. [5,
Theorem 8.1] for the 1D case. In the multidimensional case, the consistency of the flux for the heat
equation (Laplace operator) is obtained for meshes which respect an orthogonality condition [5,
Definition 9.1]. In this case, the resulting matrix is symmetric and the flux consistency is identical
to that given by the dual discrete operator. Anisotropic operators and general meshes have
been the object of several different works in the last decades, we refer to [9] for a review of
these methods, several of them leading to non-symmetric matrices. In this latter case, one can
either prove convergence by an error estimate, using the flux consistency of the primal discrete
operator, or a compactness method, using the flux consistency of the dual discrete operator, i.e.
on the test functions. In both cases the main difficulty is to establish the stability of the scheme.

3.2.2. Hyperbolic case

For stability reasons, the numerical flux is upwinded and introduces an error term whose
convergence to 0 must be shown. This term is a sum of products of differences of the values of
the solutions in neighbouring cells by discrete derivatives of the test function. On 1D or multiD
Cartesian uniform or non-uniform meshes, if uini ∈ L∞ ∩BV (an additional argument is used
to handle the case uini ∈ L∞) this term is shown to tend to 0 thanks to a uniform BV estimate
on the approximate solutions (and on the continuous solution), see [10, 11] who consider the
nonlinear case; this proof uses the “TVD” character (total variation diminishing) of the monotone
schemes [12]. Unfortunately, in the case of an unstructured mesh in multiD, even for a linear
equation, even if uini ∈ L∞∩BV , it can be shown that the upwind scheme is not TVD; a counter-
example is given in [13]. A “weak BV ” estimate based on the numerical diffusion of the scheme is
established therein in order to prove convergence.

Let us notice that in both the parabolic and hyperbolic cases, the Lax–Wendroff theorem is not
used directly:

• in the parabolic case, because the continuous flux function cannot be applied to the
approximate solutions,

• in the hyperbolic case, because the approximate solutions only converge weakly, whereas
the Lax–Wendroff theorem supposes a strong convergence.

Nevertheless in both cases, the fundamental notions introduced in [6] are used, namely:

• flux conservativity: it is the property that leads to a weak form of the FV scheme by
shifting the discrete derivatives of the discrete unknown to the discrete derivatives of the
interpolant of the test function,
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• flux consistency: it is the property that is used to prove the fact that a limit of approximate
solutions is a weak solution thanks to the convergence of the discrete derivatives of the
interpolant of the test function to the exact derivatives of the same test function.

3.3. The nonlinear case: more compactness needed

In the nonlinear case, weak convergence is not sufficient; indeed, if a sequence (un)n∈N converges
only weakly in a Lebesgue space to a limit u, there is no reason why the sequence ( f (un))n∈N
should converge to f (u), even weakly.

3.3.1. Elliptic and parabolic equations

In the elliptic or parabolic setting, one of the fundamental tools to obtain more compactness
is Kolmogorov’s compactness theorem, a consequence of which is that any bounded sequence
of Lp , 1 ≤ p < +∞ which is “equicontinuous on average” admits a convergent sub-sequence
(see for example [14, Theorem 8.16]). Equicontinuity in mean amounts to showing that the
difference between the function and its translates in time and space converges to 0 in the Lp

norm, uniformly with respect to the time and space step, see for example [5, Lemma 18.3] in the
case of a nonlinear parabolic equation of Stefan type. Once the compactness of the sequence of
approximate solutions in L2(L2) is proven, we can then exhibit a sub-sequence tending to ū in
L2(L2).

By passing to the limit in the “very weak” form of the scheme (that is with the discrete
divergence of the discrete normal derivatives of the test functions) we can then show, as in
the linear case, that each term (in time and space) converges to the corresponding term in the
“very weak” formulation of the continuous problem. In the case of the Stefan problem, namely
∂t u −∆ϕ(u) = 0, this gives the convergence of the approximate solutions to the exact solution
if ϕ is an increasing Lipschitz continuous fucntion. There is however an additional difficulty if
ϕ is only non-decreasing. In this case, it is possible to prove compactness in L2(L2) of ϕ(uapp)
(where uapp is the approximate solution) but not of uapp for which only an L2(L2) bound holds. It
is possible however to conclude using the Minty trick (see [5, Chapter 4]).

3.3.2. Hyperbolic equations

Now consider a nonlinear hyperbolic conservation law of the form

∂t u(x, t )+div( f (u(x, t ))) = 0, x ∈Rn , (18)

u(x,0) = uini(x). (19)

If f ∈ C 1(R,Rn) and uini ∈ L∞, there exists a unique entropy solution of this problem [15]. In
order to show that a scheme approximates this entropy solution, it is first shown that it satisfies a
discrete entropy equation.

The case of Cartesian meshes has been studied independently by Kuznetsov [10] and Crandall
and Majda [11]. As in the linear case, if uini ∈ BV , a BV estimate on the approximate solutions
holds, uniformly with respect to the space and time step; Helly’s lemma, which is itself a direct
consequence of Kolmogorov’s compactness theorem may then be invoked to obtain the conver-
gence of a subsequence of the approximate solutions in L1(L1), and one can then use the Lax–
Wendroff theorem (which generalizes easily to the entropy formulation) [11], [5, Section 21.5]).
It is also possible to handle the case uini ∈ L∞, using a contraction principle in L1 for the exact
solution and for the approximate solution, see [11] for instance.

In the general case of a non-Cartesian mesh, a suitable BV estimate seems out of reach, and
the proof of convergence is performed with the following steps.
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• Consider a sequence of space discretizations, indexed by m, and of time steps δt (m); for
any m, the mesh size is defined as the maximum diameter of the cells and denoted by
h(m). Assume that h(m) → 0 and δt (m) → 0 as m →+∞.

• Owing to the L∞ estimate on the sequence of approximate solutions (u(m))m∈N, there
exists a sub-sequence which converges in a “nonlinear weak sense”, i.e. there exists
µ ∈ L∞(R×R+×]0,1[) such that for any function ψ ∈C (R,R),∫

R

∫
R+
ψ(u(m))ϕ→

∫
R

∫
R+
µψϕ,∀ϕ ∈ L1(L1) with µψ =

∫ 1

0
ψ

(
µ(x, t ,α)

)
dα.

This notion of convergence is equivalent to the convergence to a Young measure [16];
it may seem a little simpler to handle in the sense that it involves a function, µ, rather
than a measure; however this function depends on an additional parameter α ∈]0,1[,
which we will have to get rid of in order to reach convergence to an entropy weak
solution.

• Using the numerical diffusion of the scheme, we get a uniform weak BV estimate on the
sequence of approximate solutions; this estimate is called “weak” for two reasons: on
the one hand it involves the differences |( f (uK )− f (uL)) ·nK L | and not the differences
|uK −uL |, where (K ,L) denotes a pair of control volumes sharing a common interface;
on the other hand, it only requires that the sum of these differences does not blow up too
fast: the difference between the discrete gradient of the interpolated test function and the
gradient of the test function itself behaves like the mesh size, and to pass to the limit, we
only need that the sum of the differences involving the discrete unknowns be bounded
by a term in C /h1−ε with ε> 0 and C > 0 independent of h.

• Using the nonlinear weak convergence and the weak BV estimate, we pass to the limit on
the weak form of the discrete entropy and obtain a so-called “process solution” which is
an entropy solution up to an integral with respect to the additional parameter α.

• Starting from the discrete entropy inequalities that are verified by the scheme, the process
solutions are shown to satisfy an entropy inequality. A uniqueness result on the process
solutions can then be obtained thanks to a variable doubling technique “à la Kruskov”
[17]; this result differs from Di Perna’s [16] in that it takes into account the initial condition
in the weak entropy formulation, which allows to avoid the more restrictive conditions on
the mesh [18]. The uniqueness of the process solution entails that a process solution is
the unique entropy weak solution. It also yields the (strong) convergence, in Lp -spaces,
of the approximate solution to the exact solution.

The proof of convergence of the FVM has been obtained for several other problems than the
one considered here. However, for systems of PDEs, it is often difficult to obtain compactness
results, and LW-consistency then seems an interesting way to make sure that an eventual limit
of the scheme is indeed a weak solution of the system. In the next section, we show how this
is feasible even on staggered grids, which are often used in the numerical simulation of fluid
flows.

4. LW-consistency and staggered grids

Rectangular staggered grids have been used since the sixties in fluid mechanics (in the well-
known MAC method [19]) including environmental flows [20], see also [21]. The mathematical
analysis of the MAC scheme has been the object of several recent works, see e.g. [22, 23]. Systems
of partial differential equations for which no existence or uniqueness is known have also been
discretized on staggered grids. Let us mention in particular the compressible Euler equations:
one of the advantages of using a staggered grid is to produce a scheme that can be mathematically
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Figure 1. Primal and dual meshes and associated notations for the MAC case. Left: the
primal cells; the edges σ and σ′ belong to F(1) and the edges τ and τ′ to F(2). Center: the
dual cells associated to F(1). Right: the dual cells associated to F(2).

proven to be asymptotically stable to the incompressible limit, as shown for the isentropic case
in [24]. For such systems, a Lax–Wendroff type theorem is very useful; indeed, although true
convergence cannot be proven for lack of compactness properties, such a theorem allows to
state that if the scheme converges, and provided some bounds on the approximate solutions
are satisfied (these bounds are generally not attainable mathematically but can be verified
numerically), the limit of the scheme is an entropy weak solution of the system, see [25, 26]. The
proof of this result may be obtained thanks to the generalization of the Lax–Wendroff theorem
to general grids, which include staggered grids such as the MAC grid [27]. One of the major
additional difficulties for staggered grids is that the discrete unknowns are piecewise constant
on different grids.

Consider a rectangular domain Ω ⊂ R2 (the 3D case can be tackled in the same way), and a
possibly non-uniform rectangular grid. We denote by F the set of edges of the mesh, and the
internal edge separating the cells K and L is denoted by σ = K |L (see Figure 1). This mesh will
be referred to in the following as the primal mesh, and denoted by P . Two dual meshes (three
in 3D) are considered, each consisting in a partition of Ω indexed by the vertical and horizontal
elements of F, i.e. Ω = ∪σ∈F(i ) Dσ, i = 1,2, where F(1) (resp. F(2)) denotes the set of vertical (resp.
horizontal) edges. The cells (Dσ)σ∈F are referred to as the dual cells. A half dual cell DK ,σ is half
of the rectangle K with side σ (see Figure 1). For an internal edge σ= K |L, the dual cell Dσ is the
subset of K ∪L defined as Dσ = DK ,σ∪DL,σ; for an external edge σ of a cell K , Dσ is the subset
DK ,σ of K .

To illustrate the use of the generalized Lax–Wendroff theorem proven in [27], let us consider as
a simple example the mass equation of, say, the compressible Euler equation:

∂tρ(x , t )+div
(
ρu

)
(x , t ) = 0 (x , t ) ∈Ω× ]0,T [, (20)

where ∂tρ denotes the time derivative of the density ρ, and div the space divergence. The scalar
unknown ρ is associated to the primal cells:

ρ(x , t ) = ρn
K for x ∈ K , K ∈P , t ∈ [tn , tn+1[, n ∈ �0, N −1�.

The unknowns associated to the i -th component of u are located at the center of the edges
of the i -th dual mesh. The associated approximate vector function thus reads: u(x , t ) =
(u1(x , t ), u2(x , t ))t where, for i = 1, 2,

ui (x , t ) = un
σ, for x ∈ Dσ, σ ∈F(i ) and t ∈ [tn , tn+1[, n ∈ �0, N −1�.
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Let e(i ) denote the i -th unit vector; the discretization of (20) reads:

C (ρ,u)n
K = (ðtρ)n

K + 1

|K |
∑

σ∈F(K )
|σ| F n

σ ·nK ,σ = 0, with (ðtρ)n
K = ρn+1

K −ρn
K

tn+1 − tn

and F n
σ = ρn

σun
σ, where un

σ is defined as un
σ e(i ) for σ ∈F(i ), i = 1 or 2,

and, for σ= K |L, ρn
σ stands for a convex combination of ρn

K and ρn
L (for instance the upwind or a

MUSCL choice with respect to un
σ). The initial value for the scalar unknown ρ is defined by

ρ0
K = 1

|K |
∫

K
ρ0(x) dx. (21)

For i = 1, 2, let h̄(i ) = max{|σ|, σ ∈ F(i )} and h(i ) = min{|σ|, σ ∈ F(i )}. We define the space step
by h(P ) = max(h̄(1), h̄(2)), and the time step by δt = maxn∈�0,N−1�(tn+1 − tn). A sequence of grids
is said to be quasi-uniform if the quotients h̄(1)/h(2) and h̄(2)/h(1) are bounded by a constant,
independent of the grid.

Lemma 4.1 (Lax–Wendroff consistency for the mass equation, MAC grid). Let a sequence of
quasi-uniform MAC grids (P (m))m∈N and of time discretizations be given, with h(P (m)) and δt (m)

tending to zero; let (ρ(m),u(m))m∈N be the associated sequence of discrete functions.
We suppose that the sequences (ρ(m))m∈N and (u(m))m∈N are bounded in L∞(Ω× ]0,T [) and

L∞(Ω× ]0,T [)2 respectively, and that, when m tends to +∞, they converge in Lp (Ω× ]0,T [) and
Lp (Ω× ]0,T [)2, 1 ≤ p <+∞, to ρ ∈ L∞(Ω× ]0,T [) and u ∈ L∞(Ω× ]0,T [)2 respectively. Then (ρ,u)
is a weak solution of (20), in the sense that, for any function ϕ ∈C∞

c (Ω× [0,T [),∑
0≤n≤N−1

δt (m)
∑

K∈P (m)

|K |C (ρ,u)n
K ϕ

n
K →−

∫
Ω
ρ0(x) ϕ(x ,0) dx

−
∫ T

0

∫
Ω

(ρ(x , t )∂tϕ(x , t )+ (ρu)(x , t ) ·∇ϕ(x , t )) dx dt as m →+∞,

where ϕn
K stands for the mean value of ϕ(x , tn) over the cell K , and so the right-hand side of this

assertion vanishes.

The proof of Lemma 4.1 is given in [7] and is quite simple, especially using the ad hoc tools
developed in [7,27]. However, the developed arguments may be extended to more complex oper-
ators, to deal for instance with the momentum and energy balance equations of the compressible
Euler equations, even if the proofs are more tricky.

5. Conclusion

In this paper, we have presented some concepts for the mathematical analysis of FV schemes,
paying special attention to the flux consistency issue and its most direct consequence, i.e. the
LW-consistency of the scheme. We emphasize that we gave here a very partial picture of the
mathematical world of finite volumes. In many problems (some of them evoked here), the
convergence of the discrete solution to a limit follows by compactness arguments in norms strong
enough to "feed" the consistency study; in fine, this yields a stronger result than just the scheme
consistency, namely the convergence (up to a subsequence if the uniqueness of the solution
of the continuous problem is not known) of the numerical solutions to the (a) continuous one
(see e.g. [22]). Many parabolic equations enter this framework, including, focusing on fluid
flow simulations, incompressible, possibly variable density, or steady barotropic Navier–Stokes
equations. In some problems, the continuous solution may be reasonably supposed (or even
proven) to be regular, and an error analysis is possible.

The LW-consistency issue is especially important for practical applications in fluid flow sim-
ulations. Indeed, in many cases of interest, stronger results are out of reach, and this property is
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the only one left to mathematically support the design of schemes. This is for instance the case
for multi-dimensional flows governed by hyperbolic systems, as shallow-water equations, Euler
equations or models for multi-phase flows. For instance, the study evoked in Section 4 is moti-
vated by such a situation: in the last ten years, a class of staggered schemes has been designed for
hyperbolic flow problems [25,26,28], and implemented in the open-source software CALIF3S de-
veloped at IRSN [29]; they are now routinely used for industrial safety applications like hydrogen
explosion problems, supposing inviscid or at least vanishing viscosity flows. The accuracy of the
numerical schemes involved here is essentially supported by LW-consistency studies [26].
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