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Abstract. Scalability of parallel solvers for problems with high heterogeneities relies on adaptive coarse
spaces built from generalized eigenvalue problems in the subdomains. The corresponding theory is powerful
and flexible but the development of an efficient parallel implementation is challenging. We report here on
recent advances in adaptive coarse spaces and on their open source implementations in domain specific
languages such as FreeFem, focusing on a new domain decomposition for saddle point formulations with
some numerical tests.

Résumé. Lextensibilité des solveurs paralleéles pour les problemes a forte hétérogénéité repose sur des
espaces grossiers adaptatifs construits a partir de problemes de valeurs propres généralisés dans les sous-
domaines. La théorie correspondante est puissante et flexible mais le développement d’'une implémentation
parallele efficace est un défi. Nous présentons ici les avancées récentes en matiére d’espaces grossiers
adaptatifs et leurs implémentations open source dans des langages spécifiques au domaine tels que FreeFem,
en nous concentrant sur une nouvelle décomposition de domaine pour les formulations de points de selle
avec des tests numériques.
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1. Introduction

The clock speed of cores have stagnated at 2-3 GHz since approximately the year 2005. The in-
crease in performance is almost entirely due to the increase in the number of cores per pro-
cessor. All processor vendors are producing multicore chips and now every machine is a par-
allel machine. This assertion is true for personal computers (with few cores) as well as for
high performance computers (with tens to hundreds of thousands of cores). The evolution
of GPU graphics cards is another example of this strong tendency. Waiting for the next gen-
eration machine does not guarantee anymore a better performance of a software. To keep
doubling performance, parallelism must double. The consequence is that the development of
parallel algorithms is mandatory in order to take advantage of the current and next genera-
tions of computers. It implies a huge effort in algorithmic development. Scientific comput-
ing is only one illustration of this general need in computer science. Visualization, data stor-
age, mesh generation, operating systems, languages, ... must be designed with parallelism in
mind.

For computational fluid dynamics simulation codes as well, parallelism is nowdays “a has to
have”. For developers, it means integrating in their codes more and more complex tools such as
parallel mesh generation, graph partitioners (e.g., METIS or Scotch) for mesh decomposition,
parallel linear solvers (e.g., PETSc, Trilinos, MUMPS, PARDISO, SuperLU DIST, parallel multigrid
or domain decomposition (DD)r science tools such as OpenMP for shared parallelism and/or
MPI (Message Passing Interface) for distributed parallelism as well as OpenCL or Cuda for taking
advantage of GPUs. Such parallel codes are thus more and more difficult to develop in small
or middle size teams and demand expertise in fields that are complex and often remote from
specialists in fluid dynamics. Commercial software and domain specific languages (DSL) are two
solutions to this problem as they provide a user interface that hides a great deal of all these
difficulties. We focus here on DSL which are more adapted to new technological or environmental
challenges. Indeed, by their very nature, the implied new modelisations are easy to integrate by
the end user. They also give a great flexibility in the exploitation of simulation results since the
end user can write their own analysis scripts.

Simulation DSLs such as opensource libraries e.g., FreeFem, OpenFOAM, FEniCS, FireDrake,
Feel++, GetFEM or commercial packages e.g., Comsol are now well established to easily handle
multiphysics simulations as well as parallelism. We focus here on FreeFEM since it will be
used in the sequel for the implementation and test of a new DD method for saddle point
problem. Specifically a FreeFEM script is very close to the mathematical variational formulation
of the equations. This allows non-computational experts to solve non-trivial PDEs on parallel
computers through a user friendly language. This is one of the reasons why it can be used for
both teaching and prototyping, in academia as well as in industry. As an example, it was used
in [1] for performing large-scale hydrodynamic stability analysis, see Figure 1 or also Figure 2
taken from [2] as an example of parallel computations made with the DSL FreeFem.

In this paper, we focus on linear solvers based on DD methods for solving large-scale sad-
dle point problems. These problems are ubiquitous in solid, fluid and fluid structure mechan-
ics, inverse problems and optimization. For incompressible or nearly incompressible materi-
als (solids or fluids), the stability of the approximation scheme makes it necessary to intro-
duce an unknown pressure. When the problem is small enough, a direct method is the one
of choice. They are readily available via well established open source libraries e.g., MUMPS,
SUPER_LU DIST or commercial ones e.g., PARDISO or the MKL. To some extent, they offer
some degree of parallelism but only for some tens of cores at best. But for large problems of
say tens of millions of dofs or more, their memory requirements are so large that they can-
not be used in practice, see Section 3.2.1. As for iterative solvers, when the kernel of matrix B
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Up

(b) High-frequency unstable eigenmode

Figure 1. Linear stability analysis at Re = 100 with 75 M dofs. Streamwise velocity contours
of (a) the steady solution and (b) the high-frequency unstable eigenmode, see Moulin et
al. [1].

(see (12)) is known, very efficient multigrid methods have been designed in the context of fi-
nite element methods, see e.g., [3-8]. But for problems with high heterogeneities, this kernel
is generally not known. Without this knowledge, it is nevertheless also possible to design ef-
ficient geometric multigrid methods as in [9] where the fine mesh is obtained by several uni-
form mesh refinements. We focus here on DD methods which have the advantage of being nat-
urally parallel. Moreover, DD preconditioners easily interoperate with other multilevel solvers,
e.g., for fluid-structure interaction, as it has been done in the context of shape optimization, see
e.g., [10].

In Section 2, we recall the basics of overlapping DD methods i.e., one-level method and the
need for a second level in order to achieve scalability as well as the more advanced GenEO
coarse space [11]. Then in Section 3 we present a novel DD method that extends the GenEO
method to saddle point problems. We also provide numerical tests for very large-scale problems
on thousands of computers. In Section 4, we explain why the use of a domain specific language
makes the method available to non-experts in parallel computing.
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Figure 2. Flow stream lines for the driven cavity at Re = 7500 (Haferssas, Jolivet and Rubino,
see [2]). At each iteration, a saddle point problem is solved with the method explained
below.

2. Domain decomposition methods
2.1. One-level Schwarz methods

Hermann Schwarz was a German analyst of the 19th century. He was interested in proving the
existence and uniqueness of the Poisson problem. At his time, there were no Sobolev spaces
nor Lax-Milgram theorem. The only available tool was the Fourier transform, limited by its very
nature to simple geometries. In order to consider more general situations, Schwarz devised an
iterative algorithm for solving the Poisson problem set on a union of simple geometries, see [12].
For a historical presentation of these kinds of methods see [13].

Let the domain Q be the union of a disk and a rectangle, see Figure 3. Consider the Poisson
problem which consists in finding u : Q — R such that:

—A(uw) = finQ (1
u =0 onoQ.

Definition 1 (Original Schwarz algorithm). The Schwarz algorithm is an iterative method based

on solving alternatively sub-problems in domains Q; and Q. It updates (u{, u}) — (u{’+1 u;‘“)

by:

A = f in Al =f  inQ
w™'=0 o0noQNoQ then, ul* =0 on 0Q NOQ 2
w™ = ull' onoQ;NQ,. ul* = ul™! onoQ,n Q.

Schwarz proved the convergence of the algorithm and thus the well-posedness of the Poisson
problem in complex geometries.

With the advent of digital computers, this method also acquired a practical interest as an iter-
ative linear solver. Subsequently, parallel computers became available and a small modification
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Ql QQ

Figure 3. A complex domain made from the union of two simple geometries.

of the algorithm [14] made it suited to these architectures. Its convergence can be proved using
the maximum principle [15].

Our main focus is high performance computing which implies the presence of thousands of
subdomains and also to be able to work with third-party linear solver libraries. Let N be the
number of subdomains, the domain Q is decomposed into N overlapping subdomains (Q;)1<;<n-
Rather than iterating on the collection of local approximate solutions (u?)lg i<N, it is then more
convenient to consider related algorithms where we iterate on a global approximate solution
u" : Q — R. In order to do this, we introduce a partition of unity. We proceed here in an informal
way.

Definition 2 (Extension operators and partition of unity). Let the extension operator E; be such
that E;(w;) : Q — R is the extension of a function w; : Q; — R, by zero outside Q;. We also define
the partition of unity functions y; : Q; — R, y; =0 and y;(x) = 0 for x € 0Q; \ 6Q and such that:

N
w=) Ei(xiwaq, 3)
i=1
for any function w: Q — R.

A natural generalization of (2) is the RAS (Restricted Additive Schwarz) algorithm [16]:
For an approximate solution, u" to (1), we first solve in parallel subproblems

A = f in Q;
utl =0 on 0Q; NoQ
u™l = yn on 0Q; \ 0Q. 4)

1

followed by u"*! := Z?Ll E;i(xi u?“) in Q.

Note that in the original algorithm (2) local solves are performed sequentially and that local
approximate solutions do not match in the overlap whereas in the RAS algorithm local solves
are performed in parallel and the iterate u” is univocally defined on the global domain Q.

2.2. Need for global transfer of informations

When the number of subdomains is large, plateaus appear in the convergence of Schwarz DD
methods. This is the case even for a simple model such as the Poisson problem (1). The problem
of the one-level method arises from the fact that in the Schwarz method there is a lack of a global
exchange of information. Data are exchanged only from one subdomain to its direct neighbors.
But the solution in each subdomain depends on the right-hand side in all subdomains. Let
us denote by N; the number of subdomains in one direction. Then, for instance, the leftmost
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Figure 4. Decomposition into 324 subdomains. One color for each subdomain.
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Figure 5. Convergence curves with and without a coarse space correction for a decompo-
sition into 64 strips.

domain of Figure 4 needs at least N iterations before being aware about the value of the right-
hand side f in the rightmost subdomain. The length of the plateau is thus typically related to the
number of subdomains in one direction as exemplified in Figure 5.

2.3. Coarse Spaces constructions

In order to analyze and fix this weakness of the one-level method, it is necessary to go beyond the
above qualitative explanation relating the length of the delay in the convergence to the diameter
of the graph of the connections between subdomains. In [17] an adaptive method was proposed
at the continuous level. In order to generalize it, a first key tool for this is the Fictitious Space
Lemma (see [18] for the original paper and [19] for a modern exposition) which can be seen as
the Lax-Milgram theorem of DD methods. It is formulated as an abstract result of the theory
of Hilbert spaces but actually it encompasses almost all (if not all) known DD methods: Schwarz
methods, Lions algorithm, Balancing Neumann-Neuman and FETI methods. The second key tool



Frédéric Nataf and Pierre-Henri Tournier 7

is the deflation technique that comes more for the linear algebra community, see e.g., [20-22] and
references therein. This is connected as well to augmented or recycled Krylov space methods, see
e.g., [23-25] or [26] and references therein.

For instance in [11] and in [27] and references therein, it is explained how to add a so-called
coarse space correction to the original one-level method in order to get a scalable method
with a guaranteed condition number for the preconditioned system. More precisely, let (1) (or
any symmetric positive definite system) be discretized by a finite element method so that the
resulting linear to be solved reads:

AU =F, (5)
where U € is the vector of degrees of freedom for a set of indices denoted by .A4".

In order to define the DD method at the discrete level, we first decompose the global mesh
9}, into overlapping sub meshes (97;)1<;<n. This induces a decomposition of the global set of
degrees of freedom .4 into N sub sets (A})1<i<n- Let (R;)1<j<n be the restriction operator from
the global set of indices .4 to the local one .#;. The one-level ASM (additive Schwarz method)
preconditioner which is a symmetrized version of the RAS method reads:

N
o= O R (R AR R;. 6)
i=1
The coarse space is defined in several steps.

First, let D; be diagonal square matrices of size #.4; that define a partition of unity, that is for

allu e R*":

R#W

N
U=) R'D;R;U. @)
i=1
A simple choice for D; is that for each degree of freedom k € A}, we set (D;) gk := 1/ where p

denotes the number of subsets k belongs to. Note that other choices are possible and popular
particularly the ones for which D; has a zero entry for degrees of freedom that live on the
interface.

Now, in each subdomain, let All.\]e“ be the matrix associated to the restriction of the variational
formulation to the sub mesh J7;. We define a generalized eigenvalue problem

DiR; AR] DiVii = i ANV, (8)
Let T be a user-defined threshold, we assume that the rectangular matrix Z; defined by the
concatenation of the vectors RiTD,-Vi ¢ forall 1 =i < N suchthat A;; > 1/7 is full rank. The coarse

space is defined as the range of Z;.
Following [28], a two-level preconditioner is defined as follows:

M o 1= Zo(Zy AZo) ™' Z§ + (I Po) Mygy (I = Py), 9

where Py is the A orthogonal projection on the coarse space Vj:

Py:=Zo(ZL AZy) ' Z] A. (10)
It is then possible to have a full control of the spectrum of the preconditioned operator, see
Theorem 7.23 in [27]:

Theorem 3 (Hybrid Schwarz algorithm). Let 1 be a user-defined parameter to build the GenEO
coarse space as above.
The eigenvalues of the hybrid Schwarz preconditioned system satisfy the following estimate

< AWML A) < ko, 11
1+k1T ( 2, HSM ) 0 ( )

where ky is the number of neighbors of a subdomain plus one and k; is the maximum multiplicity
of the intersection between subdomains.
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We have considered here only the additive Schwarz method but this kind of result has been
extended to FETI method [29, 30], P. L. Lions algorithm [31], inexact coarse solve [32], bound-
ary element methods [33], multiscale finite element methods [34], time-dependent Maxwell sys-
tem [35], least square problems [36], purely algebraic settings [36,37] and very recently to saddle
point problems [38] that we develop below.

3. Saddle point

Solving saddle point problems with parallel algorithms is very important for many branches
of scientific computing: fluid and solid mechanics, computational electromagnetism, inverse
problems and optimization.

We are interested in DD methods since they are naturally well-fitted to modern parallel archi-
tectures. For specific systems of partial differential equations with a saddle point formulation, ef-
ficient DD methods have been designed, see e.g., [39-41] and [42] references therein. Also in [43],
a GenEO coarse space is introduced for the P. L. Lions’ algorithm and its efficiency is mathemat-
ically proved for symmetric definite positive problems. In the above article, numerical experi-
ments are conducted on 3D elasticity problems for steel-rubber structures discretized by a fi-
nite element with continuous pressure. Although the method works well in practice, the method
lacks theoretical convergence guarantees and also demands the design of specific absorbing con-
ditions as interface conditions.

As for a convergence rate analysis for a discretization with a continuous pressure, a recent
article [44] generalizes the theory developed in [45] to the case of non-zero pressure block but
under the assumption that the discontinuities are resolved by the subdomains.

Compared to the above mentioned works, the method we propose has a provable control on
the condition number for zero or non-zero pressure block with a continuously discretized pres-
sure also in the case of arbitrary heterogeneities and bypasses the need for absorbing boundary
conditions.

Here as in [46-49], we consider the problem in the form of a two-by-two block matrix. Let m
and n be two integers with m < n. Let A be an n x n SPD matrix and B be a sparse m x n full rank
matrix of constraints and C an m x m non-negative matrix (in particular, C = 0 is allowed), we
consider the following saddle point matrix:

B -C (12)

T
o = (A B ) .
When the kernel of matrix B is known, very efficient multigrid methods have been designed in the
context of finite element methods, see e.g., [3-8]. Without this knowledge, it is nevertheless also
possible to design efficient geometric multigrid methods as in [9] where the fine mesh is obtained
by several uniform mesh refinements.

Here we do not assume any knowledge on the kernel of matrix B and we work with arbitrary

meshes. The following three factor factorization, see e.g., [50]:

ABTY (I 0|(A 0 1 A7'BT
B -C _(BA’I 1J\0 —(C+ BA™'BT) (0 I )

shows that solving the linear system with </ can be performed by solving sequentially two linear
systems with A and one with the Schur complement C + BA~'B”. In order to build a scalable
method, we assume that all three matrices A, B and C are sparse and that A and C are the sum of
positive semi-definite matrices. This is easily achieved in finite element or finite volume contexts
for partial differential equations. The latter assumption enables the design of adaptive coarse
space for DD methods, see [27].
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3.1. Two-level DD for Saddle Point problems

We sketch here the extension of the GenEO preconditioner to the Saddle Point problem, more
details are given in [38]. We consider the preconditioning of a saddle point matrix <« arising from
the discretization of e.g., Stokes, nearly incompressible elasticity systems:

A BT)

d::(B -C

It is well known that it is equivalent to the precondition A and S := C+ BA~!BT, see e.g., [50].

Starting with A~ = MXSIMz’ defined as follows where 7 is defined above in Section 2.3 by solving

generalized eigenvalue problems as in (8):

oMo 1= Z0(Zy AZ)) M Zi + Mgy (13)

we have
N
S~C+BM;g,B" =BR] (RyAR]) ' RyB" +C+ ) BR] (R;AR])"'R;B".
i=1
Matrices B and C are sparse so that we can introduce sparse matrices (C;, R;)1<;<n o that
N
S~ C+BMydy,B" = So+ Y R/ (Ci+B; (R;AR)) ' BNR;,
i=1

)

Ms,
where So := BR! (RyARI)™' RyB”. The operator Mg, is dense and has to be preconditioned
which at first glance seems difficult. But as a sum of local Schur complements, it can be pre-
conditioned by a GenEO Neumann-Neumann type method where the rectangular matrix Zs, is
built by solving local generalized eigenvalue problems in the pressure space similar to what is
done in the GenEO method:

N
M= Zs, (28 $12s)7 28 + ZIRZ Di(I-&)(Ci+Bi (R AR BHT U -¢)DiRi |,
1=

where the (¢;)1<ij<n are local projections. We can then define Ng as a spectrally equivalent
preconditioner to S:

Ng:= S+ Msg,.
The application of the preconditioner Ny consists in solving:
NsP =G, (14)

by a Krylov solver with M 511 as a preconditioner. Having spectrally equivalent preconditioners
to both A and S is sufficient to have a spectrally equivalent preconditioner to the saddle point
matrix &/, see e.g., [51].

3.2. Numerical results

We perform here numerical tests on a saddle point problem arising in solid mechanics that has
the ingredients that make a saddle point difficult to solve: highly heterogeneous coefficients and
near incompressibility. More precisely, we present weak scalability results for the heterogeneous
beam composed of ten alternating layers of rubber (E;,v;) = (1 x 107,0.4999) and steel (Ey, v») =
(2 x 10°,0.35). Local problem size is kept roughly constant as N grows, and the total number of
dofs n goes from 16 million on 262 cores to 1 billion on 16,800 cores.
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Table 1. Weak scaling experiment for 3D heterogeneous elasticity: beam with ten alternat-
ing layers of steel and rubber

#Cores n dim(Vp) dim(Wp) Setup(s) #It GMRES(s) Total(s) #It Ng'
262 15987,380 5383 3319 7107 24 631.6 134233 11
525 ~ 27,545495 9959 2669 5266 21 519.5  1046.1 12
1050 64,982,431 17,837 4587 6752 22 6659  1341.1 11

2100 126,569,042 32,361 7995 689.2 25 733.8 1423.0 10
4200 218,337,384 59,704 13,912 593.0 27 705.4 1298.4 10
8400 515,921,881 141,421 25,949 735.8 32 1152.5 1888.3 10
16,800 1006,250,208 260,348 41,341 819.2 29 1717.9 2537.1 12

Reported iteration counts, coarse space dimensions and timings for DD saddle point.

We report in Table 1 the iteration counts and computing times for the DD saddle point. The
stopping criterion is a tolerance smaller than 1072, Moreover, we use flexible GMRES, as we
solve (14) inexactly using GMRES with a tolerance of 102 in order to apply N, S I

In order, columns correspond to: number of cores, number of dofs 7, size of the coarse space
for A dim(Vj), size of the coarse space for S;dim (W), setup time corresponding to the assembly
and factorization of the various local and coarse operators, number of outer GMRES iterations,
GMRES computing time, total computing time (setup + GMRES) and average number of inner
GMRES iterations for each solution of (14). All timings are reported in seconds.

Iteration counts. We first discuss iteration counts. We see that the outer iteration count remains
stable, between 21 and 32. The inner iteration count is also stable and remains around 11. We
also observed (figures are not reported here) that the inner GMRES tolerance of 102 does not
affect the outer iteration count compared to an accurate solution with a stricter tolerance of 1072,
and allows a significant reduction in inner iteration count. For example, 11 iterations on average
instead of 28 on 1050 cores for the same outer iteration count of 22, leading to a decrease from
1178.2 to 665.9 seconds in GMRES timing.

Timings. In terms of setup timings, the computing time remains relatively stable, with roughly
15% increase for a factor of 64 in problem size. Around 60% of the setup time is spent in the
solution of the eigenvalue problems for the GenEO coarse space for S;.

The solution time stays relatively stable up to 4200 cores, where it starts to degrade. This can
be related to the increased cost of the coarse space solves with matrices ROAROT and ZST S1Zs, as
their size increases: total time spent in coarse space solves is 14.7, 62.1 and 679.3 seconcis on 262,
4200 and 16,800 cores respectively. A possible improvement would be to use a multi-level method
to solve the coarse problems iteratively.

3.2.1. Comparison with direct and multigrid solvers

In Table 2, we compare the performance of the solver to the parallel sparse direct solver
MUMPS for the heterogeneous steel and rubber beam test case with four discretization levels,
while also varying the number of cores. As we can see, MUMPS is comparatively more efficient
for smaller problems, with for example a total time of 86.5 seconds compared to 303.4 seconds for
our saddle point solver for 1 million unknowns on 32 cores. However, as expected, we see a large
increase in memory and computational cost as the size of the system gets larger: for 8.2 million
unknowns, MUMPS runs out of memory on 262 cores and solves the problem in 1628.2 seconds
on 525 cores, compared to 308.1 seconds for the DD solver. Moreover, we can see from Table 2
that the DD saddle point solver offers much better strong scalability.
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Table 2. Comparison with the parallel sparse direct solver MUMPS for 3D heterogeneous
elasticity: beam with ten alternating layers of steel and rubber

n #Cores MUMPS DD saddle point solver
Setup (s) Solve (s) Total (s) Setup(s) #It GMRES (s) Total (s)

139,809 16 7.1 0.1 7.2 27.1 18 19.7 46.8
1058,312 32 85.7 0.8 86.5 166.2 20 137.2 303.4
1058,312 65 71.0 0.6 71.6 91.0 21 77.1 168.1
1058,312 131 63.2 0.5 63.7 59.7 24 49.7 109.4
3505,582 55 477.8 3.7 481.5 404.1 24 430.1 834.2
3505,582 110 392.3 2.3 394.6 2425 23 212.8 455.3
3505,582 221 387.0 2.1 389.1 134.8 23 109.4 244.2
3505,582 442 453.9 2.2 456.1 88.2 24 68.6 156.8
8235,197 262 OOM / / 2785 25 264.3 542.8
8235,197 525 1622.1 6.1 1628.2 172.1 24 136.0 308.1
8235,197 1050 1994.3 7.4 2001.7 136.5 25 99.7 236.2

Reported timings for four discretization levels while also varying the number of cores (OOM
means the computation ran out of available memory).

Table 3. GAMG versus standard GenEO for the velocity formulation on the homogeneous
beam discretized with 7.9 million unknowns, using 131 and 525 cores

v GAMG DD saddle point solver
#It  Total(s) dim(Vp) Setup(s) #It GMRES (s) Total (s)

131 cores

0.48 60 67.1 10,480 200.7 24 11.2 212.0
0.485 109 89.0 10,480 199.5 27 12.7 212.2
0.49 210 137.0 10,480 202.0 32 15.0 217.0
0.495 >2000 / 10,480 199.9 43 20.2 220.1
0.499 >2000 / 10,480 199.2 99 48.6 247.7
525 cores

0.48 56 25.5 41,766 60.4 18 5.0 65.4
0.485 60 26.1 41,984 60.9 20 5.3 66.2
0.49 116 333 42,000 60.4 23 5.9 66.3
0.495 >2000 / 42,000 60.4 32 7.6 68.1
0.499 >2000 / 42,000 60.6 95 20.3 81.0

Reported iteration counts and timings for different values of the Poisson ratio v ranging
from 0.48 to 0.499.

We also performed comparisons with the Geometric Algebraic Multigrid (GAMG) precondi-
tioner from PETSc, see Table 3. We were not able to find a suitable tuning of parameters for GAMG
for the saddle point formulation. However, we performed comparisons between GAMG and stan-
dard GenEO for the velocity formulation on the homogeneous beam, varying the Poisson ratio v
from 0.48 to 0.499. The GenEO threshold 7 is set to 3.33, and we select at most 80 eigenvectors in
each subdomain. Even though GAMG is faster for v < 0.49, we can see that GenEO is more robust
as v increases. In particular, GAMG fails to converge in 2000 iterations for v = 0.495.
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4. Libraries for large-scale computations

We have thus a strong set of mathematical techniques that enable to build efficient DD methods.
But it comes at the expense of some difficulties since the implementation of these methods is not
so easy due to the need to have access to the variational formulation to build the local matrices
(All.\“*“)lsis ~ in the generalized eigenvalue problem for computing the coarse space, see (8). Also,
an efficient parallel implementation needs a careful organization of the code and the use of the
message passing interface MPI on distributed memory machines.

This motivated the development of open source implementation of the GenEO coarse space:

o the C++/MPI library hpddm [52] either as an autonomous library or interfaced with
FreeFem [53] or PETSc [54]. The library also provides access to the GCRODR method [24]
useful when solving linear systems with multiple right-hand sides.

o the FreeFem DD library ffddm [55]

e a Dune solver as described in [56]

It is worth noticing that the access to the variational formulation is made easy if one makes use
of domain specific languages or libraries such as FreeFem [53], Dune [57] or Firedrake [58]. It
facilitates the encapsulation of two-level methods. The resulting scripts are then quite compact
and do not require writing of MPI lines of code although they enable the parallel solving of all
kinds of equations with the above mentioned methods.

5. Conclusion

We have introduced adaptive DD methods efficient for highly heterogeneous problems. For a
saddle point problem, two coarse spaces are built by solving generalized eigenvalue problems,
one for the primal unknowns and the second one for the dual unknowns. The robustness of
the method was assessed on a notoriously difficult 3D problem discretized with continuous
pressure. The computations were made using the FreeFem DSL that meets the ever growing
need to hide from the specialist in the physical field these complexities, while still giving them
the freedom to propose and test new modelizations and/or new ways to analyze simulation
results.

Several issues deserve further investigations for saddle point problems. First, a multilevel
method with more than two levels would enable even larger and possibly faster simulations. Also,
the tests were performed with FreeFem scripts using the standalone ffddm [55] framework. The
integration of the method in the C++/MPI library hpddm [52] could lead to faster codes and
a more general diffusion of the saddle point preconditioner. In a different setting, the design
of adaptive coarse space is strongly connected to multiscale finite element (MFE) methods
(see e.g., [34,59, 60] and references therein) and this work could be used in designing MFE or
Reduced Order Methods for saddle point problems.
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